TFBS-Finder and TFBS-Mutator: Two scripts for mapping and mutating transcription factor binding

sites to study gene regulation

Michael Bennet¹, Miranda Bigler², Naureen Aslam Khattak² Esdras Simervil¹, Landon Carre¹, Jeff Kinne^{1,3}, Shaad M. Ahmad^{2,3}

¹Department of Computer Science, ²Department of Biology, ³The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809

Introduction

Enhancers are stretches of DNA that are recognized and bound by particular combinations of sequence-specific DNA-binding transcription factors (TFs) to regulate cell-specific or tissue-specific expression of enhancer-associated genes [1] as shown in Figure 1..

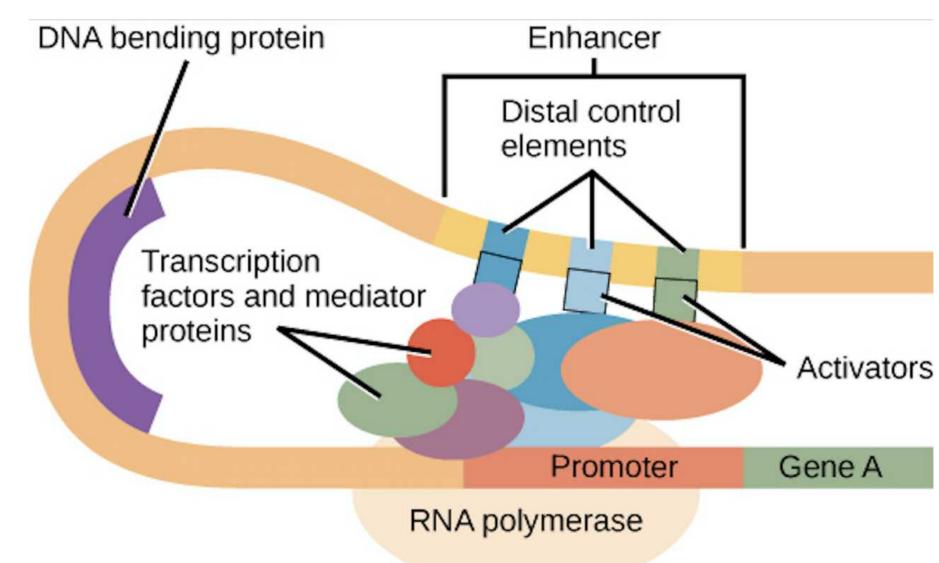


Figure 1: The schematic representation of Enhancer and Transcription factor binding proteins

Aims and Objective

- Design a script, TFBS-Finder, that maps potential TF binding sites in any given enhancer.
- Develop a second script, TFBS-Mutator, to design mutations to a binding site that could prevent the binding of one TF without impacting the binding of other TFs at the site.

Methods

Protein Binding Microarray (PBM) data [2] is used as the input to the programming scripts, which are written in R. A PBM data file for a particular TF contains a row for each possible string of 8 nucleotides, together with their reverse complements; each row records the binding affinities to of the TF to the 8-mer in terms of E-score, Median and Z-score as shown in Table 1.

8-mer	8-mer	E-score	Median	Z-score				
AAAAAAA	ТТТТТТТ	0.32779	4276.12	2.0578				
AAAAAAC	GTTTTTT	0.27145	3864.99	1.8001				
AAAAAAG	СТТТТТТ	0.274	3201.76	1.3202				
AAAAAAT	АТТТТТТ	0.20289	2688.5	0.8747				
AAAAAACA	TGTTTTT	0.35522	5967.84	2.9076				
AAAAAACC	GGTTTTT	0.02376	2390.99	0.5758				

Table 1: E-scores range from -0.5 to +0.5. Higher E-scores represent TFs binding with higher affinity to an 8mer. We can identify possible binding sites in a longer genetic sequence by locating these high binding affinity 8mers in a sequence.

TFBS-Finder

TFBS-Finder takes input files for an enhancer sequence in FASTA or plain text format [3] together with PBM data flies for TFs of interest. For each TF PBM file, the script finds all 8-mers with Escore binding affinity above a user-defined cutoff. The script results can be output as a file in BED or GFF format. The file can further be visualized via R Studio or a genome browser to locate the TF binding sites in the respective genome.

