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Abstract

Interval digraphs were introduced by West et all. They can be recognized in polyno-
mial time and admit a characterization in terms of incidence matrices. Nevertheless,
we do not have a forbidden structure characterization nor a low-degree polynomial
time algorithm.

We introduce a new class of ‘adjusted interval digraphs’, obtained by a slight change
in the definition. By contrast, these digraphs have a natural forbidden structure
characterization, parallel to a characterization for undirected graphs, and admit an
easy recognition algorithm.

We relate adjusted interval digraphs to a list homomorphism problem. Each di-
graph H defines a corresponding list homomorphism problem L-HOM(H). We observe
that if H is an adjusted interval digraph, then the problem L-HOM(H) is polynomial
time solvable, and conjecture that for all other reflexive digraphs H the problem L-
HOM(H) is NP-complete. We present some preliminary evidence for the conjecture.

1 Introduction

An interval graph is a graph H which admits an interval representation, i.e., a family of
intervals Iv, v ∈ V (H), such that uv ∈ E(H) if and only if Iu and Iv intersect. An interval
digraph is a digraph H which admits an interval pair representation, which is a family of
pairs of intervals Iv, Jv, v ∈ V (H), such that uv ∈ E(H) if and only if Iu intersects Jv.
Note that an interval graph must be reflexive (each vertex has a loop), but an interval
digraph may lack loops. If the intervals Iv, Jv, v ∈ V (H), can be chosen so that for each v
the intervals Iv and Jv have the same left endpoint, we say that H is an adjusted interval
digraph. It is again clear that an adjusted interval digraph must be reflexive.

In [3] we have studied the special case of adjusted interval digraphs H representable
by intervals Iv, Jv, v ∈ V (H), in which each interval Jv is just one point. These are called
chronological interval digraphs [3], and we have shown that they can be characterized
by the absence of certain special forbidden structures. In [22], a related class of interval
catch digraphs has been characterized by the absence of certain other forbidden structures.
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Here we provide a forbidden structure characterization of adjusted interval digraphs, very
similar to a recent forbidden structure characterization of interval graphs, and other struc-
tures [16]. The characterization allows a direct polynomial time recognition algorithm of
adjusted interval digraphs.

We apply adjusted interval digraphs to the complexity of list homomorphisms. A
homomorphism f of a digraph G to a digraph H is a mapping f : V (G) → V (H) in which
f(u)f(v) ∈ E(H) whenever uv ∈ E(G) [18]. If L(v), v ∈ V (G), are lists (subsets of V (H)),
then a list homomorphism of G to H (with respect to the lists L) is a homomorphism
satisfying f(v) ∈ L(v) for all v ∈ V (G). The list homomorphism problem L −HOM(H)
asks whether or not an input digraph G equipped with lists L admits a list homomorphism
f : G → H with respect to L. The complexity of the list homomorphism problem L-
HOM(H) for undirected graphs H has been classified in [5, 6, 7]. Of particular interest
for this paper is the classification in the special case of reflexive graphs: if H is a reflexive
graph, then the problem L-HOM(H) is polynomial time solvable if H is an interval graph,
and is NP-complete otherwise [5]. The complexity of L−HOM(H) for any digraph (and
more general relational system) has been classified in [1] (see Theorem 4.1). For reflexive
digraphs H, we propose a simpler classification. Specifically, we observe that each adjusted
interval digraph H has polynomial time solvable list homomorphism problem L-HOM(H),
and conjecture that for any other reflexive digraph H the problem L-HOM(H) is NP-
complete. We offer some evidence for the conjecture here (and more in a full version of
this paper).

2 Invertible Pairs

The underlying graph of H has an edge uv whenever uv ∈ E(H) or vu ∈ E(H). If u, v are
adjacent in the underlying graph of H, the pair uv is a forward edge if uv ∈ E(H), and
a backward edge if vu ∈ E(H). Note that a loop is both a forward edge and a backward
edge. If uv ∈ E(H), we say that u dominates v in H.

We define two walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to be congruent,
if they follow the same pattern of forward and backward edges, i.e., if xixi+1 is a forward
(backward) edge if and only if yiyi+1 is a forward (backward) edge, respectively. If P and
Q as above are congruent walks, we say that P avoids Q, if there is no edge xiyi+1 in the
same direction (forward or backward) as xixi+1.

