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Goan + Giap—1 + Gap—o =0, n> 2.
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Goan + Giap—1 + Gap—o =0, n> 2.

We look for a solution of form a, = cr”, ¢ #0,r # 0.
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Goan + Giap—1 + Gap—o =0, n> 2.
We look for a solution of form a, = cr”, ¢ #0,r # 0.

Cocr" + Cier™ Y 4 Goer™ 2 = 0.
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Coan+ Gian—1+ Geap—2=0,n> 2.

We look for a solution of form a, = cr”, ¢ #0,r # 0.
Cocr™ + Crer™ 1 4+ Gyer"2 = 0.

We obtain Cyr? + Cir + Co = 0 which is called
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Coan+ Gian—1+ Geap—2=0,n> 2.

We look for a solution of form a, = cr”, ¢ #0,r # 0.
Cocr™ + Crer™ 1 4+ Gyer"2 = 0.

We obtain Cyr? + Cir + Co = 0 which is called

Let ry, r» be the roots of Cyr? + Cir + Co = 0. There are three
cases :

© 1, rn» are distinct real numbers
@ r1, r» are complex numbers (conjugate of each other)

© ri = rpis a real number

In all cases ri, rp are called the
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an+an_1—6a,_»=0where n>2and ag = —1,a; = 8.
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an+an_1—6a,_»=0where n>2and ag = —1,a; = 8.

a, = cr” and the characteristic equation is r> +r — 6 = 0.
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an+an_1—6a,_»=0where n>2and ag = —1,a; = 8.
a, = cr” and the characteristic equation is r> +r — 6 = 0.

Therefore (r 4+ 3)(r —2) = 0 and hence r = 2, -3.
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an+an_1—6a,_»=0where n>2and ag = —1,a; = 8.
a, = cr” and the characteristic equation is r> +r — 6 = 0.
Therefore (r 4+ 3)(r —2) = 0 and hence r = 2, -3.

So both a, = 2" and a, = (—3)" are solutions.
Since one is not a multiple of the other we can write
an=c1(2") + c2(—3)".
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an+an_1—6a,_»=0where n>2and ag = —1,a; = 8.
a, = cr” and the characteristic equation is r> +r — 6 = 0.
Therefore (r 4+ 3)(r —2) = 0 and hence r = 2, -3.

So both a, = 2" and a, = (—3)" are solutions.
Since one is not a multiple of the other we can write
an=c1(2") + c2(—3)".

—1=4ay = C1(20) -+ C2(*3)0 =+
8=a = C1(21) + C2(—3)1 =2c — 30.
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an+an_1—6a,_»=0where n>2and ag = —1,a; = 8.
a, = cr” and the characteristic equation is r> +r — 6 = 0.
Therefore (r 4+ 3)(r —2) = 0 and hence r = 2, -3.

So both a, = 2" and a, = (—3)" are solutions.
Since one is not a multiple of the other we can write
an=c1(2") + c2(—3)".

—1=4ay = C1(20) -+ C2(*3)0 =+
8=a = C1(21) + C2(—3)1 =2c — 30.

Therefore a, = 2" — 2(—3)".
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Definition

In general suppose Coa, + Ciap—1+ Gan o+ -+ Crapn_ix =0
where C/s are constant and Gy # 0 and Ci # 0 and r is the
characteristic root with multiplicity 2 < m < k. Then the part of
the general solution involving root r has the following form :

(AO + A1H+A2n2 dbooad Am_lnm—l)rn

where A; are arbitrary constant.
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Definition

In general suppose Coa, + Ciap—1+ Gan o+ -+ Crapn_ix =0
where C/s are constant and Gy # 0 and Ci # 0 and r is the
characteristic root with multiplicity 2 < m < k. Then the part of
the general solution involving root r has the following form :

(AO + A1H+A2n2 dbooad Am_lnm—l)rn

where A; are arbitrary constant.

an —6ap_1+9a,_2o =0, ag =5 and a; = 12.
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Definition

In general suppose Coa, + Ciap—1+ Gan o+ -+ Crapn_ix =0
where C/s are constant and Gy # 0 and Ci # 0 and r is the
characteristic root with multiplicity 2 < m < k. Then the part of
the general solution involving root r has the following form :

(AO + A1H+A2n2 dbooad Am_lnm—l)rn

where A; are arbitrary constant.

an —6ap_1+9a,_2o =0, ag =5 and a; = 12.

r> —6r+9 =0 and hence (r —3)2=0and r; = r, = 3 (here
m = 2).
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Definition

In general suppose Coa, + Ciap—1+ Gan o+ -+ Crapn_ix =0
where C/s are constant and Gy # 0 and Ci # 0 and r is the
characteristic root with multiplicity 2 < m < k. Then the part of
the general solution involving root r has the following form :

(AO + A1H+A2n2 dbooad Am_lnm—l)rn

where A; are arbitrary constant.

an —6ap_1+9a,_2o =0, ag =5 and a; = 12.

r> —6r+9 =0 and hence (r —3)2=0and r; = r, = 3 (here
m = 2).

