Approximability and Inapproximability of Minimum Cost Homomorphism *

Pavol Hell ${ }^{\dagger}$ Monaldo Mastrolilli ${ }^{\ddagger}$ Mayssam Nevisi ${ }^{\S}$ Akbar Rafiey ${ }^{\text {I }}$
Arash Rafiey ||

Abstract

We study the approximability and hardness of approximation of minimum cost homomorphism to target graph H, $\operatorname{MinHOM}(H)$. When H is a bipartite graph, we prove that if H is a co-circular arc bigraph, then $\operatorname{MinHOM}(H)$ admits a polynomial time constant ratio approximation algorithm; otherwise, $\operatorname{MinHOM}(H)$ is known to be not approximable. For the purposes of the approximation, we provide a new characterization of co-circular arc bigraphs by the existence of min ordering. Our algorithm is then obtained by derandomizing a two-phase randomized procedure.

Moreover, we provide a complete classification of approximable cases of graphs. That is, we prove $\operatorname{MinHOM}(H)$ has a constant factor approximation algorithm if graph H is a bi-arc graph (i.e., admits a conservative majority polymorphism), otherwise, it is inapproximable assuming $\mathrm{P} \neq \mathrm{NP}$;

Finally, we complement our positive results with hardness of approximation results for graphs. We show that $\operatorname{MinHOM}(H)$ is 1.128 -approx-hard and 1.242-UGC-hard. Thus, we obtain a dichotomy theorem for approximability and inapproximability of $\operatorname{MinHOM}(H)$ when H is a graph.

1 Introduction

We study the approximability of the minimum cost homomorphism problem, introduced below. A c-approximation algorithm produces a solution of cost at most c times the minimum

[^0]cost. A constant ratio approximation algorithm is a c-approximation algorithm for some constant c. When we say a problem has a c-approximation algorithm, we mean a polynomialtime algorithm. We say that a problem is not approximable if there is no polynomial-time approximation algorithm with a multiplicative guarantee unless $P=N P$.

The minimum cost homomorphism problem was introduced in [12]. It consists of minimizing a certain cost function over all homomorphisms from an input graph G to a fixed graph H. This offers a natural and practical way to model many optimization problems. For instance, in [12] it was used to model a problem of minimizing the cost of a repair and maintenance schedule for large machinery. It generalizes many other problems such as list homomorphism problems (see below), and various optimum cost chromatic partition problems [13, 22, 23, 27]. (A different kind of the minimum cost homomorphism problem was introduced in [1].) Certain minimum cost homomorphism problems have polynomial-time algorithms [10, 11, 12], but most are NP-hard. Therefore we investigate the approximability of these problems. Note that we approximate the cost over real homomophisms, rather than approximating the maximum weight of satisfied constraints, as in, say, MAXSAT.

We call a graph reflexive if every vertex has a loop, and irreflexive if no vertex has a loop. An interval graph is a graph that is the intersection graph of a family of real intervals, and a circular arc graph is a graph that is the intersection graph of a family of arcs on a circle. We interpret the concept of an intersection graph literally, thus any intersection graph is automatically reflexive, since a set always intersects itself. A bipartite graph whose complement is a circular arc graph, will be called a co-circular arc bigraph. When forming the complement, we take all edges that were not in the graph, including loops and edges between vertices in the same color. In general, the word bigraph will be reserved for a bipartite graph with a fixed bipartition of vertices; we shall refer to white and black vertices to reflect this fixed bipartition. Bigraphs can be conveniently viewed as directed bipartite graphs with all edges oriented from the white to the black vertices. Thus, by definition, interval graphs are reflexive, and co-circular arc bigraphs are irreflexive. Despite the apparent differences in their definition, these two graph classes exhibit certain natural similarities [6, 7]. There is also a concept of an interval bigraph H, which is defined for two families of real intervals, one family for the white vertices and one family for the black vertices: a white vertex is adjacent to a black vertex if and only if their corresponding intervals intersect. Interval bigraphs, have been studied in [14, 29, 30].

A reflexive graph is a proper interval graph if it is an interval graph in which the defining family of real intervals can be chosen to be inclusion-free. A bigraph is a proper interval bigraph if it is an interval bigraph in which the defining two families of real intervals can be chosen to be inclusion-free. It turns out [14] that proper interval bigraphs are a subclass of co-circular arc bigraphs.

A homomorphism of a graph G to a graph H is a mapping $f: V(G) \rightarrow V(H)$ such that for any edge $x y$ of G the pair $f(x) f(y)$ is an edge of H.

