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a b s t r a c t

Interval graphs admit linear-time recognition algorithms and have several elegant
forbidden structure characterizations. Interval digraphs can also be recognized in
polynomial time, and they admit a characterization in terms of incidence matrices.
Nevertheless, they donot have a known forbidden structure characterization or low-degree
polynomial-time recognition algorithm.

We introduce a new class of ‘adjusted interval digraphs’. By contrast, for these digraphs
we exhibit a natural forbidden structure characterization, in terms of a novel structure
whichwe call an ‘invertible pair’. Our characterization also yields a low-degree polynomial-
time recognition algorithm of adjusted interval digraphs.

It turns out that invertible pairs are also useful for undirected interval graphs, and our
result yields a new forbidden structure characterization of interval graphs. In fact, it can
be shown to be a natural link proving the equivalence of some known characterizations of
interval graphs—the theorems of Lekkerkerker and Boland, and of Fulkerson and Gross.

In addition, adjusted interval digraphs naturally arise in the context of list
homomorphism problems. If H is a reflexive undirected graph, the list homomorphism
problem LHOM(H) is polynomial if H is an interval graph, and NP-complete otherwise. If
H is a reflexive digraph, LHOM(H) is polynomial if H is an adjusted interval graph, and
we conjecture that it is also NP-complete otherwise. We show that our results imply the
conjecture in two important cases.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This is the full journal version of the conference note [10]. We include all proofs and provide additional connections and
applications.

An interval graph [13] is a graph H which admits an interval representation, i.e., a family of intervals Iv, v ∈ V (H),
such that uv ∈ E(H) if and only if Iu and Iv intersect. A digraph analogue has been defined in [25]—an interval digraph
is a digraph H which admits an interval pair representation, i.e., a family of pairs of intervals Iv, Jv, v ∈ V (H), such that
uv ∈ E(H) if and only if Iu intersects Jv . Interval graphs admit elegant characterizations [22,12], see [13], and linear-time
recognition algorithms [1,15,4]. By contrast, the class of interval digraphs so far lacks comparable simple forbidden structure
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characterizations, and the best algorithm for their recognition to date is a dynamic programming algorithm of complexity
O(nm6(n+m) log n) [23]. Motivated by the study of list homomorphisms (as explained below), we introduce a new digraph
analogue of interval graphs, and argue that it has much nicer properties than the usual interval digraphs. Indeed, we will
prove a simple forbidden structure characterization, which yields a low-degree polynomial-time recognition algorithm.

An adjusted interval digraph is an interval digraph H that admits an interval pair representation Iv, Jv, v ∈ V (H), in which
the intervals Iv and Jv have the same left endpoint. Note that the definition of an interval graph implies that an interval graph
is reflexive (each vertex has a loop). Interval digraphs in the classical sense may lack loops. (If the intervals Iv, Jv are disjoint
there is no loop at v.) However, an adjusted interval digraph must again be reflexive. In [5], we studied the special case of
adjusted interval digraphs H representable by intervals Iv, Jv, v ∈ V (H), in which each interval Jv is just one point. These are
called chronological interval digraphs [5], andwe have shown that they can be characterized by the absence of certain special
forbidden structures. In [24], a related class of interval catch digraphs has been characterized by the absence of certain other
forbidden structures.

Here, we provide a forbidden structure characterization of adjusted interval digraphs. The forbidden structure is
described in terms of a novel mechanism of ‘‘invertible pairs’’. Although invertible pairs may appear technical at first, we
demonstrate they are a natural technique for describing obstructions to interval graphs and digraphs. In particular, we
derive a characterization of undirected interval graphs in terms of invertible pairs, and exhibit its equivalence with other
well-known characterizations of interval graphs, in terms of induced cycles and asteroidal triples [22], or in terms of a
consecutive clique enumerations [12].

The presence of invertible pairs can be detected by an obvious simple algorithm implied by the definition. Thus our
characterization directly implies a simple polynomial-time recognition algorithm for the class of adjusted interval digraphs.

Each digraph H is associated with two related undirected graphs. We denote by U(H) the underlying graph of H , which
has an edge uv whenever u ≠ v and uv ∈ E(H) or vu ∈ E(H), and by S(H) the symmetric graph of H , which has an edge uv
whenever u ≠ v and uv ∈ E(H) and vu ∈ E(H). Note that the loops of H , if any, are removed from both U(H) and S(H).

Adjusted interval digraphs are also motivated by the study of list homomorphisms. A homomorphism f of a digraph G to
a digraph H is a mapping f : V (G)→ V (H) in which f (u)f (v) ∈ E(H) whenever uv ∈ E(G) [18]. If L(v), v ∈ V (G), are lists
(subsets of V (H)), then a list homomorphism of G to H (with respect to the lists L) is a homomorphism satisfying f (v) ∈ L(v)
for all v ∈ V (G). The list homomorphism problem LHOM(H) asks whether or not an input digraph G equipped with lists L
admits a list homomorphism f : G→ H with respect to L. The complexity of the list homomorphism problem LHOM(H) for
undirected graphs H has been classified in [6,8,9].

Of particular interest for this paper is the classification in the special case of reflexive graphs.

Theorem 1.1 ([6]). Let H be a reflexive graph.
If H is an interval graph, then problem LHOM (H) is polynomial-time solvable.
Otherwise, problem LHOM(H) is NP-complete.

The complexity of LHOM(H) for general relational structures (including digraphs) H has been classified in [2]. In the
special case of digraphs, a new forbidden structure characterization is given in [20]. The forbidden structure is called a
digraph asteroidal triple, or DAT; see Theorem 5.1. This result also yields a simplified useful form of the characterization
from [2] restricted to digraphs; see Theorem 5.2.

For reflexive digraphs H , we believe that LHOM(H) is polynomial precisely when H is an adjusted interval digraph.
Specifically, we observe that each adjusted interval digraph H has polynomial-time solvable LHOM(H), and conjecture
that, for any other reflexive digraph H , problem LHOM(H) is NP-complete. (This is an equivalent form of a conjecture from
[11,17].) Note that both Theorems 5.1 and 5.2 classify reflexive digraphs H with polynomial LHOM(H), but the conjectured
characterization is significantly more elegant, and does not follow from either of these theorems.