An invertible pair in H is a pair of vertices u, v such that

• there exist congruent walks P from u to v and Q from v to u, and such that P avoids
Q,

• there exist congruent walks P ′ from v to u and Q′ from u to v, such that P ′ avoids
Q′.
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It will turn out to be useful to reformulate these definitions in terms of an auxiliary
digraph. The pair-digraph H+ associated with H has vertices V (H+) = {(u, v) : u 6= v},
and edges (u, v)(u′, v′), where

uu′, vv′ ∈ E(H) and uv′ 6∈ E(H), or

u′u, v′v ∈ E(H) and v′u 6∈ E(H).

Lemma 2.1 If H has an invertible pair (u, v), then (u, v) and (v, u) belong to the same
strong component C of the pair-digraph H+; moreover, for any (x, y) in C the reversed
pair (y, x) also belongs to C, i.e., each pair in C is invertible.

If H has no invertible pair, then for each strong component C of H+ there exists a
reversed strong component C ′ such that (x, y) ∈ C if and only if (y, x) ∈ C ′.

Proof. These properties follow from the definition of a strong component and the
observation that (u, v)(u′v′) ∈ E(H+) implies (v′, u′)(v, u) ∈ E(H+). For instance, if
(u, v), (v, u), (x, y) ∈ C, then the directed closed walk containing (u, v), (x, y) yields by
reversal a directed closed walk containing (v, u), (y, x), and by concatenation with the
directed closed walk containing (u, v), (v, u), we obtain a directed closed walk containing
(x, y), (y, x).

An ordering < of the vertices of H is a min ordering of H if it satisfies the following
property: if uv ∈ E(H) and u′v′ ∈ E(H), then min(u, u′) min(v, v′) ∈ E(H). (A min
ordering was also called an X-underbar enumeration [13, 18]). The following result relates
min orderings to adjusted interval digraphs.

Theorem 2.2 A reflexive digraph is an adjusted interval digraph if and only if it admits
a min ordering.

Proof. Given a min ordering, we can arrange the common starting points of Iv, Jv in the
same order as the vertices v appear in the min ordering, and define intervals Iv and Jv as
follows. If v has no forward edges towards later vertices, we end the interval Iv at the last
vertex w such that vw is a double edge, and end the interval Jv at the last vertex w such
that vw is a backward edge. If v has no backward edges towards later vertices, we end the
interval Jv at the last vertex w such that vw is a double edge, and end the interval Iv at
the last vertex w such that vw is a forward edge. Conversely, given an adjusted interval
pair representation Iv, Jv, v ∈ V (H) we obtain a min ordering of H according to the left
to right order of the common left endpoints of the intervals.

Min orderings also play an important role for list homomorphism problems, cf. [18].
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Theorem 2.3 [13] If H admits a min ordering, then the problem L−HOM(H) is poly-
nomial time solvable.

Finally, we observe that an invertible pair is an obstruction to the existence of a min
ordering.

Lemma 2.4 If H has an invertible pair, then H does not admit a min ordering.

Proof. Suppose (u, v)(u′, v′) is an edge of the pair-digraph H+. Suppose < is a min
ordering of H, and suppose u < v. The we must also have u′ < v′. Following the directed
closed walk in H+ which contains (u, v) and (v, u), we obtain a contradiction.

3 Adjusted Interval Digraphs

We now strengthen Lemma 2.4.

Theorem 3.1 A reflexive digraph H admits a min ordering if and only if it has no in-
vertible pair.

In fact, we shall prove the following stronger result.

Theorem 3.2 The following statements are equivalent for a reflexive digraph H:

1. H is an adjusted interval digraph

2. H has a min ordering

3. H has no invertible pairs

4. The vertices of H+ can be partitioned into sets D,D′ such that

• (x, y) ∈ D if and only if (y, x) ∈ D′

• (x, y) ∈ D and (x, y) dominates (x′, y′) in H+ implies (x′, y′) ∈ D

• (x, y), (y, z) ∈ D implies (x, z) ∈ D.

Proof. The equivalence of 1 and 2 is proved in Theorem 2.2. Furthermore, Lemma 2.4
shows that 2 implies 3. It is also quite straightforward to see that 4 implies 2; it suffices
to define a < b if (x, y) ∈ D. Thus it remains to show that 3 implies 4.
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Therefore, we assume that H has no invertible pair. Note that we may assume that
H is weakly connected, otherwise we can order each weak component separately. We also
note that for each strong component C of H+, there is a corresponding reversed strong
component C ′ whose pairs are precisely the reversed pairs of the pairs in C; we shall say
that C, C ′ are coupled strong components.