So a, = (Ao + A1n)3".
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Definition

In general suppose Coa, + Ciap—1+ Gan o+ -+ Crapn_ix =0
where C/s are constant and Gy # 0 and Ci # 0 and r is the
characteristic root with multiplicity 2 < m < k. Then the part of
the general solution involving root r has the following form :

(AO + A1H+A2n2 dbooad Am_lnm—l)rn

where A; are arbitrary constant.

an —6ap_1+9a,_2o =0, ag =5 and a; = 12.

r> —6r+9 =0 and hence (r —3)2=0and r; = r, = 3 (here
m = 2).

So a, = (Ao + A1n)3".
ap=5=Ap and a; = 12 = (5+ A1)3 and hence A; = —1.
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nonhomogeneous first-order relation

Definition

Consider the nonhomogeneous first-order relation (k constant)
an+ Gap_1 = kr"

When r" is not a solution (C; # —r) for a, + Ciap—1 = 0 then
ap, = A(—CG1)" + B(r") for some constants A, B.

When r" is a solution for the recurrence, i.e. (—C; = r) then
an = Ar" + Bnr" for some constants A, B.
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Consider the nonhomogeneous second-order relation (k constant)

an + Giap—1 + Gap_o = kr"

With homogeneous relation (h) : a, + Giap—1 + Gaap—2 = 0. If

@ " is not a solution for (h) then a, = Ar"” + B(r1)" + C(r2)"

@ " is a solution for (h) and (h) has other solution r{, (r # r1)
then a, = (A+ Bn)r" + C(n)".

© the characteristic equation r> + Cir+ C =0hasrn=rn =r
solution then a, = Ar" + Bnr" + Cn°r".
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Theorem

Consider the recurrence relation
ap = cC1an-1+ @ap—2+ -+ + ckan—x + f(n). Suppose
f(n) = (bsn® + bs—1n°~t + -+ + byn + bg)A\".
@ If )\ is not a characteristic root then
ah = (dsn® + ds_1n° "1 4 -+ din + do)\" (nonhomogeneous
solution)
@ If X is a characteristic root with multiplicity m then
ah = nmY(dsn® + ds_1n° "L+ -+ din+ do)\"

Arash Rafiey Recurrence Relations (review and examples)



an=4%a,_1—4ap,_>+2"n, ag =1 and a; = 2.
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an=4%a,_1—4ap,_>+2"n, ag =1 and a; = 2.

r> =4r —4 and hence (r —2)2=0and rp = = 2.
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an=4%a,_1—4ap,_>+2"n, ag =1 and a; = 2.
r>=4r—4and hence (r—2)2=0and n = =2.

A =2 and m = 2 therefore a, = n(din + dp)2" + c2".
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an=4%a,_1—4ap,_>+2"n, ag =1 and a; = 2.
r>=4r—4and hence (r—2)2=0and n = =2.
A =2 and m = 2 therefore a, = n(din + dp)2" + c2".

ag=1=cand a; =2 =2(d1 + dy) + 2 and hence d; = —dy,
dp = 12 = 2(2d1 — d1)4+ 4

d1 = 1. Therefore a, = n(n — 1)2" + 2".
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ant2 = anti1an, @ =1, ap = 2.
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ant2 = anti1an, @ =1, ap = 2.

32:2, 3324,34:8.
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ant2 = apy1an, @ =1, a1 = 2.
32:2, 3324, 34:8.

Therefore we may assume that a, = 2.
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ant2 = apy1an, @ =1, a1 = 2.
32:2, 3324, 34:8.
Therefore we may assume that a, = 2.

2bni2 — 2bnt12bn and hence 2bn+2 = 2bn1tbn
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an4+2 = apt1dn, @ =1, a1 = 2.

32:2, 3324, 34:8.