We observe that it suffices to verify the conjecture for digraphs whose underlying graphs are interval graphs. Then we
proceed to verify it for digraphs whose underlying graphs are complete graphs and trees; these graphs can be viewed as the
building blocks of interval graphs.

Thus it appears that, in the context of list homomorphisms, adjusted interval digraphs H play the same role for reflexive
digraphs as interval graphs H play for reflexive graphs—namely, they exactly identify the tractable cases of LHOM(H).

2. Invertible pairs

Assume that u, v form an edge of the digraph H , i.e., that uv ∈ E(H) or vu ∈ E(H). We say that uv is a forward edge if
uv ∈ E(H); a backward edge if vu ∈ E(H); and a double edge if it is both a forward edge and a backward edge. We also say
that a forward edge which is not double is a single forward edge, and similarly for a single backward edge. Since a loop is both
a forward edge and a backward edge, we consider it a double edge. If uv ∈ E(H), we say that u dominates v (and that v is
dominated by u) in H , regardless of whether the forward edge uv is single or double.

We define two walks, P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H , to be congruent if they follow the same pattern of
forward and backward edges, i.e., if xixi+1 is a forward edge if and only if yiyi+1 is a forward edge. If P and Q as above are
congruent walks, we say that P avoids Q if there is no edge xiyi+1 in the same direction (forward or backward) as xixi+1.
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An invertible pair in H is a pair of distinct vertices u, v such that

• there exist congruent walks P from u to v and Q from v to u such that P avoids Q ,
• there exist congruent walks P ′ from v to u and Q ′ from u to v such that P ′ avoids Q ′.

Note that it is possible that P ′ is the inverse of P and Q ′ is the inverse of Q , as long as both P avoids Q and Q avoids P .
(The inverse of a walk P = x0, x1, . . . , xn is the walk xn, xn−1, . . . , x0.)

Itwill turn out to beuseful to reformulate these definitions in termsof an auxiliary digraph. The pair digraphH+ associated
with H has vertices V (H+) = {(u, v) : u ≠ v}, and edges (u, v)(u′, v′), where

uu′, vv′ ∈ E(H) and uv′ ∉ E(H), or
u′u, v′v ∈ E(H) and v′u ∉ E(H).

We note that a directed walk in H+ from (u, v) to (v, u) yields two congruent walks: P , from u to v, and Q , from v to u,
such that P avoids Q ; and conversely, such walks P and Q yield a directed walk from (u, v) to (v, u) in H+.

Lemma 2.1. Suppose that u, v is an invertible pair in H. Then (u, v) and (v, u) belong to the same strong component C of the
pair digraph H+. Moreover, for any (x, y) in C, the reversed pair (y, x) also belongs to C, and thus each pair (x, y) in C is invertible.

If H has no invertible pair, then, for each strong component C of H+, there exists a reversed strong component C ′ ≠ C such
that (x, y) ∈ C if and only if (y, x) ∈ C ′.

Proof. These properties follow from the definition of a strong component and the observation that (u, v)(u′, v′) ∈ E(H+)
implies that (v′, u′)(v, u) ∈ E(H+). For instance, if (u, v), (v, u), (x, y) ∈ C , then a directed closed walk containing
(u, v), (x, y) yields by reversal a directed closedwalk containing (v, u), (y, x), and, by concatenationwith the directed closed
walk containing (u, v), (v, u), we obtain a directed closed walk containing (x, y), (y, x). �

We now illustrate the concept of invertible pairs. Consider first the directed four-cycle 01, 12, 23, 30. Here, 0, 2 is an
invertible pair, as we have congruent walks 012 and 230 which avoid each other. They correspond to the closed directed
walk (0, 2), (1, 3), (2, 0), (3, 1), (0, 2) in H+.

For a more complex example, consider the reflexive tree T2 from Fig. 1. (We denote the middle vertex c , so the
edges of T2 are aa, a′a′, bb, b′b′, cc, ac, a′c, cb, cb′.) The pair a, a′ is an invertible pair. Indeed, in H+, (a, a′) dominates
(c, a′), which in turn dominates (b, a′), which dominates (b, c), which finally dominates (b, b′). By the same token,
according to the definition of H+, we also have that (b, b′) dominates (c, b′), since cb, b′b′ are edges of H but b′b is not.
Similarly, (c, b′) dominates (a′, b′), which dominates (a′, c), which dominates (a′, a). We have obtained a directed walk
(a, a′), (c, a′), (b, a′), (b, c), (b, b′), (c, b′), (a′, b′), (a′, c), (a′, a) in H+, which corresponds to the two congruent walks
a, c, b, b, b, c, a′, a′, a′ and a′, a′, a′, c, b′, b′, b′, c, a in H , where the first walk avoids the second one. By symmetry, we also
have the walk (a′, a), (c, a), (b′, a), (b′, c), (b′, b), (c, b), (a, b), (a, c), (a, a′) in H+.

As a last example, consider the undirected reflexive four-cycle 0, 1, 2, 3. We view an undirected graph as a symmetric
digraph, with each undirected edge xy, x ≠ y, replaced by the double edge xy, yx. Thus the reflexive four-cycle has the
edges 00, 11, 22, 33, 01, 10, 12, 21, 23, 32, 30, 03. In this example, the pair 0, 2 is again invertible, but the closed walk
(0, 2), (1, 3), (2, 0), (3, 1), (0, 2) used for the directed version does not qualify, since now, for example, 03 ∈ E(H).
Nevertheless, H+ contains the closed walk (0, 2), (1, 2), (1, 3), (2, 3), (2, 0), (3, 0), (3, 1), (0, 1), (0, 2).

A min ordering of H is a linear ordering < of the vertices of H that satisfies the following property: if uv ∈ E(H) and
u′v′ ∈ E(H), then min(u, u′)min(v, v′) ∈ E(H). (A min ordering has also been called an X-underbar enumeration [14,18].)

In the case of reflexive digraphs, there is an equivalent simpler definition of a min ordering.

Lemma 2.2. Let H be a reflexive digraph. Then a linear ordering < of V (H) is a min ordering if and only if, for any three vertices
i < j < k, we have

• ik ∈ E(H) implies ij ∈ E(H), and
• ki ∈ E(H) implies ji ∈ E(H).

