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Abstract

The inverse protein folding problem is that of designing an amino acid sequence which has a prescribed
native protein fold. This problem arises in drug design where a particular structure is necessary to ensure
proper protein-protein interactions. In Gupta et al. (2007), a tubular structures for 3D hexagonal prism
lattice were introduced and their stability was formally proved for simple instances under the HP model
of Dill. In this paper, we generalize the design of tubular structures to allow for much larger variety of
designable structures by allowing branching of tubes. Our generalized design could be used to roughly
approximate given 3D shapes in the considered lattice. Although the generalized tubular structures are
not stable under the HP model we can prove that a simple instance of generalized tubular structures is
structurally stable (folds into designed shape) under a refined version of HP model, called HPC model.
We conjecture that there is a way how to choose which hydrophobic monomers are cysteines in generalized
tubular structures such the designed proteins are structurally stable under the HPC model.

1 Introduction

It has long been known that protein interactions depend on their native three-dimensional fold and under-
standing the processes and determining these folds is a long standing problem in molecular biology. The most
significant force acting on protein folding are hydrophobic interactions (see Dill (1990) for details). This led
Dill to introduce the Hydrophobic-Polar model Dill (1985). Here the 20 amino acids from which proteins are
formed are replaced by two types of monomers: hydrophobic or polar, depending on their affinity to water.
To simplify the problem, the protein is laid out on vertices of a lattice with each monomer occupying exactly
one vertex and neighboring monomers occupy neighboring vertices. The free energy is minimized when the
maximum number of non-consecutive hydrophobic monomers are adjacent in the lattice. Therefore, the
“native” folds are those with the maximum number of such HH contacts. Even though the HP model is the
simplest model of the protein folding process, computationally it is an NP-hard problem, cf. Crescenzi et al.
(1998) for two- and Berger and Leighton (1998) for three-dimensional square lattices.

Another significant force in the folding process of the proteins are disulfide bridges between two cys-
teine monomers which play an important role in the stability of the protein structure Jaenicke (1991).
In Hadj Khodabakhshi et al. (2008) we extended the HP model by considering a third type of monomers,
cysteines, and incorporating disulfide bridges between two cysteines into the energy model. This model
is called the hydrophobic-polar-cysteine (HPC) model. The cysteine monomers in the HPC model act as
hydrophobic Naganoa et al. (1999), but in addition two neighboring cysteines can form a disulfide bridge to
further reduce the energy of the fold.

In many applications such as drug design, we are interested in the complement problem to protein folding:
inverse protein folding or protein design. A major challenge in protein design is to avoid proteins that have
multiple native folds. We say that a protein is stable if its native fold is unique. Furthermore, we say that
a protein is structurally stable if all its native folds define the same mapping from the set vertices of the
lattices to the set of amino acids, i.e., if all native folds appear to be identical and only differ by the peptide
connections. In Gupta et al. (2005) a new version of the inverse protein folding problem was considered:
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instead of a target fold, a target structure (a connected set of lattice vertices) is given, and the goal is
to design a sequence which would (preferably uniquely) fold into a structure (picked from a rich class of
“constructible” structures) “close” to the target structure. The 2D square lattice was used and it was shown
that all designed proteins fold into corresponding constructible structures. It was also “formally” shown that
the proteins for the simplest (but arbitrary long) constructible structures fold uniquely, and conjectured that
the same holds for all constructible structures. Design of stable proteins of arbitrary lengths in the HP model
was also studied in Aichholzer et al. (2003) (for 2D square lattice) and in Li et al. (2005) (for 2D triangular
lattice), motivated by a popular paper of Hayes (1998).

(a) (b)

Figure 1: An example of (a) hexagonal prism lattice; (b) a tubular structure built with 3 tubes. Hydrophobic (polar)
monomers are depicted with black (white) beads.

In Gupta et al. (2007), the 3D lattice (hexagonal prism lattice, cf. Figure 1(a)) was used to design a
class of tubular structures and their corresponding proteins. It was shown that each protein folds into the
corresponding tubular structure, and that the proteins for the smallest tubular structures (with up to two
tubes) are structurally stable under the HP model, however in the two tubes case, the paper missed one
case in which protein for the tubular structure with two tubes fold into a very similar structure, and hence,
it is not completely structurally stable. An example, of a tubular structure is shown in Figure 1(b). The
shortcoming of this design is that it only allows to chain tube in linear fashion which severely limits ability
of design to approximate given shapes.

C
C

C
C

C
C

T1

T2

T3

Figure 2: An example of a generalized tubular structure showing the ability to branch (on the left). Polar, hydrophobic
and cysteine monomers are depicted as empty circles, squares and triangles, respectively. Hydrophobic cores of 3
tubes and a connector are highlighted.

In this paper, we generalize the design introduced in Gupta et al. (2007) by adding a new building
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block: a “connector”. The hydrophobic core of the connector consists of 2 layers of two adjacent hexagons.
The connector can be attached to 4 tubes (one per top/bottom of each hexagon). We call these structures
generalized tubular structures. An example, with 3 tubes attached to the connector is shown in Figure 2.
Such design is sufficiently robust to roughly approximate any given shape.

We show that a generalized tubular structure is one of the native folds of its protein under HPC model. We
conjecture that the proteins of the generalized tubular structures are structurally stable, i.e., their proteins
fold uniquely into designed structures. We are able to prove this formally for infinite subclass of the simple
structures (consisting of one connector and three tubes, cf. Figure 2) under the assumption that each of the
three tubes is sufficiently long. In addition, similar to Gupta et al. (2007), we assume that our proteins are
closed chains of monomer, a similar assumption as used in Aichholzer et al. (2003), i.e., that the beginning
and the end of the sequence are adjacent in the lattice. Note that generalized tubular structures from this
subclass are not structurally stable under the HP model, thus our results show that using disulfide bridges
in our designs helps to stabilize them.

Despite the tremendous amount of work on protein design for 2D lattices, as far as we know, this is the
first general design of arbitrary long stable proteins for the 3D lattice. Given that 3D is the realistic setting,
we believe that this work could eventually help in designing proteins with applications to drug design and
nanotechnology.

2 Preliminaries

In this section we will review the HPC model and introduce some terminology used in the paper.

2.1 Hydrophobic-polar-cysteine model

In HPC model, proteins are chains of monomers where each monomer is either hydrophobic-none-cysteine,
cysteine or polar. Such a chain is represented as a string p = p1p2 . . . p|p| in {0, 1, 2}∗, where “0” represents
a polar monomer (depicted in figures as empty circles), “1” a hydrophobic-none-cysteine (depicted as black
squares) and “2” a cysteine monomer (depicted as black triangles). We use H to represent a monomer which
could be either 1 or 2 (depicted in figures as a black circle). The proteins are folded onto the regular lattice.
A fold of a protein p is embedding of a path of length n into lattice.

In our 3D HPC model we use the hexagonal prism lattice as a lattice structure. The vertices adjacent to
a vertex are called the neighbors of that vertex. As depicted in Figure 1(a), each vertex has 5 neighbors: 3
horizontal neighbors lying in the same hexagonal grid and 2 vertical neighbors lying above and bellow the
vertex in the parallel hexagonal grids.

A protein will fold into a conformation with the minimum free energy, also called a native fold. The
energy function in the HPC model consists of two parts: hydrophobic interactions and disulfide bridges.
The hydrophobic monomers which are not consecutive in the protein but are adjacent in the lattice form
(contacts). Each contact contributes with−1 to the total energy. The cysteines act as hydrophobic monomers
in this part of energy function. In addition to hydrophobic interactions a pair of cysteines which are not
consecutive in the protein but are adjacent in the lattice form disulfide bridges and further reduce the energy
of the fold. Unlike the hydrophobic interactions in which a hydrophobic monomer can take part in several
contacts, a cysteine can only participate in one disulfide bridge. Therefore, the number of disulfide bridges
contributing in the energy of fold is equal to the number of pairs in the maximum matching in the graph of
potential disulfide bridges. Each disulfide bridge contributes with −1 to the total energy. Hence, a fold with
the lowest free energy corresponds to a fold with the largest number of HH contacts and disulfide bridges.

2.2 Stability

Note that there might be several native folds for a given protein. A protein with a unique native fold is called
a stable protein. Every protein and its fold define a mapping from the lattice vertices to the set {0, 1, 2,W},
where W represents “water” or an empty unoccupied position. We say that two folds of the same protein
are similar if they define the same mapping. If all native folds of a given protein are similar to each other,
then the protein is called structurally stable. Note that all native folds of a structurally stable protein have
completely same shape (from outside their appear as a same fold). For instance, the string t = (0100110010)6

3
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(a) (b)

Figure 3: Two native folds of the substring t = (0100110010)6 . These two folds are similar.

is structurally stable, but not stable. Figure 3 depicts all two native folds of this string. It is easy to see
that the mappings defined by t and its two folds are identical, i.e., the folds are similar.

2.3 Terminology

A lattice vertex containing an X ∈ {0, 1, 2} monomer is called an X-vertex. An H-vertex is either a 1-vertex
or a 2-vertex. A neighbor of a vertex v which is an X-vertex is called X-neighbor.

Consider a fold F . A path in F is a sequence of vertices (x1, x2, . . . , xk) such that consecutive vertices
are connected by peptide bonds. We say that F contains an occurrence of substring w1, w2, . . . , wk if there
is a path (x1, x2, . . . , xk) in F such that xi is a wi-vertex.

We number hexagonal grids of the lattice (also referred to as planes) with integer numbers, and denote
the i-th grid by Hi. Consider vertex x ∈ Hi. We denote the vertical neighbor of x in Hi+1 (above x) by
x1, and recursively, the vertical neighbor of xj in Hi+j+1 by xj+1. Similarly, we denote the neighbor of x in
Hi−1 by x−1, and the neighbor of x−j in Hi−j−1 by x−j−1.

Let Gx be the graph of all H-vertices in Hi which are reachable from x by a path of H-vertices in Hi.
Let G be a set of vertices in Hi. Then for j ≥ 1, let Gj be the graph of all vertices in Hi+j which have a
neighbor in Gj−1, and G−j be the graph of all vertices in Hi−j which have a neighbor in G−j+1, i.e., Gj and
G−1, j 6= 0, are vertical copies of the set G.

Note that Gx is a planar graph (as Hi is as well). The degree of a vertex in Gx is called a plane degree.
Let Bx be the boundary cycle of Gx, i.e., the set of vertices of Gx which lie on the outer face of Gx. A
component in a fold F is a maximal set of H-vertices for which there is a path of H-vertices between any pair
of them.

Let C be a component that lies in the planes Hj+1 to Hj+r. Let layer Ci be a graph of all vertices of C
in plane Hj+i+1. We say that layers Ci and Ck are the same if Ck−ii = Ck, i.e, Ck is a copy of Ci. When

we say that we are comparing layers Ci and Cj of component C, we mean comparing the sets Ci and Ci−jj .
For example, when we say Ci is identical to (respectively, a subset of) Cj we mean whether Ci is identical to

(respectively, a subset of) C i−jj , and we write simply Ci = Cj (respectively, Ci ⊆ Cj). The plane containing
Ci will be denoted by H(Ci).

2.4 Saturated folds

The proteins used in Gupta et al. (2005) and the proteins we will use in our design have a special property.
The number of possible contacts and disulfide brides of their native folds is maximal with respect to the
number of hydrophobic “1” and cysteine “2” monomers contained in the protein. The following useful
observation characterizes native folds of such proteins.

Observation 1 (Saturated folds). Let p ∈ 0{0, 1, 2}∗0 be a protein, and F be the fold of p. If for every
H-vertex v, three out of five edges incident with v are contacts and in addition if v is a cysteine it belongs to
a maximum matching in the graph of potential disulfide bridges, then (a) F is a native fold of p; and (b) any
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other native fold of p satisfies these properties. We will call a fold satisfying these properties a saturated
fold.

The proof of the observation follows by a simple argument that any hydrophobic vertex v can have at
most three contacts since it is connected to exactly two neighbors with a peptide bond and furthermore
any cysteine monomer can be involved in at most one disulfide bridge. Note that not every protein has a
saturated fold.

3 Generalized tubular structures and their proteins

(a) (b)

Figure 4: (a) Illustration of a tube with a hydrophobic core of height 8 — the wavy lines at the top and dashed lines
at the bottom represents loops. (b) Illustration of a connector.

The first basic building block of our generalized tubular structures is a tube, depicted in Figure 4(a).
Tubes were the only building block of tubular structures introduced in Gupta et al. (2007). A tube consists
of 6 identical “alpha helix”-like subfolds of the substring pn = (H00H)n forming a 2 × 2n vertical zig-zag
pattern (“plate”).