The partition of V (H+) into D,D′ will correspond to separating each pair of coupled
strong components C, C ′ of H+. The vertices of one strong components will be placed in
the set D, their reversed pairs will go to D′. We wish to make these choices in such a way
as to avoid creating a circular chain in D, i.e., a sequence of pairs (x0, x1), (x1, x2), . . . ,
(xn, x0) ∈ D.

We shall proceed as follows. Initially the sets D and D′ are empty. We say that a
strong component C of H+ is ripe when it has no edge to another strong component in
H+ − D. In the general step, we shall take a ripe component C and place it in D, and
simultaneously place C ′ in D′. (Note that C ′ need not be ripe, but has no edge from
another strong component.) We will show that there is always at least one ripe strong
component which can be added to D without creating a circular chain.

The sets D, D′ will always have the following properties (which are true initially).
There is no circular chain in D; each strong component of H+ belongs entirely to D, D′,
or to V (H+)−D −D′; the pairs in D′ are precisely the reversed pairs of the pairs in D;
there is no edge of H+ from D to a vertex outside of D; and there is no edge of H+ from
a vertex outside of D′ to a vertex in D′. At the end of the algorithm each pair (x, y) with
x 6= y will belong either to D or to D′, and hence the final D will have no circular chain
and hence satisfy the transitivity property of 4.

We now prove that the algorithm maintains these properties.

Suppose, for a contradiction, that the current D has no circular chain but the addition
of C to D creates a circular chain in C ∪ D. Suppose (x0, x1), (x1, x2), . . . , (xn, x0) is a
circular chain that has occurred for the first time during the execution of the algorithm,
and also suppose that at that time no shorter circular chain has occurred. Since there are
no invertible pairs, and since we never place both an edge and its reverse in D, we must
have n ≥ 2. We may assume without loss of generality that (xn, x0) ∈ C; note that other
pairs of the circular chain could also be in C.

Case 1. Assume that in H, there is at least one edge between the vertices x0, x1, . . . , xn,
say an edge xaxb.

We claim that this implies that H is complete on x0, x1, . . . , xn. We make the following
elementary observations, assuming j 6= i.

1. If xj dominates xi then xj−1 dominates xi in H.

2. If xj dominates xi then xj dominates xi−1 in H.
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To prove the first observation, we note that if xj dominates xi but xj−1 not dominate
xi in H, then (xj−1, xj) dominates (xj−1, xi) in H+. Since (xj−1, xj) is in C ∪D, the pair
(xj−1, xi) must belong to C ∪D, implying a shorter circular chain in C ∪D.

To prove the second observation, we similarly note that if xj dominates xi but xj

does not dominate xi−1 in H, then (xi−1, xi) dominates (xi−1, xj) in H+, also implying a
shorter circular chain.

Consider now the fact that xa dominates xb in H. Property 1 implies that xa−1,
xa−2, . . . , xb+1 all dominate xb. Since xb+1 dominates xb, property 2 implies that xb+1

dominates xb−1, xb−2, . . . , xb+2, i.e., dominates all other vertices. At this point we use 1
again to derive that xb dominates xb−1, and repeated application of 2 as before implies
that xb dominates all other vertices. Continuing this way, we see that each xj dominates
all other vertices, i.e., the vertices x0, x1, . . . , xn induce a complete graph in H.

We conclude the proof of Case 1 by showing that C is a trivial component (with a
single vertex). If C has more than one vertex, then so does its corresponding coupled
component C ′, which contains the vertex (x0, xn). Hence we assume for contradiction
that (x0, xn) dominates some (a, b) not in C ∪D.

Up to symmetry, we may assume that x0 dominates a in H, xn dominates b in H and
x0 does not dominate b in H. Since (a, b) is not in C ∪D, the pair (x0, x1), which is in C,
cannot dominate (a, b), which implies that x1 does not dominate b in H. If x2 dominates
b in H, then (x1, x2) dominates (x0, b) which dominates (a, b) in H+; this is impossible,
as this is a directed path starting in C and ending outside of C ∪D, so some edge would
exit from C ∪ D against the rules we maintain. Therefore x2 does not dominate b in
H; if x3 dominates b in H, then (x2, x3) dominates (x1, b) which dominates (x0, b) which
dominates (a, b), yielding the same contradiction. Therefore x3 does not dominate b in H,
and continuing this way we would derive that xn does not dominate b, which is false.