Proof. The necessity of the two properties follows by taking the edge ik (respectively ki) and the loop at j. To see
the sufficiency, consider edges xy, x′y′ of H and assume without loss of generality that x < x′, y′ < y; thus
min(x, x′)min(y, y′) = xy′. If x = y′, then xy′ is an edge, since H is reflexive. If x < y′, then xy′ is an edge, because of
the triple x < y′ < y. If y′ < x, then xy′ is an edge, because of the triple y′ < x < x′. �

Corollary 2.3. Let H be a reflexive digraph. A linear ordering of the vertices of H is a min ordering if and only if, for each vertex
v, the vertices that follow v in the ordering consist of

1. first, the vertices that are adjacent to v by double edges,
2. second, the vertices that are adjacent to v by single edges, either all forward or all backward, and
3. last, the vertices that have no edges to or from v.
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Of course, any of the three groups could be empty. Note that, in particular, in a min ordering of H it cannot be the case
that a vertex v has both single forward and single backward edges towards vertices that follow it in the ordering.

The following result relates min orderings to adjusted interval digraphs.

Theorem 2.4. A reflexive digraph is an adjusted interval digraph if and only if it admits a min ordering.

It is interesting to note that a reflexive undirected graph H has a min ordering if and only if it is an interval graph [6].
Thus Theorem 2.4 provides additional motivation in favour of adjusted interval digraphs.

Proof. Given a min ordering of a reflexive digraph H , we can arrange the common starting points of Iv, Jv in the same
order as the vertices v of H appear in the min ordering, and define intervals Iv and Jv as follows. The interval Iv ends
at the point corresponding to the last vertex w such that vw is a forward edge, and the interval Jv ends at the point
corresponding to the last vertex such that vw is a backward edge (i.e., wv is an edge of H). It is clear that H is the interval
digraph corresponding to the adjusted interval representation Iv, Jv, v ∈ V (H). Conversely, given an adjusted interval pair
representation Iv, Jv, v ∈ V (H), we obtain a min ordering of H according to the left to right order of the common left
endpoints of the intervals. �

According to Corollary 2.3, if v has no single forward edges towards later vertices, the interval Iv ends at the last vertex
w such that vw is a double edge, and the interval Jv ends at the last vertex w such that vw is a backward edge. (Similarly, if
v has no backward edges towards later vertices.)

Min orderings also play an important role for list homomorphism problems; see [14,18].

Theorem 2.5. If H admits a min ordering, then problem LHOM(H) is polynomial-time solvable.

Finally, we observe that an invertible pair is an obstruction to the existence of a min ordering.

Lemma 2.6. If H has an invertible pair, then H does not admit a min ordering.

Proof. Suppose that (u, v)(u′, v′) is an edge of the pair digraph H+. Suppose that < is a min ordering of H , and suppose
that u < v. Then we must also have u′ < v′. Following the directed closed walk in H+ which contains (u, v) and (v, u), we
obtain a contradiction. �

3. Adjusted interval digraphs

In this section, we give our forbidden structure characterization of adjusted interval digraphs. This is the main result of
our paper.

Theorem 3.1. A reflexive digraph H is an adjusted interval digraph if and only if it has no invertible pair.

In fact, we shall prove the following stronger result.

Theorem 3.2. The following statements are equivalent for a reflexive digraph H.

1. H is an adjusted interval digraph.
2. H has a min ordering.
3. H has no invertible pairs.
4. The vertices of H+ can be partitioned into sets D,D′ such that
• (x, y) ∈ D if and only if (y, x) ∈ D′,
• (x, y) ∈ D and (x, y) dominates (x′, y′) in H+ implies that (x′, y′) ∈ D,
• (x, y), (y, z) ∈ D implies that (x, z) ∈ D.

Proof. It suffices to assume that H is weakly connected.
The equivalence of 1 and 2 is proved in Theorem 2.4. Furthermore, Lemma 2.6 shows that 2 implies 3. It is also quite

straightforward to see that 4 implies 2; it suffices to define x < y if (x, y) ∈ D. Thus it remains to show that 3 implies 4.
Therefore, we assume that H has no invertible pair. Note that we may assume that H is weakly connected, otherwise

we can order each weak component separately. Recall that, for each strong component C of H+, there is a corresponding
reversed strong component C ′ whose pairs are precisely the reversed pairs of the pairs in C; we shall say that C, C ′ are
coupled strong components. Note that a strong component C may be coupled with itself: Lemma 2.1 implies that invertible
pairs lie in self-coupled components.

The partition of V (H+) into D,D′ will correspond to separating each pair of coupled strong components C, C ′ of H+. The
vertices of one strong components will be placed in the set D, and their reversed pairs will go to D′. We wish to make these
choices in such a way as to avoid creating a circular chain in D, i.e., a sequence of pairs (x0, x1), (x1, x2), . . . , (xn, x0) ∈ D.

We shall proceed as follows. Initially, the sets D and D′ are empty. We say that a strong component C of H+ is ripewhen
it has no edge to another strong component in H+ − D. In the general step, we shall take a ripe component C and place it
in D, and simultaneously place C ′ in D′. (Note that C ′ need not be ripe, but it has no edge from another strong component.)
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We will show that there is always at least one ripe strong component which can be added to D without creating a circular
chain.

The sets D,D′ will always have the following properties (which are true initially). There is no circular chain in D; each
strong component of H+ belongs entirely to D, D′, or to V (H+) − D − D′; the pairs in D′ are precisely the reversed pairs of
the pairs in D; there is no edge of H+ from D to a vertex outside of D; and there is no edge of H+ from a vertex outside D′ to
a vertex in D′. At the end of the algorithm, each pair (x, y) with x ≠ y will belong either to D or to D′, and hence the final D
will have no circular chain, and hence satisfy the transitivity property of 4.

We now prove that the algorithm maintains these properties.
Suppose, for a contradiction, that the current D has no circular chain, but that the addition of C to D creates a circular

chain in C ∪ D. Suppose that (x0, x1), (x1, x2), . . . , (xn, x0) is a circular chain that has occurred for the first time during the
execution of the algorithm, and also suppose that at that time no shorter circular chain has occurred. Since there are no
invertible pairs, and since we never place both a pair and its reverse in D, we must have n ≥ 2. We may assume without
loss of generality that (xn, x0) ∈ C; note that other pairs of the circular chain could also be in C .