The plates are connected to each other with 6 short loops (3 at the top and 3 at the bottom), each
consisting of only two polar monomers. Thus, the hydrophobic core is completely surrounded by polar
monomers, i.e., the fold is saturated. The complete protein string for the tube is tn = (0pn0)6. We assign
the first and the second H monomer of one of the plates of each tube to cysteine monomers 2. We represent
the fold of tn by Tn. The height of the hydrophobic core of the tube Tn is 2n.

The second building block of our generalized tubular structures is a connector, depicted in Figure 4(b).
A connector can be formed by overlapping two very short tubes (with height of hydrophobic core 2). Two
tubes or a tube and a connector can be connected to one protein structure in two ways as follows. First,
one top loop of the first tube is overlapped with a bottom loop of the second tube/connector, vice versa,
and the peptide bonds between two polar monomers of each loop are disconnected. This way of connecting
two components is called vertical connection. Tubes T1 and T2 in Figure 2 are vertically connected to the
connector. In the second way, called horizontal connection, the tubes or the tube and the connector are
placed beside each other such that they have H-vertices in exactly one common plane Hi and exactly two
H-vertices of the first component are connected to two H-vertices of the other component each through one
0-vertex. Tube T3 in Figure 2 is horizontally attached to the connector. Repetitively, connecting tubes and
connectors (such that no space violation occurs) we obtain the class of generalized tubular structures. We
choose to vertically or horizontally connect a tube to a component in a generalized tubular structure such
that no pair of H-vertices in the same plane and in middle layers of different tubes are at distant three of
each other. Since, there is no substring 000 in the protein of any generalized tubular structure, this condition
ensures that the tubes in a generalized tubular structures do not directly connect to each other through the
H-vertices in their middle layers. This will greatly simplifies the stability proof of the structures.

Since, the folds of tubular structures are saturated, by Observation 1, they are native folds to correspond-
ing proteins (which can be easily reconstructed from the folds).

5
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4 Stability of generalized tubular structures

In what follows we will show that the protein of one basic generalized tubular structure: the structure
built from one connector and three tubes, cf. Figure 2, is structurally stable. We will assume that three
tubes Tk1 , Tk2 , Tk3 used to construct this structure are sufficiently long. In particular, we will assume that
k1, k2, k3 ≥ 712. We conjecture that this structure is structurally stable also for other values of k1, k2, k3 and
that all generalized tubular structures are structurally stable. Let q be the protein string of this structure
and Q be its original fold.

Definition 1 (sparse protein). We say that a protein is sparse if does not contain HHH as a substring
and does not start or end with H.

4.1 Types of H-vertices

Let F be a saturated fold of a sparse protein. Then each H-vertex has exactly three contacts, i.e., it has at
least three H-neighbors and the remaining two neighbors are connected (via a peptide bond) and at most
one of the two is an H-vertex. We can classify every H-vertex x of S to one of the five types based on the
position of its 0-neighbor(s), cf. Figure 5:

(a) vh-type: x has one vertical 0-neighbor (on top or below) and one horizontal 0-neighbor (in the same
hexagonal grid);

(b) vv-type: x has two vertical 0-neighbors;

(c) hh-type: x has two horizontal 0-neighbors;

(d) h-type: x has one horizontal 0-neighbor;

(e) v-type: x has one vertical 0-neighbor.

x x

(a)

x

(b)

x

(c)

x

(d)

x x

(e)

Figure 5: Five types of possible neighborhood of an H-vertex x: S-vertices: (a) vh, (b) vv, (c) hh; and D-vertices: (d)
h and (e) v.

For every X ∈ {vv, hh, h, v} an H-vertex of type X , will be called X-vertex. Furthermore, any H-vertex
with two 0-neighbors is called a S-vertex and an H-vertex with one 0-neighbor is called a D-vertex.

Definition 2 (connections). Let u, v ∈ {0, 1, 2,H, S,D, vv, hh, h, v} and s ∈ {0, 1, 2,H}+. We say that
two vertices x and y are s-connected if there is a path x, v1, v2, . . . , vk, y such that vi is an si-vertex. If
x is a u-vertex and y is a v-vertex, this path is called an usv-connection. If the end points x and y are
H-vertices and belong to two different components, we say that these components are usv-connected. If
s = 00 and u, v 6= 0, we will shorten this notation as (u\v)-connection. In particular, we will be interested
in H0H-connections and (S\h)-connections.

A usv-connection with end points x and y is called internal, if x and y are in the same component,
and otherwise it is called external. We say that two usv-connections with end points at x, y and x′, y′,
respectively, are parallel if x (y) is directly above/below x′ (y′), i.e., x′ = xi and y′ = yj , for some integers
i, j, and all vertices between x and x′ (y and y′) are H-vertices. Note that it is also possible that x and y′

are u-vertices and x′ and y are v-vertices.

We have the following observations:

Observation 2. Let F be an arbitrary saturated fold of q. Then F contains 6 H0H-connections, 52 S-
vertices, the number of D-vertices is 4 modulo 6 and it contains 36 (S\D)-connections. F does not contain
HHH, 000, H0H0H and H0HH, but it does contain one occurrence of 20100101.
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Observation 3. Let F be a saturated fold of a sparse protein. Then every H-vertex of F is either a vh-
vertex, vv-vertex, hh-vertex, h-vertex or v-vertex. Furthermore, any neighboring 0-vertex and H-vertex are
connected by a peptide bond.

Claim 1. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Then no v-vertex in
F can connect directly to an h-vertex.

Proof. Consider a v-vertex x. Without loss of generality assume that its 0-neighbor is x1. Assume to the
contrary that x connects to an h-vertex. Two cases are possible: first, x connects to its horizontal h-neighbor
z cf., Figure 6(a). Then z1, x1, x, z form the substring H0HH, a contradiction. Second, x connects x−1 which
is an h-vertex. Let z be the horizontal 0-neighbor of x−1. Then z1, z, x−1, x form the substring H0HH, a
contradiction cf., Figure 6(b).

Claim 2. Let F be a saturated fold of a sparse protein. No v-vertex can connect to an h-vertex via two
0-vertices.

Proof. Consider a v-vertex x. Without loss of generality assume that its 0-neighbor is x1. Assume to the
contrary that x1 connects to an h-vertex via one 0-vertex y. If y is a horizontal neighbor of x1 then it would
connect down to an a vertex which is not an h-vertex. Hence, y = x2. Furthermore, x2 should connect to
an h-vertex, hence it cannot connect to x3. Therefore it must connect to one of its horizontal neighbor z.
Since, z is an h-vertex, z−1 is an H-vertex. However, this a contradiction, as x1 would have to connect to
three vertices: x, x2 and z−1 Figure 6(c).

zx

(a)

x
z

(b)

x

z

(c)

Figure 6: Case analysis showing that a vh-vertex cannot directly (a) and (b); or via two 0-vertices (c) connect to an
h-vertex

The above two claims imply the following lemma.

Lemma 1. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Any occurrence of
substring (00HH)k in F contains either only v-vertices or only h-vertices.

4.2 Types of components

In this section we study all possible components that can arise in saturated folds of q. We first classify all
components to three categories and then study which of these can appear in saturated folds of q.

Let F be a saturated fold of a sparse protein and C a component in F . Assume that C lies in the planes
Hs, . . . , He. Note that any H-vertex of plane degree one in the first or last layer of C is adjacent to at least
three 0-vertices, a contradiction. Hence, we have the following observation.

Observation 4. Let F be a saturated fold of a sparse protein and let C be a component in F . Then all
vertices of the first or last layer of C have plane degree 2 or 3.

The following definition defines several types of components.

Definition 3 (tube, simple tube, 2-layer component, wall, and complex component). A tube is a
component such that all its layers are identical and each layer contains only vertices of plane degree two (a
cycle). A simple tube is a tube with only one hexagon in each layer. A 2-layer component is a component
with two identical layers which have no vertex with plane degree 1 and at least one vertex with plane degree
3. A wall is a component such that all its layers are identical and each layer is a single path. Finally, a
complex component is a component C such that there is i for which Ci and Ci+1 are different.
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We have the following observations.

Observation 5. Any component C in a saturated fold of a protein is one of the following three types: a
tube, a 2-layer component or a complex component.

(a) (b) (c)

Figure 7: One layer of (a) the smallest non-simple tube; (b) the smallest non-simple tube without occurrences of
H0H; and (c) the smallest non-simple tube with one occurrence of H0H per layer.

Observation 6. Let F be a saturated fold of a sparse protein. If F contains a tube then the height (number
of layers) of this tube is at least 2. One layer of the smallest non-simple tube is depicted in Figure 7(a).
It contains two occurrences of H0H per layer, i.e., at least 4 such occurrences. One layer of the smallest
non-simple tube with no occurrences of H0H is depicted in Figure 7(b). One layer of the smallest tube with
one occurrence of H0H per layer is depicted in Figure 7(c).

4.3 Different types of complex components

In what follows we further classify different types of complex components which can occur in saturated folds
of sparse proteins with at most six occurrences of substring H0H.

4.3.1 Complex components with a vv-vertex

x1

y6

x2

y1

x3

y2
x4

y3

x5

y4

x6
y5

z1

z2

Figure 8: Part of a complex component with a vv-vertex. The arrows are pointing at six vv-vertices.

Lemma 2. Let F be a saturated fold of a sparse protein with no occurrences of substrings H0HH and H0H0H
and at most six occurrences of substring H0H. Consider a complex component C of F containing a vv-vertex.
Then C has 6 vv-vertices forming a hexagon, lies in two layers which are almost identical, except for the six
vv-vertices which are replaced with 0-vertices in the other layer, and neither layer contains a vertex of plane
degree 1. We will call such a complex component, a vv-component. A vv-component contains 6 occurrences
of H0H.
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Proof. Any vv-vertex must be adjacent to at least two other vv-vertices in its plane, otherwise, either there
is a 0-vertex connected to three H-vertices (with a peptide bond), or we get a substring H0H0H which cannot
occur in F . Therefore, any set of vv-vertices in a plane forms a graph with no vertices of plane degree 1.
Each vv-vertex on the boundary of this graph is adjacent to one non-vv-vertex which creates a distinct H0H
substring. Since there are only 6 occurrences of H0H in F , the boundary of this graph must be a hexagon,
i.e., C contains exactly 6 vv-vertices x1, . . . , x6 located on a single hexagon, cf. Figure 8. Furthermore, C
does not contain a vertex with plane degree 1. Assume to the contrary that v is a vertex with plane degree
1 and let k be the smallest number such that vk is a vertex with plane degree more than 1 (note that such a
k exists). Let w be a horizontal H-neighbor of vk. Now, the path (w,w−1, vk−1) is an H0H-connection which
is different from the H0H-connections containing the vv-vertex of F , a contradiction.

For i = 1, . . . , 6, let yi be the non-vv horizontal neighbor of xi. Consider y1. One of its vertical neighbor
is an H-vertex while the other is a 0-vertex, cf. Figure 8. Without loss of generality assume y1

1 is an H-vertex.
Let z1 be the horizontal neighbor of y1 which is closer to y2. Since C does not contain any vertex of plane
degree 1, all the horizontal neighbors of y1

1 except x1
1, are H-vertices. In addition, y2

1 must be a 0-vertex
otherwise, F would contain the substring H0HH, a contradiction. It follows that z1 is an H-vertex and z−1

1

and z2
1 are 0-vertices otherwise, we get additional H0H-connections, a contradiction.

Next, we show that y1
2 is an H-vertex. Let z2 be the common neighbor of z1 and y2. Clearly, z2 is an

H-vertex otherwise we get another H0H-connection, a contradiction. Similarly, z−1
2 and z2

2 are 0-vertices
and z1

2 is an H-vertex. It follows that y1
2 is an H-vertex. By similar arguments, we can show that for every

i = 1, . . . , 6, y1
i is an H-vertex and y−1

i and y2
i are 0-vertices. Since there is no other occurrence of H0H in

F , it is easy to see that the whole component lies in two layers (the layers containing yi’s and y1
i ’s) which

are almost identical with exception that 6 vv-vertices in lower layer replaced with 0-vertices in the upper
layer.

Note that a vv-component is essentially a 2-layer component which is missing vertices of one hexagon in
one of the two layers.

4.3.2 Complex components without a vv-vertex

u v

C1 · · ·
C2 · · ·

(a)

u v
· · ·C ′s· · ·C ′s−1

(b)

v

u

(c)

Figure 9: Analysis of a complex component without a vv-vertex: (a) the case in which C ′2 6= C1; (b) the case in which
C′i is not a subset of C1; (c) the case when C′s is not a subset of V 2,2,2.

Lemma 3. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Let C be a complex
component of F without a vv-vertex and C1, . . . , Cr its layers. Let V 2,2,2 be the set of all H-vertices in F
with plane degree 2 such that both its horizontal H-neighbors have plane degree 2 as well.