Therefore we may assume that a, = 2.
2bnt2 = 2bn112bn and hence 2bm+2 = 2bnt1tbn

Thus bpio = bpy1 + b, and by =0, by = 1.
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an4+2 = apt1dn, @ =1, a1 = 2.

a =2,a3 =4, a = 8.

Therefore we may assume that a, = 2.
2bnt2 = 2bnt12bn and hence 2bm+2 = 2bni1+bn,
Thus bpio = bpy1 + b, and by =0, by = 1.

b, is the n-th Fibonacci’'s number.
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What is the number of binary sequences of length n with no "100".
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What is the number of binary sequences of length n with no "100".
Let a, be the number of such sequences.
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What is the number of binary sequences of length n with no "100".
Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no "100". Therefore we have a,_1
of such sequences.
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What is the number of binary sequences of length n with no "100".
Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no "100". Therefore we have a,_1
of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 1 then the first
n — 2 symbols is a binary sequences of length n — 2 with no "100".
Therefore we have a,_» of such sequences.
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What is the number of binary sequences of length n with no "100".
Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no "100". Therefore we have a,_1
of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 1 then the first
n — 2 symbols is a binary sequences of length n — 2 with no "100".
Therefore we have a,_» of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 0 then all the
previous symbols must be 0 (one such sequence).
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What is the number of binary sequences of length n with no "100".
Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no "100". Therefore we have a,_1
of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 1 then the first
n — 2 symbols is a binary sequences of length n — 2 with no "100".
Therefore we have a,_» of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 0 then all the
previous symbols must be 0 (one such sequence).

Therefore a, = ap—1 + an—> + 1 with a1 = 2 and a, = 4.
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What is the number of binary sequences of length n with no "100".
Let a, be the number of such sequences.
If the last symbol is 1 then the first n — 1 symbols is a binary

sequences of length n — 1 with no "100". Therefore we have a,_1
of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 1 then the first
n — 2 symbols is a binary sequences of length n — 2 with no "100".
Therefore we have a,_» of such sequences.

If the last symbol is 0 and the (n — 1)-th symbol is 0 then all the
previous symbols must be 0 (one such sequence).

Therefore a, = ap—1 + an—> + 1 with a1 = 2 and a, = 4.

an = al + af, where af, = A (constant) and (a is the homogenous
part)
an = a(358)" + o(158)" + A
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Find the solution to the recurrence relation :
an=-3ap-1—3ap2—ap-3, a =1 a=-2, a=-L
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Find the solution to the recurrence relation :
an=-3ap-1—3ap2—ap-3, a =1 a=-2, a=-L
r3 4+ 3r? +3r +1 = 0 is the characteristic equation.
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Find the solution to the recurrence relation :
an=-3ap-1—3ap2—ap-3, a =1 a=-2, a=-L
r3 4+ 3r? +3r +1 = 0 is the characteristic equation.

Therefore (r +1)3 = 0 and hence r = —1 is a root with
multiplicity 3. So

an = (Ao + Ain+ A2n2)(_1)n
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Find the solution to the recurrence relation :
an=-3ap-1—3ap2—ap-3, a =1 a=-2, a=-L
r3 4+ 3r? +3r +1 = 0 is the characteristic equation.

Therefore (r +1)3 = 0 and hence r = —1 is a root with
multiplicity 3. So
an = (Ao + Ain+ Agn®)(—1)"

ag=1=Apand a3 = -2 = (1+ A1 + A2)(—1), and
a=-1= (1 + 2A; —|—4A2)
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Find the solution to the recurrence relation :
an=-3ap-1—3ap2—ap-3, a =1 a=-2, a=-L
r3 4+ 3r? +3r +1 = 0 is the characteristic equation.

Therefore (r +1)3 = 0 and hence r = —1 is a root with
multiplicity 3. So
an = (Ao + Ain+ Agn®)(—1)"

ag=1=Apand a3 = -2 = (1+ A1 + A2)(—1), and
a=-1= (1 + 2A; —|—4A2)

ap = (1+3n—2n%)(-1)".
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Solve the simultaneous recurrence relation.

an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

Arash Rafiey Recurrence Relations (review and examples)