Case 1. Assume that, in H , there is at least one edge between the vertices x0, x1, . . . , xn, say an edge xaxb.
We claim that this implies that H is complete on x0, x1, . . . , xn. We make the following elementary observations,

assuming that j ≠ i.

1. If xj dominates xi, then xj−1 dominates xi in H .
2. If xj dominates xi, then xj dominates xi−1 in H .

To prove the first observation, we note that, if xj dominates xi but xj−1 does not dominate xi inH , then (xj−1, xj) dominates
(xj−1, xi) in H+. Since (xj−1, xj) is in C ∪D, the pair (xj−1, xi) must belong to C ∪D, implying a shorter circular chain in C ∪D.

To prove the second observation,we similarly note that, if xj dominates xi but xj does not dominate xi−1 inH , then (xi−1, xi)
dominates (xi−1, xj) in H+, also implying a shorter circular chain.

Consider now the fact that xa dominates xb in H . Property (1) implies that xa−1, xa−2, . . . , xb+1 all dominate xb. Since xb+1
dominates xb, property (2) implies that xb+1 dominates xb−1, xb−2, . . . , xb+2, i.e., it dominates all other vertices. At this point
we use (1) again to derive that xb dominates xb−1, and repeated application of (2) as before implies that xb dominates all
other vertices. Continuing in this way, we see that each xj dominates all other vertices, i.e., the vertices x0, x1, . . . , xn induce
a complete graph in H .

We conclude the proof of Case 1 by showing that C is a trivial component (with a single vertex). If C has more than
one vertex, then so does its corresponding coupled component C ′, which contains the vertex (x0, xn). Hence we assume for
contradiction that (x0, xn) dominates some (a, b) not in C ∪ D.

Up to symmetry, we may assume that x0 dominates a in H , xn dominates b in H , and x0 does not dominate b in H . Since
(a, b) is not in C ∪ D, the pair (x0, x1), which is in C ∪ D, cannot dominate (a, b), which implies that x1 does not dominate
b in H . If x2 dominates b in H , then (x1, x2) dominates (x0, b) which dominates (a, b) in H+; this is impossible, as this is a
directed path starting in C and ending outside C ∪ D, so some edge would exit from C ∪ D against the rules we maintain.
Therefore x2 does not dominate b inH; if x3 dominates b inH , then (x2, x3) dominates (x1, b)which dominates (x0, b)which
dominates (a, b), yielding the same contradiction. Therefore, x3 does not dominate b in H , and continuing in this way we
would derive that xn does not dominate b, which is false.

Thus we have C = {(xn, x0)}, C ′ = {(x0, xn)}. The same proof also shows that C ′ is ripe, as no (a, b) dominated by (x0, xn)
can exist outside C ∪D. It is now easy to see that, if both (xn, x0) and (x0, xn) complete a circular chain with D, then D already
had a circular chain.

Case 2. Assume that vertices x0, x1, . . . , xn are independent in H .

Lemma 3.3. Let x0, x1, . . . , xn be independent in H.
Suppose that p is a vertex of H, distinct from x0, x1, . . . , xn, which dominates xi+1 but not xi (or which is dominated by xi+1

but not by xi).
Then (x0, x1), . . . , (xi, p), (p, xi+2), . . . , (xn, x0) is also a circular chain created at the same time.

Proof. We conclude from the assumption that (xi, xi+1) dominates (xi, p) in H+, and, since (xi, xi+1) is in C ∪ D, we must
also have (xi, p) in C ∪ D. Furthermore, since xi+1 does not dominate or is dominated by xi+2 in H , we also have (xi+1, xi+2)
dominating (p, xi+2), whence (p, xi+2) is in C ∪D. In conclusion, we see that any such vertex p can replace xi+1 in the circular
chain (x0, x1), (x1, x2), . . . , (xn, x0). �

Lemma 3.4. Let vertices x0, x1, . . . , xn be independent in H.

• If p is a vertex of H, distinct from x0, x1, . . . , xn, which dominates xj and xk with j ≠ k, then p dominates each xi.
• If p is a vertex of H, distinct from x0, x1, . . . , xn, which is dominated by xj and xk with j ≠ k, then p is dominated by each xi.
• If p, distinct from x0, x1, . . . , xn, dominates xj and is dominated by xk with j ≠ k, then p both dominates and is dominated by

each xi, i ≠ j, k.

Proof. If p dominates xi+1 but not xi, then Lemma 3.3 implies that p can replace xi+1 in the circular chain; however, at least
one of xj, xk is not equal to xi+1, whence the vertices of the chain are not independent, and we conclude by Case 1. The other
items are proved similarly. �
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We now claim that the circular chain (x0, x1), (x1, x2), . . . , (xn, x0) has at most one pair, say (xn, x0), in C (with all other
pairs in D). Otherwise, assume that some (xi, xi+1), i ≠ n is also in the strong component C , and let P be a directed path
in C from (xn, x0) to (xi, xi+1). Let the penultimate pair on this path be (p, q), and, without loss of generality, assume that
pxi, qxi+1 ∈ E(H), pxi+1 ∉ E(H). (In the case xip, xi+1q ∈ E(H), xi+1p ∉ E(H), the argument is symmetric.) By Lemma 3.4, p
does not dominate any xj with j ≠ i. Next, we claim that q does not dominate xi. Indeed, if q dominates xi, then Lemma 3.4
implies that q dominates all xj. This is a contradiction, since it would mean that (p, q) dominates (xi, xi+2) in H+, implying
that (xi, xi+2) is in C ∪ D and thus there is a shorter circular chain in H . Therefore, q does not dominate xi. By a double
application of Lemma 3.3, we conclude that we can replace xi and xi+1 by p and q in the circular chain in H . Continuing in
this way, we replace (p, q) by the previous pair on the path P , until we obtain the pair (p′, q′), which is the first pair after
(xn, x0). Since x0 is adjacent to q′, we are back in Case 1.

Thus the circular chain (x0, x1), (x1, x2), . . . , (xn, x0) has only the pair (xn, x0) in C , and any circular chain in C ∪ D has
exactly one pair in C . We now suppose, in addition to the previous assumptions, that our circular chain minimizes the sum
of the lengths of all distances amongst the vertices x0, x1, . . . , xn, in the underlying graph of H .