8-mer	8-mer	E-score	Median	Z-score
ACAATTGC	GCAATTGT	0.1236	2509.3	0.6989
ACAATTGG	CCAATTGT	0.1365	2708.12	0.8933
ACAATTGT	ACAATTGT	0.29054	3706.78	1.6936
ACAATTTA	TAAATTGT	0.30443	3570.92	1.5984
ACAATTTC	GAAATTGT	0.18556	1760.42	-0.2048
ACAATTTG	CAAATTGT	0.22964	3397.86	1.4717
	ACAATTGC ACAATTGG ACAATTTA ACAATTTC	8-mer ACAATTGC GCAATTGT ACAATTGG CCAATTGT ACAATTTA ACAATTGT ACAATTTA TAAATTGT ACAATTTC GAAATTGT ACAATTTG CAAATTGT	ACAATTGC GCAATTGT 0.1236 ACAATTGG CCAATTGT 0.1365 ACAATTGT ACAATTGT 0.29054 ACAATTTA TAAATTGT 0.30443 ACAATTTC GAAATTGT 0.18556	ACAATTGC GCAATTGT 0.1236 2509.3 ACAATTGG CCAATTGT 0.1365 2708.12 ACAATTGT ACAATTGT 0.29054 3706.78 ACAATTTA TAAATTGT 0.30443 3570.92 ACAATTTC GAAATTGT 0.18556 1760.42

Figure 2: Top: Excerpt from the *Ndg* release 5 sequence FASTA containing a particular 8mer. Bottom: Excerpt from CHES-1-like PBM file highlighting the same 8mer as one with high binding affinity [2].

Testing with Nidogen (Ndg) Enhancer

TFBS-Finder was tested using the *Ndg* gene enhancer in *D. melanogaster*. We evaluated the accuracy of the script by utilizing the already known binding Fkh1 sites for a protein family known as Forkhead TFs. Proteins Biniou, Jumeau, and CHES-1-like are known to bind at Fkh1, therefore, we used the PBM files for those TFs [3] as input to the scripts.

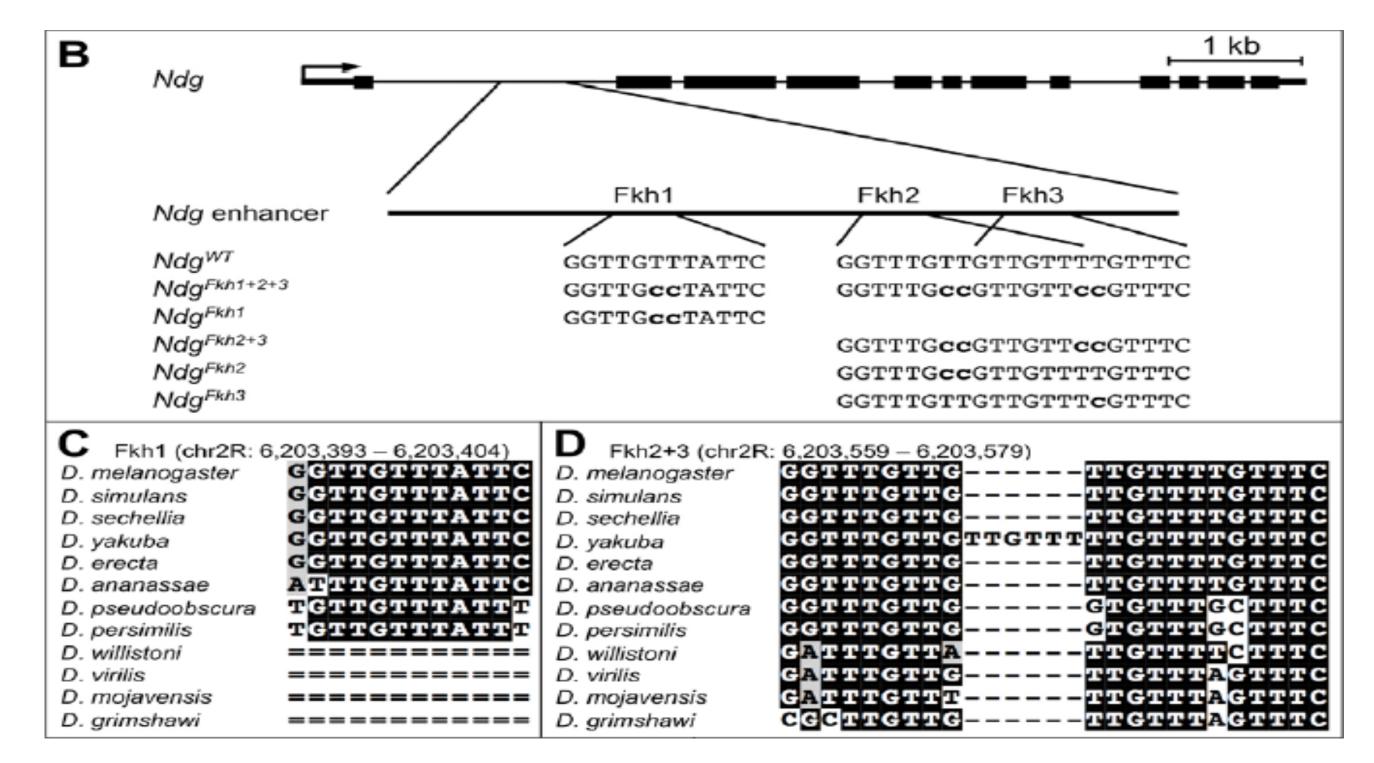


Figure 3: (B) Positions of Fkh (1,2,3) binding sites on the enhancer *Ndg* (C) comparison of Fkh1 for various species, (D) comparison of Fkh2 and Fkh3 for different species. *Zhu et al., 2012*

