Extremely Large Prime Numbers with Repeated Digits

Lizhi Xiang

Professor: Jeff Kinne

Results So Far

- Test the number in the format of $6 \ge 10^k + 1$.
- The largest prime I get:
- $6 \times 10^{20812} + 1$.
- <u>20811 zeros in this number</u>

Prime Number Theorem

• $\pi(x) \sim \frac{x}{\ln(x)}$ = the number of prime numbers that below x.

- For example: π(20)=8, there are 8 prime numbers below 20 (2,3,5,7,11,13,17,19). π(100)=25, since there are 25 prime numbers below 100.
- So the possibility to pick a random number is prime is $\frac{1}{\ln(x)}$.
- Application: can be used to make a guess about how long it will take to find primes of different sizes.

How Many Numbers Need To Be Tested

- If we pick numbers of d digits, there are $10^d 10^{d-1}$ numbers total. Using the prime number theorem, there would be $\pi(10^d) \pi(10^{d-1})$ prime numbers.
- So the chance to pick a prime number is: $\frac{\pi(10^d) - \pi(10^{d-1})}{10^d - 10^{d-1}} \approx \frac{1}{\ln(d)}$

The Time To Check One Number

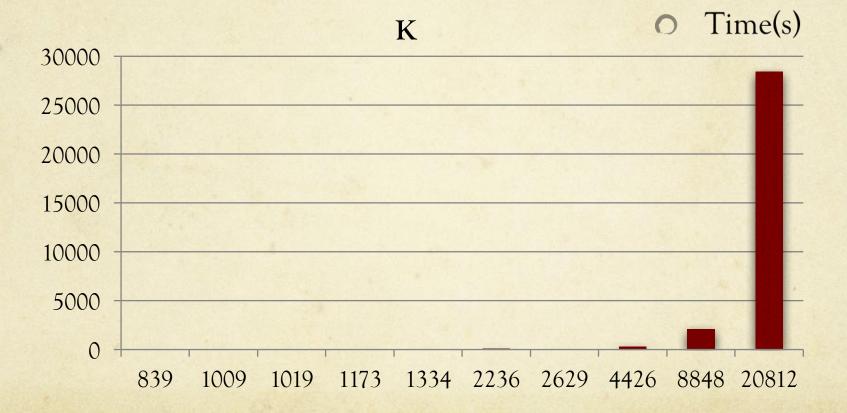
- Sometimes we are lucky and it is easy to tell that a number is not prime (like it if it is even or a multiple of 3).
- Otherwise, the program runs a Fermat primality test, which takes roughly (#digits²) time.

Time To Find Prime

- From the prime number theorem we get the idea that it may take a very long time to find a large prime.
- Combined the chance of finding a prime and the time to check one number, we have a hypothesis that the running time is in the format c*d³ (time for checking each number * the math expectation of finding prime)when d is large enough.

Running Time

• Running time: the time for the computer to find the prime



K	Time (seconds)	Time (hours)	
839	17		
1009	11		
1019	1		
1173	11		
1334	11		
2236	77		
2629	41		
4426	302	0.08	
8848	2074	0.58	
20812	28412	7.89	

Comparison

Number:	EXPECTED TIME(c^*d^3)	Real time	Deviation:
6* 10¹¹⁷³ +1	1.52	11	9.48 (86%)
6* 10 ¹³³⁴ +1	15.97	11	4.97 (45%)
6*10 ²²³⁶ +1	51.79	77	25.21 (32%)
6*10 ²⁶²⁹ +1	123.93	41	82.93 (202%)
6* 10 ⁴⁴²⁶ +1	194.81	302	107.19 (35%)
6*10 ⁸⁸⁴⁸ +1	2416	2074	342 (16.48%)
6*10 ²⁰⁸¹² +1	26940	28412	1472 (5%)

Comparison Conclusion

- When K is small, the running time seems randomly.
- When K is really large, the real time and the expected time are very close.
- Time to find a prime with 100,000 digits: 3145360.75 sec, 873 hours, 36 days.
- Time to find a prime with 1000,000 digits: 3145360753.41 sec, 873711 hours, 36406 days, 101 years.

Future Research

• Run the program on many computers to make the test faster.