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Homogenous relation of order two :
C0an + C1an−1 + C2an−2 = 0, n ≥ 2.

We look for a solution of form an = crn, c 6= 0, r 6= 0.

C0cr
n + C1cr

n−1 + C2cr
n−2 = 0.

We obtain C0r
2 + C1r + C2 = 0 which is called the characteristic

equation.

Let r1, r2 be the roots of C0r
2 + C1r + C2 = 0. There are three

cases :

1 r1, r2 are distinct real numbers

2 r1, r2 are complex numbers (conjugate of each other)

3 r1 = r2 is a real number

In all cases r1, r2 are called the characteristic roots.
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Distinct Real Values :
an + an−1 − 6an−2 = 0 where n ≥ 2 and a0 = −1, a1 = 8.

an = crn and the characteristic equation is r2 + r − 6 = 0.

Therefore (r + 3)(r − 2) = 0 and hence r = 2,−3.

So both an = 2n and an = (−3)n are solutions.
Since one is not a multiple of the other we can write
an = c1(2

n) + c2(−3)n.

−1 = a0 = c1(2
0) + c2(−3)0 = c1 + c2

8 = a1 = c1(2
1) + c2(−3)1 = 2c1 − 3c2.

Therefore an = 2n − 2(−3)n.
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Definition

In general suppose C0an + C1an−1 + C2an−2 + · · ·+ Ckan−k = 0
where C ′i s are constant and C0 6= 0 and Ck 6= 0 and r is the
characteristic root with multiplicity 2 ≤ m ≤ k. Then the part of
the general solution involving root r has the following form :

(A0 + A1n + A2n
2 + · · ·+ Am−1n

m−1)rn

where Ai are arbitrary constant.

Example :
an − 6an−1 + 9an−2 = 0, a0 = 5 and a1 = 12.

r2 − 6r + 9 = 0 and hence (r − 3)2 = 0 and r1 = r2 = 3 (here
m = 2).

So an = (A0 + A1n)3n.

a0 = 5 = A0 and a1 = 12 = (5 + A1)3 and hence A1 = −1.
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nonhomogeneous first-order relation

Definition

Consider the nonhomogeneous first-order relation (k constant)

an + C1an−1 = krn

When rn is not a solution (C1 6= −r) for an + C1an−1 = 0 then
an = A(−C1)

n + B(rn) for some constants A,B.
When rn is a solution for the recurrence, i.e. (−C1 = r) then
an = Arn + Bnrn for some constants A,B.
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Definition

Consider the nonhomogeneous second-order relation (k constant)

an + C1an−1 + C2an−2 = krn

With homogeneous relation (h) : an + C1an−1 + C2an−2 = 0. If

1 rn is not a solution for (h) then an = Arn + B(r1)
n + C (r2)

n

2 rn is a solution for (h) and (h) has other solution rn
1 , (r 6= r1)

then an = (A + Bn)rn + C (r1)
n.

3 the characteristic equation r2 + C1r + C2 = 0 has r1 = r2 = r
solution then an = Arn + Bnrn + Cn2rn.
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Theorem

Consider the recurrence relation
an = c1an−1 + c2an−2 + · · ·+ ckan−k + f (n). Suppose
f (n) = (bsn

s + bs−1n
s−1 + · · ·+ b1n + b0)λ

n.

1 If λ is not a characteristic root then
ap
n = (dsn

s + ds−1n
s−1 + · · ·+ d1n + d0)λ

n (nonhomogeneous
solution)

2 If λ is a characteristic root with multiplicity m then
ap
n = nm−1(dsn

s + ds−1n
s−1 + · · ·+ d1n + d0)λ

n
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Example :

an = 4an−1 − 4an−2 + 2nn, a0 = 1 and a1 = 2.

r2 = 4r − 4 and hence (r − 2)2 = 0 and r1 = r2 = 2.

λ = 2 and m = 2 therefore an = n(d1n + d0)2
n + c2n.

a0 = 1 = c and a1 = 2 = 2(d1 + d0) + 2 and hence d1 = −d0,
a2 = 12 = 2(2d1 − d1)4 + 4

d1 = 1. Therefore an = n(n − 1)2n + 2n.
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Example :

an+2 = an+1an, a0 = 1, a1 = 2.

a2 = 2, a3 = 4, a4 = 8.

