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Abstract5

We study the approximability and hardness of approximation of minimum cost ho-6

momorphism to target graph H, MinHOM(H). When H is a bipartite graph, we prove7

that if H is a co-circular arc bigraph, then MinHOM(H) admits a polynomial time8

constant ratio approximation algorithm; otherwise, MinHOM(H) is known to be not9

approximable. For the purposes of the approximation, we provide a new characteriza-10

tion of co-circular arc bigraphs by the existence of min ordering. Our algorithm is then11

obtained by derandomizing a two-phase randomized procedure.12

Moreover, we provide a complete classification of approximable cases of graphs.13

That is, we prove MinHOM(H) has a constant factor approximation algorithm if graph14

H is a bi-arc graph (i.e., admits a conservative majority polymorphism), otherwise, it15

is inapproximable assuming P ̸=NP;16

Finally, we complement our positive results with hardness of approximation results17

for graphs. We show that MinHOM(H) is 1.128-approx-hard and 1.242-UGC-hard.18

Thus, we obtain a dichotomy theorem for approximability and inapproximability of19

MinHOM(H) when H is a graph.20

1 Introduction21

We study the approximability of the minimum cost homomorphism problem, introduced22

below. A c-approximation algorithm produces a solution of cost at most c times the minimum23
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cost. A constant ratio approximation algorithm is a c-approximation algorithm for some24

constant c. When we say a problem has a c-approximation algorithm, we mean a polynomial-25

time algorithm. We say that a problem is not approximable if there is no polynomial-time26

approximation algorithm with a multiplicative guarantee unless P = NP .27

The minimum cost homomorphism problem was introduced in [12]. It consists of min-28

imizing a certain cost function over all homomorphisms from an input graph G to a fixed29

graph H. This offers a natural and practical way to model many optimization problems.30

For instance, in [12] it was used to model a problem of minimizing the cost of a repair and31

maintenance schedule for large machinery. It generalizes many other problems such as list32

homomorphism problems (see below), and various optimum cost chromatic partition prob-33

lems [13, 22, 23, 27]. (A different kind of the minimum cost homomorphism problem was34

introduced in [1].) Certain minimum cost homomorphism problems have polynomial-time35

algorithms [10, 11, 12], but most are NP-hard. Therefore we investigate the approximability36

of these problems. Note that we approximate the cost over real homomophisms, rather than37

approximating the maximum weight of satisfied constraints, as in, say, MAXSAT.38

We call a graph reflexive if every vertex has a loop, and irreflexive if no vertex has a39

loop. An interval graph is a graph that is the intersection graph of a family of real intervals,40

and a circular arc graph is a graph that is the intersection graph of a family of arcs on41

a circle. We interpret the concept of an intersection graph literally, thus any intersection42

graph is automatically reflexive, since a set always intersects itself. A bipartite graph whose43

complement is a circular arc graph, will be called a co-circular arc bigraph. When forming the44

complement, we take all edges that were not in the graph, including loops and edges between45

vertices in the same color. In general, the word bigraph will be reserved for a bipartite graph46

with a fixed bipartition of vertices; we shall refer to white and black vertices to reflect this47

fixed bipartition. Bigraphs can be conveniently viewed as directed bipartite graphs with all48

edges oriented from the white to the black vertices. Thus, by definition, interval graphs are49

reflexive, and co-circular arc bigraphs are irreflexive. Despite the apparent differences in50

their definition, these two graph classes exhibit certain natural similarities [6, 7]. There is51

also a concept of an interval bigraph H, which is defined for two families of real intervals, one52

family for the white vertices and one family for the black vertices: a white vertex is adjacent53

to a black vertex if and only if their corresponding intervals intersect. Interval bigraphs,54

have been studied in [14, 29, 30].55

A reflexive graph is a proper interval graph if it is an interval graph in which the defining56

family of real intervals can be chosen to be inclusion-free. A bigraph is a proper interval57

bigraph if it is an interval bigraph in which the defining two families of real intervals can be58

chosen to be inclusion-free. It turns out [14] that proper interval bigraphs are a subclass of59

co-circular arc bigraphs.60

A homomorphism of a graph G to a graph H is a mapping f : V (G)→ V (H) such that61

for any edge xy of G the pair f(x)f(y) is an edge of H.62

Let H be a fixed graph. The list homomorphism problem to H, denoted ListHOM(H),63

seeks, for a given input graph G and lists L(x) ⊆ V (H), x ∈ V (G), a homomorphism f of G64

to H such that f(x) ∈ L(x) for all x ∈ V (G). It was proved in [7] that for irreflexive graphs,65
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the problem ListHOM(H) is polynomial-time solvable if H is a co-circular arc bigraph, and66

is NP-complete otherwise. It was shown in [6] that for reflexive graphs H, the problem67

ListHOM(H) is polynomial-time solvable if H is an interval graph, and is NP-complete68

otherwise.69

The minimum cost homomorphism problem to H, denoted MinHOM(H), seeks, for a70

given input graph G and vertex-mapping costs c(x, u), x ∈ V (G), u ∈ V (H), a homomor-71

phism f of G to H that minimizes total cost
∑

x∈V (G)

c(x, f(x)).72

As mentioned above the MinHOM problem offers a natural and practical way to model73

and generalizes many optimization problems.74

Example 1.1 (Vertex Cover). This problem can be seen as MinHOM(H) where V (H) =75

{a, b}, E(H) = {aa, ab}, and c(u, a) = 1, c(u, b) = 0 for every vertex u ∈ G.76

Example 1.2 (Chromatic Sum). In this problem, we are given a graph G, and the objective77

is to find a proper coloring of G with colors {1, . . . , k} with minimum color sum. This can be78

seen as MinHOM where H is a clique of size k with V (H) = {1, . . . , k} and the cost function79

is defined as c(u, i) = i. The Chromatic Sum problem appears in many applications such80

as resource allocation problems [3].81

Example 1.3 (Multiway Cut). Let G be a graph where each edge e has a non-negative82

weight w(e). There are also k specific (terminal) vertices, s1, s2, . . . , sk of G. The goal is83

to partition the vertices of G into k parts so that each part i ∈ {1, 2, . . . , k}, contains si84

and the sum of the weights of the edges between different parts is minimized. Let H be85

a graph with vertex set {a1, a2, . . . , ak} ∪ {bi,j | 1 ≤ i < j ≤ k}. The edge set of H is86

{aiai, aibi,j, bi,jaj, ajaj | 1 ≤ i < j ≤ k}. Now obtain the graph G′ from G by replacing every87

edge e = uv of G with the edges uxe, xev where xe is a new vertex. The cost function c is as88

follows. c(si, ai) = 0, else c(si, d) = |G| for d ̸= ai. For every u ∈ G \ {s1, s2, . . . , sk}, set89

c(u, si) = 0. Set c(xe, bi,j) = w(e). Now, finding a minimum multiway cut in G is equivalent90

to finding a minimum-cost homomorphism from graph G′ to H.91

The complexity of MinHOM(H) for graphs and digraphs have been well-understood [11,92

20].It was proved in [11] that for irreflexive graphs, the problem MinHOM(H) is polynomial-93

time solvable if H is a proper interval bigraph, and it is NP-complete otherwise. It was94

also shown there that for reflexive graphs H, the problem MinHOM(H) is polynomial time95

solvable if H is a proper interval graph, and it is NP-complete otherwise.96

In [28], the authors have shown that MinHOM(H) is not approximable if H is a graph97

that is not bipartite or not a co-circular arc graph, and gave a randomized 2-approximation98

algorithms for MinHOM(H) for a certain subclass of co-circular arc bigraphs H. The au-99

thors have asked for the exact complexity classification for these problems. We answer the100

question by showing that the problem MinHOM(H) in fact has a |V (H)|-approximation101

algorithm for all co-circular arc bigraphs H. Thus for an irreflexive graph H the problem102

MinHOM(H) has a constant ratio approximation algorithm if H is a co-circular arc bigraph,103

and is not approximable otherwise. We also prove that for a reflexive graph H the problem104

MinHOM(H) has a constant ratio approximation algorithm if H is an interval graph, and is105
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not approximable otherwise. We use the method of randomized rounding, a novel technique106

of randomized shifting, and then a simple derandomization.107

A min ordering of a graph H is an ordering of its vertices a1, a2, . . . , an, so that the108

existence of the edges aiaj, ai′aj′ with i < i′ and j′ < j implies the existence of the edge109

aiaj′ . A min-max ordering of a graph H is an ordering of its vertices a1, a2, . . . , an, so that110

the existence of the edges aiaj, ai′aj′ with i < i′ and j′ < j implies the existence of the edges111

aiaj′ , ai′aj. For bigraphs, it is more convenient to speak of two orderings, and we define a112

min ordering of a bigraph H to be an ordering a1, a2, . . . , ap of the white vertices and an113

ordering b1, b2, . . . , bq of the black vertices, so that the existence of the edges aibj, ai′bj′ with114

i < i′, j′ < j implies the existence of the edge aibj′ ; and a min-max ordering of a bigraph H115

to be an ordering of a1, a2, . . . , ap of the white vertices and an ordering b1, b2, . . . , bq of the116

black vertices, so that the existence of the edges aibj, ai′bj′ with i < i′, j′ < j implies the117

existence of the edges aibj′ , ai′bj. (Both are instances of a general definition of min ordering118

for directed graphs [19].)119

In Section 2 we prove that co-circular arc bigraphs are precisely the bigraphs that admit120

a min ordering. In the realm of reflexive graphs, such a result is known about the class of121

interval graphs (they are precisely the reflexive graphs that admit a min ordering) [18].122

Approximability results. In Section 3 we recall that MinHOM(H) is not approximable123

when H does not have min ordering, and describe a |V (H)|-approximation algorithm when124

H is a bigraph that admits a min ordering. In Section 4, we further apply our technique125

for graphs (vertices with possible loops) and show that when H is a bi-arc graph then126

MinHOM(H) has a 2|V (H)|-approximation algorithm. Note that, for graphs, MinHOM(H)127

is not approximable if H is not a bi-arc graph. Hence, our result gives a dichotomy classifi-128

cation for approximation of MinHOM(H) when H is a graph.129

Inapproximability results. As pointed out, the MinHOM(H) is not approximable if130

ListHOM(H) is not polynomial-time solvable. This rules out the possibility of having an131

approximation algorithm for graphs that are not bi-arc. However, there are no known in-132

approximability results for the cases where MinHOM(H) is NP-complete. We, therefore,133

complete the picture by considering a much bigger class of graphs than bi-arc graphs and134

present inapproximability results for them. That is the class of graphs for which MinHOM135

is NP-complete. This class of graphs has been characterized in [11] and are known as graphs136

that do not admit a min-max ordering. The obstructions for min-max ordering for graphs137

and digraphs have been provided in [21]. This characterization was used to show the NP-138

completeness of MinHOM together with the NP-completeness of the maximum independent139

set problem [20]. However, in this paper, we must develop an array of approximation-140

preserving reductions to obtain our inapproximability results.141
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2 Co-circular bigraphs and min ordering142