(a) For k ≥ 1, let C ′k be a subset of Ck consisting of components of Ck which are intersecting C1. Let s
be the smallest integer such that layer C ′s is different from C1. Then s > 2 and C ′s is a collection of
paths where each path is a subset of C1 ∩ V 2,2,2.

(b) For k ≤ r, let C ′′k be a subset of Ck consisting of components of Ck which are intersecting Cr. Let e be
the largest integer such that layer C ′′e is different from Cr. Then e < r − 1 and C ′′e is a collection of
paths where each path is a subset of Cr ∩ V 2,2,2.

Proof. We prove only part (a) of the lemma, part (b) follows by symmetry. Since there is no vv-vertex in C,
C2 and hence, also C ′2 is a superset of the C1. We show that these two layers are identical. To the contrary

9
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assume that C ′2 contains a vertex w such that its vertical neighbor in the plane H(C1) is a 0-vertex. Since C ′2
is intersecting C1, there must be a shortest path connecting w to some vertex u of C1

1 . Note that u ∈ C ′2 and
u−1 ∈ C1. Let v be the neighbor of u on this paths, i.e., v is an H-vertex in C2 and v−1 is a 0-vertex. Since,
the plane degree of u−1 is at least 2, its horizontal neighbors other than v−1 are H-vertices. Since, C1 ⊆ C ′2,
all horizontal neighbors of u are H-vertices, i.e., u is a v-vertex. Therefore, u1 is a 0-vertex. Furthermore,
since there is no vv-vertex in F , v1 is an H-vertex, cf. Figure 9(a). Since, u is a D-vertex, it is connected to
one of its H-neighbors, say z. Then, v1, u1, u, z form the substring H0HH, a contradiction. Hence, C1 = C ′2.

Let s be the smallest integer such that C ′s is different from C1. Since C1 = C ′2, it follows that s > 2. Next,
we show that C ′s is a subset of C1 = C ′s−1. Assume the contrary. Since C ′s is intersecting C1 = C ′s−1, there
exists an H-vertex v and its horizontal H-neighbor u in C ′s such that v−1 is a 0-vertex and u−1 is a H-vertex
in C ′s−1. Since C ′s−1 = C ′s−2 = C1, the plane degree of u−1 is 2 and u−2 is an H-vertex, cf. Figure 9(b).
Hence, u−1 is a D-vertex, i.e., it is connected to some H-vertex z. Then v, v−1, u−1, z form the substring
H0HH, a contradiction.

Finally, note that any vertex with plane degree 3 in C ′s−1 must have a 0-neighbor in the plane H(Cs),
as otherwise it would have five H-neighbors. Since, C ′s is a subset of C1 ∩ V 2, where V 2 is the set of all
H-vertices in F with plane degree two, C ′s is a collection of paths.

Finally, let us prove that each path in C ′s lies in V 2,2,2. Assume the contrary. Then the end point v of
such a path in C ′s has a 0-neighbor u such that u−1 is an H-vertex of plane degree 3 in C ′s−1. Hence, u−1 is
a v-vertex and we have an occurrence of H0HH (cf. Figure 9(c)), a contradiction.

Lemma 4. Let F be a saturated fold of a sparse protein with no occurrences of the substring H0HH, and
at most six occurrences of the substring H0H. Let C be a complex component of F without a vv-vertex and
C1, . . . , Cr be its layers. Let s̄ > 2 (ē < r− 1) be the smallest (largest) integer such that Cs̄ (Cē) is different
from C1 (Cr). Then both Cs̄ and Cē contain a single path, and each of the layers C1, . . . , Cs̄, Cē, . . . , Cr is
connected. Furthermore, each complex component creates at least four occurrences of the substring H0H in
F , two between layers Cs̄−1 and Cs̄ and other two between layers Cē and Cē+1.

Proof. Let C ′k, C
′′
k be the sets and s, e the integers defined in Lemma 3. By this lemma, both C ′s and C ′′e are

collections of paths. Each paths in C ′s and C ′′e creates two new occurrences of substring H0H. Therefore, the
total number of paths in C ′s and C ′′e is either 2 or 3.

First, assume that C ′s and C ′′e contain 2 paths in total. It is enough to show that for every k = 2, . . . , s,
C ′k = Ck and for every k = e, . . . , r− 1, C ′′k = Ck. Assume that there is l ∈ {2, . . . , s} such that C ′l 6= Cl and
assume that l is the smallest such integer. Then Cl contains another component K which does not intersect
C1 = C ′l . Note that we can apply Lemma 3 on K as well, i.e., there will be a level l′ > l + 1 such that all
components of Cl′ intersecting K are paths. Since, each such paths will create 2 occurrences of H0H, there
is only one such path P . Note that there is no other occurrence of H0H in F . It is easy to see that for all
s < k < e, C ′k = Cs, as any change would introduce a new occurrence of H0H. Similarly, for any l′ < k < e,
there is only one component of Ck intersecting K, P . Now, the layer Ce−1 contains two paths and Ce only
one path. Thus, the change from Ce−1 to Ce introduces new occurrences of H0H, a contradiction. Hence,
for every k = 2, . . . , s, C ′k = Ck and for every k = e, . . . , r − 1, C ′′k = Ck. This implies that s̄ = s and ē = e.
The lemma follows.

Second, assume that C ′s and C ′′e contain 3 paths in total. Without loss of generality assume that C ′s
contains 2 paths and C ′′e has only 1 path. This will create 6 occurrences of H0H in F . Therefore, as before,
Ce−1 contains two paths and Ce only one path, a contradiction.

u

· · ·Cs = Ce

Figure 10: A complex component: the case when layers Cs and Ce are identical.
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Observation 7. Let F be a saturated fold of a sparse protein with no occurrences of the substrings H0HH
and H0H0H, and at most six occurrences of the substring H0H. Let C be a complex component without a
vv-vertex. Let s > 2 (e < r− 1) be the smallest (largest) integer such that Cs (Ce) is different from C1 (Cr).
Then s 6= e, i.e, the middle part of a complex component without a vv-vertex (layers Cs, . . . , Ce) contains at
least 4 S-vertices..

Proof. First, notice that if s = e then the end point of the path u in Cs = Ce belongs to two different occur-
rences of H0H. If these two occurrences share a 0-vertex v then v connects to three vertices, a contradiction.
Otherwise, we have an occurrence of substring H0H0H, cf. Figure 10, again a contradiction.

4.3.3 Basic complex component

Definition 4 (basic complex component). Let F be a saturated fold of a sparse protein with no H0HH
as a substring. Let C be a complex component of F without a vv-vertex with layers C1, . . . , Cr. Let s be the
smallest integer such that Cs is different from C1 and let e be the largest integer such that Ce is different
from Cr. If Cs is a path and for any i ∈ s + 1, . . . , e, Ci is identical to Cs then we call C a basic complex
component.

Note that a basic complex component consists of three parts stack vertically on each other: (1) a tube
or 2-layer component; (2) a wall; and (3) a tube or 2-layer component.

Observation 8. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Any basic
complex component of F contains at least 20 S-vertices (the lower and upper part at least 8 each and the
wall at least 4) and at least 4 occurrences of substring H0H.

4.3.4 Appendix components

In this subsection, we show that if a complex component C without vv-vertices is not basic, then its layers
change exactly four times, i.e., it consists of five parts stacked on top of each other: (1) a 2-layer component
or a tube; (2) a wall; (3) a pseudo 2-layer component with exactly one vertex with plane degree 1 in each
of two layers; (4) another wall; and (5) a 2-layer component or a tube. The part in the middle (3) will be
called an appendix, and such a complex component will be called an appendix component. An example of an
appendix component is in Figure 11(a). Let us start with the formal definition of an appendix component.

Ce

Cm+1
Cm

Cs

(a)

. . .

. . .
. . .
. . .

. . .

. . .

. . .

. . .
. . .
. . .

p1 pt

pi

pj

p`

q1

q2

q′`
Cm . . .

Cm−1 . . .

(b)

Figure 11: (a) An example of an appendix component and the six occurrences of H0H contained in it. (b) Illustration
what happens if Cm−1 is not a subset of Cm.

Definition 5 (appendix component). Let F be a saturated fold of a sparse protein with no occurrence
of the substring H0HH. Let C be a complex component of F without a vv-vertex with layers C1, . . . , Cr.
Let s be the smallest integer such that Cs is different from C1 and let e be the largest integer such that
Ce is different from Cr. Assume that both Cs and Ce contain only one path, and that there is an integer
s < m < e− 1 such that Cs = Cs+1 = · · · = Cm−1, Cm = Cm+1, Cm+2 = Cm+3 = · · · = Cs, and either Cs
is a subset of Ce or Ce is a subset of Cs and both of them are subsets of Cm. Furthermore, assume that Cm
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has exactly one vertex with plane degree 1 and this vertex is an end point of the paths in Cs and Ce. Such
a complex component will be called an appendix component and the layers Cm and Cm+1 we be called an
appendix. Consider a path in Cm (Cm+1) starting at the vertex with plane degree 1 and ending before the
first vertex with plane degree 3. These paths in Cm and Cm+1 will be called the arm of the appendix.

Note that an appendix without its arm is a proper 2-layer component.

Lemma 5. Let F be a saturated fold of a sparse protein with no occurrence of the substring H0HH, and at
most six occurrences of the substring H0H. Every non-basic complex component without a vv-vertex in F is
an appendix component.

Proof. Consider a complex component C in F without vv-vertices with layers C1, . . . , Cr. Assume that C
is not a basic complex component. Let s (e) be the smallest (largest) integer such that Cs (Ce) is different
from C1 (Cr). By Lemma 4, both Cs and Ce contain only one path. Let m be the smallest integer such that
s < m < e and Cm is different from Cs.

First, we will prove that Cs is a subset of Cm. Since, Cs = Cm−1, Cm−1 is a path P = (p1, . . . , p`).
Clearly, p1

1 and p1
` are H-vertices. Assume to the contrary that Cm is not a superset of Cm−1. Let pi (pj)

be the first (last) vertex on path P such that p1
i (p1

j ) is a 0-vertex. Clearly, i 6= j, hence, we have two new
occurrences of H0H. There are no other occurrences of H0H. Therefore, Cm = Cm+1 = · · · = Ce, i.e., Cm is
a path. Thus, there is a path in Cm connecting paths (p1

1, . . . , p
1
i−1) and (p1

j+1, . . . , p
1
`). Let (q1, . . . , q`′) be a

shortest such path. Then q1 = p1
t for some t ∈ {1, . . . , i− 1} and q−1

2 does not lie on P , i.e., it is a 0-vertex.
Then the paths pt, q

−1
2 , q2 forms another occurrence of H0H, a contradiction, cf. Figure 11(b).

Let m′ be the largest integer such that s < m′ < e and Cm′ is different from Ce. By symmetry, we have
that Cm′ is a superset of Ce. Obviously,m ≤ m′+1. We will show thatm ≤ m′, i.e., that there are at least two
changes between layers Cs and Ce. Assume to the contrary that m = m′+1. Then Cs = Cm−1 = Cm′ ⊆ Cm
and Ce = Cm′+1 = Cm ⊆ Cm′ , i.e., Cm = Cm′ . However, this is a contradiction with the fact that C is not
a basic complex component, since we have Cs = · · · = Cm−1 = Cm′ = Cm = Cm′+1 = · · · = Ce.

Since there are at least two changes from layer Cs to layer Ce and each change will introduce at least
one new occurrence of H0H, each of the two changes can create only one occurrence of H0H and there are
no other changes. Therefore, there is exactly one vertex z in Cm which is a horizontal neighbor of some p1

i

such that z−1 is a 0-vertex. If i 6= 1, ` then we get an occurrence of H0HH. Hence, Cm extends the copy of
path P in the plane H(Cm) at one of its ends. Similarly, Cm′ extends a copy of the path in layer Cm′+1 at
one of its ends. Furthermore, since there are no other changes Cm = Cm+1 = · · · = Cm′ .

It remains to show that m′ = m + 1 and that Cm has exactly one vertex with plane degree 1. The
extended part of Cm (Cm′ ) does not have a vertex of plane degree one because otherwise it will be an
H-vertex with three 0-neighbors. The number of vertices with odd plane degree in Cm (Cm′ ) is even. Since,
there is only one vertex with plane degree one in Cm (Cm′), there is an odd number of vertices with plane
degree 3, which implies there is at least one such a vertex, say w ∈ Cm. Now, if m′ > m+ 1 then w1 ∈ Cm+1

has five H-neighbors, a contradiction. Second, if m′ = m then z is a vv-vertex, a contradiction. Hence,
m′ = m + 1, i.e, the complex component C has a pseudo 2-layer component between two walls. It follows
that C is an appendix component.

The following observation follows by a careful examination of Figure 11(a).