Therefore we may assume that an = 2bn .

2bn+2 = 2bn+12bn and hence 2bn+2 = 2bn+1+bn .

Thus bn+2 = bn+1 + bn and b0 = 0, b1 = 1.

bn is the n-th Fibonacci’s number.
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Example :
What is the number of binary sequences of length n with no ”100”.

Let an be the number of such sequences.

If the last symbol is 1 then the first n − 1 symbols is a binary
sequences of length n − 1 with no ”100”. Therefore we have an−1

of such sequences.

If the last symbol is 0 and the (n − 1)-th symbol is 1 then the first
n− 2 symbols is a binary sequences of length n− 2 with no ”100”.
Therefore we have an−2 of such sequences.

If the last symbol is 0 and the (n − 1)-th symbol is 0 then all the
previous symbols must be 0 (one such sequence).

Therefore an = an−1 + an−2 + 1 with a1 = 2 and a2 = 4.

an = ah
n + ap

n where ap
n = A (constant) and (ah

n is the homogenous
part)

an = c1(
1+
√

5
2 )n + c2(

1−
√

5
2 )n + A.
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Example :
Find the solution to the recurrence relation :
an = −3an−1 − 3an−2 − an−3, a0 = 1, a1 = −2, a2 = −1.

r3 + 3r2 + 3r + 1 = 0 is the characteristic equation.

Therefore (r + 1)3 = 0 and hence r = −1 is a root with
multiplicity 3. So

an = (A0 + A1n + A2n
2)(−1)n

a0 = 1 = A0 and a1 = −2 = (1 + A1 + A2)(−1), and
a2 = −1 = (1 + 2A1 + 4A2)

an = (1 + 3n − 2n2)(−1)n.
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Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.

an = 3an−1 + 2bn−1 and bn = an−1 + 2bn−1, a0 = 1, b0 = 2.

an−1 = 3an−2 + 2bn−2 and bn−1 = an−2 + 2bn−2.

Therefore

bn−1 = an−2 + an−1 − 3an−2 = an−1 − 2an−2

So

an = 3an−1 + 2an−1 − 4an−2 = 5an−1 − 4an−2, a0 = 1, a1 = 7.

r2 − 5r + 4 = 0 and (r − 4)(r − 1) = 0.

an = c14
n + c2(1)n

a0 = 1 = c1 + c2, a1 = 7 = 4c1 + c2. Therefore c1 = 2 and
c2 = −1.

Arash Rafiey Recurrence Relations (review and examples)



Example :
We are given a 2 by n grid and we want to fill it out with dominos
(2 by 1 or 1 by 2 grid). What is the number of ways of doing this ?

n

2

Let bn be the number of ways :

Either we put the last domino vertically(2 by 1) and then in the
remaining we have bn−1 ways or

We put two dominos horizontally (2 of 1 by 2) and then in the
remaining we have bn−2 ways.

Therefore bn = bn−1 + bn−2, b1 = 1 and b2 = 2.
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Example :
What is the number of binary sequences of length n with no
consecutive 0′s.

Let an be the number of such sequences.

If the last symbol is 1 then the first n − 1 symbols is a binary
sequences of length n − 1 with no consecutive 0′s thus we have
an−1 of such sequences.

If the last symbol is 0 then the (n − 1)-th symbol is 1 and the first
n − 2 symbols is a binary sequences of length n − 2 with no
consecutive 0′s thus we have an−2 of such sequences.

Therefore an = an−1 + an−2 with a1 = 2 and a2 = 3.

Now the solution is the n + 2-th Fibonacci’s number.
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Definition : We say a sequence S of 0, 1 is nice if the number of
ones and the number of zeros are the same and in every prefix of S
the number of ones is not less than the number of zero.

Problem : What is the number of nice sequences of length 2n ?

Let bn be the number of nice-sequences of length 2n.

Consider the first index i that the number of 1’s and the number
of 0’s (from 1 to 2i) are the same.