The digraph H turns out to have a very special structure. We claim that in this situation there exists a non-empty set K
of vertices of H such that H \ K has weak components C1, C2, . . . , Cm, where xi ∈ Ci, i = 1, 2, . . . , n, and such that if p ∈ K
dominates (respectively is dominated by) a vertex in Ci, then p dominates (respectively is dominated by) all vertices in Ci;
moreover, if x′0, x

′

1, . . . , x
′
n are any vertices with x′i ∈ Ci, then (x′0, x

′

1), (x
′

1, x
′

2), . . . , (x
′
n, x
′

0) is also a circular chain.
Indeed, we let K consist of all vertices of H that dominate each xi, or are dominated by each xi. It is easy to see that K

must be non-empty, as Lemma 3.4 implies that any p dominated by xj, xk, j ≠ k belongs to K . Such a p must exist by our
new minimality assumption, as otherwise we could replace xj by its neighbour p on a path joining xj to xk by Lemma 3.3.

The same argument shows that two different xj, xk cannot lie in the same weak component Ci of H \ K , as any path
joining xj to xk was shown to contain a vertex of K . Therefore, we can number the components so that Ci contains xi for
i = 1, 2, . . . , n. (There may be additional components Ci with i = n+ 1, . . . ,m.) Now, Lemma 3.3 implies that each xi can
be replaced by any neighbour in Ci; thus any vertex of Ci can be taken as xi. Thus, each p ∈ K that dominates a vertex in Ci
also dominates all vertices in Ci, and similarly for vertices p dominated by a vertex in Ci.

This creates a situation where any pair (y, y′) in the strong component C of H+ containing (xn, x0) must satisfy y ∈
Cn, y′ ∈ C0. This easily implies that the strong component C does not have any edges entering it from the outside, and hence
the strong component C ′ coupled with C is also ripe. We claim that C ′ cannot complete a circular chain with D. Otherwise,
the pair (x0, xn) would also complete a circular chain by the same argument. Thus, both (x0, xn) and (xn, x0) complete a
circular chain with D, whence D must already contain a circular chain, a contradiction.

Of course, if the addition of C ′ does not create a circular chain, then we add C ′ to D and C to D′. �

This gives us a polynomially verifiable forbidden subgraph characterization of adjusted interval digraphs. As noted above,
checking for invertible pairs amounts to computing the strong components of H+ and checking for the existence of a pair
(u, v), (v, u) within one strong component. Thus, the recognition of adjusted interval digraphs is polynomial: one can, for
instance, explicitly construct the pair digraph H+ in time O(m2

+ n2) and test it for invertible pairs in the same time. There
may, however, be more efficient ways.

We ask the following questions.

1. Is there a linear-time recognition algorithm for adjusted interval digraphs?
2. Are there natural intractable digraph problems that can be solved in polynomial time on the class of adjusted interval

digraphs?

In the undirected case of interval graphs, the answer to both questions is yes [13].

4. Interval graphs

As we noted above, an undirected graph can be viewed as a digraph in which each undirected edge uv is replaced by the
directed edges uv, vu. Equivalently, the definitions of invertible pair, min ordering, etc., can be read as written above, but
interpreting edges as undirected pairs. Congruent walks become walks of equal length. Note, however, that H+ remains a
digraph.

Theorem 4.1. A reflexive graph is an interval graph if and only if it has no invertible pairs.

Proof. A reflexive graph has a min ordering if and only if it is an interval graph [6]. An invertible pair is an obstruction to
having a min ordering, according to Lemma 2.6. For a graph H without invertible pairs, viewing H as a digraph, Theorem 3.2
implies that it has a min ordering, whence it must be an interval graph. �

Theorem 4.1 offers a nice link between two of the best known classical characterizations of interval graphs. An asteroidal
triple in a graph H is a triple of vertices, such that any two are joined by a path that is disjoint from the neighbourhood of the
third vertex. An enumeration of the maximal cliques of H is called a consecutive clique enumeration if the cliques containing
any particular vertex are consecutive in the enumeration.
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Theorem 4.2. The following statements are equivalent for a reflexive graph H.

1. H has no asteroidal triple or a chordless cycle Ck, k > 3.
2. H has a consecutive clique enumeration.
3. H has no invertible pair.

Proof. An elegant proof of the fact that 1 implies 2 is given in [16], and we do not reprove it here.
To see that 2 implies 3, consider a consecutive clique enumeration K 1, K 2, . . . , Km of H , and an invertible pair u, v in H ,

with its associated walks P,Q , P ′,Q ′ (from the definition of invertible pair). Say, P is the walk u = u0, u1, u2, . . . , uk = v;
Q is the walk v = v0, v1, v2, . . . , vk = u; P ′ is the walk v = uk, uk+1, . . . , uk+k′ = u; and Q ′ is the walk u =
vk, vk+1, . . . , vk+k′ = v. Let s = s(x, y) denote the superscript of a maximal clique K s which contains the edge xy.
Suppose without loss of generality that s(u0, u1) < s(v0, v1). Then we must have s(u0, u1) < s(v1, v2), since otherwise
s(v1, v2) < s(u0, u1) < s(v0, v1), with v1 in the first clique and the third clique, but not in the second clique, which is
impossible. (Recall that u0v1 ∉ E(H).) A similar argument implies that s(u1, u2) < s(v1, v2), and, continuing in this vein
along the paths P,Q , we obtain s(uk, uk+1) < s(vk, vk+1). Comparing s(u0, u1) < s(v0, v1) and s(uk, uk+1) < s(vk, vk+1),
we observe that u = u0 = vk lies in the cliques with subscripts s(u0, u1), s(vk, vk+1), but not s(v0, v1), implying that
s(vk, vk+1) < s(v0, v1). Thus we were able to derive s(vk, vk+1) < s(v0, v1) from s(u0, u1) < s(v0, v1) along P,Q . Similarly,
s(uk, uk+1) < s(vk, vk+1) implies that s(v0, v1) < s(vk, vk+1), which is a contradiction; therefore, 2 implies 3.