Solve the simultaneous recurrence relation.
an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

an—1=3ap_>+2b,_» and b,_1 = ap—> + 2b,_».
Therefore
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Solve the simultaneous recurrence relation.
an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

an—1=3ap_>+2b,_» and b,_1 = ap—> + 2b,_».
Therefore

bn—1 =an—2+ap—1 —3ap—2 = an—1 — 2ap—2

So
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Solve the simultaneous recurrence relation.
an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

an—1=3ap_>+2b,_» and b,_1 = ap—> + 2b,_».
Therefore

bn—1 =an—2+ap—1 —3ap—2 = an—1 — 2ap—2

So

an, =3ap_1+2a,.1—4a,_>=>5%a,_1—4a, 0, a0=1 a1 =17.
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Solve the simultaneous recurrence relation.
an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

an—1=3ap_>+2b,_» and b,_1 = ap—> + 2b,_».
Therefore

bn—1 =an—2+ap—1 —3ap—2 = an—1 — 2ap—2

So
an, =3ap_1+2a,.1—4a,_>=>5%a,_1—4a, 0, a0=1 a1 =17.

r>—5r+4=0and (r—4)(r—1)=0.
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Solve the simultaneous recurrence relation.
an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

an—1=3ap_>+2b,_» and b,_1 = ap—> + 2b,_».
Therefore

bn—1 =an—2+ap—1 —3ap—2 = an—1 — 2ap—2

So

an, =3ap_1+2a,.1—4a,_>=>5%a,_1—4a, 0, a0=1 a1 =17.
r>—5r+4=0and (r—4)(r—1)=0.

ap = 4"+ c(1)"
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Solve the simultaneous recurrence relation.
an, =3ap_1+2b,_1 and b, = a,_1 +2by_1, ag =1, by = 2.

an—1=3ap_>+2b,_» and b,_1 = ap—> + 2b,_».
Therefore

bp—1=apn—2+an-1—3ap—2=ap-1—2ap2

So

an, =3ap_1+2a,.1—4a,_>=>5%a,_1—4a, 0, a0=1 a1 =17.
r>—5r+4=0and (r—4)(r—1)=0.

ap = 4"+ c(1)"

ag=1=c +c, a1 =7=14c; + ¢. Therefore ¢c; =2 and
Cy = —1.
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We are given a 2 by n grid and we want to fill it out with dominos
(2 by 1 or 1 by 2 grid). What is the number of ways of doing this ?
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We are given a 2 by n grid and we want to fill it out with dominos
(2 by 1 or 1 by 2 grid). What is the number of ways of doing this ?

.
i
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We are given a 2 by n grid and we want to fill it out with dominos
(2 by 1 or 1 by 2 grid). What is the number of ways of doing this ?

U =

Let b, be the number of ways :

Either we put the last domino vertically(2 by 1) and then in the
remaining we have b,_1 ways or

We put two dominos horizontally (2 of 1 by 2) and then in the
remaining we have b,_» ways.

Therefore b, = by_1 + bp—>, by = 1 and by = 2.



What is the number of binary sequences of length n with no
consecutive 0's.
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What is the number of binary sequences of length n with no
consecutive 0's.

Let a, be the number of such sequences.
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What is the number of binary sequences of length n with no
consecutive 0's.

Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no consecutive 0's thus we have
an_1 of such sequences.
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What is the number of binary sequences of length n with no
consecutive 0's.

Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no consecutive 0’s thus we have
an_1 of such sequences.

If the last symbol is 0 then the (n — 1)-th symbol is 1 and the first
n — 2 symbols is a binary sequences of length n — 2 with no
consecutive 0’s thus we have a,_5 of such sequences.
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What is the number of binary sequences of length n with no
consecutive 0's.

Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no consecutive 0’s thus we have
an_1 of such sequences.

If the last symbol is 0 then the (n — 1)-th symbol is 1 and the first
n — 2 symbols is a binary sequences of length n — 2 with no
consecutive 0’s thus we have a,_5 of such sequences.

Therefore a, = a,_1 + an_» with a; = 2 and a» = 3.
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What is the number of binary sequences of length n with no
consecutive 0's.

Let a, be the number of such sequences.

If the last symbol is 1 then the first n — 1 symbols is a binary
sequences of length n — 1 with no consecutive 0’s thus we have
an_1 of such sequences.

If the last symbol is 0 then the (n — 1)-th symbol is 1 and the first
n — 2 symbols is a binary sequences of length n — 2 with no
consecutive 0’s thus we have a,_5 of such sequences.

Therefore a, = a,_1 + an_» with a; = 2 and a» = 3.

Now the solution is the n+ 2-th Fibonacci’s number.
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Definition : We say a sequence S of 0,1 is if the number of
ones and the number of zeros are the same and in every prefix of S
the number of ones is not less than the number of zero.