A reflexive graph has a min ordering if and only if it is an interval graph [18]. In this section143

we prove a similar result about bigraphs. Two auxiliary concepts from [7, 9] are introduced144

first.145

An edge asteroid of a bigraph H consists of 2k + 1 disjoint edges a0b0, a1b1, . . . , a2kb2k146

such that each pair ai, ai+1 is joined by a path disjoint from all neighbours of ai+k+1bi+k+1147

(subscripts modulo 2k + 1).148

An invertible pair in a bigraph H is a pair of white vertices a, a′ and two pairs of walks a =149

v1, v2, . . . , vk = a′, a′ = v′1, v
′
2, . . . , v

′
k = a, and a′ = w1, w2, . . . , wm = a, a = w′

1, w
′
2, . . . , w

′
m =150

a′ such that vi is not adjacent to v′i+1 for all i = 1, 2, . . . , k and wj is not adjacent to w′
j+1151

for all j = 1, 2, . . . ,m.152

Theorem 2.1. A bigraph H is a co-circular arc graph if and only if it admits a min ordering.153

Proof. Consider the following statements for a bigraph H:154

1. H has no induced cycles of length greater than three and no edge asteroids155

2. H is a co-circular-arc graph156

3. H has a min ordering157

4. H has no invertible pairs158

1⇒ 2 is proved in [7].159

2⇒ 3 is seen as follows: Suppose H is a co-circular arc bigraph; thus the complement H160

is a circular arc graph that can be covered by two cliques. It is known for such graphs that161

there exist two points, the north pole and the south pole, on the circle, so that the white162

vertices u of H correspond to arcs Au containing the north pole but not the south pole, and163

the black vertices v of H correspond to arcs Av containing the south pole but not the north164

pole. We now define a min ordering of H as follows. The white vertices are ordered according165

to the clockwise order of the corresponding clockwise extremes, i.e., u comes before u′ if the166

clockwise end of Au precedes the clockwise end of Au′ . The same definition, applied to the167

black vertices v and arcs Av, gives an ordering of the black vertices of H. It is now easy to168

see from the definitions that if uv, u′v′ are edges of H with u < u′ and v > v′, then Au and169

Av′ must be disjoint, and so uv′ is an edge of H.170

3⇒ 4 is easy to see from the definitions (see, for instance [9]).171

4⇒ 1 is checked as follows: If C is an induced cycle in H, then C must be even, and any172

two of its opposite vertices together with the walks around the cycle form an invertible pair173

of H. In an edge-asteroid a0b0, . . . , a2kb2k as defined above, it is easy to see that, say, a0, ak174

is an invertible pair. Indeed, there is, for any i, a walk from ai to ai+1 that has no edges to175

the walk ai+k, bi+k, ai+k, bi+k, . . . , ai+k of the same length. Similarly, a walk ai+1, bi+1, ai+1,176

bi+1, . . . , ai+1 has no edges to a walk from ai+k to ai+k+1 implied by the definition of an177

edge-asteroid. By composing such walks we see that a0, ak is an invertible pair.178

We note that it can be decided in time polynomial in the size of H, whether a graph H179

is a (co-)circular arc bigraph [15].180
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3 Approximation of MinHOM for bipartite graphs181

In this section we describe our approximation algorithm for MinHOM(H) in the case the182

fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph, cf. Theorem 2.1.183

We recall that if H is not a co-circular arc bigraph, then the list homomorphism problem184

ListHOM(H) is NP-complete [7], and this implies that MinHOM(H) is not approximable185

for such graphs H [28]. By Theorem 2.1 we conclude the following.186

Theorem 3.1. If a bigraph H has no min ordering, then MinHOM(H) is not approximable.187

Our main result is the following converse: if H has a min ordering (is a co-circular188

arc bigraph), then there exists a constant ratio approximation algorithm (since H is fixed,189

|V (H)| is a constant.).190

Theorem 3.2. If H is a bigraph that admits a min ordering, then MinHOM(H) has a191

|V (H)|-approximation algorithm.192

To prove the above theorem we first design an approximation algorithm.193

Fixing a min ordering for H. Suppose H has a min ordering with the white vertices194

ordered a1, a2, · · · , ap, and the black vertices ordered b1, b2, · · · , bq. For every 1 ≤ i ≤ p, let195

r(i) be the first subscript that aibr(i) is an edge of H. For every 1 ≤ i ≤ q, let ℓ(i) be the196

first subscript that aℓ(i)bi is an edge of H.197

Definition 3.3 (H ′ and E ′ construction). Let E ′ denote the set of all pairs aibj such that198

aibj is not an edge of H, but there is an edge aibj′ of H with j′ < j and an edge ai′bj of H199

with i′ < i. Define H ′ to be the graph with vertex set V (H) and edge set E(H) ∪ E ′. (Note200

that E(H) and E ′ are disjoint sets.)201

Observation 3.4. The ordering a1, a2, · · · , ap, and b1, b2, · · · , bq is a min-max ordering of202

H ′.203

Proof. We show that for every pair of edges e = aibj′ and e′ = ai′bj in E(H) ∪ E ′, with204

i′ < i and j′ < j, both f = aibj and f ′ = ai′bj′ are in E(H) ∪ E ′. If both e and e′ are in205

E(H), f ∈ E(H) ∪ E ′ and f ′ ∈ E(H). If one of the edges, say e, is in E ′, there is a vertex206

bj′′ with aibj′′ ∈ E(H) and j′′ < j′, and a vertex ai′′ with ai′′bj′ ∈ E(H) and i′′ < i. Now,207

ai′bj and aibj′′ are both in E(H), so f ∈ E(H) ∪E ′. We may assume that i′′ ̸= i′, otherwise208

f ′ = ai′′bj′ ∈ E(H). If i′′ < i′, then f ′ ∈ E(H) ∪ E ′ because ai′bj′′ ∈ E(H); and if i′′ > i′,209

then f ′ ∈ E(H) because ai′bj ∈ E(H).210

If both edges e, e′ are in E ′, then the earlier neighbours of ai and bj in E(H) imply211

that f ∈ E(H) ∪ E ′, and the earlier neighbours of ai′ and bj′ in E(H) imply that f ′ ∈212

E(H) ∪ E ′.213

Observation 3.5. Let e = aibj ∈ E ′. Then ai is not adjacent in E(H) to any vertex after214

bj, or bj is not adjacent in E(H) to any vertex after ai.215

Proof. This easily follows from the fact that a1, a2, . . . , ap, b1, b2, . . . , bq is a min ordering.216
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Minimize
∑

u∈U,i∈[p]
c(u, ai)(xu,ai − xu,ai+1

) +
∑

v∈V,j∈[q]
c(v, bj)(xv,bi − xv,bj+1

)

Subject to:
0 ≤ xu,ai , vv,bj ≤ 1 ∀u, v ∈ V (G), ai, bj ∈ V (H) (C1)
xu,a1 = xv,b1 = 1 and xu,ap+1 = xv,bq+1 = 0 (C2)
xv,bi+1

≤ xv,bi and xu,ai+1
≤ xu,ai ∀v ∈ V, u ∈ U, ai, bi ∈ V (H) (C3)

xu,ai ≤ xv,br(i) and xv,bi ≤ xu,aℓ(i) ∀uv ∈ E(G) (C4)
xv,bj ≤ xu,as +

∑
atbj∈E(H),t<i

(xu,at − xu,at+1) ∀uv ∈ E(G), aibj ∈ E ′, as is the
first neighbor of bj after ai

(C5)

xu,ai ≤ xv,bs +
∑

aibt∈E(H),t<j

(xv,bt − xv,bt+1) ∀uv ∈ E(G), aibj ∈ E ′ bs is the
first neighbor of ai after bj

(C6)

xu,ai − xu,ai+1
≤

∑
aibt∈E(H),t<j

(xv,bt − xv,bt+1) ∀uv ∈ E(G), aibj ∈ E ′, and ai
has no neighbor after bj

(C7)

xv,bj − xv,bj+1
≤

∑
atbj∈E(H),t<i

(xu,at − xu,at+1) ∀uv ∈ E(G), aibj ∈ E ′, and bj
has no neighbor after ai

(C8)

Table 1: Linear program S

Assumption about the input and introducing the variables. First we assume input217

bipartite graph G = (U, V ) is connected, as otherwise, we solve the problem for each con-218

nected component of G. Here U represent the left vertices of G and V represent the right219

vertices of G. We further look for a homomorphism f that maps vertices U to {a1, a2, . . . , ap}220

and vertices V to {b1, b2, . . . , bp}.221

For every vertex u ∈ U , and every ai, define the variable xu,ai , and for every v ∈ V and222

bj, define the variable xv,bj .223

System of linear equations S. Having defined the variables xu,ai , xv,bj , we introduce224

the linear program S shown in table 1 that formulates MinHOM(H). The intuition is if225

variable xu,ai = 1 and xu,ai+1
= 0, then we map u to ai. Thus, we add constraint (C3) that226

has inequalities xu,ai+1
≤ xu,ai and xv,aj+1

≤ xv,aj . Now, from constraint (C3) and the min227

ordering, we add constraint (C4). Constraints (C5,C6) are the most important constraints228

capturing the min ordering property. Using Observation 3.5, constraint (C7,C8) are added229

to make sure that if we map u ∈ U (v ∈ V ) to ai (bj) then the neighbor of u (v), say v (u)230

is mapped to a neighbor of ai (bj).231

Lemma 3.6. If H admits a min-ordering then there is a one to one correspondence between232

homomorphisms of G to H and the integer solutions of S.233

Proof. Suppose f is a homomorphism from G to H. If f(u) = ai then set xu,aj = 1, for234

all j ≤ i and xu,aj = 0 for all j > i. Similar treatment for v and bj. Clearly, constraints235

C1, C2, C3, and C4 are satisfied. Now for all u and v in G with f(u) = ai and f(v) = bj236

we have that xu,ai − xu,ai+1
= xv,bj − xv,bj+1

= 1. Moreover, since f is a homomorphism237

constraint (C7,C8) are also satisfied.238
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We show that constraint (C5) holds. For, contradiction, assume that the inequality in239

(C5) fails. This means that for some edge uv of G and some arc aibj ∈ E ′, we have xv,bj = 1240