Thus we have C = {(xn, x0)}, C ′ = {(x0, xn)}. The same proof also shows that C ′ is
ripe, as no (a, b) dominated by (x0, xn) can exist outside of C ∪D. It is now easy to see
that if both (xn, x0) and (x0, xn) complete a circular chain with D, then D already had a
circular chain.

Case 2. Assume that vertices x0, x1, . . . , xn are independent in H.

Lemma 3.3 Suppose p is a vertex of H, distinct from x0, x1, . . . , xn, which dominates
xi+1 but not xi (or which is dominated by xi+1 but not by xi).

Then (x0, x1), . . . , (xi, p), (p, xi+2), . . . , (xn, x0) is also a circular chain created at the
same time.

Proof. We conclude from the assumption that (xi, xi+1) dominates (xi, p) in H+, and
since (xi, xi+1) is in C ∪D, we must also have (xi, p) in C ∪D. Furthermore, since xi+1

does not dominate or is dominated by xi+2 in H, we also have (xi+1, xi+2) dominating
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(p, xi+2), whence (p, xi+2) is in C ∪D. In conclusion, we see that any such vertex p can
replace xi+1 in the circular chain (x0, x1), (x1, x2), . . . , (xn, x0).

Lemma 3.4 • If p is a vertex of H, distinct from x0, x1, . . . , xn, which dominates xj

and xk with j 6= k, then p dominates each xi.

• If p is a vertex of H, distinct from x0, x1, . . . , xn, which is dominated by xj and xk

with j 6= k, then p is dominated by each xi.

• If p, distinct from x0, x1, . . . , xn, dominates xj and is dominated by xk with j 6= k,
then p both dominates and is dominated by each xi, i 6= j, k.

Proof. If p dominates xi+1 but not xi, then Lemma 3.3 implies that p can replace xi+1 in
the circular chain; however at least one of xj , xk is not equal to xi+1, whence the vertices
of the chain are not independent and we conclude by Case 1. The other items are proved
similarly.

We now claim that the circular chain (x0, x1), (x1, x2), . . . , (xn, x0) has at most one pair,
say (xn, x0), in C (with all other pairs in D). Otherwise, assume some (xi, xi+1), i 6= n
is also in the strong component C, and let P be a directed path in C from (xn, x0) to
(xi, xi+1). Let the penultimate pair on this path be (p, q), and, without loss of generality,
assume that pxi, qxi+1 ∈ E(H), pxi+1 6∈ E(H). (In the case xip, xi+1q ∈ E(H), xi+1p 6∈
E(H), the argument is symmetric.) By Lemma 3.3, p does not dominate any xj with
j 6= i. Next we claim that q does not dominate xi. Indeed, if q dominates xi, then Lemma
3.4 implies that q dominates all xj . This is a contradiction, since it would mean that (p, q)
dominates (xi, xi+2) in H+, implying that (xi, xi+2) is in C∪D and thus there is a shorter
circular chain in H. Therefore q does not dominate xi. By a double application of Lemma
3.3, we conclude that we can replace xi and xi+1 by p and q in the circular chain in H.
Continuing this way, we replace (p, q) by the previous pair on the path P , until we obtain
the pair (p′, q′) which is the first pair after (xn, x0). Since x0 is adjacent to q′, we are back
in Case 1.

Thus the circular chain (x0, x1), (x1, x2), . . . , (xn, x0) has only the pair (xn, x0) in C,
and any circular chain in C ∪D has exactly one pair in C. We now suppose, in addition
to the previous assumptions, that our circular chain minimizes the sum of the lengths of
all distances amongst the vertices x0, x1, . . . , xn, in the underlying graph of H .