Observation 9. Let F be a saturated fold of a sparse protein with no occurrences of the substrings H0HH.
Let C be an appendix component and Cs, Cm and Ce be the layers after the first, after the second and
before the last change, respectively. Then m ≥ s + 2 and e ≥ m + 3. Each wall (layers Cs, . . . , Cm−1 and
Cm+2, . . . , Cs) contains at least 4, the arm of appendix of C at least 4 and the appendix without arm at least
10 S-vertices. Thus layers Cs, . . . , Ce contain at least 22 S-vertices.

4.4 Counting in one plane

Consider a set S of vertices in a hexagonal plane. Set S naturally induces a graph in the plane in which any
two neighboring vertices are connected by an edge. In the following S will represent both the set of vertices
and the graph induced by this set. Assume that each vertex of S has a degree at least 2. We say that S is
complete if every vertex which lies inside the boundary of S, denoted as B(S), is in S as well. Let K7(S)
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be the number of hexagons which lie inside the boundary B(S), K2(S) the number of vertices of degree 2
of S and K3(S) the number of vertices of degree 3. Our goal is to lower bound K3(S) by some function of
K2(S). We will do that in two steps.

Lemma 6. Let S be any set of vertices in a hexagonal plane such that each vertex of S has a degree at least
2. We have K3(S) ≤ 2K7(S)− 2c, where c is the number of connected components of S.

Proof. First, assume that S is a complete 2-connected set. We proceed by induction on K7(S). If K7(S) = 1
then the lemma trivially holds. There must be a hexagon H in S sharing at least two sides with the
boundary B(S) such that all its boundary sides form a single path P . Consider a set S ′ obtained from
S by removing inner vertices of path P . Set S ′ contains all hexagons contained in S besides H . Thus
S′ is a complete 2-connected set and the number of hexagons K7(S′) is K7(S) − 1. At the same time,
S′ must have two vertices of degree 3 less than S (end points of P become vertices of degree 2 and other
vertices on P which were removed when constructing S ′ must have had degree 2). By induction hypothesis,
K3(S)− 2 = K3(S′) ≤ 2K7(S′)− 2 = 2(K7(S)− 1)− 2. This implies that K3(S) ≤ 2K7(S)− 2.

Second, assume that S is just a 2-connected set. Let S̄ be a set constructed from S by adding all vertices
which lies inside the boundary B(S). Note that B(S̄) = B(S) and S̄ is complete. Furthermore, the number
of vertices of degree 3 of S̄ could only increase when adding vertices to S. Therefore, K3(S) ≤ K3(S̄) ≤
2K7(S̄)− 2 = 2K7(S)− 2.

Third, assume that S is connected and let S1, . . . , Sl be 2-connected components of S. Contracting every
2-connected component to a single vertex we obtain a tree T . Every vertex of T of degree 1 or higher than 3
must be a contracted vertex and the number of contracted vertices is l. Let nd be the number of all vertices
of degree d and let n′d the number of all contracted vertices of degree d. Note that for d = 1 and d ≥ 4,
n′d = nd and that

∑
d≥1 n

′
d = l. Set S has three types of vertices of degree 3: (i) vertices of degree 3 from

2-connected components; (ii) vertices of degree 3 created by edges attached to 2-connected components; and
(iii) n3−n′3 of vertices of degree 3 which are not part of any 2-connected component. Note that a contracted
vertex of degree d in T corresponds to d vertices of degree 3 of type (ii). Therefore,

K3(S) =

l∑

i=1

K3(Si) +
∑

d≥1

d.n′d + n3 − n′3 =

l∑

i=1

K3(Si) + 2l+
∑

d

(d− 2)nd .

It can be easily shown by induction that for any tree,
∑

d(d−2)nd = −2. We know that the lemma holds for
every 2-connected component, i.e., for every i = 1, . . . , l, K3(Si) ≤ 2K7(Si) − 2. Plugging these two facts
into formula for K3 we obtain

K3(S) ≤ 2
l∑

i=1

K7(Si)− 2l+ 2l − 2 = 2K7(S)− 2 .

Finally, by summing the bound for each connected component of S, we obtain the desired bound for any
S.

Figure 12: Example of a deformed hexagonal shape with sides 3,3,3,2,4,2.

Lemma 7. Let S be any set of vertices in a hexagonal plane such that each vertex of S has a degree at least
2. We have K7(S) ≤ 1

12 (K2(S)2 +K2(S)− 30).1

1Note that this is not a tight bound. We conjecture that the following bound holds K7(S) ≤ 1
12

(K2(S)2 − 6K2(S) + 12).
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Proof. First, assume that S is complete and 2-connected, and that its boundary does not have two consecutive
concave angles, i.e., the boundary forms a deformed hexagonal shape, cf. Figure 12. We will show that
lemma holds for any such deformed hexagonal shape by induction on K2(S), which is now equal to the
sum of its six sides (measured in the number of hexagons on the particular side). It is easy to verify that
the lemma holds in the base case when there are two neighboring sides equal to one. Indeed, in this case
hexagonal shape is formed by a linear chain of t hexagons and the number of vertices of degree 2 is 2t+ 4.
Assume it is not a base case and let s be the shortest side of the hexagonal shape S. Observe that the
neighboring sides to s are longer than 1. Consider a hexagonal shape S ′ obtained from S by removing
a row of hexagons on the side s. The number of hexagons K7(S′) is K7(S) − s and since side s was
prolonged by 1, while the neighboring sides shortened by 1, K2(S′) = K2(S) − 1. By induction hypothesis,
K7(S)− s = K7(S′) ≤ 1

12 (K2(S′)(K2(S′) + 1)− 30) = 1
12 (K2(S)(K2(S)− 1)− 30). Since, s is the shortest

side of S, K2(S) ≥ 6s, and hence

K7(S) ≤ s+ 1
12 (K2(S)(K2(S)− 1)− 30)

≤ 1
6K2(S) + 1

12 (K2(S)2 −K2(S)− 30) = 1
12 (K2(S)2 +K2(S)− 30) .

Second, assume that S is complete and 2-connected. We will transform S to a new set S ′ by repeating
the following process until possible: if there are two or three consecutive concave angles on the boundary
add the vertices of the hexagon they are part of, to S. It is easy to see that this process must stop (we
will never go outside of any hexagonal shape enclosing S). Note that in each step K7 increases by 1 and
K2 either stays the same or decreases by 1. Thus K7(S) ≤ K7(S′) and K2(S′) ≤ K2(S). Since, S′ is
a hexagonal shape and complete, the lemma holds for it. Thus it holds for S as well: K(S) ≤ K(S ′) ≤
1
12 (K2(S′)2 +K2(S′)− 30) ≤ 1

12 (K2(S)2 +K2(S)− 30).
Third, assume that S is 2-connected, but not complete. Let S̄ be the completion of S as in the proof of

Lemma 6. Note all vertices of degree 2 in S̄ are on the boundary B(S̄) = B(S) and they must be vertices of
degree 2 in S as well. Hence, K7(S) = K7(S̄) and K2(S) ≥ K2(S̄). Since S̄ is complete and 2-connected,
it satisfies the lemma. It follows that S satisfies the lemma as well.

Finally, we prove that any set S satisfies the lemma by induction on the number of 2-connected compo-
nents. Let S′ be a 2-connected component of S with at most one edge to S −S ′. Clearly, such a component
exists. If S′ is not connected to S − S ′, let S′′ = S − S′. Otherwise, let P = (x, . . . , y) be the path such
that x is the only vertex of P in S ′, all inner vertices I(P ) of P have degree 2 and y has degree 3. Then let
S′′ = S−S′−I(P ). Note that K7(S) = K7(S′)+K7(S′′) and K2(S) ≥ K2(S′)+K2(S′′)−2. Furthermore,
S′′ satisfies the lemma by induction hypothesis and S ′ as well, since it is a 2-connected set. Easy calculations
and the fact that K2(S′),K2(S′′) ≥ 6 show that S satisfies the lemma as well.

Corollary 1. Let S be any set of vertices in a hexagonal plane such that each vertex of S has a degree at
least 2. We have K3(S) ≤ 1

6 (K2(S)2 +K2(S)− 30)− 2c, where c is the number of connected components of
S.

4.5 Limiting certain types of connections and vertices

In this subsection we limit certain types of connections and vertices that occur in a saturated fold F of q.
We first prove that there are at most 4 v-vertices in F .

Claim 3. Let F be a saturated fold of q and assume it contains a complex component C without a vv-vertex.
Let s be the smallest integer such that Cs is different from C1 and let e be the largest integer such that Ce
is different from Cr. Let w1 be the length of the path in Cs and w2 the length of the path in Ce. Then
w1 + w2 ≤ 40.

Proof. First, note that w1 and w2 are well-defined, as by Lemma 5, Cs and Ce contain only one path. Let
(p1, . . . , pw1) be the path in Cs. Obviously, vertices p−1

1 , . . . , p−1
w1

are h-vertices. Let p−1
0 (p−1

w1+1) be the

other neighbor of p−1
1 (p−1

w1
). Both, p−1

0 and p−1
w1+1, are vh-vertices, otherwise we have an occurrence of

substring H0HH. Hence, all vertices, p−s+1
0 , p−s+1

1 , . . . , p−s+1
w1+1 , are vh-vertices. Therefore, in layers C1 and

Cs we have at least w1 + 4 S-vertices. Similarly, in layers Ce and Cr we have at least w2 + 4 S-vertices.
Hence, by Observation 7, C contains at least w1 + w2 + 12 S-vertices. Since, q contains 52 S-vertices , the
claim follows.
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Lemma 8. Let F be a saturated fold of q. No v-vertex can be part of substring (00HH)356. Consequently,
there are at most 4 v-vertices in F .

. . .

Figure 13: An example of extending the wall’s end in layer eliminating vertices with horizontal degree 1.

Proof. Note that since each complex component introduces at least 4 occurrences of H0H, there is at most
one complex component in F . Assume to the contrary that the substring (00HH)356 contains a v-vertex. By
Lemma 1, the substring contains only v-vertices. Let P1, . . . , Pk be all hexagonal planes containing these
v-vertices and let Si be the set of H-components in the plane Pi which contain at least one of these v-vertices
and let S be the union of S1, . . . , Sk. Since every component is either a tube, a 2-layer component, a complex
component with six vv-vertices, a basic complex component or an appendix complex component, we have
the following observations:

• The set S contains only layers of 2-layer components, complex components with vv-vertices, the lower
and upper parts of a complex components without vv-vertices if they are 2-layer components and layers
of appendix of appendix components. Since all these layers come in identical pairs with exception of vv-
component in which 2-layers differ in 6 vertices, we will consider only one layer in the pair. From each
pair select only one layer, for the vv-component select the layer with vv-vertices. Let J ⊆ {1, . . . , k} be
the set of the selected layers and let M = ∪i∈JSi. We have K2(M) ≤ K2(S) and K3(M) ≥ 1

2K3(S).

• All vertices have horizontal degree 2 or 3 with exception of the wall and (possibly) appendix of a
complex component without vv-vertices. The layer of a wall without appendix contains two vertices
with horizontal degree 1, but no vertex with horizontal degree 3, hence, it is not included in M . On the
other hand, a layer containing the appendix contains exactly one vertex with horizontal degree 1. Let
us extend the path ending in this vertex in its layer until we join another H-vertex, see an example in
Figure 13. There is always a way how to do it which introduces at most 4 new vertices with horizontal
degree 2, and would always eliminate at least one such vertex. Let M ′ be the set M extended by these
elements and S′i either Si or Si extended by these elements if Si was the component containing the
appendix. Hence, since there is at most one complex component an it contains at most two layers with
appendix, we have K2(M ′) ≤ K2(M) + 3 and K3(M ′) ≥ K3(M).

By Corollary 1, we have

K3(M) ≤ K3(M ′) =
∑

i∈J
K3(S′i) ≤

1

6

∑

i∈J
(K2(S′i)

2 +K2(S′i)) − 7k

≤ 1

6
(K2(M ′)2 +K2(M ′))− 7 ≤ 1

6
(K2(M)2 + 7K2(m))− 5 . (1)

It remains to upper bound the number of vertices with horizontal degree 2. Such vertices are either vh-
vertices or h-vertices. There is at most 52 vh-vertices. If we examine all possible components, we can see
that h-vertices are in the inner layers of tubes or in the last (first) layer of the lower (upper) part of the
complex components which are directly attached to the walls. However, the component in the inner layer of
tube contains only vertices with horizontal degree 2, hence, it does not belong to S. Since, we have at most
one complex component, by Claim 3, we have at most 40 h-vertices which are in S. At most half of these
vertices are in T , hence, K2(M) ≤ (52 + 40)/2 = 46. By (1), we have

K3(S) ≤ 2K3(M) ≤ 1

3
(462 + 7× 46)− 10 < 711 .