, xu,as = 0, and the sum of (xu,at − xu,at+1), over all t < i such that at is a neighbor of aj,241

is zero. The latter two facts easily imply that f(u) = ai. Since bj has a neighbor after ai,242

Observation 3.5 tells us that ai has no neighbor after bj and xv,bj+1
= 0, whence f(v) = bj243

and thus aibj ∈ E(H), a contradiction the assumption aibj ∈ E ′. By a similar argument244

(C6) is also satisfied.245

Conversely, from an integer solution for S, we define a mapping f from G to H as follows.246

For every u ∈ U , set f(u) = ai when i is the largest subscript with xu,ai = 1. Similarly, for247

every v ∈ V set f(v) = bj when j is the largest subscript with xv,bj = 1.248

Let uv be an edge of G and assume f(u) = ai, f(v) = bj. Note that xu,ai − xu,ai+1
=249

xv,bj −xv,bj+1
= 1 and for all other t we have xv,bt −xv,bt+1 = 0. If aibj is an edge of H we are250

done. Suppose this is not the case. Since constraints C4 is satisfied, ai has a neighbor before251

bj and bj has a neighbor before ai Thus, aibj ∈ E ′. First suppose ai has no neighbor after252

bj. Now, 0 =
∑

aibt∈E(H),t<j

(xv,bt − xv,bt+1), violating constraint (C7). Thus, assume ai has a253

neighbor after bj. Now xu,ai = 1, while xv,bs = 0, and for every t < j, xv,bt − xv,bt+1 = 0, and254

hence, constraint (C6) is not satisfied, a contradiction.255

Overview of the rounding procedure. Our algorithm will minimize the cost function256

over S in polynomial time using a linear programming algorithm. This will generally result257

in a fractional solution. We will obtain an integer solution by a randomized procedure called258

rounding. We choose a random variable X ∈ [0, 1], and define the rounded values χu,ai = 1259

when xu,ai ≥ X, and χu,ai = 0 otherwise; and similarly define the rounded value χv,bj from260

xv,bj . Now set f(u) = ai where χu,ai = 1, χu,ai+1
= 0 and set f(v) = bj where χv,bj = 1,261

χv,bj+1
= 0. In Lemma 3.7 we show that the mapping f is a homomorphism from G to H ′.262

However, f may not be a homomorphism from G to H. Now the algorithm will once more263

modify the solution f to become a homomorphism of G to H, i.e., to avoid mapping edges264

of G to the edges in E ′. This will be accomplished by another randomized procedure, which265

we call shifting. We choose another random variable Y ∈ [0, 1], which will guide the shifting.266

Let F denote the set of all edges in E ′ to which some edge of G is mapped by f . We also267

let F (G) = {(u, v, f(u), f(v))|uv ∈ E(G), f(u)f(v) ∈ E ′}.268

If F is empty, we need no shifting. Otherwise, let aibj be an edge of F with maximum269

sum i + j (among all edges of F ). By the maximality of i + j, we know that aibj is the270

last edge of F from both ai and bj. Now we consider, one by one, (u, v, ai, bj) ∈ F (G) (i.e.271

uv ∈ E(G)) where f(u) = ai and f(v) = bj. Since F ⊆ E ′, by Observation 3.5 either ai has272

no neighbor after bj or bj has no neighbor after ai.273

Suppose f(u) = ai and ai have no neighbor after bj (the other case is where f(v) = bj
and bj has no neighbor after ai). For such a vertex u, consider the set of all vertices at with
t < i such that atbj ∈ E(H). This set is not empty, since e is in E ′ because of two edges
of E(H). Suppose the set consists of at with subscripts t ordered as t1 < t2 < . . . tk. The
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algorithm now selects one vertex from this set as follows. Let Pu,t =
xu,at−xu,at+1

Pu
, where

Pu =
∑

atbj∈E(H), t<i

(xu,at − xu,at+1).

Then atq is selected if
q∑

p=1

Pu,tp < Y ≤
q+1∑
p=1

Pu,tp . Thus, a concrete at is selected with proba-274

bility Pu,t, which is proportional to the difference of the fractional values xu,at − xu,at+1 .275

When the selected vertex is at, we shift the image of the vertex u from ai to at. This276

modifies the homomorphism f , and hence the corresponding values of the variables. Namely,277

χu,at+1 , . . . , χu,ai are reset to 0, keeping all other values the same. Note that the modified278

mapping is still a homomorphism from G to H ′.279

We repeat the same process for the next u with these properties, until aibj is no longer280

in F (because no edge of G maps to it). This ends the iteration on aibj, and we proceed to281

the next edge ai′bj′ with maximum i′ + j′ for the next iteration. Each iteration involves at282

most |V (G)| shifts. After at most |E ′| iterations, the set F is empty and no shift is needed.283

It is easy to see, due to min ordering, if the image of vertex u changes because of edge uv284

with f(u)f(v) ̸∈ E(H), while f(u)f(w) ∈ E(H) for some other neighbor w of u, by changing285

the image of u there is no need to change the image of w. We also show that the image of286

every vertex w in G changes at most once. More details are provided at the beginning of287

Lemma 3.8.288

Algorithm 2 Procedures Shift-Left and Shift-Right

1: procedure Shift-Left(f, u, v, ai, bj, Y )
2: Let at1 , at2 , . . . , atk be the neighbors of bj in H before ai

3: Let Pu ←
k∑

l=1

(xu,atl
− xu,atl+1) , and let Pu,atq ←

q∑
l=1

(xu,atl
− xu,atl+1)/Pu

4: if Pu,atq < Y ≤ Pu,atq+1
then

5: f(u)← atq
6: Set χu,aι = 1 for 1 ≤ ι ≤ tq, and set χu,aι = 0 for tq < ι ≤ p+ 1

7: procedure Shift-Right(f, v, u, ai, bj, Y )
8: Let bt1 , bt2 , . . . , btk be the neighbors of ai in H before bj

9: Let Pv ←
k∑

l=1

(xv,btl
− xv,btl+1) , and let Pv,btq ←

q∑
l=1

(xv,btl
− xv,btl+1)/Pv

10: if Pv,btq < Y ≤ Pv,btq+1
then

11: f(v)← btq
12: Set χv,bι = 1 for 1 ≤ ι ≤ tq, and set χv,bι = 0 for tq < ι ≤ p+ 1

Lemma 3.7. The mapping f returned at line 7 of Algorithm 1 is a homomorphism from G289

to H ′.290

Proof. Consider the edge uv ∈ E(G) and suppose f(u) = ai and f(v) = bj. Thus, we have291

xu,ai+1
< X ≤ xu,ai , and xv,bj+1

< X ≤ xv,bj . Now, by constraint (C5), we have xu,ai ≤ xv,br(i) ,292
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Algorithm 1 Rounding the fractional values of S
1: procedure Rounding-Shifting(S)
2: Let {xu,ai} and {xv,bj} be the (fractional) values returned by solving S
3: Sample X ∈ [0, 1] uniformly at random
4: For all xu,ai : if X ≤ xu,ai set χu,ai = 1, else set χu,ai = 0
5: For all xv,bj : if X ≤ xv,bj set χv,bj = 1, else set χv,bj = 0
6: Set f(u) = ai where χu,ai = 1, χu,ai+1

= 0
7: Set f(v) = bj where χv,bj = 1, χv,bj+1

= 0
▷ At this point f is a homomorphism from G to H ′.

8: Let F (G) = {(u, v, f(u), f(v))|uv ∈ E(G), f(u)f(v) ∈ E ′}.
9: Let F ⊂ E ′ be the set of edges aibj with some (u, v, ai, bj) ∈ F (G)

10: Choose a random variable Y with values in [0, 1]
11: while ∃ edge aibj ∈ F with i+ j is maximum do
12: while ∃(u, v, ai, bj) ∈ F (G) do
13: if ai does not have a neighbor after bj and f(u) = ai then

Shift-Left(f, u, v, ai, bj, Y )
14: else if bj does not have a neighbor after ai and f(v) = bj then

Shift-Right(f, v, u, ai, bj, Y )

15: Remove (u, v, ai, bj) from F (G)

16: Remove aibj from F
▷ At this point f is a homomorphism from G to H.

17: return f ▷ f is a homomorphism from G to H.

and hence X ≤ xv,br(i) . Since xv,bj+1
< X, by constraint (C3), we have r(i) ≤ j. Similarly,293

using the same argument for ℓ(j), we conclude that ℓ(j) ≤ i. Therefore, ai has a neighbor294

not after bj, and bj has a neighbor not after ai. Now, either aiaj ∈ E(H), or by the definition295

of E ′, aibj ∈ E ′.296

Let W denote the value of the objective function with the fractional optimum xu,ai , xv,bj ,297

and W ′ denote the value of the objective function with the final values χu,ai , χv,bj , after the298

rounding and all the shifting. Also, let W ∗ be the minimum cost of a homomorphism from299

G to H. Obviously, W ≤ W ∗ ≤ W ′. We now show that the expected value of W ′ is at most300

a constant times W .301

Lemma 3.8. Algorithm 1 runs in polynomial-time and it returns the homormorphism f302

from G to H such that for u, v ∈ G and at, bj ∈ H we have303

P
[
χu,at = 1, χu,at+1 = 0 i.e. f(u) = at

]
≤ xu,at − xu,at+1 (1)

P
[
χv,bj = 1, χv,bj+1

= 0 i.e. f(v) = bj
]
≤ xv,bj − xv,bj+1

(2)

Moreover, the expected contribution of each summand, say c(u, at)(χu,at − χu,at+1), to the304

expected cost of W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1).305
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Proof. Recall that after the rounding step using the random variable X, we have a partial306

homomorphism f : V (G) → V (H), where f(u) = ai if xu,ai+1
< X ≤ xu,ai , and f(v) = bj307

if xv,bj+1
< X ≤ xv,bj . By Lemma 3.7, f is a homomorphism from G to H ′. We show the308

following claims, which help us through the rest of the proof.309

Claim 3.9. Let uv, uw ∈ E(G). Suppose f(u)f(v) ∈ E ′, and f(u)f(w) ∈ E(H). After310

shifting the image of u to at, we have atf(w) ∈ E(H).311

Proof. Let f(u) = ai and f(v) = bj and aibj ̸∈ E(H), and aial ∈ E(H) where bl = f(w).312

Since we have shifted the image of u in Algorithm 1, according to Observation 3.5, ai has no313

neighbor after bj. Now because aibl ∈ E(H), we have bl < bj. Since a1, a2, . . . , ap, b1, b2, . . . , bq314

is a min ordering, and aibl, atbj ∈ E(H) with t < i, l < j, we conclude that atbl ∈ E(H).315

