Goals

$7 \frac{1}{8}$

- $5000^{\text {th }}$ largest known prime
- Must be about 300,000 digits
- $20^{\text {th }}$ largest Sophie Germain prime - Must be about 30,000 digits

- Can only be divided by itself and one.

- Examples: $2,3,5,7,11,13,17,19,23$, 29, 31, 37, 41, 43, 47 ...
- After various improvements to code efficiency...
- We are about $1 / 2$ way through the search for 30,000 digit Sophie Germain prime after 2 weeks of computer time
- Searching for 300,000 digit prime will take another 2 weeks of computer time

About 220 cores:

- 20 dual-core 3.2 Gz i5 machines,
- 30 quad-core 3.1 Gz i5 machines,
- 15 quad-core 2.8 Gz i5 machines.
-Division of n by a sequence of number greater than 1 and less than n.
-Helps eliminate unwanted numbers

Example, 47

47 can only be divided by $\{1,47\}$

Example, 49

49 Can be divided by $\{1,7,49\}$

- $a^{n-1} \bmod n=1$
- If the number passes the test then it might be a prime, but if it does not, then it is not a prime.
-Example:
$n=4$ $n=5$
$a=3$
$a=3$
$3^{3} \bmod 4$
$27 \bmod 4=3$
Failed
- Find prime factors of n.
-Run a sequence of test (almost similar to the Fermat equation) on them.
-Example:

$$
\begin{aligned}
& n=47 \\
& n-1=46
\end{aligned}
$$

Factors: $\{2,23\}$

$\boldsymbol{\pi}(\boldsymbol{n})$ - \# of primes up to \boldsymbol{n}

$$
\pi(n) \sim \frac{n}{\ln (n)}
$$

1 digit numbers: 4 are prime 2 digit numbers: 21 are prime 30,000 digit numbers: about $1 / 70,000$ are prime 300,000 digit numbers: about 1/700,000 are prime

- n and $2 n+1$ are both prime
- 30,000 digit numbers
- $\sim\left(\frac{1}{70,000}\right)^{2}$ are Sophie Germain primes
- Prime Number 300,000digits
$\cdot 9.8 \times 10^{\wedge} 149986$ years (Trial Division)
- 2695 years (Fermat Test)
-Sophie Germaine 30,000digits
-6976 years (Trial Division)
- 98 days (Fermat Test)

Method used

Is n prime?
Loop()
\{
1- Trial division try $n / 2$
$\mathrm{n} / 3$
n/5..... n/9973
2- Fermat's test : $a^{n-1} \bmod n=1$
3-Lucas theorem
\}