Problem : What is the number of nice sequences of length 2n 7
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Definition : We say a sequence S of 0,1 is if the number of
ones and the number of zeros are the same and in every prefix of S
the number of ones is not less than the number of zero.

Problem : What is the number of nice sequences of length 2n 7

Let b, be the number of nice-sequences of length 2n.
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Definition : We say a sequence S of 0,1 is if the number of
ones and the number of zeros are the same and in every prefix of S
the number of ones is not less than the number of zero.

Problem : What is the number of nice sequences of length 2n 7
Let b, be the number of nice-sequences of length 2n.

Consider the first index i that the number of 1's and the number
of 0's (from 1 to 2/) are the same.
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Definition : We say a sequence S of 0,1 is if the number of
ones and the number of zeros are the same and in every prefix of S
the number of ones is not less than the number of zero.

Problem : What is the number of nice sequences of length 2n 7
Let b, be the number of nice-sequences of length 2n.

Consider the first index i that the number of 1's and the number
of 0's (from 1 to 2/) are the same.

Then we can write :

bn = i bi—lbn—i
i=1

bp=1, by =1.
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bny1 = bobn + b1by_1 4 -+ 4 bp_1b1 + bybg

Z anrler_:l = Z(bobn + blbnfl +---+ bnflbl + bnbO)XIH_1
n=0 n=0
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bny1 = bobn + b1by_1 4 -+ 4 bp_1b1 + bybg

Z anrler_:l = Z(bobn + blbnfl +---+ bnflbl + bnbO)XIH_1
n=0 n=0

Let f(x) = >_ byx" be the generating function for by, by, by, . . ..
n=0
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bny1 = bobn + b1by_1 4 -+ 4 bp_1b1 + bybg

Z anrler_:l = Z(bobn + blbnfl +---+ bnflbl + bnbO)XIH_1
n=0 n=0

Let f(x) = >_ byx" be the generating function for by, by, by, . . ..
n=0
(f(X) — bo) =X Z (bobn +bibp_1+ -+ by_1b1 + bnbo)X" =
n=0

x[f(x)]?.
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bny1 = bobn + b1by_1 4 -+ 4 bp_1b1 + bybg

Z anrler_:l = Z(bobn + blbnfl +---+ bnflbl + bnbO)XIH_1
n=0 n=0

Let f(x) = >_ byx" be the generating function for by, by, by, . . ..
n=0

(f(x) — bo) = x > (bobn + bibp—1 + -+ + bp_1b1 + bpbg)x" =
n=0
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bny1 = bobn + b1by_1 4 -+ 4 bp_1b1 + bybg

Z anrIXIH_:l = Z(bobn + blbnfl +---+ bnflbl + bnbO)XIH_1
n=0

Let f(x) = >_ byx" be the generating function for by, by, by, . . ..
n=0
(f(x) — bo) = x > (bobn + bibp—1 + -+ + bp_1b1 + bpbg)x" =
n=0
x[f(x)P?.
x[f(x)]? — f(x) + 1 = 0 and hence f(x) = [1 + /1 — 4x]/(2x).
VI—dx = (1—4)Y2 = (1) + (M) (—4x) + (4?) (—4x)? +.

Arash Rafiey Recurrence Relations (review and examples)



The coefficient of x", n > 1 is

<1/2> (Cay— W22-1)(1/2-2) . (1/2) —n+1)

(—4)"

n n!
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The coefficient of x", n > 1 is

<1/2> (Cay— W22-1)(1/2-2) . (1/2) —n+1)

n n!

(—4)"

which is (2(;_1)1) (2n”). Then

)= 2011 2 oy (Dl

and b, the coefficient of x" in f(x) is half of the coefficient of
x" 1 in

3 (2n1_1) (3™ x". Therefore
n=1
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The coefficient of x", n > 1 is

<1/2> (Cay— W22-1)(1/2-2) . (1/2) —n+1)

n n!

(—4)"

which is (2(;_1)1) (2n”). Then

)= 2011 2 oy (Dl

and b, the coefficient of x" in f(x) is half of the coefficient of
x" 1 in

3 (2n1_1) (3™ x". Therefore
n=1

b 2(n+1)): 1 (2n)

n = %[2(n+11)—1]( n+1
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What is the number of sequences of length n on the alphabet
{0, 1,2} with no consecutive 0's and no consecutive 1's.