Claim 3.10. Let uv, uw ∈ E(G). Suppose f(u)f(v) ∈ E ′. Suppose that the image of u316

is shifted to at, and atf(w) ̸∈ E(H), then the Shift-Right shifts the image of f(w) to a317

neighbor of at.318

Proof. Let ai = f(u), bj = f(v). Let bs = f(w). If aibs ∈ E(H), as we argued in the Claim319

3.9, atbs ∈ E(H) and we don’t need to change the image of w because of u. Thus, we may320

assume atbs ∈ E ′. Now since i + j is maximum, bs < bj. This would imply that aibs ∈ E ′,321

and hence, we shift the image of w according to the rules of the Algorithm 1 to a neighbor322

of ai, say bl and before bs. Now by the min ordering property atbl ∈ E(H).323

From the proof of Claims 3.9 and 3.10 the image of each vertex u is shifted at most one.324

We observe that the image of vertex u is always changed to a smaller element. Moreover,325

at each step one element is removed from F (G). Suppose uv, uw ∈ E(G). By Claim 3.9,326

if f(u)f(w) is in E(H), then by shifting the image of f(u) because of uv being mapped to327

E ′, there is no need to change the image of w. Furthermore, by claim 3.10 if by shifting the328

image of f(u) from ai to at, there is no edge between f(w)at then w is shifted to a neighbor329

of ai that is also a neighbor of at. These conclusions guarantee that at each step the number330

of elements in F (G) is decreased. It is clear that for each aibj in F , at most |V (G)| shifts331

are needed. Therefore, Algorithm 1 runs in polynomial-time and f is a homomorphism from332

G to H.333

According to the rules of the Algorithm 1, vertex u is mapped to at in two cases. The334

first case is where u is mapped to at by rounding, and is not shifted away. In other words, we335

have χu,at = 1 and χu,at+1 = 0 after rounding, and these values do not change by procedures336

Shift-Left. Hence, for this case we have:337

P[f(u) = at] ≤ P[xu,at+1 < X ≤ xu,at ] = xu,at − xu,at+1

where the first inequality follows from the fact that the probability that the image of u is338

not changed by either of shifting procedures is at most 1. Whence, this situation occurs339

with probability at most xu,at − xu,at+1 , and the expected contribution of the corresponding340

summand is at most c(u, at)(xu,at − xu,at+1).341

Second case is where f(u) is set to at during Shift-Left. We first calculate the contribu-342

tion for a fixed i, that is, the contribution of shifting u from a fixed ai to at in Shift-Left.343
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Note that u is first mapped to ai, i > t, by rounding, and then re-mapped to at during344

procedure Shift-Left. This happens if there exists j and v such that uv is an edge of345

G, and aibj ∈ F ⊆ E ′ (with i + j being maximum) and then the image of u is shifted to at346

(at < ai in the min ordering), where atbj ∈ E(H). In other words, we have χu,ai = χv,bj = 1347

and χu,ai+1
= χv,bj+1

= 0 after rounding; and then u is shifted from ai to at.348

Recall that this shift occurs when ai does not have any neighbors after bj and Algorithm 1349

calls Shift-Left. Furthermore, aibj ∈ F is chosen so that i+ j is maximized. We show the350

following claim which enables us to assume we only need to consider only one neighbor of u,351

namely, v in our calculation.352

Claim 3.11. , For every neighbor w of u where X ≤ xw,bj , we must have xw,bj+1
< X.353

Proof. By Observation 3.4, the ordering a1 < a2 < · · · < ap < b1 < b2 < · · · < bp is a min-354

max ordering with respect to E(H) ∪ E ′, and by Lemma 3.7 every edge of G is mapped to355

an edge in E(H)∪E ′, after the rounding step by variable X. Suppose for some uw ∈ E(G)356

we have xw,bj+1
≥ X which implies that uw is mapped to aibj′ ∈ E(H)∪E ′ with j < j′, this357

in turn contradicts our assumptions that ai does not have any neighbor after bj and i+ j is358

maximum.359

360

By the above claim no neighbor of u is mapped to a vertex after bj in the rounding step. By361

Claim 3.11 we must have xw,bj+1
< X for all w with uw ∈ E(G). That is,362

α = max
w:uw∈E(G)

xw,bj+1
< X (3)

Define events A and B as follows:363

Event A: there exists v such that uv is an edge of G, and u is mapped to ai and v is364

mapped to bj during rounding step. That is the event χu,ai = χv,bj = 1, χu,ai+1
=365

χv,bj+1
= 0.366

Event B: the image of u is shifted to at from ai (t < i). That is the event Pu,atj
< Y ≤367

Pu,atj+1
.368

Consider event A and two cases where bj has some neighbor after ai and the case where369

bj does not have a neighbor after ai. Let C be the non-empty set of indices C = {t | t <370

i, atbj ∈ E(H)}. In the first case, we have:371

12



P [event A happens] = P
[
∃uw ∈ E(G) : χu,ai = χw,bj = 1, χu,ai+1

= χw,bj+1
= 0

]
(4)

= P
[
∃uw ∈ E(G) : max{xu,ai+1

, α} < X ≤ min{xu,ai , xw,bj}
]

(5)

≤ min

{
xu,ai , max

w:uw∈E(G)
xw,bj

}
−max

{
xu,ai+1

, α
}

(6)

≤ xv,bj − xu,ai+1
( v = argmax

w:uw∈E(G)

xw,bj)

≤ xv,bj − xu,as ( as is the first neighbor of bj after ai, and we have xu,as ≤ xu,ai+1
)

≤
∑
t∈C

(xu,at − xu,at+1) = Pu (7)

The last inequality is because ai has no neighbor after bj and it follows from constraint372

(C5). Second for the case where bj has no neighbor after ai. By constraint (C8), for every373

v that is a neighbor of u we have:374

xv,bj − xv,bj+1
≤

∑
t∈C

xu,at − xu,at+1 = Pu (8)

We therefore obtain:375

P [event A happens] = P
[
∃uw ∈ E(G) : χu,ai = χw,bj = 1, χu,ai+1

= χw,bj+1
= 0

]
(9)

= P
[
∃uw ∈ E(G) : max{xu,ai+1

, α} < X ≤ min{xu,ai , xw,bj}
]

(10)

≤ min

{
xu,ai , max

w:uw∈E(G)
xw,bj

}
−max

{
xu,ai+1

, α
}

(11)

≤ xv,bj − α ( v = argmax
w:uw∈E(G)

xw,bj)

≤ xv,bj+1
+ Pu − α (by (8))

≤ xv,bj+1
+ Pu − xv,bj+1

(by (3))
= Pu (12)

Having uv mapped to aibj in the rounding step, we shift u to at with probability Pu,t =376

(xu,at − xu,at+1)/Pu. That is P[B | A] = Pu,t. Note that the upper bound P[A] ≤ Pu is377

independent from the choice of v and bj. Moreover, recall that random variables X and Y378

are independent. Therefore, for a fixed ai, the probability that u is shifted from ai to at is379

at most380

P[B | A] · P[A] ≤ ((xu,at − xu,at+1)/Pu) · Pu = xu,at − xu,at+1

Thus, the expected contribution for a fixed ai (with its bj and v) is also at most c(u, at)(xu,at−381

xu,at+1). Notice that there are at most |V (H)|−1 of such ai’s, thus the expected contribution382

of c(u, at) to the expected value of W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1).383

384
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Theorem 3.12. Algorithm 1 returns a homomorphism with expected cost at most |V (H)|385

times optimal solution. The algorithm can be derandomized to obtain a deterministic |V (H)|-386

approximation algorithm.387

Proof. By Lemma 3.8 and linearity of expectation, for the expected value of W ′ we have388

E[W ′] = E

[∑
u,i

c(u, ai)(χu,ai − χu,ai+1
) +

∑
v,j

c(v, bj)(χv,bj − χv,bj+1
)

]
=

∑
u,i

c(u, ai)E[χu,ai − χu,ai+1
] +

∑
v,j

c(v, bj)E[χv,bj − χv,bj+1
]

≤ |V (H)|(
∑
u,i

c(u, ai)(xu,ai − xu,ai+1
) +

∑
v,j

c(v, bj)(χv,bj − χv,bj+1
))

≤ |V (H)|W ≤ |V (H)|W ∗.

Thus Algorithm 1 outputs a homomorphism whose expected cost is at most |V (H)| times389

the minimum cost. It can be transformed to a deterministic algorithm as follows. There are390

only polynomially many values xu,ai , xv,bj (at most |V (G)| · |V (H)|). When X lies anywhere391

between two such consecutive values, all computations will remain the same. Similarly, there392

are only polynomially many values of the partial sums
q∑

p=1

Pu,tp , and when Y lies anywhere393

between two consecutive values, all the computations remain the same. Moreover, for any394

given X and Y , the rounding and shifting algorithms can be performed in polynomial time.395

Thus, we can derandomize the algorithm by trying all the possible values for X and Y and396

simply choose the pair that gives us the minimum homomorphism cost. Since the expected397

value is at most |V (H)| times the minimum cost, this bound also applies to this best solution.398

399

4 A dichotomy for graphs400

Feder et al., [8] showed that LHOM(H) is polynomial-time solvable if and only if H is a401

bi-arc graph. Bi-arc graphs are defined as follows.402

Let C be a circle with two specified points p and q on C. A bi-arc is an ordered pair of403

arcs (N,S) on C such that N contains p but not q, and S contains q but not p. A graph404

H is a bi-arc graph if there is a family of bi-arcs {(Nx, Sx) : x ∈ V (H)} such that, for any405

x, y ∈ V (H), not necessarily distinct, the following hold:406

– if x and y are adjacent, then neither Nx intersects Sy nor Ny intersects Sx;407

– if x and y are not adjacent, then Nx intersects Sy and Ny intersects Sx.408

We shall refer to {(Nx, Sx) : x ∈ V (H)} as a bi-arc representation of H. Note that a409

bi-arc representation cannot contain bi-arcs (N,S), (N ′, S ′) such that N intersects S ′ but410

S does not intersect N ′ and vice versa. Furthermore, by the above definition a vertex may411

have a self loop.412
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Theorem 4.1 ([4, 8]). A graph admits a conservative majority polymorphism if and only if413

it is a bi-arc graph.414

Definition 4.2 (H∗). Let H = (V,E) be a graph. Let H∗ be a bipartite graph with partite415

sets V, V ′ where V ′ is a copy of V . Two vertices u ∈ V , and v′ ∈ V ′ of H∗ are adjacent in416

H∗ if and only if uv is an edge of H.417

Lemma 4.3. Let H∗ be the bipartite graph constructed from a bi-arc graph H, according to418

Definition 4.2. Then the following hold.419

– H∗ is a co-circular arc graph.420

– H∗ admits a min-ordering.421

Proof. It is easy to see that H∗ is a co-circular arc graph. From a bi-arc representation422