To see that 3 implies 1, suppose that u, v, w is an asteroidal triple. Let, for {x, y, z} = {u, v, w}, P(x, y) denote a path
joining x and y which does not contain a neighbour of z, and let ℓ(x, y) be the length of P(x, y). We will show that u, v
form an invertible pair. Indeed, let P be the walk consisting of u, u, . . . , u, of length ℓ(v, w), concatenated with P(u, v),
and concatenated with the walk v, v, . . . , v, of length ℓ(w, u), and let Q be the path P(v, w), concatenated with the walk
w, w, . . . , w of length ℓ(u, v), and concatenated with the path P(w, u). It is easy to see that P avoids Q and Q avoids P;
hence u, v form an invertible pair. Since an induced cycle of length six or more contains an asteroidal triple, it remains to
consider only the cycles C4, C5, in which case an invertible pair is easily constructed along the same lines. �

Note that the fact that H is reflexive is relevant for testing for invertible pairs, but irrelevant for asteroidal triples,
chordless cycles, or consecutive clique enumerations. Both the characterization of Lekkerkerker and Boland [22] and that of
Fulkerson and Gross [12] can now be derived from Theorems 4.1 and 4.2. Note, however, that the proof uses the result of
Halin [16].

5. An application to the list homomorphism problem

We now illustrate the usefulness of the new class (of adjusted interval digraphs) in the context of list homomorphisms.
A digraph asteroidal triple (DAT) in a digraph H consists of three vertices u, v, w and three invertible pairs of vertices

s(u), b(u), s(v), b(v), and s(w), b(w), so that for any permutation x, y, z of u, v, w there exist walks P from x to s(x), Q ′ from
y to b(x), and Q ′′ from z to b(x), such that P avoids both Q ′ and Q ′′. Example DATs can be seen in the proof of Corollary 5.10.

Theorem 5.1 ([20]). Let H be any digraph. If H contains a DAT, then LHOM(H) is NP-complete; otherwise, LHOM(H) is
polynomial-time solvable.

The min orderings defined above are a particular case of the following general concept. Let k be a positive integer. The
k-th power ofH is the digraphHk with vertex set V (H)k in which (u1, u2, . . . , uk)(v1, v2, . . . , vk) is an edge just if each uivi is
an edge of H . A polymorphism of order k is a homomorphism of Hk to H . A polymorphism f is conservative if f (u1, u2, . . . , uk)
always is one of u1, u2, . . . , uk. From now on, we shall use the word polymorphism to mean a conservative polymorphism.

A polymorphism f of order two is commutative if f (u, v) = f (v, u) for any u, v. IfH admits a min ordering<, then clearly
defining f (u, v) = min(u, v) is a polymorphism, which is commutative.

A polymorphism f : H3
→ H is called a majority polymorphism if f (u, u, v) = f (u, v, u) = f (v, u, u) = u for any u, v. A

ternary polymorphism f : H3
→ H is majority over a, b if f (a, a, b) = f (a, b, a) = f (b, a, a) = a, f (b, b, a) = f (b, a, b) =

f (a, b, b) = b.
In proving Theorem 5.1 in [20], we have also obtained the following classification of LHOM(H) (a simplification of the

result from [2]). Recall that by our definition each polymorphism is conservative.

Theorem 5.2 ([20]). Let H be any digraph.
If, for every pair of vertices a, b of H, there exists a polymorphism of H which either is ternary and majority over a, b, or is

binary and commutative over a, b, then LHOM(H) is polynomial-time solvable.
Otherwise, if some pair of vertices a, b does not admit either of these polymorphisms, then problem LHOM(H) is NP-complete.

The following fact follows directly from Theorems 2.5 (or Theorem 5.2) and 2.4.

Theorem 5.3. If H is an adjusted interval digraph, then LHOM(H) is polynomial-time solvable.

We conjecture that the converse also holds. (This is an equivalent form of a conjecture from [11,17].)
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Conjecture 5.4. If a reflexive digraph H is not an adjusted interval digraph, then LHOM(H) is NP-complete.

Wenote again that both Theorems 5.1 and 5.2 give criteria for theNP-completeness of LHOM(H). However, the conjecture
proposes a much cleaner criterion. In particular, note that Theorem 5.1 says that the existence of a DAT in H implies that
LHOM(H) is NP-complete. A DAT consists of some invertible pairs, together with much additional and complex structure.
The conjecture claims that the simple existence of an invertible pair inH suffices to imply the NP-completeness of LHOM(H).

We also had a similar conjecture for irreflexive digraphs [11,17]. However, that conjecture has turned out to be
false [19,3], and we shall discuss the case of irreflexive digraphs in [19]. We are currently working, with Carvalho, on a
possible approach to Conjecture 5.4, [3].

In the remainder of the paper, we shall verify Conjecture 5.4 in two important cases, namely for semi-complete digraphs,
and for trees. We begin by deriving a useful tool.

Theorem 5.5. Let H be a reflexive digraph. If H satisfies any of the conditions below, then LHOM(H) is NP-complete.

• H contains a directed reflexive three-cycle C⃗3.
• U(H) is not an interval graph.
• S(H) is not an interval graph.

These results can be deduced from Theorem 5.1. In particular, it is explicitly stated in [20] that, in a reflexive digraph H ,
an (undirected) asteroidal triple in U(H) yields a DAT in H . We also cite [7,21] for the case when U(H) contains a chordless
cycle of length greater than three. This proves the second fact. In all other cases, DATs are not difficult to find. (The first fact
was also shown in [11], and the last fact in [6].)

Thus we may restrict our attention to reflexive digraphs H for which both S(H) and U(H) are interval graphs, and
moreover such that H does not contain an induced reflexive three-cycle. The most basic interval graphs are the complete
graphs and certain trees (that is, caterpillars). These are the two classes of reflexive digraphs for which we shall verify
Conjecture 5.4.

A digraph is semi-complete if its underlying graph is complete. A digraph is a tree if its underlying graph is a tree in the
usual sense. We first verify Conjecture 5.4 for semi-complete digraphs.

Theorem 5.6. Suppose that H is a reflexive semi-complete digraph. If H contains an invertible pair, then LHOM (H) is NP-
complete.

Proof. We will show that, if there exist invertible pairs in H , then some invertible pair a, b admits no polymorphism, as
prescribed by Theorem 5.2.

It turns out that some structures in H limit our choices of polymorphisms from the theorem. The first such structure is
an invertible pair; this is easy to see from the definition of an invertible pair, and we state it without proof.

Lemma 5.7. No binary polymorphism of H can be commutative over an invertible pair.

Let R be the reflexive digraph V (R) = {a, b, c} and E(R) = {aa, bb, cc, ab, bc, ac, ca}.

Lemma 5.8. There is no polymorphism g on the digraph R that is a majority over a, b.