Let H be a fixed graph. The list homomorphism problem to H, denoted $\operatorname{ListHOM}(H)$, seeks, for a given input graph G and lists $L(x) \subseteq V(H), x \in V(G)$, a homomorphism f of G to H such that $f(x) \in L(x)$ for all $x \in V(G)$. It was proved in [7] that for irreflexive graphs,
the problem $\operatorname{ListHOM}(H)$ is polynomial-time solvable if H is a co-circular arc bigraph, and is NP-complete otherwise. It was shown in [6] that for reflexive graphs H, the problem $\operatorname{ListHOM}(H)$ is polynomial-time solvable if H is an interval graph, and is NP-complete otherwise.

The minimum cost homomorphism problem to H, denoted $\operatorname{MinHOM}(H)$, seeks, for a given input graph G and vertex-mapping costs $c(x, u), x \in V(G), u \in V(H)$, a homomorphism f of G to H that minimizes total cost $\sum_{x \in V(G)} c(x, f(x))$.

As mentioned above the MinHOM problem offers a natural and practical way to model and generalizes many optimization problems.

Example 1.1 (Vertex Cover). This problem can be seen as $\operatorname{MinHOM}(H)$ where $V(H)=$ $\{a, b\}, E(H)=\{a a, a b\}$, and $c(u, a)=1, c(u, b)=0$ for every vertex $u \in G$.

Example 1.2 (Chromatic SUM). In this problem, we are given a graph G, and the objective is to find a proper coloring of G with colors $\{1, \ldots, k\}$ with minimum color sum. This can be seen as MinHOM where H is a clique of size k with $V(H)=\{1, \ldots, k\}$ and the cost function is defined as $c(u, i)=i$. The Chromatic Sum problem appears in many applications such as resource allocation problems [3].

Example 1.3 (Multiway Cut). Let G be a graph where each edge e has a non-negative weight $w(e)$. There are also k specific (terminal) vertices, $s_{1}, s_{2}, \ldots, s_{k}$ of G. The goal is to partition the vertices of G into k parts so that each part $i \in\{1,2, \ldots, k\}$, contains s_{i} and the sum of the weights of the edges between different parts is minimized. Let H be a graph with vertex set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup\left\{b_{i, j} \mid 1 \leq i<j \leq k\right\}$. The edge set of H is $\left\{a_{i} a_{i}, a_{i} b_{i, j}, b_{i, j} a_{j}, a_{j} a_{j} \mid 1 \leq i<j \leq k\right\}$. Now obtain the graph G^{\prime} from G by replacing every edge $e=u v$ of G with the edges $u x_{e}, x_{e} v$ where x_{e} is a new vertex. The cost function c is as follows. $c\left(s_{i}, a_{i}\right)=0$, else $c\left(s_{i}, d\right)=|G|$ for $d \neq a_{i}$. For every $u \in G \backslash\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, set $c\left(u, s_{i}\right)=0$. Set $c\left(x_{e}, b_{i, j}\right)=w(e)$. Now, finding a minimum multiway cut in G is equivalent to finding a minimum-cost homomorphism from graph G^{\prime} to H.

The complexity of $\operatorname{MinHOM}(H)$ for graphs and digraphs have been well-understood 11, 20. It was proved in [11] that for irreflexive graphs, the problem $\operatorname{MinHOM}(H)$ is polynomialtime solvable if H is a proper interval bigraph, and it is NP-complete otherwise. It was also shown there that for reflexive graphs H, the problem $\operatorname{MinHOM}(H)$ is polynomial time solvable if H is a proper interval graph, and it is NP-complete otherwise.

In [28], the authors have shown that $\operatorname{MinHOM}(H)$ is not approximable if H is a graph that is not bipartite or not a co-circular arc graph, and gave a randomized 2-approximation algorithms for $\operatorname{MinHOM}(H)$ for a certain subclass of co-circular arc bigraphs H. The authors have asked for the exact complexity classification for these problems. We answer the question by showing that the problem $\operatorname{MinHOM}(H)$ in fact has a $|V(H)|$-approximation algorithm for all co-circular arc bigraphs H. Thus for an irreflexive graph H the problem $\operatorname{MinHOM}(H)$ has a constant ratio approximation algorithm if H is a co-circular arc bigraph, and is not approximable otherwise. We also prove that for a reflexive graph H the problem $\operatorname{MinHOM}(H)$ has a constant ratio approximation algorithm if H is an interval graph, and is
not approximable otherwise. We use the method of randomized rounding, a novel technique of randomized shifting, and then a simple derandomization.