{(Ni, Si) : i ∈ V (H)} of H, we obtain a co-circular arc representation of H∗ by choosing,423

for i ∈ H, the arc Ni for vertex i ∈ H∗ and the arc Si for vertex i′ ∈ H∗. A bipartite graph424

admits a min-ordering if and only if it is co-circular arc graph [16]. H∗ is a co-circular arc425

graph, and hence, it admits a min-ordering.426

Construction of H∗ and choosing a min ordering Let H be a bi-arc graph, with vertex427

set I, and let H∗ be the bipartite graph constructed from H having vertices (I, I ′) according428

to Definition 4.2. Let a1, a2, . . . , ap be an ordering of the vertices in I and b1, b2, . . . , bp be an429

ordering of the vertices of I ′. Note that each ai has a copy bπ(i) in {b1, b2, . . . , bn} where π is430

a permutation on {1, 2, 3, . . . , p}. By Lemma 4.3, let us assume a1, a2, . . . , ap, b1, b2, . . . , bp is431

a min-ordering for H∗. For every ai, let r(i) be the smallest subscript such that aibr(i) is an432

edge of H∗ and for every bj, let ℓ(j) be the smallest subscript such that aℓ(j)bj is an edge of433

H∗.434

Let G be the input graph with vertex set V and let c be a given cost function. Construct435

G∗ from G with vertex set V ∪ V ′ as in Definition 4.2. Now construct an instance of the436

MinHOM(H∗) for the input graph G∗ and set c(v′, bπ(i)) = c(v, ai) for v ∈ V , v′ ∈ V ′.437

Lemma 4.4. There exists a homomorphism f : G → H with cost C if and only if there438

exists homomorphism f ∗ : G∗ → H∗ with cost 2C such that, if f ∗(v) = ai then f ∗(v′) = bj439

with j = π(i).440

Introducing the lists Let G = (V,E(G)) be our input bipartite graph. We assume G is441

connected.442

To each vertex u ∈ V , we associate a list L(v) that initially contains V (H). Think of443

L(u) as the set of possible images for u in a homomorphism from G to H.444

Apply the arc consistency procedure as follows. Take an arbitrary edge xy ∈ E(G) and445

let a ∈ L(x). If there is no neighbor of a in L(y) then remove a from L(x). Repeat this446

until a list becomes empty or no more changes can be made. Note that if we end up with an447

empty list after arc consistency, then there is no homomorphism of G to H. After the arc448

consistency check, we perform the pair consistency check.449
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Minimize
∑
v,i

c(v, ai)(xv,ai − xv,ai+1
) +

∑
v′,j

c(v′, bi)(xv′,bj − xv′,bj+1
)

Subject to:
xv,ai , xv′,bπ(i)

≥ 0 ∀v, v′ ∈ G∗, ai, bπ(i) ∈ H∗ (CM1)
xv,a1 = xv′,b1 = 1 (CM2)
xv,ap+1 = xv′,bp+1 = 0 (CM3)
xv,ai+1

≤ xv,ai and xv′,bj+1
≤ xv′,bj ∀v, v′ ∈ G∗, ai, bj ∈ H∗ (CM4)

xv,ai+1
= xv,ai and xv′,bπ(i)+1

= xv′,bπ(i)
∀v ∈ V (G∗), ai ∈ V (H) if ai ̸∈
L(v)

(CM5)

xu,ai ≤ xv′,br(i) and xv′,bi ≤ xu,al(i) ∀uv ∈ E(G∗) (CM6)
xu,ai − xu,ai+1

= xu′,bπ(i)
− xu′,bπ(i)+1

∀u, u′ ∈ G∗,∀ai, bπ(i) ∈ H∗ (CM7)
xv′,bj ≤ xu,as +

∑
t<i

atbj∈E
at∈L(u)

(xu,at − xu,at+1) ∀uv′ ∈ E(G∗), aibj ∈ E ′, and as
is the first neighbor of bj after ai
in L(u)

(CM8)

xu,ai ≤ xv′,bs +
∑
t<j

aibt∈E
at∈L(v′)

(xv′,bt − xv′,bt+1) ∀uv′ ∈ E(G∗), aibj ∈ E ′, and bs is
the first neighbor of ai after bj in
L(v′)

(CM9)

xu,ai − xu,ai+1
≤

∑
j:

(ai,aj)∈L(u,v)

(xv,aj − xv,aj+1
) ∀u, v ∈ G∗ (CM10)

Table 2: Linear program S∗

After the arc consistency process, the pair lists L lists are initialized by setting L(x, y) =450

{(a, b) | a ∈ L(x), b ∈ L(y)} for every x, y ∈ G. Now for every x, y ∈ G and every451

(a, b) ∈ L(x, y), if there exists z such that for every c ∈ L(z) either (a, c) ̸∈ L(x, z) or452

(b, c) ̸∈ L(y, z) then we remove (a, b) from L(x, y). We continue this process until no list can453

be modified. If for some a ∈ L(x), there is some y ∈ D so that a does not appear as the454

first component of any pair in L(x, y), then a is removed from L(x). In the end, if there is455

any empty list, then clearly there is no homomorphism from D to H. Therefore, in the rest456

of the paper, we assume that all lists are non-empty. We extend the lists to G∗ where L(u)457

contains the element ai if and only if L(u′) contains bπ(i).458

459

Consider the system of linear equations S∗. For every vertex v ∈ V from V (G∗) = V ∪V ′
460

and every vertex ai ∈ I from V (H∗) = I ∪ I ′ define a variable xv,ai . For every vertex v′ ∈ V ′
461

from V (G∗) and every vertex bi ∈ I ′ from V (H∗) define a variable xv′,bi . We also define the462

variables xv,ap+1 , xv′,bp+1 for every v ∈ V whose value is set to zero. Now the goal is to solve463

the following linear program S∗ depicted in Tabble 2:464

Let E ′ denote the set of all pairs (ai, bj) such that aibj is not an edge of H∗, but there is465

an edge aibj′ of H∗ with j′ < j and an edge ai′bj of H∗ with i′ < i. Define H ′∗ to be bipartite466

graph with vertex set V (H∗) and edge set E(H∗)∪E ′. Note that E(H∗) and E ′ are disjoint467

sets.468

Lemma 4.5. There is a one-to-one correspondence between homomorphisms from G to H469
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and integer solutions of S∗.470

Proof. For a homomorphism f : G→ H, if f(v) = at we set xv,ai = 1 for all i ≤ t, otherwise,471

we set xv,ai = 0, we also set xv′,bj = 1 for all j ≤ π(t) else set xv′,bj = 0. We set xv,a1 = 1,472

xv′,a1 = 1 and xv,ap+1 = xv′,bp+1 = 0 for all v, v′ ∈ V (G∗). Now all the variables are non-473

negative and we have xv,ai+1
≤ xv,ai and xv′,bj+1

≤ xv′,bj . Observe that by this assignment,474

the constraint (CM1)-(CM7) are satisfied.475

Now for all u and v in D with f(u) = ai and f(v) = aj we have xu,ai − xu,ai+1
=476

xv,aj − xv,aj+1
= 1. Moreover, since f is a homomorphism, we have (ai, aj) ∈ L(u, v), and477

hence, constraint (CM10) is also satisfied.478

We show that constraint (CM8) holds. For, contradiction, assume that the inequality479

in (CM8) fails. This means that for some edge uv′ of G∗ and some edge aibj ∈ E ′ (the480

extra edges added into to make the ordering of H∗, a min-max ordering, we have xv′,bj = 1,481

xu,as = 0, and the sum of xu,at−xu,at+1 (over all t < i such that at is a neighbor of bj) is zero.482

The latter two facts imply that f(u) = ai. Since bj has a neighbor after ai, Observation483

2 tells us that ai has no neighbor after bj, whence f(v′) = bj and thus aibj ∈ E(H∗), a484

contradiction the fact that aibj ∈ E ′. By a similar argument (CM9) is also satisfied.485

Conversely, from an integer solution for S∗, we define a homomorphism f from D to H
as follows. For every u ∈ D, set f(u) = ai when i is the largest subscript with xu,ai = 1.
Let uv be an edge of G and assume that f(u) = ai, f(v) = aj. Note that xu,ai − xu,ai+1

=
xv,aj −xv,aj+1

= 1 and for all other s ̸= j we have xv,as −xv,as+1 = 0. Since constraint (CM9)
is satisfied,

1 = xu,ai − xu,ai+1
≤

∑
(ai,as)∈L(u,v)

(xv,as − xv,as+1)

where j is the only index with xv,aj − xv,aj+1
̸= 0. Therefore, (ai, aj) ∈ L(u, v) and486

aiaj ∈ E(H).487

488

Theorem 4.6. Algorithm 3, given an optimal solution for the linear program S∗, produces a489

homomorphism from G to H. Furthermore, the expected cost of the homomorphism returned490

by this algorithm is at most 2|V (H)| ·OPT .491

Proof. In Algorithm 3, lines 5 and 6, for every variable xu,ai , u ∈ V (G∗), set χu,ai = 1 if492

X ≤ xu,ai else χu,ai = 0. Similarly, for every xv′,bj , v′ ∈ V (G∗), set χv′,bj = 1 if X ≤ xv′,bj else493

χv′,bi = 0. Let f(u) = ai where i is the largest subscript with χu,ai = 1, and let f(v′) = bj494

where j is the largest subscript with χv′,bj = 1. Notice that similar to the argument as495

in Claim 3.7, the mapping f produced in Line 6 of Algorithm 3, maps the edges of G∗ to496

E(H∗) ∪ E ′. The algorithm has two stages after rounding the fractional solution using the497

random variable X.498

Stage 1. Modifying f so that it becomes a homomorphism from G∗ to H∗. Choose499

a random variable Y ∈ [0, 1]. Let F be the subset of edges in E ′ for which there exists an500

edge uv′ ∈ E(G∗) where uv′ is mapped to that edge. Let aibj ∈ F where i + j is maximum501
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Algorithm 3 Approximation MinHOM(H) for graphs
1: procedure Approx–Graph-MinHOM(H)
2: Construct H∗, G∗ from H, G respectively, as in Definition 4.2
3: Let xu,ai , u′

j s be the (fractional) values returned after solving LP Ŝ∗.
4: Sample X uniformly from [0, 1]
5: For all xu,ais: if X ≤ xu,ai let χu,ai = 1, else let χu,ai = 0, and χv′,bj = 1 if X ≤ xv′,bj

else χv′,bj = 0
6: Let f(u) = ai where i is the largest subscript with χu,ai = 1, and let f(v′) = bj where

j is the largest subscript with χv′,bj = 1,
▷ f is a homomorphism from G∗ to (H∗)′

7: Sample Y uniformly from [0, 1]
8: Let F (G∗) = {(u, v′, f(u), f(v′)) | uv′ ∈ E(G∗), f(u)f(v′) ∈ E ′}
9: F ⊂ E ′ be the set of edges aibj with some (u, v, ai, bj) ∈ F (G∗).