The digraph H turns out to have a very special structure. We claim that in this
situation there exists a non-empty set K of vertices of H such that H \ K has weak
components C1, C2, . . . Cm, where xi ∈ Ci, i = 1, 2, . . . , n, and such that if p ∈ K dominates
(respectively is dominated by) a vertex in Ci, then p dominates (respectively is dominated
by) all vertices in Ci; moreover, if x′0, x′1, . . . , x′n are any vertices with x′i ∈ Ci, then
(x′0, x

′
1), (x′1, x

′
2), . . . , (x

′
n, x′0) is also a circular chain.
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Indeed, we let K consist of all vertices of H that dominate each xi, or are dominated
by each xi. It is easy to see that K must be non-empty, as Lemma 3.4 implies that any
p dominated by xj , xk, j 6= k belongs to K. Such a p must exist by our new minimality
assumption, as otherwise we could replace xj by its neighbour p on a path joining xj to
xk by Lemma 3.3.

The same argument shows that two different xj , xk cannot lie in the same weak com-
ponent Ci of H \ K, as any path joining xj to xk was shown to contain a vertex of K.
Therefore we can number the components so that Ci contains xi for i = 1, 2, . . . n. (There
may be additional components Ci with i = n + 1, . . . ,m.) Now Lemma 3.3 implies that
each xi can be replaced by any neighbour in Ci, thus any vertex of Ci can be taken as
xi. Thus each p ∈ K that dominates a vertex in Ci also dominates all vertices in Ci, and
similarly for vertices p dominated by a vertex in Ci.

This creates a situation where any pair (y, y′) in the strong component C of H+

containing (xn, x0) must satisfy y ∈ Cn, y′ ∈ C0. This easily implies that the strong
component C does not have any arcs entering it from the outside, and hence the strong
component C ′ coupled with C is also ripe. We claim that C ′ cannot complete a circular
chain with D. Otherwise, the pair (x0, xn) would also complete a circular chain by the
same argument. Thus both (x0, xn) and (xn, x0) complete a circular chain with D, whence
D must already contain a circular chain, a contradiction.

Of course, if the addition of C ′ does not create a circular chain, then we add C ′ to D
and C to D′.

This gives us a polynomially verifiable forbidden subgraph characterization of adjusted
interval digraphs. As noted above, checking for invertible pairs amounts to computing the
strong components of H+ and checking for the existence of a pair (u, v), (v, u) in one strong
component.

Corollary 3.5 Let H be a reflexive digraph. Then H is an adjusted interval digraph if
and only if it has no invertible pair. ¦

4 Polymorphisms

The min orderings defined above are a particular case of the following general concept.
Let k be a positive integer. The k-th power of H is the digraph Hk with vertex set
V (H)k in which (u1, u2, . . . , uk)(v1, v2, . . . , vk) is an edge just if each uivi is an edge of
H. A polymorphism of order k is a homomorphism of Hk to H. A polymorphism f is
conservative if f(u1, u2, . . . , uk) always is one of u1, u2, . . . , uk. From now on we shall use
the word polymorphism to mean a conservative polymorphism.
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A polymorphism f of order two is commutative if f(u, v) = f(v, u) for any u, v. If
H admits a min ordering <, then clearly defining f(u, v) = min(u, v) is a polymorphism,
which is commutative.

Two ternary polymorphisms also play a role in the problems L-HOM(H) [1]. A poly-
morphism f : H3 → H is called a majority polymorphism if f(u, u, v) = f(u, v, u) =
f(v, u, u) = u for any u, v. A ternary polymorphism f : H3 → H is called a Malt-
sev polymorphism if f(u, u, v) = f(v, u, u) = v for any u, v. A ternary polymorphism
f : H3 → H is majority (respectively Maltsev) over a, b, if f(a, a, b) = f(a, b, a) =
f(b, a, a) = a, f(b, b, a) = f(b, a, b) = f(a, b, b) = b (respectively if f(a, a, b) = f(b, a, a) =
b, f(a, b, b) = f(b, b, a) = a).

At this point, we can state the classification of L-HOM(H) due to Bulatov. The
theorem applies to any relational structure H, but for our purposes we only need to state
it for reflexive digraphs. Recall that by our definition each polymorphism is conservative.
Also, we formulate the result in a language of binary commutative polymorphisms in place
of the more usual semi-lattice operations [1], since it is equivalent and is more convenient
in our context.

Theorem 4.1 [1] Let H be a reflexive digraph.

If for every pair of vertices a, b of H there exists a polymorphism of H which is either
ternary and majority, or Maltsev, over a, b, or is binary and commutative over a, b, then
L-HOM(H) is polynomial time solvable.