Since, every v-vertex has horizontal degree 3, by the assumption, we have K3(S) ≥ 2 × 356 = 712, a
contradiction.
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4.5.1 (S\h)-connections

Corollary 2. Let F be a saturated fold of q. Then F contains 36 (S\h)-connections.

Proof. By Observation 2, F contains 36 (S\D)-connections. Each D-vertex in such a connection is part of
the substring (00HH)356, hence, by Lemma 8, is an h-vertex.

v
ux

y

(a)

v

u x

y

(b)

y

x
u = w

v

(c)

y

w x
v u

(d)

Figure 14: (a-c) Illustration of an external horizontal (S\h)-connection. Contradictory cases: (a) the case when
v = u1, (b) the case where x and y are on the same hexagon. The only possible configuration in (c). (d) Illustration
of a vertical external (S\h)-connection.

Claim 4. Let F be a saturated fold of q. Let x be a vh-vertex and y be an h-vertex in two different components
W1 and W2. Then there are two types of (S\h)-connections horizontal and vertical. In the horizontal (S\h)-
connection x and y are on the same plane (cf. Figure 14(c)) and in the vertical (S\h)-connection x and
y are on two consecutive planes (cf. Figure 14(d)). Furthermore, a vertical (S\h)-connection creates an
H0H-connection between x and a vertical neighbor of y. Finally, if W1 and W2 are non-complex, there is at
most one parallel (S\h)-connection with (x, u, v, y) and in the vertical case the two components share only
one layer.

Proof. Let x be on plane Hi. Without loss of generality assume that x1 is a 0-vertex and let w be the
horizontal 0-neighbor of x. Clearly, u is either x1 or w. We consider each case separately.
Case 1 (u = w). If v = u1 then y must be a horizontal neighbor of v and thus, u is adjacent to the H-vertex
y−1, a contradiction (cf. Figure 14(a)). Furthermore, if v = u−1 then y = x−1 and it follows that x and y
are in the same component, a contradiction. Therefore, v is a horizontal neighbor of u and y is a horizontal
neighbor of v. Note that y must be the horizontal neighbor of v that is not on the same hexagon with x
otherwise, x and y would be in the same component, a contradiction, cf. Figure 14(b). Hence, x and y
are on the same plane (horizontal (S\h)-connection), cf. Figure 14(c). Next, assume that (xi, ui, vi, yi) and
(xj , uj , vj , yj) are two parallel (S\h)-connections with (x, u, v, y). Obviously, i, j < 0, and let i < j. Since
(x, u, v, y) and (xi, ui, vi, yi) are parallel connections, all vertices between x and xi (y and yi) are H-vertices,
i.e., neither xj nor yj is an vh-vertex. If the components they are contained in are non-complex, they must
be D-vertices, a contradiction.
Case 2 (u = x1). By a similar argument used in the first case we can show that v 6= u1. Therefore, v is
a horizontal neighbor of u. Since y is an h-vertex none of its vertical neighbor can be a 0-vertices hence,
v = w1. It follows that y is vertical neighbor of v and it is on plane Hi+1, cf. Figure 14(d). This type
of (S\h)-connection is called a vertical (S\h)-connection. Furthermore, in this setting (y−1, w, x) form an
H0H-connection. Second, note that y−1 is an S-vertex. If the component containing y−1 is non-complex,
then it is a vh-vertex, i.e., y−2 is 0-vertex and the two components can share only one layer. Consequently,
there is at most one parallel (S\h)-connection to (x, u, v, y).

4.5.2 H0H-connections

Definition 6. We say that an H0H-connection is horizontal, vertical if both peptide edges of the connection
are horizontal, vertical, respectively.

We have the following simple observation.

Observation 10. Let F be a saturated fold of a sparse protein of length at least 5. Then every H0H-
connection connecting two different components is either horizontal or vertical.
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Proof. Assume that H0H-connection (x, y, z) is neither horizontal nor vertical. Without loss of generality,
assume that the edge (x, y) is vertical, let y = x1, and (y, z) is horizontal. If z−1 is a 0-vertex then we have
a closed path of length 4. If z−1 is an H-vertex then x and y belong to the same component.

Claim 5. Let F be a saturated fold of q and let C be a component of F . Assume that Ci is a layer in F
that does not contain any vertex of plane degree 1. Then there is no H0H-connection with both end points in
Ci. Consequently, there is no internal H0H-connection in a tube or a 2-layer component.

x

y

z

. . .Ci . . .Ci−1

. . . Ci

. . . Ci+1

(a)

x

y

z

(b)

Figure 15: Horizontal H0H-connection (x, z, y): (a) the case where y−1 is 0-vertex, (b) the case where y1 is 0-vertex.

Proof. To the contrary assume that x and y have a common 0-neighbor z. We remark that component C
cannot be a vv-component since such a component already contains 6 H0H-connections which are different
type than (x, z, y). Clearly one of the vertical neighbors of x has to be a 0-vertex otherwise F contains an
occurrence of H0HH as a substring. Without loss of generality assume that x1 is a 0-vertex. Similarly one
of the vertical neighbors of y has to be a 0-vertex. First assume that y−1 is a 0-vertex, cf. Figure 15(a).
Note that in this case, layers Ci−1, Ci and Ci+1 are different which cannot happen in any component of F .
Therefore, x and y are in different components, a contradiction.

Second assume that y1 is a 0-vertex. It follows that y−1 is an H-vertex. Note that x−2 and y−2 are 0-
vertices, otherwise F would contain H0HH as a substring cf. Figure 15(b). Moreover, all horizontal neighbors
of y1, y−2, x1 and x−2, except z1 and z−1 are 0-vertices, otherwise F would contain an occurrence of the
substring H0H0H. Next consider the H0H connection (x, z, y). One of the vertices x and y has to connect to
a D-vertex w via two 0-vertices u and v. By Lemma 8, w must be an h-vertex. It is easy to see that u = x1

and v = x2. Now w must be a horizontal neighbor of x2 which is not possible.

Corollary 3. Let F be a saturated fold of q. Then the smallest non-simple tube contains 7 hexagons and 36
S-vertices, cf. Figure 7(b).

Lemma 9. Let F be a saturated fold of q. Consider an H0H-connection (x, y, z) connecting two non-complex
components W1 and W2. If this connection is horizontal then at least one the two components is a tube with
more than two layers, they share only one plane and they are configured as in Figure 16(b). If this connection
is vertical then they do not share any plane.

Proof. First, assume that (x, y, z) is a horizontal H0H-connection. It is easy to see that W1 and W2 make
another horizontal H0H-connection (x′, y′, z′), cf. Figure 16(a). Note that one of the vertices x or z must
connect to a D-vertex w through two 0-vertices u and v. Without loss of generality, let it be x. Obviously,
x is a vh-vertex. Without loss of generality, assume that u = x1. By Lemma 8, w must be an h-vertex,
therefore, w is a horizontal neighbor of v. Now, if v = u1 then u will be adjacent to the H-vertex w−1

(cf. Figure 16(a)), a contradiction. Hence, v is a horizontal neighbor of u and it is easy to see that v = y1

and w = z1. The configuration of parts of two components is depicted in Figure 16(b). Since, the h-vertex
w belongs to W2, W2 must be a tube with height more than 2 layers and since these two components are
non-complex, they can only share one plane.

Second, assume that (x, y, z) is a vertical H0H-connection. Obviously, the two components do not share
any plane, and all H0H-connections between them are vertical. An example of configuration in which two
non-complex component are vertically H0H-connected is depicted in Figure 16(c).
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Figure 16: Situation when two non-complex components are connected with a horizontal H0H-connection: (a) x is
connected to an h-vertex w away from the other component; (b) w belongs to the other component. (c) An example
of two non-complex components connected with a vertical H0H-connection.

4.6 Limiting the possible configurations of complex components

In this subsection we show that only a limited number of configurations are possible for a complex component.
This will greatly simplifies our analysis in the later sections. In the following arguments we say that a path
has length k if it contains k vertices.

Lemma 10. Let F be a saturated fold of q. Then F does not contain any vv-component.

Proof. Let C be a vv-component. Consider any of the H0H-paths in C for example (x1, x
1
1, y

1
1), cf. Figure 8.

Notice that this path has to continue with substring (00HH)ki at one end. By Lemma 8, all H-vertices in
this substring are h-vertices, i.e., either y1

1 or x−1
1 has to 00-connect to an h-vertex. It is easy to check that

none of these connections is possible, a contradiction.

Lemma 11. Let F be a saturated fold of q and let C be a complex component in F with layers C1, C2, . . . , Cr.
Layer C1 and similarly Cr is either one hexagon or consists of two hexagons attached by one edge or connected
by a path (cf. Figure 18).

(a) (b)

Figure 17: (a) The second smallest cycle without H0H occurrences. (b) The smallest possible layer C1 of a complex
component with the lower part being a 2-layer component containing a large cycle.

(a)

. . .

. . .

(b) (c)

Figure 18: Possible configurations for the upper and lower part of a complex component.

Proof. By Lemma 10, C does not contain any vv-vertex. We prove the claim for Cr. The proof for C1

follows by symmetry. By Lemma 5, Cr does not contain any horizontal H0H-connection. Furthermore, Cr
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cannot contain more than 2 vertices of plane degree 3 because otherwise we get more than 4 v-vertices, a
contradiction by Lemma 8. Hence, Cr has one of the three topologies depicted in Figure 18, however, each
hexagon could be replaced with larger cycle. We will show that this does not happen.

The smallest possible component layer with no vertex of plane degree 3 other than a simple hexagon is a
cycle containing 7 hexagons inside, cf. Figure 17(a) and the smallest possible layer with exactly two vertices
of plane degree 3 and at least three hexagons is depicted in Figure 17(b). We prove that Cr cannot be the
cycle in Figure 17(a) by computing the lower bound on the number of S-vertices in F . Clearly C will have
more S-vertices if Cr has two vertices of degree 3 as in Figure 17(b).

Assume the contrary. We will consider two cases: C is either a basic or an appendix complex component.
Case 1. Let C be a basic complex component. Note that the number of S-vertices in C is minimized when
the wall width is maximized and the wall height is minimized. The lower part of C is either a simple tube
or the second smallest tube similar to Cr. Figure 19(a)-(b) depicts these configurations with the smallest
number of S-vertices. The width of the wall can be at most 4 and 16 in the first and second configurations,
respectively. However, in both of these configurations the number of S-vertices is at least 44 which happens
when the height of the wall is 2. In addition, notice that C only contains 4 H0H-connections, therefore, F
must contain another component which brings the total number of S-vertices up to at least 44 + 12 = 56, a
contradiction.
Case 2. Let C be an appendix component and let w1 and w2 be the lower and the upper wall width of C,
respectively cf. Figure 19(c). Similar to case 1, the lower part of C is either a simple tube or the second
smallest tube. If it is the second smallest tube then the minimum number of S-vertices will be (18 + 2).2
(vertices in lower and upper part) + 22 (vertices in appendix and wall ends) = 62, a contradiction. Hence,
assume that the C1 consists of one hexagon. Note that w1 ≤ 4 and w2 ≤ 16. The minimum number of
S-vertices in different layers of C is as follows:

• vertices in Cr: 18

• vertices in the first layer of upper part: 18− w2

• vertices on walls ends: 8

• vertices of the appendix: the appendix without the arm contains at least 10 S-vertices, the arm on its
ends contain 4 and if the walls have different widths, then on the side of the shorter wall the arm has
additional |w2 − w1| S-vertices. Hence, in total appendix has at least 14 + |w2 − w1| S-vertices.

• vertices of the first layer of the upper part: 6− w1

• vertices in C1: 6

Hence, the total number of S-vertices is at least 70 − w1 − w2 + |w2 − w1|. Now, if w1 ≤ w2 then the
minimum number of S-vertices is 70−w1−w2+|w2−w1| = 70−2w1 ≥ 62, a contradiction and if 4 ≥ w1 > w2

it is 70− w1 − w2 + |w2 − w1| = 70− 2w2 ≥ 62, also a contradiction.

Lemma 12. Let F be a saturated fold of q and let C be a complex component in F . Then the lower and
upper part of C are simple tubes.

Proof. By Lemma 11, the upper part of C is either a simple tube or one of the 2-layer components depicted
in Figure 18(b)-(c). To the contrary assume that one of the parts is not a simple tube, say the upper part.
First notice that the upper part contains 4 v-vertices therefore, by Lemma 8, C cannot have an appendix,
and the lower part must be a simple tube as well. Therefore, C only contains 4 H0H connections, and hence,
F must contain at least one other component T . Furthermore, T has to be a simple tube because if it is a
2-layer component, a complex component or a large tube then F would contain more than 4 v-vertices, more
than 6 H0H-connections or more than 52 S-vertices, respectively.