Reproducibility

nmer	comp	escore	median	zscore	index	pbm
GGTTGTTT	AAACAACC	0.42496	73246.16	4.4391	6203394	Bin
GTTGTTTA	TAAACAAC	0.49246	260707.9	12.5957	6203395	Bin
TTGTTTAT	ATAAACAA	0.49789	372886.4	14.895	6203396	Bin
TGTTTATT	AATAAACA	0.49501	310009.4	13.7085	6203397	Bin
GTTTATTC	GAATAAAC	0.45683	90724.5	5.814	6203398	Bin
TTTATTCA	TGAATAAA	0.40734	70464.31	4.1903	6203399	Bin
GTTGTTTA	TAAACAAC	0.47691	9816.27	4.1764	6203395	CHES-1-like
TTGTTTAT	ATAAACAA	0.49306	18963.47	5.8551	6203396	CHES-1-like
TGTTTATT	AATAAACA	0.46619	9134.61	3.9929	6203397	CHES-1-like
TTGTTTAT	ATAAACAA	0.35581	38249.05	2.4132	6203396	Jumeau

Table 2: TFBS-Finder detects Biniou, CHES-1-like, and Jumeau binding at the Fkh1 binding sites.

TFBS-Mutator

The TFBS-Mutator script is designed to take PBM and sequence data and find optimal mutations for the sequence of interest. The ideal mutations should prevent a specific TFs from binding to a site while minimally disturbing the binding activity of other TFs in the mutated region.

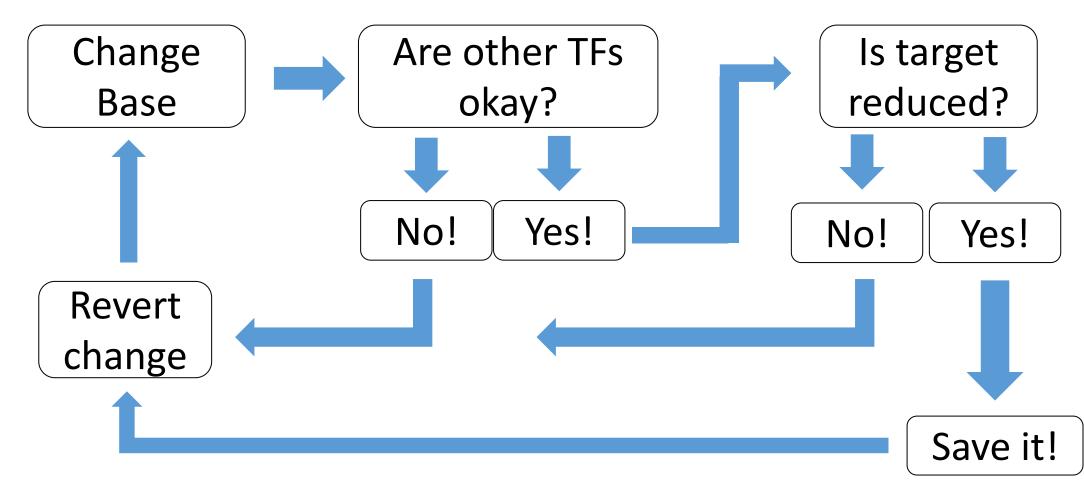


Figure 4: Work flow of TFBS-Mutator as it searches for ideal mutations to block one TF from binding.

Conclusion

TFBS-Finder detects a known binding site on the *Ndg* enhancer in *D. melanogaster*, indicating that our script is functional. However, the coordinates on the detected site were off by one base pair, indicating that the script needs improvements. TFBS-Mutator currently produces a list of mutations and filters out undesirable ones, but is not yet capable of choosing the best mutations to use on its own.

Acknowledgements

This work was supported by NIH grant 5R25MD011712-03 (J.K.), AHA grant 16SDG31390005 (S.M.A.), and the Indiana State University Research Committee.

References

- I. Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. *Science*. 281 (5373): 60–3
- UniPROBE database
- B. NCBI GenBank
- 4. Zhu et al., Differential regulation of mesodermal gene expression by Drosophila cell type-specific Forkhead transcription factors. *Development*. 139, 1457-1466