Otherwise, if some pair of vertices a, b does not admit any of these polymorphisms,
then the problem L-HOM(H) is NP-complete.

5 List Homomorphism Problems

The following fact follows directly from Theorems 2.3 (or Theorem 4.1) and 2.2.

Theorem 5.1 If H is an adjusted interval digraph, then L-HOM(H) is polynomial time
solvable.

Here is an equivalent form of the conjecture from [9, 14].

Conjecture 5.2 If H is an adjusted interval digraph, then L-HOM(H) is polynomial time
solvable.

(We also had a similar conjecture for irreflexive digraphs [9, 14]. However, that conjec-
ture has turned out to be false [15, 2], and we shall discuss the case of irreflexive digraphs
in a companion paper [15].)
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We now provide some preliminary evidence to support our conjecture. In the full
version of the paper we will offer additional results to this end. A digraph is semi-complete
if its underlying graph is complete.

Theorem 5.3 Suppose H is a reflexive semi-complete digraph. If H contains an invertible
pair, then L-HOM(H) is NP-complete.

Proof. We will appeal to Bulatov’s characterization, Theorem 4.1, showing that if there
exist invertible pairs in H, then some invertible pair a, b admits no polymorphism as
prescribed by Theorem 4.1.

It turns out that some structures in H limit our choices of polymorphisms from the the-
orem. Let R be the reflexive digraph V (R) = {a, b, c} and E(R) = {aa, bb, cc, ab, bc, ac, ca}.

Lemma 5.4 There is no polymorphism g on the digraph R which is a majority over a, b.

Proof. Suppose g is a polymorphism of R which is a majority over a, b, i.e., g(a, a, b) =
g(a, b, a) = g(b, a, a) = a, and g(a, b, b) = g(b, a, b) = g(b, b, a) = b. We claim that
g must also be a majority over b, c. Note that g(c, c, b)g(a, a, b) = g(c, c, b)a ∈ E(R).
Hence g(c, c, b) = c, as b does not dominate a in R. Similarly, g(c, b, c) = g(b, c, c) = c.
Also g(b, b, c)g(b, b, a) = g(b, b, c)b ∈ E(R) thus g(b, b, c) = b and similarly g(b, c, b) =
g(c, b, b) = b. Now we can conclude that g is also majority over a, c, using the fact that
g(a, a, c)g(b, b, c) ∈ E(R) and g(b, b, c)g(c, c, a) ∈ E(R).

Now we note that we have g(a, b, c)g(b, b, c) = g(a, b, c)b ∈ E(R), which implies that
g(a, b, c) ∈ {a, b} (since c doesn’t dominate b in R); we have g(a, b, b)g(a, b, c) ∈ E(R),
which similarly implies that g(a, b, c) ∈ {b, c}; and we have g(c, a, c)g(a, b, c) ∈ E(R),
which similarly implies that g(a, b, c) ∈ {a, c}, which is impossible.

Lemma 5.5 Suppose H is a reflexive digraph with ab ∈ E(H), ba 6∈ E(H). There is no
polymorphism h over the digraph H which is a Maltsev operation over a, b.

Proof. If h is Maltsev over a, b, then h(a, a, b)h(a, b, b) = ba ∈ E(H), a contradiction.

Thus let us assume H contains invertible pairs. If H also contains an induced reflexive
directed three-cycle ~C3, then L-HOM(H) is known to be NP-complete [9]. Thus we may
assume for the proof that H does not contain ~C3. By a similar argument, we may assume
that S(H) is an interval graph, and in particular, S(H) does not contain an induced
four-cycle [8, 20].

If H contains invertible pairs, then there exist directed closed walks (x0, y0), (x1, y1), . . . ,
(xn, yn), (x0, y0) in H+ which contains both (a, b) and (b, a) for some a, b ∈ V (H). We say
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that such a closed walk C is an inverting walk for the pair a, b. As noted in Lemma 2.1,
each vertex (xi, yi) of C is itself invertible.

An inverting walk C in H+ consists of forward edges only. Recall that, in H, these edges
could correspond to pairs of edges xixi+1, yiyi+1, which are either forward or backward.