Proof. Suppose that g is a polymorphism of Rwhich is a majority over a, b, i.e., g(a, a, b) = g(a, b, a) = g(b, a, a) = a, and
g(a, b, b) = g(b, a, b) = g(b, b, a) = b. We claim that g must also be a majority over b, c. Note that g(c, c, b)g(a, a, b) =
g(c, c, b)a ∈ E(R). Hence, g(c, c, b) = c , as b does not dominate a in R. Similarly, g(c, b, c) = g(b, c, c) = c. Also,
g(b, b, c)g(b, b, a) = g(b, b, c)b ∈ E(R); thus g(b, b, c) = b, and similarly g(b, c, b) = g(c, b, b) = b. Now, we can
conclude that g is also a majority over a, c , using the fact that g(a, a, c)g(b, b, c) ∈ E(R) and g(b, b, c)g(c, c, a) ∈ E(R).

Now we note that we have g(a, b, c)g(b, b, c) = g(a, b, c)b ∈ E(R), which implies that g(a, b, c) ∈ {a, b} (since c does
not dominate b in R); we have g(a, b, b)g(a, b, c) ∈ E(R), which similarly implies that g(a, b, c) ∈ {b, c}; and we have
g(c, a, c)g(a, b, c) ∈ E(R), which similarly implies that g(a, b, c) ∈ {a, c}, which is impossible. �

We now proceed with the proof of Theorem 5.6. Assume that H has an invertible pair. According to Theorem 5.5, we
may assume that H does not contain an induced reflexive three-cycle C⃗3, and both S(H) and U(H) are interval graphs; in
particular, S(H) does not contain an induced four-cycle. Finally, we may assume that, in any copy of R induced in H , the pair
corresponding to a, b is not invertible. This directly follows from Lemmas 5.7 and 5.8, and Theorem 5.2.

SinceH has invertible pairs, the pair digraphH+ has a self-coupled strong component C . According to Lemma 2.1, all pairs
in C are invertible. We first note that, if (a, b) dominates (c, d) in C , then (a, b) also dominates (a, d), and (a, d) dominates
(c, d); thus, we also have (a, d) ∈ C , and a, d is an invertible pair as well.

Consider a closed directedwalkW = (x0, y0), (x1, y1), . . . , (xn, yn), (x0, y0) in C that contains both (a, b), (b, a) for some
a, b ∈ V (H). All pairs xi, yi are invertible, and so are all pairs xi, yi+1 (addition modulo n). In fact, the above argument shows
that we may assume each (xi, yi+1) to belong to W . Recall that, for each i, the edge from (xi, yi) to (xi+1, yi+1) in H+ is due
to the edges xixi+1, yiyi+1 in H , which could be forward or backward.
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We first assume that for some iwe have xixi+1, yiyi+1 forward and xi+1xi+2, yi+1yi+2 backward.Without loss of generality,
let us assume that i = 0, i.e., that x0x1, x2x1, y0y1, y2y1 ∈ E(H) and x0y1, y2x1 ∉ E(H). Since H is semi-complete, we must
have y1x0, x1y2 ∈ E(H). If y1x1 ∉ E(H), then y1, x0, x1 are all distinct and y1x1 ∈ E(H), whence either x1x0 ∉ E(H), yielding
an induced C⃗3 on y1, x0, x1, or x1x0 ∈ E(H), yielding an induced copy of R on the same vertices, with invertible pair x1, y1;
both contradict our assumptions. Thus, y1x1 ∈ E(H), and, by a symmetric argument focused on x1, y1, y2, we also deduce
that x1y1 ∈ E(H). At this point, the absence of R on x0, x1, y1 implies that x0x1 is a double edge, and similarly on x1, y1, y2
we conclude that y1y2 is also a double edge. Consider now the pair x0, y2: if x0y2 is not an edge then we find an induced R
on y1, x0, y2, and, if y2x0 is not an edge, we find an induced R on x1, y2, x0. Therefore, x0y2 is also a double edge; this means
that S(H) contains an induced four-cycle x0x1y1y2x0, which contradicts our assumptions.

It remains to consider the case when all edges xixi+1, yiyi+1 are forward (or all backward). In this situation, we claim that
all pairs xi, yi form a double edge xiyi. (Indeed, if yixi ∉ E(H), then xiyi ∈ E(H), andwe derive an induced C⃗3 or R on xi, yi, yi+1;
and if xiyi ∉ E(H), thenwe consider instead xjyj, where xj = yi, yj = xi, and proceed similarly.) This is impossible, as we have
shown that the pairs (xi, yi+1) may be assumed to be on the cycle, and they cannot form double edges, by assumption. �

Thus the conjecture holds for semi-complete digraphs.
We now turn to trees. In this case, we will provide a direct proof, as we are able to describe exactly which trees H yield

tractable problems LHOM(H).
It is well known [13] that a tree is an interval graph if and only if it is a caterpillar, i.e., the removal all leaves yields a path.

Thus we want to decide which orientations of caterpillars yield adjusted interval digraphs. Let S(x) denote the set of leaves
of H adjacent to the vertex x ∈ P . As usual, we refer to H as a tree, or star, etc., to mean that U(H) (without the loops) is a
tree, or star, etc., respectively.

If H is a star, we shall define H to be a good caterpillar if it does not contain, as an induced subgraph, the tree T2 depicted
below. If H is not a star, we define it to be a good caterpillar if it has a longest path P = v0, v1, . . . , vk, vk+1 satisfying the
following conditions for all i. (Note that v1, v2, . . . , vk is the path P , and that v0 ∈ S(v1), vk+1 ∈ S(vk).)
1. If vivi+1 ∈ E(H), then viv ∈ E(H), for all v ∈ S(vi)− vi−1.
2. If vi+1vi ∈ E(H), then vvi ∈ E(H), for all v ∈ S(vi)− vi−1.