10: while ∃ edge aibj ∈ F with i+ j is maximum do
11: while ∃(u, v′, ai, bj) ∈ F (G∗) do
12: if ai does not have a neighbor after bj and f(u) = ai then

Shift-Left(f, u, v′, ai, bj, Y )
13: else if bj does not have a neighbor after ai and f(v′) = bj then

Shift-Right(f, v′, u, ai, bj, Y )

14: Remove (u, v′, ai, bj) from F (G∗)

15: Remove aibj from F
▷ At this point f is a homomorphism from G∗ to H∗.

16: Let f be the homomorphism from G∗ to H∗ returned in the previous step
17: f =Shift(f)
18: return f ▷ f is a homomorphism from G to H

and for some uv′ ∈ E(G∗), f(u) = ai and f(v) = bj. Similar to Observation 2, either bj has502

no neighbor after ai or ai has no neighbor after bj. Suppose the former is the case.503

Random variable Y ∈ [0, 1] is used as guide to shift the image of v′ from bj to some bt504

where aibt ∈ E(H∗), and bt appears before bj in the min-ordering of H∗. Consider the set505

of such bts ( by definition of the min-ordering of H∗, this set is non-empty), and suppose506

it consists of bt with subscripts t ordered as t1 < t2 < . . . tk. Let Pv′,t =
xv′,bt−xv′,bt+1

Pv′
with507

Pv′ =
∑

aibt∈E(H∗), t<j

(xv′,bt − xv′,bt+1). Select the vertex btq if
q∑

p=1

Pv′,tp < Y ≤
q+1∑
p=1

Pv′,tp . Thus,508

bt is selected with probability Pv′,t, which is proportional to the difference of fractional values509

xv′,bt − xv′,bt+1 .510

The proof of the following Claim is similar to Claim 3.7.511

Claim 4.7. Let w be a neighbor of v′, where f(w) = as and asbj ∈ E(H∗) ∪ E ′. Then512

f(w)bt ∈ E(H∗) ∪ E ′.513

Proof. Proof is almost identical to the proof of Claim 3.7.514
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Algorithm 4 Procedures Shift-Left and Shift-Right

1: procedure Shift-Left(f, u, v′, ai, bj, Y )
2: Let at1 , at2 , . . . , atk be the neighbors of bj in L(u) and before ai

3: Let Pu ←
k∑

l=1

(xu,atl
− xu,atl+1) , and let Pu,tj ←

j∑
l=1

(xu,atl
− xu,atl+1)/Pu

4: if Pu,tj < Y ≤ Pu,tj+1
then

5: f(u)← atj

6: procedure Shift-Right(f, v′, u, ai, bj, Y )
7: Let bt1 , bt2 , . . . , btk be the neighbors of ai in L(v′) and before bj

8: Let Pv′ ←
k∑

l=1

(xv′,btl
− xv′,btl+1) , and let Pv′,tj ←

j∑
l=1

(xv′,btl
− xv′,btl+1)/Pv′

9: if Pv′,tj < Y ≤ Pv′,tj+1
then

10: f(v′)← btj

Note that as long as F is not empty, we repeat the shifting procedure. By Claim 4.7515

after each shift the resulting f is a homomorphism from G∗ to the graph induced by edges516

E(H∗) ∪ E ′. Once, there is no edges of G∗ whose imgae under f is mapped to E ′; i.e. F is517

empty, f is a homomorphism from G∗ to H∗.518

Algorithm 5 The shifting procedure for unstable vertices (Stage 2)
procedure Shift(f)

while there are unstable vertices do
Let u be a vertex with f(u) = ai and f(u′) ̸= bπ(i) where i is maximum.
Let Q be a Queue. Q.enqueue(u′)
while Q is not empty do

x← Q.dequeue()
if x = v′ then

f(v′)← bπ(i) where f(v) = ai.
for wv′ ∈ E(D) with aℓ = f(w) and f(w′) ̸= bπ(ℓ) do

Q.enqueue(w)

else if x = v then
f(v)← ai where f(v′) = bπ(i).
for vw′ ∈ E(D) with aℓ = f(w) and f(w′) ̸= bπ(ℓ) do

Q.enqueue(w′)

return f ▷ f is a homomorphism from G to H

Stage 2. Making the assignment consistent with respect to both orderings: We519

say a vertex u ∈ V is unstable if f(u) = ai, f(u′) = bq where q ̸= π(i). Now we start a BFS520

in V (G∗) and continue as long as there exists an unstable vertex. At each step, we start521

from the greatest subscripts i for which there exists an unstable u with f(u) = ai. During522
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the BFS, one of the following is performed:523

1. shift the image of u′ from bq to bπ(i).524

2. shift the image of u from ai to aπ−1(q).525

As a consequence of the above actions, we would have the following cases:526

527

Case 1: We change the image of u′ from bq to bπ(i) (with f(u) = ai), and there exists some528

v′ ∈ V ′ such that uv′ ∈ E(G∗) with f(v) = aj and f(v′) = bπ(j).529

We note that aibπ(j) is an edge because uv′ is an edge, and hence, ajbπ(i) is an edge of530

H∗. This would mean there is no need to shift the image of v from aj to something else (see531

the Figure 1a).532

Case 2: We change the image of u′ from bq to bπ(i) (with f(u) = ai), and there exists some533

edge vu′ of H∗ with f(v) = aj and f(v′) = bℓ with ℓ ̸= π(j).534

Such vertex v is added into the queue, and once we retrieve v from the queue we do the535

following: changing the image of v from aj to aπ−1(ℓ) (see the Figure 1b).536

Note that aibℓ ∈ E(H∗) because vu′ is an edge of G∗, and hence aπ−1(ℓ)bπ(i) is an edge of537

H∗.538

Case 3: We change the image of v from aj to some aπ−1(ℓ) (with f(v′) = bπ(ℓ)) and there539

exists some vw′ such that f(w) = at and f(w′) = bπ(t). We note that atbℓ ∈ E(H∗) because540

v′w is an edge, and hence, aπ−1(ℓ)br is an edge of H∗. This would mean there is no need to541

shift the image of w′ to something else.542

Case 4: We change the image of v from aj to some aπ−1(ℓ) (with f(v′) = bℓ). Let r be a543

greatest subscript such that there exists some vw′ where f(w) = at and f(w′) = br with544

r ̸= π(t), t < i. Such vertex w′ is added into the queue, and once we retrieve w′ from the545

queue we do the following: changing the image of w′ from br to bπ−1(t).546

Note that atbℓ ∈ E(H∗) because wv′ is also an edge of G∗. Hence, aπ−1(ℓ)bπ−1(t) is an edge547

of H∗.548

When Case 2 occurs, we continue the shifting. This would mean we may need to shift549

the image of some neighbor w′ of v accordingly. We continue the BFS from v, and modify550

the images of neighbors of v, say w′, to be consistent with new image of v. This means we551

encounter either Case 3 or Case 4. Suppose f(w′) = bt or f(w′) = bπ(t) Then there is no552

need to change the image of w′. Otherwise, we change the image of w′ from bt to bj where553

aπ−1(ℓ)bj is an edge of H∗ and we need to consider Cases 3,4 for the current vertex w. When554

we are in Case 4, then consider Cases 1,2 and proceed accordingly.555

During the BFS, the image of a stable vertex remains unchanged, as specified in Cases556

1 and 3. This holds true not only for pre-existing stable vertices but also for vertices that557

become stable as the algorithm progresses. Furthermore, as the algorithm progresses, the558

number of unstable vertices consistently decreases. Consequently, the entire process termi-559

nates after, at most O(|V (G)|) iterations.560
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Figure 1: Illustrating the shifting process in Stage 2 of the algorithm.

Estimating the ratio. Vertex v (v′, resp.) is mapped to at (bt, resp.) in three situations.561

The first scenario is where v is mapped to at by rounding (according to random variable562

X in Stage 1) and is not shifted away. In other words, we have χv,at = 1 and χv,at+1 = 0563

(i.e. xv,at+1 ≤ X < xv,at) and these values do not change by the shifting procedure. Hence,564

for this case we have: P[f(v) = at] = P[xv,at+1 < X ≤ xv,at ] ≤ xv,at − xv,at+1 . Whence this565

situation occurs with probability at most xv,at − xv,at+1 , and the expected contribution is at566

most c(v, at)(xv,at − xv,at+1).567

The second scenario is where f(v) is set to at according to the random variable Y in Stage 1.568

In this case v is first mapped to aj, j > t, by rounding according to variable X and then re-569

mapped to at during the shifting according to variable Y . Similar to the argument in Lemma570

3.8 this situation occurs with probability at most xv,at − xv,at+1 . Therefore, the expected571

contribution of xv,at−xv,at+1 to the objective function is at most |V (H)|c(v, at)(xv,at−xv,at+1).572

The third scenario is when the image of v is shifted from some aj to at in the second Stage573

of the shifting. More precisely, when one of the actions 1,2 occurs. This happens because574

the image of v′ has been shifted to bπ(t) in Stage 2 according to variables X or Y (i.e. BFS).575

As we argued, in the previous scenarios in Stage 1, the overall expected contribution of576

c(v′, bπ(t)) into the objective function is |V (H)|c(v, at)(xv′,bπ(t)
− xv′,bπ(t)+1

). In Stage 2, we577

shift the image of v to at because v is unstable and the image of v′ is bπ(t). In Stage 1, the578

expected contribution of c(v, at) into the objective function is |V (H)|c(v, at)(xv,at − xv,at+1).579

Since xv,at − xv,at+1 = xv′,bπ(t)
− xv′,bπ(t)+1

, the overall expected value of shifting v to at is580

2|V (H)|c(v, at)(xv,at − xv,at+1).581

We remark that, as in the proof of Theorem 3.12, the above algorithm can be de-582

randomized. By Lemma 4.3 and Theorem 4.6 we obtain the following classification theorem.583

Theorem 4.8. If H admits a conservative majority polymorphism, then MinHOM(H) has584

a (deterministic) 2|V (H)|-approximation algorithm, otherwise, MinHOM(H) is inapprox-585

imable unless P=NP.586

5 Inapproximability of H-coloring for graphs587

We say an optimization problem P is α-approx-hard, α > 0, if it is NP-hard to find an588

α-approximation for P . Note that if P is a maximization problem then α ≤ 1, and if it a589
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minimization problem then α ≥ 1.590