We first assume that for some C and some i we have the edges xixi+1, xi+2xi+1 ∈
E(H) and yiyi+1, yi+2yi+1 ∈ E(H). Without loss of generality, let us assume i = 0, i.e.,
that x0x1, x2x1, y0y1, y2y1 ∈ E(H) and x0y1, y2x1 6∈ E(H). Therefore, the pair (x0, y1)
dominates (x1, y1) and is dominated by (x0, y0), which are consecutive in the cycle C. Thus
we may assume that (x0, y1) is also in C, and hence is invertible. The same argument
shows that (x1, y2) is also invertible.

Since H is semi-complete, we must have y1x0, x1y2 ∈ E(H). If y1x1 6∈ E(H), then
y1, x0, x1 are all distinct and must induce R, since there is no induced ~C3). Then over
y1, x0 there is no majority by Lemma 5.4, no Maltsev by Lemma 5.5, and no commutative
binary polymorphism by Lemma 2.4. Hence L-HOM(H) is NP-complete by Theorem 4.1.

If y1x1 ∈ E(H), then y1, x1, y2 must be distinct and the same argument as above
implies that x1y1 ∈ E(H). Then the same argument again applied to the triple y1, x0, x1

implies that x1x0 ∈ E(H), and applied to the triple y1, x1, y2 implies that y1y2 ∈ E(H).
Note that x0 6= y2 because x0y1 6∈ E(H) but y2y1 ∈ E(H). If y2x0 6∈ E(H) then we have
a copy of R over x0, y1, y2; if x0y2 6∈ E(H) then we have a copy of R over x0, x1, y2. This
yields an induced four-cycle x0, x1, y1, y2, x0 in S(H), contrary to our assumption.

Thus we may assume that on any inverting walk all edges go in the same direction,
forward or backward. Without loss of generality, assume that on C all edges xixi+1 in
H are forward (and similarly for yiyi+1). If there is a copy of ~C3 or R, the problem
L-HOM(H) is NP-complete as above. Otherwise, we claim that all xiyi ∈ E(H) and
yixi ∈ E(H). Indeed if yixi 6∈ E(H), then a copy of ~C3 or R exists on xi−1, xi, yi, unless
xi = xi−1. Note that if xi = xi−1 would mean that xiyi 6∈ E(H) also holds, contrary to
the fact that H is semi-complete. If xiyi 6∈ E(H), then on some inverting walk involving
the invertible pair xi, yi, the same argument would show the existence of ~C3 or R.

Thus the conjecture holds for semi-complete digraphs. In the full version of this paper
we also prove the conjecture for oriented trees, and other digraphs.

References

[1] A.A. Bulatov, Tractable conservative constraint satisfaction problems, to appear in
ACM Trans. Comput. Logic.

[2] C.A. Carvalho, personal communication, 2008.

11



[3] S. Das, P. Hell, and J. Huang, Chronological interval digraphs, manuscript 2006.

[4] T. Feder, Classification of homomorphisms to oriented cycles and of k-partite satis-
fiability, SIAM J. Discrete Math. 14 (2001) 471–480.

[5] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combinatorial
Theory B 72 (1998) 236–250.

[6] T. Feder, P. Hell, and J. Huang, List homomorphisms and circular arc graphs,
Combinatorica 19 (1999) 487–505.

[7] T. Feder, P. Hell, and J. Huang, Bi-arc graphs and the complexity of list homomor-
phisms, J. Graph Theory 42 (2003) 61–80.

[8] T. Feder and P. Hell, The retraction and subretraction problems for reflexive di-
graphs

[9] T. Feder, P. Hell, and K. Tucker-Nally, Digraph matrix partitions and trigraph
homomorphisms, Discrete Applied Math. 154 (2006) 2458 – 2469.

[10] T. Feder, F. Madelaine, and I.A. Stewart, Dichotomies for classes of homomorphism
problems involving unary functions, Theoretical Computer Science 314 (2004) 1-43.

[11] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory, SIAM J.
Computing 28 (1998) 57–104.

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York (1980).

[13] W. Gutjahr, E. Welzl and G. Woeginger, Polynomial graph-colorings, Discrete Ap-
plied Math. 35 (1992) 29–45.

[14] P. Hell, From graph colouring to constraint satisfaction: there and back again, in
Topics in Discrete Mathematics, Springer Verlag Algorithms and Combinatorics
Series 26 (2006) 407–432.

[15] P. Hell and A. Rafiey, List homomorphisms to irreflexive digraphs, manuscript 2007.

[16] P. Hell and A. Rafiey, A new characterization of interval graphs, manuscript 2008.
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