Next we consider two cases for the shape of the upper part of C:
Case 1. Assume that the upper part of C is a connector. By Lemma 3, the width of the wall is 2. Now
independent of the height of the wall in C the number of D-vertices modulo 6 in F is 2, a contradiction.
Case 2. Assume that the upper part of C consists of two hexagons connected by a path, cf. Figure 18(c).
The wall part of C can either attach to one of the hexagons or the path P connecting the two hexagons,
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Figure 19: (a) A basic complex component with the second smallest tube as upper part and a simple tube as the
lower part. (b) A basic complex component with the second smallest tube as upper and lower part. (c) An appendix
component with the second smallest tube as upper part and a simple hexagon as lower part.

cf. Figure 20. Similar to the previous case if the width of the wall is 2 the number of D-vertices modulo
6 in F is 2 independent of height or the location of the wall, a contradiction. Furthermore, if the wall is
attached to one of the hexagons then by Lemma 3, the width of the wall can be at most 3. Figure 20(a)
depicts this configuration with wall width equal to 3. Let x, y and z be the vertices on the last layer of the
wall. Each of the vertices x1 and z1 must connect to a D-vertex via a peptide bond. The only D-vertex in
their neighborhood is y1 thus, x1 and z1 must both connect to y1 which is not possible. Using a similar
argument we can show that the width of the wall cannot be 3 for the case where it is attached to the
path P . Since the lower part is a simple tube the only case remaining for analysis is the configuration in
which the wall is attached to P and its width is 4. By Lemma 3, the smallest length of P is 6 and by
Observation 7, the smallest height of the wall is 4. Note that such a component would have 40 S-vertices (28
upper part, 4 wall and 8 lower part), and with the extra component at least 52 S-vertices. Increasing either
the length of the path or the height of the wall would increase this number hence, Figure 20(b) depicts the
only possible configuration of the complex component. We show that this configuration is also contradictory
by determining the maximum number of (S\h)-connections possible. Note that at most 12 internal (S\h)-
connections are possible across the vertices of C and T , respectively. Therefore, by Corollary 2 we need
to create at least 12 external (S\h)-connections between the S-vertices of C and h-vertices of T . However,
at least 10 of these (S\h)-connections must be horizontal because each vertical (S\h)-connection create an
H0H-connection, by Claim 4. Since a horizontal (S\h)-connection between C and T is possible only when
the H-vertices in the connection are on the same plane therefore, C and T must have at least 5 connections
per plane which is easy to see it is not possible given the shape of C.

Lemma 13. Let F be a saturated fold of q and let C be a complex component in F . The width of the wall
in C is either 2 or 4.
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Figure 20: Examples of complex components with a 2-layer component consists of two hexagons connected by a path
as the upper part: (a) wall is attached to one of the hexagons; (b) wall is attached to the path connecting hexagons.

Proof. By Lemma 10, C does not contain any vv-vertex and by Lemma 12, its lower and upper part are
simple tubes. Assume that the lower wall starts at layer Cs of C. First observe that the wall width cannot be
1 or 5 otherwise, we get an H-vertex with three 0-neighbors or a 0-vertex with three H-neighbors, respectively,
both contradictions.

Therefore, it is enough to show that the wall width cannot be 3. Let x, y, z be the path of the wall
in layer Cs (attached to the tube component). Note the number of D-vertices in this layer and above is
odd. Since they have to form pairs, y−1 has to connect to y, and hence, x and z has to connect to x1 and
z1, respectively. Let us look at patterns of vertical connections between consecutive layers of a tube. It
can be shown by induction (from the top of the tube) that only the patterns depicted in Figure 21(a) are
possible. However, the pattern required to realize connections xx1 and zz1, depicted in Figure 21(b) cannot
be obtained, a contradiction.

(a) (b)

Figure 21: (a) All possible patterns (up to rotation) for vertical connections between two consecutive layers of a
simple tube. The ”x” means vertical connection is not present, arrow means it is present. (b) Pattern required to
connect to the last layer of a simple tube which is connected to a path of length 3.

4.7 There is no appendix component

Consider an appendix component C in a saturated fold F of q. By Lemma 12, the upper and lower part of C
are simple tubes. Let Ca and Ca+1 be the layers of C that contain the appendix part. Observe that Ca and
similarly Ca+1 contains an odd number of vertices of plane degree 3 (such vertices correspond to v-vertices
in C). Therefore, C contains 4k− 2 v-vertices for some positive integer k. By Lemma 8, F contains at most
4 v-vertices hence, the appendix part of C contains one hexagon.

Observation 11. Let F be a saturated fold of q. Let C be an appendix component in F . Then C contains
exactly 2 v-vertices.

Lemma 14. Let F be a saturated fold of q. Then F does not contain any appendix component.

Proof. Assume that F contains an appendix component C. First we show that F can only contain simple
tubes. By Observation 9 and Corollary 3, F cannot contain a non-simple tube, otherwise we have too many
S-vertices. If F contains another complex component, then we have at least 10 H0H substrings, which is
not possible. If it contains a 2-layer component, then F contains at least 6 v-vertices, two in C and 4 in
the 2-layer component, a contradiction. Hence, all other components of F are simple tubes. Let Nt be their
number.
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Figure 22: A part of (a) an appendix component with wall of width 4 all along; (b) an appendix component with
wall of width 4 and 2 on different sides of appendix.

Let w1 (h1) be the width (height) of the lower wall of C and w2 (h2) the width (height) the upper wall.
Let al be the lengths of the arm. We will calculate the number of D-vertices modulo 6 and the number of S-
vertices in C and F . The lower (upper) part of C (a tube) contains w1 mod 6 (w2 mod 6) D-vertices modulo
6, the lower (upper) wall (w1 − 2)h1 ((w2 − 2)h2), the arm of appendix w1 − 1 + w2 − 1 and the remaining
part of the appendix, by Observation 11, 2 D-vertices. That is 2(w1 +w2) + (w1 − 2)h1 + (w2 − 2)h2 mod 6
D-vertices modulo 6 in C, and since all other component are simple tubes, the same number in F . The
number of S-vertices is 12 − w1 (12 − w2) in the lower (upper) part, 2h1 (2h2) in the lower (upper) wall,
2al − w1 − w2 + 2 in the arm and at least 10 in the remaining part of the appendix. That is at least
36 + 2(h1 + h2 + al − w1 − w2) S-vertices in C, and 36 + 2(h1 + h2 + al − w1 − w2) + 12Nt in F .

By Lemma 13, both w1 and w2 are either 2 or 4, hence, we will consider the following 3 cases (without
loss of generality, we assume that w1 ≤ w2).
Case 1. w1 = w2 = 2. By the above formula, the number of D-vertices modulo 6 in F is 2, a contradiction
with Observation 2.

In the remaining two case, we will first show that C is the only component, i.e., that Nt = 0.
Case 2. w1 = w2 = 4, cf. Figure 22(a). By the above formula, the number of D-vertices in F is 4 + 2(h1 +
h2) mod 6. Since, by Observation 2, this number is 4, we have h1 +h2 ≡ 0 mod 3. Since, by Observation 9,
h1, h2 ≥ 2, we have h1 + h2 ≥ 6. Also note that al ≥ 5. Hence, the number of S-vertices is at least
36 + 2× 3 + 12Nt. Since this number should be 52, we have Nt = 0.
Case 3. w1 = 2 and w2 = 4, cf. Figure 22(b). The number of D-vertices modulo 6 in F is 2h2 mod 6.
Hence, h2 ≥ 3. And since w2 = 4, we have again al ≥ 5. Therefore, the number of S-vertices in F is at least
36 + 2× 5 + 12Nt. Hence, again Nt = 0.

We will determine the maximum number of (S\h)-connections in F . Notice that in any of the configura-
tions the S-vertices in the wall except for the end vertices on the first and the last layers cannot connect to
any h-vertex, so there are at most 4 (S\h)-connections involving the S-vertices of the wall components. Fur-
thermore, the S-vertices in the appendix part and its arm can only connect to the h-vertices in the wall that
are in the same plane with them otherwise, we get additional H0H-connections, a contradiction. Therefore,
there can be at most 4 (S\h)-connections involving the S-vertices of the appendix part and its arm. The
last (S\h)-connections that we can get in F are through vh-vertices of the lower and upper tubes, which are
16 in the first configuration and 18 in the second configuration. Two more (S\h)-connections are possible in
the second configuration through vh-vertices x and y in Figure 22 (b). Therefore, in total F can contain at
most 28 (S\h)-connections, a contradiction, by Corollary 2.

No other type of possible components can introduce 6 occurrences of H0H, hence, a saturated fold of F
contains at least two components. On other hand, since any of possible components has at least 12 S-vertices,
we have the following corollary.
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Corollary 4. Any saturated fold of q has at least 2 and at most 4 components.

In what follows we will analyze all three possibilities. But first, let us have a closer look at tubes.

4.8 Tubes

Lemma 15. Let F be a saturated fold of q. Any tube in F has either 12 or at least 36 S-vertices.

Proof. Obviously, any cycle in a hexagonal plane has at least 6 vertices, i.e., a smallest possible tube will
have at least 12 S-vertices. Furthermore, by Claim 5, there is no H0H with both ends in the same tube. The
smallest cycle large than a hexagon such that no two non-adjacent vertices are at distance two contains 7
hexagons inside. Thus, the second smallest tube has 36 S-vertices.

Lemma 16. Let F be a saturated fold of q. Two H0H-connected tubes in F are both simple and furthermore,
they make exactly two H0H-connections.

T1

e1
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e6

(a)
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.
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.

..
.

(b)

Figure 23: (a) A shortest possible collection of paths connecting the parts of cycle of T2 that make 6 horizontal
H0H-connections with a simple tube T1. (b) Six vertical H0H-connections between two simple tubes.

Proof. Let T1 and T2 be two tubes in F . By Corollary 3, one of them, assume T1, must be a simple tube.
First note that if T2 is not a simple tube it must make 6 H0H-connections with T1 since F cannot have
another component. Assume that there is an H0H-connection (x, y, z) such that x and z are H-vertices in T1

and T2, respectively. By Observation 10, there are two cases:
Horizontal H0H-connection (x, y, z). By Lemma 9, T1 and T2 share only one plane Hi and create at
least two H0H-connections as depicted in Figure 16(b). We will show that T2 must also be a simple tube.
Assume the contrary. Since T2 has at least 36 S-vertices, there are no other component in F , and hence,
T2 must make 6 H0H-connections with T1. Moreover, since T1 and T2 share a plane Hi no vertex of T1

can be above/below any vertex of T2, i.e, all the H0H-connections are horizontal and they are on plane Hi.
Therefore, the only way how to make 6 horizontal H0H-connections is when the large cycle C2 of T2 on
plane Hi contains 3 parts depicted in Figure 23(a) with thick lines. The shortest collection of 3 disjoint
paths which do not create H0H-connection and connecting these parts to one cycle is shown with dashed
lines. Note that C2 would contain at least 30 vertices and hence, T2 would have more than 60 vh-vertices, a
contradiction.
Vertical H0H-connections. Assume that x, y and z are on three consecutive planes Hi, Hi+1 and Hi+2,
respectively. In this case, T1 and T2 do not share any plane and hence, all the H0H-connections between
them must be vertical and in the same planes. Note that if T2 is not a simple tube it can overlap with T1 on
at most 3 edges creating at most 4 H0H-connections, a contradiction since there are no other components
in F . Clearly, two simple tubes could overlap either on 1 or 6 edges creating 2 or 6 H0H-connections,
respectively. We show that two simple tubes cannot make 6 vertical H0H-connections. Assume the contrary.
Figure 23(b) depicts two H0H-connected simple tubes with 6 H0H-connections. Note that no pair of H0H-
connections in this configuration can connect through two 0-vertices. Therefore, F does not contain the
substring H0H00H0H which is in q, a contradiction.
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4.9 2 components

Lemma 17. Let F be a saturated fold of q. Fold F cannot have only 2 components.