Note that, if vivi+1 is a double edge, then so are all viv, v ∈ S(vi)−vi−1. Observe that there are no restrictions on v0, other
than those arising from the restrictions on v1. Indeed, all edges v1v for v ∈ S(v1)− v0 must follow the direction of the edge
v1v2 (forward, backward, or double)—with the possible exception of a single vertex v, which must be the vertex v0. Thus,
such a v0 can be chosen if and only if the restrictions on v1 have at most one exception. Similarly, there are no restrictions
on vk+1, other than those arising from the restrictions on vk. All edges vkv for v ∈ S(vk) must follow the direction of the
edge vkvk+1. It is easy to see that such a vk+1 can be chosen if and only if between vk and S(vk) there does not exist at the
same time a single forward edge and a single backward edge. Finally, we note that the exceptional case, when H is a star,
also conforms to the general definition; we have chosen to state it separately only for convenience.

Theorem 5.9. Let H be a reflexive digraph that is a tree. Then the following statements are equivalent.
1. H is a good caterpillar.
2. H is an adjusted interval digraph.
3. H has no invertible pair.
4. H does not contain, as an induced subgraph, any of the trees T1, . . . , T7, or their reverses.
Proof. 1 implies 2 via Theorem 2.4, as a good caterpillar can be ordered starting from v0 and proceeding to v1, v2, . . . , vk,
with listing the double edges of S(vi)− vi−1 first, as suggested by Corollary 2.3. The definition of a good caterpillar ensures
that the listing for S(vi)− vi−1 can be chosen to end with vi+1.

2 and 3 are equivalent by Theorem 3.1, and 3 implies 4 by inspection. (We have already shown that a, a′ is an invertible
pair in T2. We leave it to the reader to find invertible pairs in the other trees.)

Theorem 2.4 allows us to derive 4 from 2: none of the forbidden subtrees allows a min ordering. To see this, in the trees
T1, T3, T4, focus on the vertices 0, 1, 2, and in the trees T2, T5, T6, T7, focus on the vertices a, a′, b, b′.

It remains to show that 4 implies 1. Thus, suppose that H is a reflexive tree which does not contain any of T1–T7 or their
reverses. Since H does not contain T1, U(H) is a caterpillar. If H is a star, the conclusion now follows. Thus assume that H is
not a star: when all leaves of H are removed we obtain a path P , say P = p, r, s, . . . , y, z. We will prove that one of p, z can
be chosen as v1 and the other as vk. Suppose first that p cannot be chosen to satisfy the condition for v1. Then, in S(p), there
must be two vertices v, v′ such that the edges pv, pv′ do not follow the direction of the edge pr on P . If pr is a double edge,
thismeans that pv, pv′ are single edges. SinceH does not contain T3, both are forward (or both backward) edges. This implies
that all edges pv, v ∈ S(p) follow the direction of pr , and thus p can be chosen to satisfy the condition for vk. Similarly, if pr
is a single (forward or backward) edge, p can be chosen as vk, since H does not contain T2. Therefore, each of p, z satisfies
the condition for v1 or for vk. Suppose next that neither p nor z satisfies the condition for v1. Then each contains two single
edges whose direction does not follow the direction of pr; this contradicts the fact that H does not contain T5 and T6 or their
reverses. Similarly, the absence of T7 implies that at least one of p, z satisfies the condition for vk. The absence of T4 (and its
reverse) implies that each intermediate vertex r, s, . . . , y of P satisfies the condition for vi if its left or its right neighbour on
P plays the role of vi+1. Finally, if one vertex of P requires its left neighbour, while another requires its right neighbour, we
again obtain a contradiction as above with the fact that H does not contain the trees T5, T6, T7. �
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Fig. 1. Minimal trees with invertible pairs. Dashed edges are optional; edges without direction can be forward, backward or double; dotted lines denote
paths; loops are omitted.

We now prove the following dichotomy classification.

Corollary 5.10. Let H be a reflexive digraph that is a tree.
If H is a good caterpillar, then H has a min ordering and LHOM(H) is polynomial-time solvable.
Otherwise, H contains one of the trees T1–T7 in Fig. 1, or their reverses, as an induced subgraph, and LHOM(H) is NP-complete.

Proof. If H is a good caterpillar, the theorem implies that it has a min ordering, and hence LHOM(H) is polynomial-time
solvable. Otherwise, the theorem implies that H contains T1–T7. We now claim that for each reflexive digraph H containing
one of the trees T1–T7, the problem LHOM(H) is NP-complete.

If H contains T1, then S(H) is not an interval graph, and hence LHOM(H) is NP-complete.
If H contains T2, then H has a DAT on the vertices a, a′, b. Indeed, the walk a← a← a is congruent to and avoids both

walks a′ ← a′ ← a′ and b← c ← a′. (Here we write c for the central vertex of T3.) Similarly, a′ ← a′ ← a′ is congruent
to and avoids both a← a← a and b← c ← a; and b→ b is congruent to and avoids both a→ c and a′ → c. Finally, we
observe that two pairs a, a′ and b, c are both invertible: for a, a′ we have already noted this in the illustration of invertible
pairs below Lemma 2.1. For b, c , we observe that the walk b → b ← c ← a ← a ← a is congruent to and avoids the
walk c → b′ ← b′ ← b′ ← c ← a′, and so, by symmetry, the pair b, c is invertible. Therefore, H contains a DAT, and
LHOM(H) is NP-complete by [20]. Observe that even though the DAT is defined on the three vertices a, a′, b, all the vertices
of T2, including b′, are involved in the walks defining the DAT.

If H contains T3, then it has a DAT on 0, 1, 2. Specifically, the walk 2 ← 2 → 2 is congruent to and avoids both walks
0 ← 0 → a and 1 ← a → a; the walk 1 → 1 → 1–1 is congruent to and avoids both walks 0 → a → b–2
and 2 → 2 → 2–2; and the walk 0 ← 0 ← 0–0 is congruent to and avoids both walks 1 ← a ← b–2 and
2 ← 2 ← 2–2. All three pairs 2, a and 1, 2 and 0, 2 are invertible, as can be seen from Lemma 2.1, using the fact that
the walks a← 0–0← 0→ 0→ a← b–2← 2 and 2← 2–b← a→ 1→ 1← 1–1← a avoid each other. Note that
this proof applies regardless of the direction(s) of the arc(s) between b and 2 (as suggested by the notation b–2).

Similar proofs apply to the trees T4, . . . , T7. There is always a DATwith vertices 0, 1, 2 or a, a′, b. The details are technical
but not difficult to find. �

Corollary 5.11. Let H be a reflexive digraph that is a tree.
If H has an invertible pair, then LHOM(H) is NP-complete.

Thus Conjecture 5.4 also holds for trees.
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