Light Spanners with Stack and Queue Charging Schemes

Vincent Hung1

1Department of Math & CS
Emory University

The 52nd Midwest Graph Theory Conference, 2012
Motivation
Metrical Optimization Problems in Graphs (e.g. TSP)
Previous Work: Charging Schemes
Book Embedding vs. Stack and Queue Charging Scheme
Graph Families for Queue and Stack Schemes

Results for the Talk
Charging Schemes for Bounded Pathwidth Graphs
Outline

Motivation

Metrical Optimization Problems in Graphs (e.g. TSP)
Previous Work: Charging Schemes
Book Embedding vs. Stack and Queue Charging Scheme
Graph Families for Queue and Stack Schemes

Results for the Talk

Charging Schemes for Bounded Pathwidth Graphs
Traveling Salesman Problem

- TSP – NP Complete
- 1-2 TSP – MAX-SNP Hard
- Metric TSP – ∃ A Fast 2 Approximation Algorithm
Metric TSP

- There are approximation algorithms for Metric TSP with bounded errors.
- Have: Error $\leq \epsilon w(G)$
- Want: Error $\leq \epsilon w(MST)$
- Lucky: $w(G') \leq \epsilon w(MST)$ G': pruned graph from G
Candidate: *Light Spanners*

$G' = \text{Span}(G, 1 + \epsilon)$ with the following good properties:

1. "Span": for $u, v \in V$, $d_{G'}(u, v) \leq (1 + \epsilon)d_G(u, v)$
2. "Light": $w(G') \leq \frac{k}{\epsilon}w(\text{MST})$
Motivation

Metrical Optimization Problems in Graphs (e.g. TSP)
Previous Work: Charging Schemes
Book Embedding vs. Stack and Queue Charging Scheme
Graph Families for Queue and Stack Schemes

Results for the Talk

Charging Schemes for Bounded Pathwidth Graphs
Charging Scheme

- Charging Scheme (Proved by LP duality)
- For each \((e_i, p_i)\), \(e_i\) pay 1 unit of charge, every \(e \in p_i\) receive 1 unit of charge
- Goal of the Dual Problem: to minimize the value of charges received for edges of trees

\[p_i = B-C_2-E \]
Outline

Motivation
Metrical Optimization Problems in Graphs (e.g. TSP)
Previous Work: Charging Schemes
Book Embedding vs. Stack and Queue Charging Scheme
Graph Families for Queue and Stack Schemes

Results for the Talk
Charging Schemes for Bounded Pathwidth Graphs
Book Embedding vs. Charging Schemes

- **Book Embedding**: A book drawing of G onto a book B should be:
 - every vertex of G is mapped to the spine of B; and
 - every edge of G is mapped to a single page of B.

- A book embedding of G onto B requires the drawing does not have crossings.
- Every page is (outer)-planar
- Queue Scheme/Queue-compatible Page
- Stack Scheme/Stack-compatible Page
Queue and Stack Charging Schemes

- (c, d)-graph
- c – Number of Queue Pages
- d – Number of Stack Pages
- Retrospect: "Light": $w(G') \leq \frac{k}{\epsilon} w(MST)$
- $k = 2c + d$
- If c, d are $O(1) \rightarrow k$ is, too.
Outline

Motivation
Metrical Optimization Problems in Graphs (e.g. TSP)
Previous Work: Charging Schemes
Book Embedding vs. Stack and Queue Charging Scheme
Graph Families for Queue and Stack Schemes

Results for the Talk
Charging Schemes for Bounded Pathwidth Graphs
Planar Graphs $\rightarrow (0, 2)$-graphs

- Technique: No Crossing

- Bounded Genus Graphs $\rightarrow (6g - 2, 3g - 2)$-graphs

- Technique: Decompose Bounded Genus Graphs into union of planar graphs
Robertson-Seymour Theory: graphs of minor-closed family can be decomposed into the following components:

1. Bounded Genus Graphs
2. Apices
3. Vortices
4. Clique Sums

Vortices: Bounded Pathwidth Graphs stitched to the surface

Grigni’s conjecture: every minor close graph family has light spanners
To charge Bounded Pathwidth Graphs:

1. Convert it to Bounded Bandwidth Graphs
2. Construct a path by taking an Euler Tour of MST
3. Assume MST is a path, we show a counterexample

\[\hat{G} \to (O(\sqrt{n}), O(\sqrt{n})) \]-graphs and Bounded Pathwidth
To charge Bounded Pathwidth Graphs:

1. Convert it to Bounded Bandwidth Graphs
2. Construct a path by taking an Euler Tour of MST
3. Assume MST is a path, we show a counterexample
 - \(\hat{G} \rightarrow (O(\sqrt{n}), O(\sqrt{n})) \)-graphs and Bounded Pathwidth
To charge Bounded Pathwidth Graphs:

1. Convert it to Bounded Bandwidth Graphs
2. Construct a path by taking an Euler Tour of MST
3. Assume MST is a path, we show a counterexample

\[\hat{G} \rightarrow (O(\sqrt{n}), O(\sqrt{n})) \]-graphs and Bounded Pathwidth
To charge Bounded Pathwidth Graphs:
1. Convert it to Bounded Bandwidth Graphs
2. Construct a path by taking an Euler Tour of MST
3. Assume MST is a path, we show a counterexample
 - $\hat{G} \rightarrow (O(\sqrt{n}), O(\sqrt{n}))$-graphs and Bounded Pathwidth
Motivation

- Metrical Optimization Problems in Graphs (e.g. TSP)
- Previous Work: Charging Schemes
- Book Embedding vs. Stack and Queue Charging Scheme
- Graph Families for Queue and Stack Schemes

Results for the Talk

- Charging Schemes for Bounded Pathwidth Graphs
Convert Bounded Pathwidth Graphs to Bounded Bandwidth Graphs
Bounded Bandwidth Graphs

- Goal: To Bound the **Maximum Degree**
- Assume weight 0 to edges between duplicate vertices
Bounded Pathwidth Graphs: Counterexample

- Solid Line: the MST T of G'
- Zig-Zag Line: edges not in T ($e \in G' - T$)
- $O(\sqrt{n})$ Zig-Zag Edges in each group; total $O(\sqrt{n})$ groups
Queue and Stack charging scheme cannot handle bounded pathwidth graphs

However, we are able to solve it by creating a structure called "monotone tree" (http://arxiv.org/abs/1104.4669)

Future Work

- How to connect vortices to the plane or bounded genus graphs?
- How to handle clique sum individually?