
Course Information and Introduction

Arash Rafiey

January 12, 2016

Arash Rafiey Course Information and Introduction

Course Information

1 Instructor : Arash Rafiey

Email : arash.rafiey@indstate.edu

Office : Root Hall A-127

Office Hours : Thursdays 2:30 pm to 3:30 pm in my office
(A-127)

2 Course Home Page :
http://cs.indstate.edu/∼arash/algo658.html

Arash Rafiey Course Information and Introduction

http://cs.indstate.edu/~arash/algo658.html

Course Information

Objective : Introducing concepts and problem-solving techniques
that are used in the design and analysis of efficient algorithms.
How ? : By studying various algorithms and data structures.

1 Graph search algorithms (Greedy) BFS, DFS, Dijkstra’s,
Kruskal’s, and Prim’s (Review)

2 Divide and conquer algorithms (solving recurrences)
3 Dynamic programming algorithms
4 Graph search algorithms
5 Network Flow algorithms and matching
6 NP-completeness
7 Approximation algorithms
8 Fixed parametrized algorithms
9 Randomized algorithms
10 Heuristic searches algorithms
11 Some Number theory algorithms

Arash Rafiey Course Information and Introduction

Course Information

Textbooks :
Algorithm Design, J. Kleinberg, É. Tardos, Addison Wesley, 2006.

Introduction to Algorithms (3rd Edition), T.H. Cormen, C.E.
Leiserson, R.L. Rivest, C. Stein, MIT Press, 2009.

Arash Rafiey Course Information and Introduction

Grading

1 2 Homework assignments and 2 Presentation (each 10 %)

2 Midterm (25 %)

3 Final (35 %)

Arash Rafiey Course Information and Introduction

Graph (Basic Definition)

Graph : Represents a way of encoding pairwise relationships
among a set of objects.

Graph G consists of a collection V of nodes and a collection E of
edges, each of which joins two of the nodes.

E (G) ⊆ {{u, v}|u, v ∈ V (G)}

If the relation is not symmetric (directed graph) we have
E (G) ⊆ {(u, v)|u, v ∈ V (G)}.

Arash Rafiey Course Information and Introduction

1 Transportation networks (airline carrier, airports as node and
direct flights as edges (direct edge).

2 Communication networks (a collection of computers as nodes
and the physical link between them as edges).

3 Information networks (World Wide Web can be viewed as
directed graph, the Web pages are nodes and the hyperlink
between the pages are directed edges).

4 Social Network (People are nodes and friendship is an edge).

Let G be a graph. For simplicity instead of edge {u, v} we write

edge uv .

Two vertices u and v are called adjacent if uv is an edge of G .

We say v is a neighbor of u if uv is an edge of G .

Arash Rafiey Course Information and Introduction

Let G = (V ,E) be an undirected graph.

A path is a sequence P of nodes v0, v1, . . . , vk−2, vk−1 with the
property that vivi+1 is an edge of G and vi 6= vj , 0 ≤ i ≤ k − 2,
i 6= j .

The length of P is k − 1.

A cycle is a sequence C of nodes v1, v2, . . . , vk−1, vk , v1 with the
property that vivi+1 (sum module k) is an edge of G and vi 6= vj ,
0 ≤ i ≤ k − 2, i 6= j .

The length of C is k.

In the directed path and directed cycle, each pair of consecutive
nodes (vi , vi+1) is a directed edge, i.e. vivi+1 is an arc .

Arash Rafiey Course Information and Introduction

Let G = (V ,E) be an undirected graph.

A path is a sequence P of nodes v0, v1, . . . , vk−2, vk−1 with the
property that vivi+1 is an edge of G and vi 6= vj , 0 ≤ i ≤ k − 2,
i 6= j .

The length of P is k − 1.

A cycle is a sequence C of nodes v1, v2, . . . , vk−1, vk , v1 with the
property that vivi+1 (sum module k) is an edge of G and vi 6= vj ,
0 ≤ i ≤ k − 2, i 6= j .

The length of C is k.

In the directed path and directed cycle, each pair of consecutive
nodes (vi , vi+1) is a directed edge, i.e. vivi+1 is an arc .

Arash Rafiey Course Information and Introduction

A walk is an alternating sequence of nodes and edges, beginning
and ending with a node.

A walk is closed if its first and last nodes are the same.

A trail is a walk in which all the edges are distinct.

A path is a simple walk (no two nodes repeated).

Arash Rafiey Course Information and Introduction

Connectivity

We say (undirected) graph G is connected if, for every pair of
nodes u and v , there is a path from u to v .

We say digraph D is strongly connected if for every pair of nodes
u, v there is a directed path from u to v and there is a directed
path from v to u.

A directed cycle is a strong digraph.