We also use another notion of inapproximability under the Unique Game Conjecture591

[24], UGC for short. We say an optimization problem P is α-UG-hard if it is UG-hard to592

approximate P within factor α. See [2] for further details.593

A nice property of the MinHOM problem is that the hardness results for approximation594

are “carried over” by induced sub-graphs. This means if MinHOM(H) is α-approx-hard or595

it is α-UG-hard, then the same holds for any graph which has H as its induced sub-graph.596

Informally speaking, such a property holds since the cost functions in the MinHOM problem597

are part of inputs, hence, modifying cost functions gives rise to hardness results for every598

graph H ′ which has H as its induced graph. This is proved formally as follows.599

Lemma 5.1. [Hardness of approximation for sub-graph] Let H be an induced sub-graph of600

graph H ′. If MinHOM(H) is α-approx-hard [α-UG-hard], then MinHOM(H ′) is α-approx-601

hard [α-UG-hard].602

Proof. Let G,H together with cost function c : G×H → Q≥0 be an instance of MinHOM(H).603

Construct an instance of MinHOM(H ′) with graphs G,H ′ and cost function c′ : G ×H ′ →604

Q≥0 where c′(u, i) = c(u, i) for every u ∈ G and i ∈ H, otherwise, for every u ∈ G and605

i ∈ H ′ \ H , c′(u, i) = W where W is a number greater than (1 + max{c(u, i) | u ∈ G, i ∈606

H})|G|). Notice that the cost of any homomorphism from G to H is strictly less than W .607

Notice that f ′∗ : V (G)→ V (H ′), the minimum cost homomorphism from G to H ′, does608

not map any of the vertices of G to any vertex in H ′ \H due to the way we have defined c′.609

Therefore, f ′∗ is also the minimum cost homomorphism for H. Now it is straightforward to610

see that if an algorithm approximates f ∗ : V (G)→ V (H), the minimum cost homomorphism611

from G to H within a factor α, it is, in fact, computing an α-approximation of f ′∗.612

5.1 Hardness of approximation for graphs613

In this subsection we prove that MinHOM for graphs does not admit any PTAS and in614

a sense a cosntant factor approximation is the best one can achieve. We start with the615

following theorems about the complexity of MinHOM(H) for graph H.616

Theorem 5.2. [11] Let H be a bipartite graph. Then MinHOM(H) is polynomial-time617

solvable if and only if H admits a min-max ordering (i.e., does not contain an induced cycle618

of length at least six, or a bipartite claw, or a bipartite net, or a bipartite tent, see Figure 2).619

Theorem 5.3. [11] Let H be graph with at least one self-loop vertex. Then MinHOM(H)620

is polynomial-time solvable if and only if H is reflexive (every vertex has a self-loop) and621

admits a min-max ordering (i.e., does not contain an induced cycle of length at least four,622

or a claw, or a net, or a tent, see Figure 3).623

The obstruction to min-max ordering for graphs are invertible pairs [20]. We say two624

vertices a and b of graph( bipartite graph) H is an invertible pair if there exist two walks625

P from a to b and Q from b to a of the same length such that when aiai+1, bibi+1 are the626
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Bipartite netBipartite tentBipartite clawEven induced cycle (C6)

Figure 2: Obstruction to min-max ordering in bipartite graphs, and making MinHOM(H) NP-
complete.

NetTentClawInduced C4

Figure 3: Obstruction to min-max ordering in reflexive graphs, and making MinHOM(H) NP-
complete.

i-th edge of P and Q then at least one of the aibi+1, biai+1 is not an edge of H. We use the627

existence of these obstruction in our gap preserving approximation reduction.628

Before going to the main result, recall the following lemma that establishes the relation-629

ship between non-polynomial cases of the LHOM and the approximation of MinHOM.630

Lemma 5.4. [16] If LHOM(H) is not polynomial-time solvable then MinHOM(H) does not631

have any approximation.632

Now, we are ready to obtain hardness of approximation for MinHOM(H) when H is a633

graph.634

Theorem 5.5. Let H be a graph where MinHOM(H) is NP-complete. Then MinHOM(H)635

is at least 1.128-approx-hard (under P ̸= NP assumption), and 1.242-UG-hard.636

Proof. We consider two cases, where H is irreflexive (no vertex has a self-loop) and the case637

where H has a vertex with self-loop.638

H is irreflexive: Without loss of generality, we can assume H is bipartite, as otherwise,639

HOM(H) is NP-complete (due to [17]). Hence, LHOM(H) is NP-complete, and by Lemma640

5.4, MinHOM(H) does not have any approximation. By this argument and by Lemma641

5.1 (hardness of approximation for sub-graph), if a sub-graph of H is not bipartite, again642

MinHOM(H) does not admit any approximation. Therefore, we continue by assuming that643

H is bipartite. Moreover, when bipartite graph H contains an induced even cycle of length644

at least 6, LHOM(H) is NP-complete due to [7], and hence, by Lemma 5.4 MinHOM(H)645
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Figure 4: Invertible pair for bipartite claw, tent, and net.

admits no approximation. By Theorem 5.2 and Lemma 5.1, it remains to consider the cases646

where H is either bipartite claw, bipartite tent, or bipartite net.647

We start with bipartite claw first. Let H be a bipartite claw with the vertex set648

{a, b, d, e, i, j, k} and the edge set with edge set {bi, ai, aj, ak, ke, dj} (as depicted in Fig-649

ure 4). It was shown in [25] that it is NP-hard to approximate the Vertex Cover within650

factor better than
√
2− ϵ. Vertex Cover is also (2− ϵ)-UG-hard by [26]. Let G be any of the651

graphs described in [5, 25], with V (G) = {x1, x2, . . . , xn}. This graph has a relatively large652

vertex cover.653

654

Construction of the bipartite graph G′: We construct the bipartite graph G′ as follows. The655

vertex set of G′ consists of three disjoint copies V1, V2, V3 of V (G) together with set U . Let656

V1 = {u1, u2, . . . , un}, V2 = {v1, v2, . . . , vn}, and V3 = {w1, w2, . . . , wn}. Here, for each r657

(1 ≤ r ≤ n), ur, vr, and wr are the vertices corresponding to xr. As for U , we initially set658

U = ∅. For all 1 ≤ r, s ≤ n such that xrxs is an edge of G, we introduce into U a new659

vertex αr,s (corresponding to the pair (r, s) and add the two edges urαr,s and αr,svs to G′
660

(the 2-path ur, αr,s, vs corresponds to the paths a, j, d and b, i, a in H). Note that when xrxs661

is an edge of G, xsxr is also an edge; hence, for pair (s, r) we add a new vertex αs,r.662

For each pair vr and wr we add a new corresponding vertex βr to U and add the edges663

vrβr and βrwr (corresponding to the paths d, j, a and a, k, e in H). Finally, for each pair ur664

and wr, we add a new vertex λr to U and then, add the two edges urλr and λrwr to G′.665

666

Defining the cost function: Define the cost function c : V (G′)×V (H)→ Q≥0 as follows. For667

each vertex ur ∈ V1 set c(ur, a) = 1, c(ur, b) = 0, and c(ur, l) = |G| for each l ̸∈ {a, b}. For668

each vertex vr ∈ V2, set c(vr, a) = 1, c(vr, d) = 0, and c(vr, l) = |G| for each l ̸∈ {a, d}. For669

each vertex wr ∈ V3, set c(wr, a) = 1, c(wr, e) = 0, and c(wr, l) = |G| for each l ̸∈ {a, e}.670

Finally, for every u ∈ U , put c(u, i) = c(u, j) = c(u, k) = 0, and for every other case, set the671

cost to be |G|.672
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673

From a vertex cover in G to a homomorphism from G′ to H: Let V C be a vertex cover674

in the original graph G. Define the mapping f : V (G′) → V (H) as follows. For every675

vertex ur ∈ V1 set f(ur) = a if xr ∈ V C; otherwise, set f(ur) = b. For every vr ∈ V2676

set f(vr) = a if xr ∈ V C; otherwise, set f(vr) = d. For every wr ∈ V3 set f(wr) = a if677

xr ̸∈ V C; otherwise, set f(wr) = e. For every vertex αr,s corresponding to pair (xr, xs) such678

that xrxs ∈ E(G), set f(αr,s) = i if f(ur) = b; otherwise, set f(αr,s) = j. For every λr ∈ G′
679

where urλr, λrwr ∈ E(G′), set f(λr) = i if f(ur) = b; otherwise, set f(λr) = k. Finally, for680

every βr ∈ G′ with vrβr, βrwr ∈ E(G′), set f(βr) = j if f(vr) = d; otherwise, set f(βr) = k.681

We show that f is a homomorphism from G′ to H with cost c(f) = |V C| + |G|. Let682

urαr,s be an edge of G′. Then, by the construction of G′, αr,svs is also an edge of G′, where683

αr,s corresponds to a pair (xr, xs) with xrxs ∈ E(G). Since V C is a vertex cover for G,684

at least one of xr and xs is in V C. Without loss of generality, assume that xr ∈ V C,685

and assume xr corresponds to vertex ur in V1. Now, by definition, f(ur) = a, and hence,686

f(αr,s) = j, where aj ∈ E(H); thereby, f(ur)f(αr,s) ∈ E(H). Moreover, f(vs) ∈ {a, d}, and687

hence, f(αr,s)f(vs) ∈ E(H). Now, consider the edge vrβr in G′. Notice that there is also688

an edge βrwr of G′ (vr ∈ V2, wr ∈ V3). First, consider the case where xr ̸∈ V C. Then, by689

definition, f(wr) = a and f(vr) = d and, consequently, f(βr) = j; thus, f(wr)f(βr) ∈ E(H),690

since aj is an edge of H. In this case, we additionally have βrvr ∈ E(G′), and, hence,691

f(βr)f(vr) ∈ E(H). Now, consider the case where xr ∈ V C. By definition, f(vr) = a692

and f(wr) = e. In this case, we have f(βr) = k where βr is the corresponding vertex in693

U to vr and wr. Since ak, ek ∈ E(H), we have f(vr)f(βr), f(βr)f(wr) ∈ E(H). A sim-694

ilar argument is applied when we consider a vertex λr ∈ U corresponding to ur and wr.695

Therefore, f is a homomorphism from G′ to H. It is easy to see that the cost of f is696

|V C|+ |V C|+ |G| − |V C| = |G|+ |V C|.697

698

From a homomorphism from G′ to H to a vertex cover in G: Let f be a homomorphism from699

G′ to H. To obtain a vertex cover in G, we modify f into a homomorphism so that it agrees700

on every ur ∈ V1 and vr ∈ V2. Suppose f(ur) = a and f(vr) = d for some ur ∈ V1 and vr ∈ V2.701

