

<u>Cynthia Ramazani¹, Kyle Spencer², Haley Chatelaine³, and Ewy Mathe².</u> ¹The Center for Genomic Advocacy at Indiana State University, Departments of ²Biomedical Informatics, and ³Food Science and Technology at Ohio State University

Introduction

- Recent studies have detected significant differences in microbiota profiles in the three different segments of the murine colon: the proximal colon (PC), the medial colon (MC), and the distal colon (DC) (Xu et al., 2016).
- Other studies have also highlighted the importance of focusing on sampling location instead of using fecal samples in animal studies on the microbiome because fecal samples are not representative of the gut microbe population and tumor location in colon cancer research.
- We examined the microbiome and metabolome composition across the three anatomical locations of the mouse colon to further examine differences of microbes and metabolites by colonic location.

Experimental Study Design

✤ Our analysis uses data collected by Xu et al. in their study examining the impact of various dietary interventions on the colonic microbiota of adult mice.

3. Functional analysis of the differential features 1.Identification . Identification to explain the of differentially of differentially relationship between abundant abundant metabolite and microbe metabolites microbes composition and their across the across the implication in the colonic sites. colonic sites. incidence of colon cancer.

Objectives

Differential Analysis of the Metabolome and Microbiome in the Murine Colon

Metabolite Data Analysis

the metabolite abundance data were normalized by Total Ion Current (TIC). This approach consists in multiplying metabolite abundance values for each sample by their respective pre-calculated

268 samples and 491 metabolites												
Сс	olonic Sit	es	Diet Groups									
	MC	PC	CC	CE	СН	EC	EE	EH	HC	HE	HH	
	86	91	35	34	35	30	38	24	24	24	24	
Stı	idy Batch	nes	Run Batches									
າ1	Batch2	Batch3	Batch1		E	Batch2		Batch3		Batch4		
	107	109	60			70		68		70		

sizes for each group abundance analysis.

(p-value<0.05 and fold-change>=1).

locations statistically compared. The colored sections are the most relevant to our study.

THE OHIO STATE UNIVERSITY

COLLEGE OF MEDICINE

Microbe Data Analysis

Figure 6: Colonic site and study batch clustering of microbe abundance data showed in PCoA.

Step 3: Differential abundance analysis

Step 4: Alpha diversity calculation

Conclusion & Future Directions

We were successfully able to identify differentially abundant metabolites across the three distinct locations of the mouse colon. With the help of the NJS16 database and intLIM, we will gain more insight into the relationship between these metabolites and their associated microbes.

When completed, the analysis of the microbe data will also provide an understanding of the specific microbiome features of each colonic site and their implication of cancer tumorigenesis.

Acknowledgements

✤ NIH R25-MD011712-01: Big Data for Indiana State University (BD4ISU). OSU collaborators: Dr. Rachel Kopec and Dr. Emmanouil Chatzakis. ✤ ISU mentors: Dr. Rusty Gonser, Dr. Jeff Kinne, and Dr. Jennifer Latimer. Members of the Mathe Lab.