Let’s call such a sequence a sequence.
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What is the number of sequences of length n on the alphabet
{0, 1,2} with no consecutive 0's and no consecutive 1's.

Let’s call such a sequence a sequence.

Let a, be the number of good sequences of length n.
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What is the number of sequences of length n on the alphabet
{0, 1,2} with no consecutive 0's and no consecutive 1's.

Let’s call such a sequence a sequence.

Let a, be the number of good sequences of length n.

Case 1. Suppose the last symbol is 2. Then the first n — 1 symbols
is a good sequence of length n — 1 and we have a,_; of such
sequences.

Arash Rafiey Recurrence Relations (review and examples)



What is the number of sequences of length n on the alphabet
{0, 1,2} with no consecutive 0's and no consecutive 1's.

Let’s call such a sequence a sequence.

Let a, be the number of good sequences of length n.

Case 1. Suppose the last symbol is 2. Then the first n — 1 symbols
is a good sequence of length n — 1 and we have a,_; of such
sequences.

Let b9 be the number of good sequences ending with 0 and b} be
the number of good sequences ending with 1.

Note that bg = b,l, = b, and we have a, = a,_1 + 2b,.
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Case 2. Suppose the last symbol is 0. Then symbol n—1is 2 or 1.
Therefore b, = a,—2 + bp—1 (an—2 for when n — l-symbol is 2).

Now we have :
ap = ap—1+2b, and b, = by—1 + an—2, (2by = 2bp_1 + 2a,-2)
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Case 2. Suppose the last symbol is 0. Then symbol n—1is 2 or 1.
Therefore b, = a,—2 + bp—1 (an—2 for when n — l-symbol is 2).

Now we have :
ap = ap—1+2b, and b, = by—1 + an—2, (2by = 2bp_1 + 2a,-2)

Therefore (a, — an—1) = (an—1 — an—2) + 2a,—2 and hence

apn=12ap_1+an2
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O, 6 notations

For a given function g(n), ©(g(n)) denotes the set

©(g(n)) = {f(n) : there exist positive constants
c1, ¢, ng such that
c1-g(n) < f(n) < c2-g(n)
for all n > no}

f(n) belongs to the family ©(g(n)) if 3 constants ¢, &
s.t. f(n) can fit between c; - g(n) and ¢ - g(n), for all n
sufficiently large.

Correct notation: f(n) € ©(g(n))
Usually used: f(n) = ©(g(n)).
We also say that “f(n) is in ©(g(n))".
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f(n) =2n? = (n2
because with g(n) = n? and ¢; = 1 and ¢, = 2 we have
0<ag(n) <f(n=2-n"<c-g(n).
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f(n) =2n?> = O(n 2)
because with g(n) = and c1 =1 and ¢ =2 we have
0<ag(n <f(n=2-n<c-g(n).

f(n) = 8n° + 17n* — 25 = ©(n°)
because f(n) > 7 - n® for n large enough

n‘ 8n® + 17n* — 25 ‘n5 ‘ n°
1 8-14+17-1—-25=0 1 7
8-32+17-16 —25=503 | 32| 224

and f(n) < 8n® +17n°> = 25n°, thus c; =7, o = 25 and ng = 2
are good enough.
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Big-O-notation

When we're interested in asymptotic upper bounds only, we use
O-notation (read: “big-O").

For given function g(n), define O(g(n)) (read: “big-O of g of n”
or also “order g of n") as follows:

O(g(n)) = {f(n): there exist positive constants
¢, ng such that
(n) < c - g(n)
for all n > ng}

We write f(n) = O(g(n)) to indicate that f(n) is member of set
O(g(n)).

Obviously, f(n) = ©(g(n)) implies f(n) = O(g(n)); we just drop
the left inequality in the definition of ©(g(n)).
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Big-Omega-notation

Like O-notation, but for lower bounds
For a given function g(n), ©2(n) denotes the set

Q(g(n)) = {f(n) : there exist positive constants
¢, ng such that
c-g(n) < f(n)
for all n > no}

Saying T(n) = Q(n?) means growth of T(n) is at least the of n?.
Clearly, f(n) = ©(g(n)) iff f(n) = Q(g(n)) and f(n) = O(g(n)).
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o-notation

Similar to O

f(n) = O(g(n)) means we can upper-bound the growth of f by
the growth of g (up to a constant factor)

f(n) = o(g(n)) is the same, except we require the growth of f to
be strictly smaller than the growth of g:

For a given function g(n), o(n) denotes the set

o(g(n)) = {f(n): for any pos constant ¢
there exists a pos constant ng
such that

f(n) <c-g(n)
for all n > no}
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omega-notation

For a given function g(n), w(n) denotes the set

w(g(n)) ={f(n) : for any pos constant ¢
there exists a pos constant ng
such that
c-g(n) < f(n)
for all n > no}

In other words:
f(n)

n—oo g(n)

=

if the limit exists.
l.e., f(n) becomes arbitrarily large relative to g(n).
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Heuristics that can help to find a good guess.
@ One way would be to have a Say if
we had T(n) =2T(n/2) + 3n, then
T(n) = 2T(n/2)+3n
= 2(2T(n/4)+3(n/2))+ 3n
= 2(2(2T(n/8) +3(n/4)) + 3(n/2)) + 3n
= 23T (n/2%) +223(n/22) + 2'3(n/2%) + 2°3(n/2°)

We can do this log n times
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Heuristics that can help to find a good guess.
@ One way would be to have a Say if
we had T(n) =2T(n/2) + 3n, then
T(n) = 2T(n/2)+3n
= 2(2T(n/4)+3(n/2))+ 3n
= 2(2(2T(n/8) +3(n/4)) + 3(n/2)) + 3n
= 23T (n/2%) +223(n/22) + 2'3(n/2%) + 2°3(n/2°)

We can do this log n times

log(n)—1
2°8". T(n/2%8") 4+ " 2/3(n/2')
i=0
log(n)—1

= n-T(1)+3n- Zl

= n-T(1 )+3nlogn—@(n|ogn)

After guessing a solution you'll have to prove the correctness.
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Theorem

Let a, b, c be positive integers with b > 2 and let f : Z+ — R. If
f(1) = c and f(n) = af(n/b) + c for n = bk
then for all n =1, b, b, b3, . ..,

Q f(n) = c(logp+1), when a=1
Q@ f(n)= M when a > 2.

a—1
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o stepwise refinement — guessing loose lower and upper
bounds, and gradually taking them closer to each other
For T(n) =2T(|n/2]) + n we see
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o stepwise refinement — guessing loose lower and upper
bounds, and gradually taking them closer to each other
For T(n) =2T(|n/2]) + n we see

o T(n)=Q(n) (because of the n term)
o T(n) = O(n?) (easily proven)
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o stepwise refinement — guessing loose lower and upper
bounds, and gradually taking them closer to each other
For T(n) =2T(|n/2]) + n we see

o T(n)=Q(n) (because of the n term)
o T(n) = O(n?) (easily proven)

From there, we can perhaps “converge” on asymptotically
tight bound ©(nlog n).
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A neat trick called “changing variables”

Suppose we have

T(n) =2T(\/n)+logn
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A neat trick called “changing variables”

Suppose we have

T(n) =2T(\/n)+logn
Now rename m = log n < 2™ = n. We know
V/n = n'/? = (2m1/2 = 2m/2 3nd thus obtain

T(2™) =2TQ™*) +m
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A neat trick called “changing variables”

Suppose we have
T(n) =2T(\/n)+logn
Now rename m = log n < 2™ = n. We know
V/n = n'/? = (2m1/2 = 2m/2 3nd thus obtain
T(™M =2T(2™?) +m
Now rename S(m) = T(2™) and get
S(m)=25(m/2) + m

Looks familiar. We know the solution S(m) = ©(mlog m).
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A neat trick called “changing variables”

Suppose we have
T(n) =2T(\/n)+logn
Now rename m = log n < 2™ = n. We know
V/n = n'/? = (2m1/2 = 2m/2 3nd thus obtain
T(2™) =2T(2™2) + m
Now rename S(m) = T(2™) and get
S(m)=25(m/2) + m

Looks familiar. We know the solution S(m) = ©(mlog m).
Going back from S(m) to T(n) we obtain

T(n)=T(2") = S(m) = ©(mlog m) = ©(log nlog log n)
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The “Master Method”

Let a>1 and b > 1 be constants, let f(n) be a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(n) =aT(n/b) + f(n),

where we interpret n/b to mean either |n/b| or [n/b]. Then T(n)
can be bounded asymptotically as follows.

Q If f(n) = O(n(°862)=€) for some constant € > 0, then
T(n) = ©(n'°es?).

Q@ If f(n) = ©(n'°8s2), then
T(n) = ©(n'°€s2 . log n).