Proof. Assume there are two components in F . Six cases are possible.
Case 1. Assume they are both tubes. By Lemma 16, they can only make two H0H-connections, a contra-
diction.
Case 2. Assume they are both 2-layer components. By Lemma 8, we have no occurrence of substring
(00HH)ki , a contradiction.
Case 3. Assume they are both basic complex components. Then we have 8 occurrences of H0H, a contra-
diction.
Case 4. Assume one component is a tube T and the other a 2-layer component C. By Lemma 8 and
Lemma 15, there are only two configurations with 52 S-vertices. The first configuration consists of a connector
and a tube that is the second smallest tube with 7 hexagons inside of its boundary on each layer (16+36 = 52).
The second configuration consists of a 2-layer component with two simple tubes connecting by a path of
length 11 and a simple tube (40+12 = 52). Note that in both configurations the two components must make 6
H0H-connections. In the first configuration it is easy to see that at most two horizontal H0H-connections can
be created between the tube and connector. Therefore, all the H0H-connections must be vertical. However,
in this case a v-vertex of the 2-layer component will be part of an H0H-connection creating the substring
H0HH, a contradiction. We show that the second configuration is not possible by showing that the maximum
number of (S\h)-connections in F is less than 36. Notice that at most two h-vertices of each side of the tube
can make (S\h)-connections with vh-vertices of the 2-layer component and hence, we can obtain at most
12 external (S\h)-connections between the 2-layer component and the tube. Considering the 12 internal
(S\h)-connections in the tube, the total number of (S\h)-connections in this configuration is at most 24, a
contradiction by Corollary 2.
Case 5. Assume one component is a tube and the other a basic complex component. Obviously, the tube
must be a simple tube. By Lemma 12, the lower and upper parts of the complex component are both simple
tubes. Let w be the width of the wall and h its height. The number of S-vertices is 12+24−2w+2h= 52, so
we have h = w+ 8. On the other hand, the number of D-vertices modulo 6 is 2w+ (w− 2)h. By Lemma 13,
w is either 2 or 4. For, w = 4 the number of D-vertices modulo 6 is 2, a contradiction. Thus, the only
possibility is w = 2 and h = 10. Note that if the tube does not connect (through one or two 0-vertices) to
an end of the wall then, a substring (00H)9 is created which does not occur in q. Hence, the tube has to
connect to both ends of the wall. Figure 24 (a) and (b) depict a birdview at the connection of the wall and
a tube (numbered positions) through one and two 0-vertices, respectively. Notice that if the wall connects
to tube through two 0-vertices the first two connections have to be horizontal. If the third connection is
vertical then we get the configuration in Figure 24(a) in one layer above or below. Clearly, the only way
that a tube can be connected to both ends of the wall is when it is in position 2 in Figure 24(a). Notice
that in this case tube is connected to both ends of wall through one 0-vertex creating an H0H-connection on
each end. Furthermore, there will be at least one parallel H0H-connection on each end and in total at least
4 additional H0H-connection, a contradiction.

1

2

W

(a)

1

3

2

W

(b)

Figure 24: A birdview at the connection of the wall and a tube through one 0-vertex (a) and two 0-vertices (b).

Case 6. Assume one component is a 2-layer component W , and the other a basic complex component C.
We show that the maximum number of (S\h)-connections in this configuration is less than 36. First we count
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the internal (S\h)-connections in C. All h-vertices in F appear inside the wall and the lower and the upper
part of C. The S-vertices of the wall except for the S-vertices on its first and last layers cannot connect to
any h-vertex. Therefore, there are at most 4 (S\h)-connections with the S-vertices of the wall. There are at
most 12− w S-vertices in the upper (lower) part of C, where w is the wall width. Since w ≥ 2, there are at
most 20 internal (S\h)-connections with the S-vertices of these parts. Therefore, there has to be at least 12
external (S\h)-connections between C and W . It is easy to verify that at most two h-vertices of each side
of C can 00-connect to an S-vertex of W . Hence, W has to 00-connect to C from each side. However, one
can easily show that for this to happen W must have at least 28 S-vertices in each layer and at least 56 in
total, a contradiction.

4.10 3 components

Lemma 18. Let F be a saturated fold of q. Then F cannot contain 3 components where none of them is a
complex component.

Proof. Since, the second smallest tube has 36 S-vertices, all tubes must be simple. Note that F does not
contain a complex component and by Lemma 8, F can contain at most one 2-layer component, hence, to
obtain 52 S-vertices, F must have two tubes T1 and T2, and a 2-layer component W with two hexagons
connected by a path of length 5 in each layer.
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Figure 25: Two possible configurations when a tube Ti and a 2-layer component W are (S\h)-connected: with (a) a
vertical (S\h)-connection, (b) a horizontal (S\h)-connection.

By Claim 5, there is no H0H-connection with both ends in W . Therefore, at least one of the tubes,
say T1, must H0H-connect to W . Furthermore, notice that S-vertices of T1 and T2 can only provide 24
(S\h)-connections, so we need to create 12 external (S\h)-connections between the S-vertices of W and h-
vertices of T1 and T2. By Claim 4, these connections are either horizontal or vertical. If W and one of the
tubes are vertically (S\h)-connected then we have configuration in Figure 25(a). Notice that although in
this configuration two (S\h)-connections are created between the tube and W , we lose two (S\h)-connections
across the tube. Therefore, there are 12 horizontal (S\h)-connections between the tubes and W . The only
way to create these connections is depicted in Figure 25(b).

Furthermore, since T1 and W are H0H-connected, by Lemma 9, none of the h-vertices of T1 is on the same
plane as the vh-vertices of W , and hence, they cannot make any horizontal (S\h)-connections. Therefore, all
of the 12 (S\h)-connections must be made between W and T2. This requires that W connects to T2 from
every side which is not possible since the path connecting two hexagons of W has length only 5.

Lemma 19. Let F be a saturated fold of q. Then F cannot contain 3 components where one of them is a
complex component.

Proof. Assume that F contains a basic complex component B. By Lemma 12, B does not have a 2-layer
part. Therefore, the number of S-vertices and the number of D-vertices modulo 6 of B are 24− 2w+ 2h and
2w+ (w− 2)h mod 6, respectively where h is the height and w is the width of the wall of B. By Lemma 13,
two values are possible for w: w = 2 or w = 4. We will consider each case separately.
Case 1. (w = 4) Since F contains at most one 2-layer component, one of the three components in F must
be a tube T . Furthermore, B has at least 20 S-vertices, therefore, the third component can have at most 20
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S-vertices. Hence, it can be either another tube T2, a connector C or a 2-layer component W that consists of
two hexagons connected by one edge in each layer. The values for h are 6, 4 and 2 when the third component
is T2, C or W , respectively. For h = 6, 4 the number of D-vertices modulo 6 is 2, a contradiction. Therefore,
the only possible configuration is the one in which the third component of F is W and h = 2.
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Figure 26: (a) A part of a basic complex component with h = 2 and w = 4. (b) A configuration with a tube T , a
2-layer component W and a basic complex component B.

The basic complex component B is depicted in Figure 26(a). It has 20 S-vertices, out of which 8 are
part of H0H-connections. Notice that only one of the two S-vertices involved in an H0H-connection (such as
x and y) can 00-connect to an h-vertex, otherwise F will contain the substring HH00H0H00HH which does
not occure in q. Therefore, the maximum number of possible (S\h)-connections with S-vertices vertices of B
and T is 16 + 12 = 28. Hence, we need to create 8 external (S\h)-connections with the S-vertices of W and
h-vertices of B or T . Figure 26(b) depicts the only possible configuration to make 8 of such connections.
Notice that in this configuration the components are far away to make any H0H-connections with each other
so the total number of H0H-connections possible is 4, a contradiction.
Case 2. (w = 2) The number of D-vertices modulo 6 of B is 4 independent of the value of h. Therefore,
the only possibility for the other two components in F is that they are both simple tubes, say T and T ′. To
have right number of S-vertices in F the height h must be 4.

Note that an H-vertex from one side of the wall cannot connect to an H-vertex from the other side of the
wall through one or two 0-vertices. Therefore, if the wall is not connected to any vertices of T or T ′ through
one or two 0-vertices, then the two H0H-connections on the same side of wall has to connect through a
subsequence containing only S-vertices. This creates a substring which does not occur in q, a contradiction.
Therefore, at least one vertex on each side of the wall must connect to a tube.

First, we show that the wall cannot 0-connect to a tube. To the contrary assume that a vertex v of tube
T is connected to a vertex x of the wall through a 0-vertex w. Vertex x cannot be located on the first or
the fourth level of the wall otherwise, F would contain the substring H0H0H, a contradiction. Assume that
v is in the hexagon that touches that wall. In this case we get another H0H-connection between other side
of the wall and T in the same plane. This situation repeats in the plane above or below. Hence, there are at
least 4 new H0H-connections, a contradiction. Now, assume that v is not on the hexagon that touches the
wall. The vertex v is a vh-vertex otherwise, F would contain a substring H0HH. Without loss of generality
assume v1 is a 0-vertex. One of the vertices v or x must 00-connect to an h-vertex. It is easy to verify that
it cannot be v. Therefore, assume that x connects to an h-vertex of T ′ through 0-vertices y and y′. The
only position of T ′ is shown in Figure 27. However, in this configuration the right side of the wall cannot
connect to neither of the tubes, a contradiction. Therefore, each side of the wall is 00-connected to a vertex
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Figure 27: H0H-connections between the tube T and a wall of complex component with w = 2 and h = 4.
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Figure 28: (a) One possible attachment of two tubes to the wall of complex component. (b) H0H-connections of tube
T and basic complex component B.

Notice that it is not possible to 00-connect both sides of the wall to the same tube and hence, one side
of the wall is 00-connected to T while the other side is 00-connected to T ′, e.g., Figure 28(a).

There are two ways to 00-connect a tube to the wall, cf. Figure 29. Note that we need to have two
more H0H-connections in F . First, we show that no H0H-connections can be made between B and one of
the tubes, say T . Since T cannot H0H-connect to the wall, it would have to connect to the lower or the
upper part of B. This is not possible given the relative position of wall of B and T depicted in Figure 29(a).
If the relative position of the wall of B and T is as depicted in Figure 29(b), there is only one possible
configuration which is depicted in Figure 28(b). However, this configuration contains the substring H0H0H,
a contradiction.

Therefore, the H0H-connections must be made between T and T ′. The gray hexagons in Figure 29
depicts the possible positions for T ′. Clearly, T ′ cannot 00-connect to the other side of the wall in any of
these positions, a contradiction.

4.11 4 components

So far we have proved that any saturated fold F of q must have exactly four components. In this section we
prove that the fold F is similar to the designed fold, i.e., that q is structurally stable. First, we show that
the components in F are the same as the components in the designed fold.

Lemma 20. Let F be a saturated fold of q, then F has three simple tubes and a connector.
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T

B

(a)

T

B

(b)

Figure 29: Possible configurations of connecting tube T to the wall of the complex component through two 0-vertices.
Gray hexagons represent the locations of T ′ that can H0H-connect to T and is not too far from the wall.

Proof. Since the smallest component other the tube with one hexagon contains at least 16 S-vertices and F
contains exactly four components, F must have three simple tubes and one component other than a tube.
The three tubes together have 36 S-vertices, therefore, the forth component in F must have 16 S-vertices.
The only component with 16 S-vertices is the connector. Therefore, the components in F are the same as
the components in the designed fold.

Note that the above lemma is true even in the HP model when we do not use properties of cysteines.
Next, we prove that in the HPC model the components in F must connect the same way as in the designed
fold.

In Lemma 16, two tubes in F can connect with at most two H0H-connections. We will show the same
for a tube and connector.

Claim 6. Let F be a saturated fold of q. A tube and a connector in F can create at most two H0H-connections.

Proof. Assume that the connector C and a tube T are H0H-connected. By Observation 10, this connection
is either horizontal or vertical. If the connection is horizontal, by Lemma 9, C and T share only one plane,
cf. Figure 16(b). Obviously, all other S-vertices of C and T are too far from each other to create more
H0H-connections than the two depicted in the figure.

Second, assume there is a vertical H0H-connection between C and T . Then C and T do not share any
plane and H0H-connections are created if an edge of C is directly above/below an edge of T . If C and T
overlap on more than one edge, then there is a D-vertex of C directly above/below a vertex of T , which
would create a substring H0HH in F , a contradiction. Hence, C and T overlap on only one edge, and hence,
create exactly two H0H-connections.

Claim 7. Let F be a saturated fold of q. Assume that a connector C and a tube T are horizontally (S\h)-
connected in F . Then there are at most two external (S\h)-connections between them and T is missing at
least two internal (S\h)-connections.

Proof. By Claim 4, we have the configuration depicted in Figure 14(d), where y must belong to the tube
T and x to the connector C. Vertex x−1 is an S-vertex of C and it cannot be part of a parallel (S\h)-
connection, because y−1 is an S-vertex as well. Also note that S-vertex y−1 of T cannot be part of internal
(S\h)-connection. Since, horizontal neighbors of y−1 and x are H-vertices we have another H0H-connection
between these two neighbors and we lose another internal (S\h)-connection. Similarly, there is at most one
(S\h)-connection between C and T parallel to this H0H-connection. Considering the layout of C and T , it
is clear that they cannot (S\h)-connect at any other point. Hence, the claim follows.

Observation 12. Let F be a saturated fold of q. Assume that two tubes T1 and T2 are (S\h)-connected.
Then the number of missing internal (S\h)-connections in T1 and T2 minus the number of external (S\h)-
connections between them is at least zero.