Then we can write :

bn =
i=n∑
i=1

bi−1bn−i

b0 = 1, b1 = 1.
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bn+1 = b0bn + b1bn−1 + · · ·+ bn−1b1 + bnb0

∞∑
n=0

bn+1x
n+1 =

∞∑
n=0

(b0bn + b1bn−1 + · · ·+ bn−1b1 + bnb0)x
n+1

Let f (x) =
∞∑

n=0
bnx

n be the generating function for b0, b1, b2, . . . .

(f (x)− b0) = x
∞∑

n=0
(b0bn + b1bn−1 + · · ·+ bn−1b1 + bnb0)x

n =

x [f (x)]2.

x [f (x)]2 − f (x) + 1 = 0 and hence f (x) = [1±
√

1− 4x ]/(2x).
√

1− 4x = (1− 4x)1/2 =
(1/2

0

)
+

(1/2
1

)
(−4x) +

(1/2
2

)
(−4x)2 + . . .
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The coefficient of xn, n ≥ 1 is(
1/2

n

)
(−4)n =

(1/2)(1/2− 1)(1/2− 2) . . . ((1/2)− n + 1)

n!
(−4)n

which is (−1)
(2n−1)

(2n
n

)
. Then

f (x) = 1
2x [1− [1−

∞∑
n=1

1
(2n−1)

(2n
n

)
xn]],

and bn the coefficient of xn in f (x) is half of the coefficient of
xn+1 in
∞∑

n=1

1
(2n−1)

(2n
n

)
xn. Therefore

bn = 1
2 [ 1

2(n+1)−1 ]
(2(n+1)

n+1

)
= 1

(n+1)

(2n
n

)
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Example :
What is the number of sequences of length n on the alphabet
{0, 1, 2} with no consecutive 0’s and no consecutive 1’s.

Let’s call such a sequence a good sequence.

Let an be the number of good sequences of length n.

Case 1. Suppose the last symbol is 2. Then the first n− 1 symbols
is a good sequence of length n − 1 and we have an−1 of such
sequences.

Let b0
n be the number of good sequences ending with 0 and b1

n be
the number of good sequences ending with 1.

Note that b0
n = b1

n = bn and we have an = an−1 + 2bn.
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Case 2. Suppose the last symbol is 0. Then symbol n− 1 is 2 or 1.

Therefore bn = an−2 + bn−1 (an−2 for when n − 1-symbol is 2).

Now we have :
an = an−1 + 2bn and bn = bn−1 + an−2, (2bn = 2bn−1 + 2an−2)

Therefore (an − an−1) = (an−1 − an−2) + 2an−2 and hence

an = 2an−1 + an−2
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O, θ notations

For a given function g(n), Θ(g(n)) denotes the set

Θ(g(n)) = {f (n) : there exist positive constants
c1, c2, n0 such that
c1 · g(n) ≤ f (n) ≤ c2 · g(n)
for all n ≥ n0}

Intuition: f (n) belongs to the family Θ(g(n)) if ∃ constants c1, c2

s.t. f (n) can fit between c1 · g(n) and c2 · g(n), for all n
sufficiently large.
Correct notation: f (n) ∈ Θ(g(n))
Usually used: f (n) = Θ(g(n)).
We also say that “f (n) is in Θ(g(n))”.
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Examples of Θ-notation:
f (n) = 2n2 = Θ(n2)
because with g(n) = n2 and c1 = 1 and c2 = 2 we have
0 ≤ c1g(n) ≤ f (n) = 2 · n2 ≤ c2 · g(n).

f (n) = 8n5 + 17n4 − 25 = Θ(n5)
because f (n) ≥ 7 · n5 for n large enough

n 8n5 + 17n4 − 25 n5 7n5

1 8 · 1 + 17 · 1− 25 = 0 1 7
2 8 · 32 + 17 · 16− 25 = 503 32 224

and f (n) ≤ 8n5 + 17n5 = 25n5, thus c1 = 7, c2 = 25 and n0 = 2
are good enough.
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Big-O-notation

When we’re interested in asymptotic upper bounds only, we use
O-notation (read: “big-O”).
For given function g(n), define O(g(n)) (read: “big-O of g of n”
or also “order g of n”) as follows:

O(g(n)) = {f (n) : there exist positive constants
c , n0 such that
f (n) ≤ c · g(n)
for all n ≥ n0}