Q If f(n) = Q(n{°852)+€) for some constant € > 0, and if

a-f(n/b) < c-f(n) for some constant ¢ < 1 and all
sufficiently large n, then T(n) = ©(f(n)).
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Notes on Master's Theorem

2. If f(n) = ©(n'°8+2), then
T(n) = ©(n'°&>2 . log n).
Note 1: Although it’s looking rather scary, it really isn't. For
instance, T(n) =2T(n/2) + ©(n) we have
n'°gs2 = plog22 — pl — n and we can apply case 2.
The result is therefore ©(n'°8»2 - log n) = ©(nlog n).
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Notes on Master's Theorem

2. If f(n) = ©(n'°8+2), then
T(n) = ©(n'°&>2 . log n).
Note 1: Although it’s looking rather scary, it really isn't. For
instance, T(n) =2T(n/2) + ©(n) we have
n'°gs2 = plog22 — pl — n and we can apply case 2.
The result is therefore ©(n'°8»2 - log n) = ©(nlog n).
Q If f(n) = O(n(l°862)=€) for some constant € > 0, then
T(n) = ©(n'°gs?).

Note 2: In case 1,
f(n) — n(logb a)—e _ nlogb a/ne _ O(nIOgb a)’

so the ¢ does matter. This case is basically about “small”
functions f. But it's not enough if 7(n) is just asymptotically
smaller than n'°&2 (that is f(n) € o(n'°8+?), it must be
polynomially smaller!
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3. If f(n) = Q(n°852)+¢) for some constant € > 0, and if
a-f(n/b) < c-f(n) for some constant ¢ < 1 and all
sufficiently large n, then T(n) = ©(f(n)).
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3. If f(n) = Q(n°852)+¢) for some constant € > 0, and if
a-f(n/b) < c-f(n) for some constant ¢ < 1 and all
sufficiently large n, then T(n) = ©(f(n)).

Note 3: Similarly, in case 3,

f(n) = n(|ogb a)te _ nlogba nf = w(nlogb a)’

so the ¢ does matter again. This case is basically about “large”
functions n. But again, f(n) € w(n'°8 ) is not enough, it must be
polynomially larger. And in addition f(n) has to satisfy the
“regularity condition”:

af(n/b) < cf(n)

for some constant ¢ < 1 and n > ng for some ng.
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Simple enough. Some examples:
T(n)=9T(n/3)+n

We have a=09, b=3, f(n) = n. Thus, n'ogsa — plogs9 — p2,
Clearly, f(n) = O(n'°83(9)=¢) for € = 1, so case 1 gives
T(n) = ©(n?).
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Simple enough. Some examples:

T(n)=9T(n/3)+n

We have a =9, b =3, f(n) = n. Thus, n'°8? = pl°8s9 = p2,
Clearly, f(n) = O(n'°83(9)=¢) for € = 1, so case 1 gives

T(n) = ©(n?).

T(n)=T(2n/3)+1

We have a=1, b=3/2, and f(n) =1, so

n'ogsa — plogz/sl — p0 — 1.

Apply case 2 (f(n) = ©(n'°8+2) = O(1), result is T(n) = O(log n).
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T(n) =3T(n/4)+ nlogn

We have a =3, b=4, and f(n) = nlogn, so
nlogba — n|0g43 _ O(n0'793).

Clearly, f(n) =n |Ogn = Q(n) and
thus also f(n) = Q(n'ogb(a)+e)

for e = 0.2. Also,
a-f(n/b) =3(n/4)log(n/4) < (3/4)nlogn = c - f(n) for any
c=3/4<1.

Thus we can apply case 3 with result T(n) = ©(nlog n).
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Exercises
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Exercises
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Exercises

n4 n
1) (2;5104) = O(”z)

n?logn
2) (eniay = O(n)

3) 32 = Q(37)
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Exercises

(n4+10n) — O(nz)

1 2n2+4

)
2)
3)
4)

in'ia'; = 0(n)
3mte =Q(3")
(log n)'°g" = Q(n/ log n)
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Exercises

Problem

Give asymptotic upper and lower bounds for T(n) in each of the
following recurrences. Assume that T(n) is constant for n < 2.

(a) T(n)=2T(n/2)+ n® (b) T(n)=T(n—1)+n
(c) T(n)=T(v/n)+1 (d) T(n) =16T(n/4) + n?
(e) T(n)=2T(n—1)+logn
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