Distance between two nodes u, v , d(u, v) is the length of the
shortest path between u and v .

Arash Rafiey Course Information and Introduction

A tree is a connected graph that has no cycle. A tree with n nodes
has exactly n − 1 edges.
We usually consider a node as a root and the rest of the nodes hag
downward from the root. The nodes that are at the end (have only
one neighbor) are called leaves.

1

2

3

4

56

7

8

9

1

2

3 4

5

6

7

8 9

Two drawings of the same tree. On the right, the tree is rooted at node 1

Arash Rafiey Course Information and Introduction

s-t connectivity and Graph Traversal

Given a graph G and two nodes s, t. The s − t connectivity
problem asks whether there is a path from s to t.

Breadth-First Search (BFS). Start with node s and set L0 = s.

At step i let Li be the set of nodes that are not in any of

L0, L1, . . . , Li−1 and have a neighbor in Li−1.

Lemma

Lj is the set of nodes that are at distance exactly j from s.

Arash Rafiey Course Information and Introduction

The BFS algorithm creates a tree with root s.

Once a node v is discovered by BFS algorithm we put an edge
from v to all the nodes u that have not been considered. This way
v is set to be the father of node u.

Arash Rafiey Course Information and Introduction

BFS (s)
1. Set Discover[s]=true and Discover[v]=false for all other v

2. Set L[0] = {s}

3. Set layer counter i=0

4. Set T = ∅ // T is the tree to build

4. While L[i] is not empty

5. Initialize empty set L[i + 1]

6. For each node u ∈ L[i]

7. Consider each edge uv

8. If Discover [v] = false then

9. Set Discover [v] = true

10. Add edge uv to T

11. Add v to the list L[i + 1], increase i by one

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2 3

1

2 3

4 5 7 8

1

2 3

4 5 7 8

6

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2 3

1

2 3

4 5 7 8

1

2 3

4 5 7 8

6

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2 3

1

2 3

4 5 7 8

1

2 3

4 5 7 8

6

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2 3

1

2 3

4 5 7 8

1

2 3

4 5 7 8

6

Arash Rafiey Course Information and Introduction

BFS running time

1) If we represent the graph G by adjacency matrix then the
running time of BFS algorithm is O(n2), where n is the number of
nodes.

2) If we represent the graph G by link lists then the running time
of BFS algorithm is O(m + n), where m is the number of edges
and n is the number of nodes.

Arash Rafiey Course Information and Introduction

BFS Algorithm

BFS (s)
1. Set Discover[s]=true and Discover[v]=false for all other v

2. Set L[0] = {s}
3. Set layer counter i=0

4. Set T = ∅ // T is the tree to build

4. While L[i] is not empty

5. Initialize empty set L[i + 1]

6. For each node u ∈ L[i]

7. Consider each edge uv

8. If Discover [v] = false then

9. Set Discover [v] = true

10. Add edge uv to T

11. Add v to the list L[i + 1], i = i + 1

Arash Rafiey Course Information and Introduction

Bipartite Testing

Problem : Given a graph G decide whether G is bipartite or not.

A graph G is bipartite iff G does not contain an odd cycle.

Solution (Using BFS)
Start with node s and color it with red. Next color the neighbors
of s by blue. Next color the neighbors of neighbors of s by red and
so on.
If at the end there is an edge whose end points receive the same
color G is not bipartite.

This is essentially is the BFS algorithm. We color the nodes in L0

by red and the nodes in L1 by blue and the nodes in L2 by red and
so on.

Next we read each edge uv of G . If both u, v have the same color
then G is not bipartite. Otherwise G is bipartite.

Arash Rafiey Course Information and Introduction

Bipartite Testing

Problem : Given a graph G decide whether G is bipartite or not.

A graph G is bipartite iff G does not contain an odd cycle.

Solution (Using BFS)
Start with node s and color it with red. Next color the neighbors
of s by blue. Next color the neighbors of neighbors of s by red and
so on.
If at the end there is an edge whose end points receive the same
color G is not bipartite.

This is essentially is the BFS algorithm. We color the nodes in L0

by red and the nodes in L1 by blue and the nodes in L2 by red and
so on.

Next we read each edge uv of G . If both u, v have the same color
then G is not bipartite. Otherwise G is bipartite.

Arash Rafiey Course Information and Introduction

Bipartite Testing

Problem : Given a graph G decide whether G is bipartite or not.

A graph G is bipartite iff G does not contain an odd cycle.

Solution (Using BFS)
Start with node s and color it with red. Next color the neighbors
of s by blue. Next color the neighbors of neighbors of s by red and
so on.
If at the end there is an edge whose end points receive the same
color G is not bipartite.

This is essentially is the BFS algorithm. We color the nodes in L0

by red and the nodes in L1 by blue and the nodes in L2 by red and
so on.