We write f (n) = O(g(n)) to indicate that f (n) is member of set
O(g(n)).
Obviously, f (n) = Θ(g(n)) implies f (n) = O(g(n)); we just drop
the left inequality in the definition of Θ(g(n)).
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Big-Omega-notation

Like O-notation, but for lower bounds
For a given function g(n), Ω(n) denotes the set

Ω(g(n)) = {f (n) : there exist positive constants
c , n0 such that
c · g(n) ≤ f (n)
for all n ≥ n0}

Saying T (n) = Ω(n2) means growth of T (n) is at least the of n2.
Clearly, f (n) = Θ(g(n)) iff f (n) = Ω(g(n)) and f (n) = O(g(n)).
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o-notation

Similar to O
f (n) = O(g(n)) means we can upper-bound the growth of f by
the growth of g (up to a constant factor)
f (n) = o(g(n)) is the same, except we require the growth of f to
be strictly smaller than the growth of g :
For a given function g(n), o(n) denotes the set

o(g(n)) = {f (n) : for any pos constant c
there exists a pos constant n0

such that
f (n) < c · g(n)
for all n ≥ n0}
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omega-notation

For a given function g(n), ω(n) denotes the set

ω(g(n)) = {f (n) : for any pos constant c
there exists a pos constant n0

such that
c · g(n) < f (n)
for all n ≥ n0}

In other words:

lim
n→∞

f (n)

g(n)
= ∞

if the limit exists.
I.e., f (n) becomes arbitrarily large relative to g(n).
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Heuristics that can help to find a good guess.

One way would be to have a look at first few terms. Say if
we had T (n) = 2T (n/2) + 3n, then

T (n) = 2T (n/2) + 3n

= 2(2T (n/4) + 3(n/2)) + 3n

= 2(2(2T (n/8) + 3(n/4)) + 3(n/2)) + 3n

= 23T (n/23) + 223(n/22) + 213(n/21) + 203(n/20)

We can do this log n times

2log n · T (n/2log n) +

log(n)−1∑
i=0

2i3(n/2i )

= n · T (1) + 3n ·
log(n)−1∑

i=0

1

= n · T (1) + 3n log n = Θ(n log n)

After guessing a solution you’ll have to prove the correctness.
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Theorem

Let a, b, c be positive integers with b ≥ 2 and let f : Z+ → R. If
f (1) = c and f (n) = af (n/b) + c for n = bk

then for all n = 1, b, b2, b3, . . . ,

1 f (n) = c(logn
b +1), when a = 1

2 f (n) = c(anloga
b−1)

a−1 , when a ≥ 2.
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stepwise refinement – guessing loose lower and upper
bounds, and gradually taking them closer to each other
For T (n) = 2T (bn/2c) + n we see

T (n) = Ω(n) (because of the n term)

T (n) = O(n2) (easily proven)

From there, we can perhaps “converge” on asymptotically
tight bound Θ(n log n).
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A neat trick called “changing variables”

Suppose we have

T (n) = 2T (
√

n) + log n

Now rename m = log n ⇔ 2m = n. We know√
n = n1/2 = (2m)1/2 = 2m/2 and thus obtain

T (2m) = 2T (2m/2) + m

Now rename S(m) = T (2m) and get

S(m) = 2S(m/2) + m

Looks familiar. We know the solution S(m) = Θ(m log m).
Going back from S(m) to T (n) we obtain

T (n) = T (2m) = S(m) = Θ(m log m) = Θ(log n log log n)
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The “Master Method”

Theorem

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let
T (n) be defined on the nonnegative integers by the recurrence

T (n) = aT (n/b) + f (n),

where we interpret n/b to mean either bn/bc or dn/be. Then T (n)
can be bounded asymptotically as follows.

1 If f (n) = O(n(logb a)−ε) for some constant ε > 0, then
T (n) = Θ(nlogb a).

2 If f (n) = Θ(nlogb a), then
T (n) = Θ(nlogb a · log n).

3 If f (n) = Ω(n(logb a)+ε) for some constant ε > 0, and if
a · f (n/b) ≤ c · f (n) for some constant c < 1 and all
sufficiently large n, then T (n) = Θ(f (n)).
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Notes on Master’s Theorem

2. If f (n) = Θ(nlogb a), then
T (n) = Θ(nlogb a · log n).

Note 1: Although it’s looking rather scary, it really isn’t. For
instance, T (n) = 2T (n/2) + Θ(n) we have
nlogb a = nlog2 2 = n1 = n, and we can apply case 2.
The result is therefore Θ(nlogb a · log n) = Θ(n log n).