Claim 8. Let F be a saturated fold of q. Assume that two tubes T1 and T2 are H0H-connected. Then the
number of missing internal (S\h)-connections in T1 and T2 minus the number of external (S\h)-connections
between them is at least two.
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Proof. If T1 and T2 are vertically H0H-connected then at most one endpoint of each of two H0H-connections
is 00-connected to an h-vertex, since there is no HH00H0H00HH in q. Therefore, we lose at least two internal
(S\h)-connections and gain no external (S\h)-connections between T1 and T2.

If T1 and T2 are horizontally H0H-connected we have the configuration depicted in Figure 16(b). Vertices
x, x′, z, z′ are S-vertices of the tubes which cannot be part of internal (S\h)-connections, hence we lose at
least four of them. Furthermore, all possible external (S\h)-connections between T1 and T2 are (x, u, v, w),
(z, z−1, y−1, x−1), (x′, x′1, y′1, z′1) and (z′, z′−1, y′−1, x′−1). However, first two and last two cannot be present
at the same time, otherwise we have HH00H0H00HH in q. Hence, there are at most two such connections.

Lemma 21. Let F be a saturated fold of q. The tubes in F have more than 3 layers.

Proof. Assume that one of the tubes, say T1, has two or three layers. We prove this lemma by counting
the number of possible (S\h)-connections in F . If T1 has 2 layers, then it does not contain any internal
(S\h)-connections, since it has no h-vertices. If it has 3 layers then it contains 6 h-vertices, but since they are
connected to each other with a peptide bond and there are only two occurrence of substring 0H00HH00H0
in q which are occurring in the connector, at most one in each pair can be involved in an (S\h)-connection.
Hence, T1 has at most 3 internal (S\h)-connections. There should be 36 (S\h)-connections in F , and the
remaining two tubes have at most 24 internal (S\h)-connections. Hence, F must contain at least 9 external
(S\h)-connections. By Claim 7, any external vertical (S\h)-connection eliminates at least one internal (S\h)-
connection. Hence, there has to be at least 9 external horizontal (S\h)-connections.

Consider an external horizontal (S\h)-connection (x, u, v, y) connecting components W1 and W2, cf. Fig-
ure 14(c). By Lemma 16 and Claim 6, any pair of components in F can create at most two H0H-connections,
i.e, at least three pairs of components are H0H-connected. Since these pairs cannot be horizontally (S\h)-
connected, there are at most three pairs of horizontally (S\h)-connected components. Hence, by Claim 2,
there are at most 6 horizontal (S\h)-connections, a contradictions.

We proceed by proving the following lemma.

Lemma 22. Let F be a saturated fold of q. Any component in F must be H0H-connected to at least one
other component.

Proof. By Lemma 15 and Claim 6, there are at most two H0H-connections between any two components
of F . Since F contains 6 H0H-connections it is enough to show that there is no cycle of length 3 of H0H-
connected components. Let components W1,W2,W3 form such a cycle. By Lemmas 9 and 16 and Claim 6,
two H0H-connected components are either in the configuration depicted in Figure 16(b) or Figure 16(c), i.e.,
they share exactly one plane or they share no planes and there is one plane in between them. Assume that
W1 is the topmost component in planes Hi, Hi+1, . . . , Hj . If both W2 and W3 share one plane with W1 (not
share any plane with W1) then they share at least two layers, i.e., they cannot be H0H-connected. Hence,
assume that W2 shares plane Hi with W1, i.e., it is located in planes Hi, Hi−1, . . . and W3 does not share
any plane, i.e., it is located in planes Hi−2, Hi−3, . . . . Then W2 and W3 can share zero or one plane only if
W2 has either one or three layers. Obviously, the first case is not possible. In the second case, W2 must be
a tube, but by Lemma 21, it cannot have 3 layers, a contradiction.

We proceed by proving the following important lemma:

Lemma 23. Let F be a saturated fold of q. Two tubes in F cannot be H0H-connected. Consequently, two
tubes cannot be vertically (S\h)-connected.

Proof. To the contrary assume that two tubes are H0H-connected. By Claim 7, we need at least two external
(S\h)-connections, and by Claim 7 and Observation 12, there are at most two horizontal (S\h)-connections
between the connector C and a tube T1.

Figure 30 shows a birdview at the horizontal (S\h)-connections between T1 and C. Notice that T1 and
C cannot be H0H-connected. Therefore, by Lemma 22, T1 must H0H-connect to another tube T2. We will
show that T2 cannot be H0H-connected to C. Assume the contrary. The tube T2 must be located in one of
the three numbered positions in Figure 30.

Figure 31 depicts configurations for all three positions of T2. Clearly, in the first configuration T2 cannot
make any H0H-connections with C (cf. Figure 31(a)). Consider vertex v in Figure 31(b) depicting the second
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T1

C

2

1

3

Figure 30: The birdview at horizontally (S\h)-connected connector C and tube T1. The numbers show all possible
locations of tube T2 which is H0H-connected to both T1 and C.
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Figure 31: Three possible configurations when connector C is horizontally (S\h)-connected to T1, and T2 is H0H-
connected to both C and T1.

configuration. It is H0H-connected to v−2 which is part of an (S\h)-connection. Since there is no substring
HH00H0H00HH in q, v cannot be part of any (S\h)-connection. Therefore, we lose one more internal (S\h)-
connection in T2 which needs to be replaced by an external (S\h)-connection between C and a tube. By
Claim 7, any external vertical (S\h)-connection eliminates at least one internal (S\h)-connection, therefore,
the replaced connection must be a horizontal (S\h)-connection. Clearly, T2 cannot make any horizontal
(S\h)-connections with C and furthermore, T1 cannot make any new horizontal (S\h)-connections with C.
Hence, T3 must make at least one horizontal (S\h)-connection which in this case cannot be H0H-connected
to C. Therefore, T3 must H0H-connect to T1 or T2. In this case we lose at least two additional internal
(S\h)-connections which cannot be replaced by any external horizontal (S\h)-connections. Finally, we show
that the third configuration is contradictory. Consider the v-vertex v in Figure 31(c). If it is 00-connected
to w or x it follows that v is a part of the substring (00HH)k, a contradiction by Lemma 8. Therefore, v is
00-connected to u. However in this case, F contains the substring HH00H00HH which does not occur in q,
a contradiction.

It follows that T2 and C are not H0H-connected. Therefore, by Lemma 22, T3 must H0H-connect to
C and to have 6 H0H-connections in F , T3 must also H0H-connect to T1 or T2. However, in this case we
lose at least two additional internal (S\h)-connections which by Claim 7, must be replaced by horizontal
(S\h)-connections between C and a tube. Clearly, T3 cannot make such connections with C. Furthermore, T1

cannot make new horizontal (S\h)-connections with C. Thus, T2 must make two horizontal (S\h)-connections
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with C. Let Hi and Hi+1 be the layers of C. Without loss of generality assume that T2 is above T1. Since
C and T1 make horizontal (S\h)-connections the top most layer Hj of T1 is above Hi+1. Let Hl be be the
lowest layer of T2. Since T1 and T2 are H0H-connected, l ≥ j > i+ 1. Therefore, C and T2 do not share any
layer and hence, cannot be (S\h)-connected, a contradiction.

Corollary 5. Let F be a saturated fold of q. All tubes in F must be H0H-connected to the connector.

Proof. We consider three cases. If the connection is between two h-vertices then clearly all edges of the
connection must be horizontal. Second the case when the connection is between h- and S-vertices follows
by Lemma 23. Finally, if the connection is between two S-vertices, we lose two internal (S\h)-connections
which can be only replaced by horizontal (S\h)-connection between connector and a tube. By Corollary 5,
this is not possible.

So far we have shown that all tubes must H0H-connect to C. We prove the final theorem.

Theorem 1. The protein string q is structurally stable.
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Figure 32: Two possible configurations that contain the substring t = 10100102002, given that one of the H0H-
connections in t is horizontal.

Proof. Let F be a saturated fold of q. By Lemma 20 and Corollary 5, F contains three simple tubes which
are H0H-connected to a connector C. Note that there are no H0H-connections between tubes. First we
analyze the configurations that contain the substring t = 10100102002. The substring t contains two H0H-
connections that are 00-connected. We show that these H0H-connections are vertical and they belong to two
tubes T1 and T2 where T1 is connected to the top and T2 is connected to the bottom of C. To the contrary,
assume that one of the H0H-connections (u, v, w) in t is horizontal, where u and w are H-vertices in C and T1,
respectively, and v is a 0-vertex. Note that C and T1 make another H0H-connection (u′, v′, w′) where u′ and
v′ are horizontal neighbors of u and v respectively. Vertex u or w (respectively, u′ or w′) must 00-connect
to an h-vertex. It is easy to see that w (w′) cannot 00-connect to an h-vertex and the only h-vertex that u
(u′) can 00-connect to is w1 (w′1). Therefore, w must 00-connect to an H0H-connection.

Two configurations are possible in this case. In the first configuration w is 00-connected to w′, cf.
Figure 32(a), and hence, exactly one of the pairs of vertices (u,w1) or (u′, w′1) contains 2-vertices. Since T1

makes H0H-connections only with C and every 2-vertex is either a part of H0H-connection or is 00-connected
to an H0H-connection, w1 (respectively, w′1) cannot be paired with a 2-vertex, a contradiction. In the second
configuration w is 00-connected to u−1 and C is vertically H0H-connected to another tube T2 at u−1 and
its horizontal neighbor (cf. Figure 32(b)). Note that T3 must connect to the hexagon of C the does not
contain u and u−1 otherwise, F would contain the substring (00H)6, a contradiction. Therefore, T1 is too
far from T2 and T3 to 00-connect to either of them. Hence, w1 is p-connected to w′1 by a path p which lies
completely in T1 and its 0-vertices (0-vertices surrounding T1). Consequently, p does not contain any H0H
as a substring. Since H0H-connection (w, v, u) is 00-connected to H0H-connection (u−1, u−2, u−3), based on
the properties of q, it follows that exactly one of the pairs (u, w1) or (u′, w′1) contains 2-vertices, depending
on the direction of the substring t. Clearly, w1 (respectively, w′1) cannot be paired with any other 2-vertex,
a contradiction. Therefore, both H0H-connections in t are vertical.
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Figure 33: The only possible configuration that contains the substring t = 10100102002, given that the H0H-
connections in t are vertical.

Let (u, u1, u2) be one of the H0H-connections in t where u and u2 are H-vertices in C and T1, respectively,
and u1 is a 0-vertex. Without loss of generality assume that T1 is connected to the top of C. Note that T1

and C make another vertical H0H-connection (v, v1, v2), where v is a horizontal neighbor of u. Clearly, u
cannot 00-connect to an h-vertex, therefore, it must 00-connect to another vertical H0H-connections. The
only possibility is that u1 is 00-connected to u−1. Therefore, C vertically H0H-connect to another tube T2 at
the vertex u−1 and one of its horizontal neighbor. If this connection is (v−1, v−2, v−3) then F would contain
another occurrence of the substring t through vertices v2, v1, v, ∗, ∗, v−1, v−2, v−3, a contradiction. It follows
that T1 and T2 are H0H-connected to C as in the original fold. It is easy to see that the last tube T3 must
horizontally H0H-connect to the other side of C as in the original fold (cf. Figure 33).

Finally, notice that T1, T2 and T3 are far away from each other to make any 00-connections. Therefore,
the pair of H0H-connections in each tube are p-connected by a path p that lies completely in that tube and
its 0-vertices. This implies that the length of the tubes must be the same as the length of the tubes in the
original fold and hence, q is structurally stable.

5 Conclusions

In this paper building on the work done in Gupta et al. (2005, 2007); Hadj Khodabakhshi et al. (2008)
we solve the shape-approximating inverse protein folding problem under the HP model in 3D for designing
tubular proteins by providing two basic building blocks: a tube and a connector, which can be interconnected
to roughly approximate any given shape. We showed that a simple subclass of the structures built in this
way is structurally stable in the HPC model. Showing that all these structures are structurally stable is
a very challenging problem. The first task in solving this problem is to choose which of the hydrophobic
monomers are cysteines. The second is to prove that all folds are similar to the designed one. This gets more
difficult with the higher number of building blocks (tubes and connectors) used, as each additional building
block adds two special substrings to the protein sequence, and thus increases a variety and the number of
possible components in the fold.

While the techniques presented here will not allow for the direct construction of proteins, they represent
a starting point for this process. In particular, we believe that our techniques can be used to form the basis
of an actual protein — we specify, at each point of the chain whether a cysteine, other hydrophobic or polar
monomer is required and a designer can use this information to choose amino acids from set of all 20 amino
acids. The choice of actual amino acid would depend on other desired molecular interactions and finer details
about the protein structure.
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