Next we read each edge uv of G . If both u, v have the same color
then G is not bipartite. Otherwise G is bipartite.

Arash Rafiey Course Information and Introduction

Lemma

Let G be a connected graph, and let L0, L1, L2, . . . , Lk be the
layers produced by BFS algorithm starting at node s.

(i) There is no edge of G joining two nodes of the same layer. In
this case G is bipartite and L0, L2, . . . , L2i can be colored red
and the nodes in odd layers can be colored blue.

(ii) There is an edge of G joining two nodes of the same layer. In
this case G contains an odd cycle and G is not bipartite.

Proof :
Suppose (i) happens. In this case the red nodes and blue nodes
give a bipartition, and all the edges of G are between the red and
blue nodes.

Arash Rafiey Course Information and Introduction

Suppose (ii) happens. Suppose x , y ∈ Lj and xy ∈ E (G).

1) By definition there is a path P from s to x of length j and there
is a path Q from s to y of length j .

2) Let i be the maximum index such that there is z ∈ L(i) and z is
in the intersection of P and Q, i.e. z ∈ P ∩ Q and z ∈ L(i).

3) Portion of P, say P ′ from z to x has length j − i and portion of
Q, say Q ′ from z to y has length j − i .

4) By adding xy edges into P ′,Q ′ we get a cycle of length
(j − i) + 1 + (j − i) which is of odd length.

Arash Rafiey Course Information and Introduction

Suppose (ii) happens. Suppose x , y ∈ Lj and xy ∈ E (G).

1) By definition there is a path P from s to x of length j and there
is a path Q from s to y of length j .

2) Let i be the maximum index such that there is z ∈ L(i) and z is
in the intersection of P and Q, i.e. z ∈ P ∩ Q and z ∈ L(i).

3) Portion of P, say P ′ from z to x has length j − i and portion of
Q, say Q ′ from z to y has length j − i .

4) By adding xy edges into P ′,Q ′ we get a cycle of length
(j − i) + 1 + (j − i) which is of odd length.

Arash Rafiey Course Information and Introduction

Suppose (ii) happens. Suppose x , y ∈ Lj and xy ∈ E (G).

1) By definition there is a path P from s to x of length j and there
is a path Q from s to y of length j .

2) Let i be the maximum index such that there is z ∈ L(i) and z is
in the intersection of P and Q, i.e. z ∈ P ∩ Q and z ∈ L(i).

3) Portion of P, say P ′ from z to x has length j − i and portion of
Q, say Q ′ from z to y has length j − i .

4) By adding xy edges into P ′,Q ′ we get a cycle of length
(j − i) + 1 + (j − i) which is of odd length.

Arash Rafiey Course Information and Introduction

Depth-First Search (backtracking approach)

We don’t visit the nodes level by level! As long as there is an
unvisited node adjacent to the current visited node we continue!
Once we are stuck, trace back and go to a different branch!

DFS (u)
1. Mark u as Explored and add u to R

2. For every edge uv

3. If v is not Explored then call DFS (v)

Arash Rafiey Course Information and Introduction

Depth-First Search (backtracking approach)

We don’t visit the nodes level by level! As long as there is an
unvisited node adjacent to the current visited node we continue!
Once we are stuck, trace back and go to a different branch!

DFS (u)
1. Mark u as Explored and add u to R

2. For every edge uv

3. If v is not Explored then call DFS (v)

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2

3

5

4 6

1

2

1

2

3

1

2

3

5

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2

3

5

4 6

1

2

1

2

3

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2

3

5

4 6

1

2

1

2

3

1

2

3

5

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2

3

5

4 6

1

2

1

2

3

1

2

3

5

1

2

3

5

1

2

3

5

4

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2

3

5

4 6

1

2

1

2

3

1

2

3

5

1

2

3

5

1

2

3

5

4

Arash Rafiey Course Information and Introduction

1

2

3

4

7

8

6

5

1

2

3

5

4 6

1

2

1

2

3

1

2

3

5

1

2

3

5

4

1

2

3

5

65

7

1

2

3

5

4 6

7

8

Arash Rafiey Course Information and Introduction

Implementing Depth-First Algorithm using Stack

DFS(s)
1.Initialize S to be a stack with element s only.

2. While S is not empty

3. Take a node u from top of S .

4. If Explored[u] =false then

5. Set Explored[u]=true

6. For every uv edge add v to S .

Arash Rafiey Course Information and Introduction

DFS running time

1) If we represent the graph G by adjacency matrix then the
running time of DFS algorithm is O(n2), where n is the number of
nodes.

2) If we represent the graph G by link lists then the running time
of DFS algorithm is O(m + n), where m is the number of edges
and n is the number of nodes.

Arash Rafiey Course Information and Introduction