1 If f (n) = O(n(logb a)−ε) for some constant ε > 0, then
T (n) = Θ(nlogb a).

Note 2: In case 1,

f (n) = n(logb a)−ε = nlogb a/nε = o(nlogb a) ,

so the ε does matter. This case is basically about “small”
functions f . But it’s not enough if f (n) is just asymptotically
smaller than nlogb a (that is f (n) ∈ o(nlogb a), it must be
polynomially smaller!

Arash Rafiey Recurrence Relations (review and examples)



Notes on Master’s Theorem

2. If f (n) = Θ(nlogb a), then
T (n) = Θ(nlogb a · log n).

Note 1: Although it’s looking rather scary, it really isn’t. For
instance, T (n) = 2T (n/2) + Θ(n) we have
nlogb a = nlog2 2 = n1 = n, and we can apply case 2.
The result is therefore Θ(nlogb a · log n) = Θ(n log n).

1 If f (n) = O(n(logb a)−ε) for some constant ε > 0, then
T (n) = Θ(nlogb a).

Note 2: In case 1,

f (n) = n(logb a)−ε = nlogb a/nε = o(nlogb a) ,

so the ε does matter. This case is basically about “small”
functions f . But it’s not enough if f (n) is just asymptotically
smaller than nlogb a (that is f (n) ∈ o(nlogb a), it must be
polynomially smaller!

Arash Rafiey Recurrence Relations (review and examples)



3. If f (n) = Ω(n(logb a)+ε) for some constant ε > 0, and if
a · f (n/b) ≤ c · f (n) for some constant c < 1 and all
sufficiently large n, then T (n) = Θ(f (n)).

Note 3: Similarly, in case 3,

f (n) = n(logb a)+ε = nlogb a · nε = ω(nlogb a) ,

so the ε does matter again. This case is basically about “large”
functions n. But again, f (n) ∈ ω(nlogb a) is not enough, it must be
polynomially larger. And in addition f (n) has to satisfy the
“regularity condition”:

af (n/b) ≤ cf (n)

for some constant c < 1 and n ≥ n0 for some n0.
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Using the master theorem
Simple enough. Some examples:

T (n) = 9T (n/3) + n

We have a = 9, b = 3, f (n) = n. Thus, nlogb a = nlog3 9 = n2.
Clearly, f (n) = O(nlog3(9)−ε) for ε = 1, so case 1 gives
T (n) = Θ(n2).

T (n) = T (2n/3) + 1

We have a = 1, b = 3/2, and f (n) = 1, so
nlogb a = nlog2/3 1 = n0 = 1.

Apply case 2 (f (n) = Θ(nlogb a) = Θ(1), result is T (n) = Θ(log n).
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T (n) = 3T (n/4) + n log n

We have a = 3, b = 4, and f (n) = n log n, so
nlogb a = nlog4 3 = O(n0.793).

Clearly, f (n) = n log n = Ω(n) and

thus also f (n) = Ω(nlogb(a)+ε)

for ε ≈ 0.2. Also,
a · f (n/b) = 3(n/4) log(n/4) ≤ (3/4)n log n = c · f (n) for any
c = 3/4 < 1.

Thus we can apply case 3 with result T (n) = Θ(n log n).
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Exercises

True or False

1) (n4+10n)
2n2+4

= O(n2)

2) n2 log n
(5n+4) = O(n)

3) 3n+2 = Ω(3n)

4) (log n)log n = Ω(n/ log n)
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Exercises

Problem

Give asymptotic upper and lower bounds for T (n) in each of the
following recurrences. Assume that T (n) is constant for n ≤ 2.

(a) T (n) = 2T (n/2) + n3 (b) T (n) = T (n − 1) + n

(c) T (n) = T (
√

n) + 1 (d) T (n) = 16T (n/4) + n2

(e) T (n) = 2T (n − 1) + log n
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