Consider the vertex βr ∈ U corresponding to vr and wr. Since vr, βr, wr is a path in G′, and702

there is no path of length two in H from d to e, we must have f(wr) = a and f(βr) = j.703

Then, we define a homomorphism f ′ from G′ to H as follows. We set f ′(vr) = a, f ′(wr) = e,704

and f ′(βr) = k. Moreover, for the vertex λr ∈ U corresponding to vertices ur and vr, we set705

f ′(λr) = k. Note that for every vertex αs,r corresponding to a pair (xs, xr) with xrxs ∈ E(G),706

we have f(αs,r) = j and f(us) = a— notice that αs,rvr, usαs,r ∈ E(G′). As such, we set707

f ′(αs,r) = i, thereby, get f(us)f
′(αs,r) ∈ E(H). Finally, for every other vertex z, we set708

f ′(z) = f(z). It is easy to see that f ′ is a homomorphism from G′ to H with c(f) = c(f ′).709

Next, suppose for some us we have f ′(us) = b and f ′(vs) = a. By a similar modification, we710

modify f ′ further and obtain a homomorphism f ′′ so that f ′′(us) = f ′′(vs) = a. We continue711

this process until we obtain a homomorphism f t so that f t(ur) = a if and only if f t(vr) = a712

for every 1 ≤ r ≤ n.713

Therefore, for the sake of simplicity, we may assume f t = f and f(ur) = a if and only714
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if f(vr) = a for every ur ∈ V1. Notice that if f(ur) = f(vr) = a, then we may assume715

f(wr) = e. Otherwise, we change the image of wr to e, and still, f is a homomorphism from716

G′ to H, with a smaller cost.717

Let V C ′ = {ur, vr | f(ur) = f(vr) = a}. Notice that as we discussed just above718

V C ′ ∩ {us, vs | f(ws) = a}| = ∅. Therefore, c(f) = |V C ′| + |{ws | f(ws) = a}|, and719

hence, c(f) = |V C ′|+ |G| − |V C′|
2

. Let V C = {xr | f(ur) = a}, and notice that |V C| = |V C′|
2

.720

Thus, c(f) = |V C| + |G|. We show that V C is a vertex cover in G. Suppose xrxs ∈ E(G).721

Now there is a vertex αr,s ∈ U , and two edges urαr,s, αr,svs in G′. Since, there is no path722

of length two between b, d in H and f is a homomorphism from G′ to H, at least one of723

the f(ur), f(vs) is a, say f(ur) = a. Thus, by definition ur ∈ V C ′, and consequently xr ∈ V C.724

725

Showing the 1.128-approximation is NP-hard: We show that it is NP-hard to find a ho-726

momorphism f : V (G′) → V (H) with c(f) < (1 + λ)c(f ∗) (here λ = 0.128, and f ∗ is the727

optimal minimum cost homomorphism from G′ to H). For contradiction, suppose there is a728

polynomial-time algorithm that produces such a homomorphism f . Then, c(f) = |V C|+ |G|729

and c(f ∗) = |V C∗|+ |G| (here V C∗ is the optimal vertex cover in G). We have |V C|+ |G| <730

(1 + λ)(|V C∗|+ |G|).731

Thus, |V C| < (1+λ)|V C∗|+λ|G|, and hence, |V C|−λ|G| < (1+λ)|V C∗|. We may assume732

|V C| ≥ 0.639|G|, thanks to the construction in [5]. Therefore, we have |V C|(1 − λ
0.639

) ≤733

|V C| − λ|G| < (1 + λ)|V C∗|, and consequently, we have |V C| < 1+λ
1− λ

0.639

|V C∗|.734

By setting (1+λ)0.639
0.639−λ

=
√
2, we get a contradiction since, as shown in [25], the vertex cover735

cannot be approximated within any factor better than
√
2 − ϵ. Thus, 1 + λ = 1.128 and736

it is NP-hard to approximate MinHOM(H) within factor 1.128 when H is a bipartite claw.737

Moreover, by setting (1+λ)0.639
0.639−λ

= 2, (λ = 0.242) we get a contradiction with the (2 − ϵ)-738

UG-hardness for the Vertex Cover [26]. That is, for every ε ≥ 0, MinHOM(H) when H is a739

bipartite claw is 1.242-UG-hard.740

741

Reduction for bipartite tent: Let V1 = {u1, u2, . . . , un}, V2 = {v1, v2, . . . , vn} and V3 =742

{w1, w2, . . . , wn} be three disjoint copies of V (G) = {x1, x2, . . . , xn}. Let set U be initially743

empty. At the end of the construction, the vertex set of G′ is V1 ∪ V2 ∪ V3 ∪ U . For every744

edge xrxs of G, we add the edges urvs and vsur into G′. For every vr ∈ V2 and wr ∈ V3,745

corresponding to vertex xr ∈ G, add edge vrwr into G′. Finally, for every ur ∈ V1 and746

wr ∈ V3, corresponding to vertex xr ∈ G, add a new vertex λr to U , and add the edges urλr747

and λrwr into G′. We define the cost function c : V (G′) × V (H) → Q≥0 ∪ {∞} as follows.748

For every ur ∈ V1, set c(ur, a) = 1, c(ur, b) = 0, and c(ur, p) = |G| for every p ̸∈ {a, b}. For749

every vr ∈ V2, set c(vr, j) = 1, c(vr, l) = 0, and c(vr, p) = |G| for every p ̸∈ {l, j}. For every750

wr ∈ V3, set c(wr, a) = 1, c(wr, d) = 0, and c(wr, p) = |G| for every p ̸∈ {a, d}. Finally,751

for every λr corresponding to vertices ur ∈ V1 and wr ∈ V3, set c(λr, i) = c(λr, k) = 0,752

and c(λr, p) = |G| for every p ̸∈ {i, k}. Now, by a similar argument as the one for the bi-753

partite claw we get the inapproximability bound for MinHOM(H) when H is a bipartite tent.754

755

Reduction for bipartite net: Let V1 = {u1, u2, . . . , un}, V2 = {v1, v2, . . . , vn} and V3 =756
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{w1, w2, . . . , wn} be three disjoint copies of V (G) = {x1, x2, . . . , xn}. Let sets U1, U2 be757

initially empty. At the end of the construction, the vertex set of G′ is V1 ∪V2 ∪V3 ∪U1 ∪U2.758

For every edge xrxs of G, we add a new vertex αr,s to U1 and the edges urαr,s, αr,svs into G′
759

(here ur ∈ V1 is the copy of xr ∈ G and vs ∈ V2 is the copy of xs ∈ G).760

For every vr ∈ V2 and wr ∈ V3, corresponding to vertex xr ∈ G, add edge vrwr into761

G′. Finally, for every ur ∈ V1 and wr ∈ V3, corresponding to vertex xr ∈ G, add two new762

vertices λr, βr to U2, and add the edges urλr, λrβr, βrwr into G′. We define the cost function763

c : V (G′)× V (H)→ Q≥0 ∪ {∞} as follows. For every ur ∈ V1, set c(ur, a) = 1, c(ur, b) = 0,764

and c(ur, p) = |G| for every p ̸∈ {a, b}. For every vr ∈ V2, set c(vr, d) = 1, c(vr, e) = 0,765

and c(vr, p) = |G| for every p ̸∈ {e, d}. For every wr ∈ V3, set c(wr, j) = 1, c(vr, k) = 0,766

and c(vr, p) = |G| for every p ̸∈ {j, k}. For every αr,s ∈ U1, set c(αr,s, i) = c(αr,s, j) = 0,767

and c(αr,s, p) = |G| for every p ̸∈ {i, j}. Finally, every λr, βr ∈ U2, corresponding to vertices768

ur ∈ V1 and wr ∈ V3, set c(λr, a) = c(λr, d) = c(βr, i) = c(βr, j) = 0 and for every other case769

the cost is |G|. Now, by a similar argument as the one for the bipartite claw, we get the770

inapproximability bound for MinHOM(H) when H is a bipartite net.771

772

In conclusion, when H is a bipartite and MinHOM(H) is NP-complete, we get that773

MinHOM(H) is 1.128-approx-hard and 1.242-UG-hard.774

H has vertices with self-loops: We show that H must be reflexive; meaning every vertex775

has a loop. Otherwise, H must contain an induced sub-graph H1 = {aa, ab} where b does not776

have a self-loop (recall that we assume H is connected). As we mention in the introduction,777

Vertex Cover problem is an instance of MinHOM(H1). Vertex Cover is (
√
2− ϵ)-approx-hard778

and (2 − ϵ)-UG-hard for every ϵ > 0. Therefore, MinHOM(H1) is (
√
2 − ϵ)-approx-hard779

and (2 − ϵ)-UG-hard for every ϵ > 0. By the hardness of approximation for sub-graphs780

(Lemma 5.1), we obtain better hardness bounds for MinHOM than the claim of the theorem.781

Therefore, we may assume that H is reflexive henceforth.782

If H contains an induced cycle of length at least 4 (when removing the self-loops),783

LHOM(H) is NP-complete due to [6], and hence, by Lemma 5.4, MinHOM(H) does not784

admit any approximation. Thus, by Theorem 5.3 and Lemma 5.1, we need to consider the785

case where H is a claw, tent or net. When H is any of these three graphs, H contains786

an invertible pair (see Figure 5). In particular for the reflexive claw, we start with graph787

G as explained in the bipartite claw, and construct three partite graph G′ with V1, V2, V3,788

and we add an edge between ur ∈ V1 and vs ∈ V2 (corresponding to edges ae, aa, ba in the789

claw in Figure 5) if xrus ∈ E(G). Between vr ∈ V1 and wr ∈ V2 we place a path of length790

2 (corresponding to walks a, d, d and a, d, a and e, e, a) and finally between ur ∈ V1 and791

wr ∈ V3 we add an edge. The cost function is defined as follows, c(ur, a) = 1, c(ur, b) = 0,792

for every ur ∈ V1, and c(vr, a) = 1, c(vr, e) = 0 for every vr ∈ V2. Finally for every wr ∈ V3,793

set c(wr, a) = 1, c(wr, d) = 0. The rest of the costs are defined in a similar way as in the794

bipartite claw reduction.795

Now, by a similar argument for bipartite claw, we conclude that MinHOM(H) is 1.155-796

approx-hard and 1.389-UG-hard. Similar treatment is used for MinHOM(H) when H is a797
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Figure 5: Invertible pair for claw, tent, and net.

reflexive net or a reflexive tent.798

In conclusion, if H is reflexive and MinHOM(H) is NP-complete then MinHOM(H) is799

1.155-approx-hard and 1.389-UG-hard. This completes the proof of the theorem.800
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