A min ordering of a graph H is an ordering of its vertices $a_{1}, a_{2}, \ldots, a_{n}$, so that the existence of the edges $a_{i} a_{j}, a_{i^{\prime}} a_{j^{\prime}}$ with $i<i^{\prime}$ and $j^{\prime}<j$ implies the existence of the edge $a_{i} a_{j^{\prime}}$. A min-max ordering of a graph H is an ordering of its vertices $a_{1}, a_{2}, \ldots, a_{n}$, so that the existence of the edges $a_{i} a_{j}, a_{i^{\prime}} a_{j^{\prime}}$ with $i<i^{\prime}$ and $j^{\prime}<j$ implies the existence of the edges $a_{i} a_{j^{\prime}}, a_{i^{\prime}} a_{j}$. For bigraphs, it is more convenient to speak of two orderings, and we define a min ordering of a bigraph H to be an ordering $a_{1}, a_{2}, \ldots, a_{p}$ of the white vertices and an ordering $b_{1}, b_{2}, \ldots, b_{q}$ of the black vertices, so that the existence of the edges $a_{i} b_{j}, a_{i^{\prime}} b_{j^{\prime}}$ with $i<i^{\prime}, j^{\prime}<j$ implies the existence of the edge $a_{i} b_{j^{\prime}}$; and a min-max ordering of a bigraph H to be an ordering of $a_{1}, a_{2}, \ldots, a_{p}$ of the white vertices and an ordering $b_{1}, b_{2}, \ldots, b_{q}$ of the black vertices, so that the existence of the edges $a_{i} b_{j}, a_{i^{\prime}} b_{j^{\prime}}$ with $i<i^{\prime}, j^{\prime}<j$ implies the existence of the edges $a_{i} b_{j^{\prime}}, a_{i^{\prime}} b_{j}$. (Both are instances of a general definition of min ordering for directed graphs [19].)

In Section 2 we prove that co-circular arc bigraphs are precisely the bigraphs that admit a min ordering. In the realm of reflexive graphs, such a result is known about the class of interval graphs (they are precisely the reflexive graphs that admit a min ordering) [18].

Approximability results. In Section 3 we recall that $\operatorname{MinHOM}(H)$ is not approximable when H does not have min ordering, and describe a $|V(H)|$-approximation algorithm when H is a bigraph that admits a min ordering. In Section 4, we further apply our technique for graphs (vertices with possible loops) and show that when H is a bi-arc graph then $\operatorname{MinHOM}(H)$ has a $2|V(H)|$-approximation algorithm. Note that, for graphs, $\operatorname{MinHOM}(H)$ is not approximable if H is not a bi-arc graph. Hence, our result gives a dichotomy classification for approximation of $\operatorname{MinHOM}(H)$ when H is a graph.

Inapproximability results. As pointed out, the $\operatorname{MinHOM}(H)$ is not approximable if ListHOM (H) is not polynomial-time solvable. This rules out the possibility of having an approximation algorithm for graphs that are not bi-arc. However, there are no known inapproximability results for the cases where $\operatorname{MinHOM}(H)$ is NP-complete. We, therefore, complete the picture by considering a much bigger class of graphs than bi-arc graphs and present inapproximability results for them. That is the class of graphs for which MinHOM is NP-complete. This class of graphs has been characterized in [11] and are known as graphs that do not admit a min-max ordering. The obstructions for min-max ordering for graphs and digraphs have been provided in 21. This characterization was used to show the NPcompleteness of MinHOM together with the NP-completeness of the maximum independent set problem [20]. However, in this paper, we must develop an array of approximationpreserving reductions to obtain our inapproximability results.

2 Co-circular bigraphs and min ordering

A reflexive graph has a min ordering if and only if it is an interval graph [18]. In this section we prove a similar result about bigraphs. Two auxiliary concepts from [7, 9] are introduced first.

An edge asteroid of a bigraph H consists of $2 k+1$ disjoint edges $a_{0} b_{0}, a_{1} b_{1}, \ldots, a_{2 k} b_{2 k}$ such that each pair a_{i}, a_{i+1} is joined by a path disjoint from all neighbours of $a_{i+k+1} b_{i+k+1}$ (subscripts modulo $2 k+1$).

An invertible pair in a bigraph H is a pair of white vertices a, a^{\prime} and two pairs of walks $a=$ $v_{1}, v_{2}, \ldots, v_{k}=a^{\prime}, a^{\prime}=v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}=a$, and $a^{\prime}=w_{1}, w_{2}, \ldots, w_{m}=a, a=w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime}=$ a^{\prime} such that v_{i} is not adjacent to v_{i+1}^{\prime} for all $i=1,2, \ldots, k$ and w_{j} is not adjacent to w_{j+1}^{\prime} for all $j=1,2, \ldots, m$.

Theorem 2.1. A bigraph H is a co-circular arc graph if and only if it admits a min ordering.
Proof. Consider the following statements for a bigraph H :

1. H has no induced cycles of length greater than three and no edge asteroids
2. H is a co-circular-arc graph
3. H has a min ordering
4. H has no invertible pairs
$1 \Rightarrow 2$ is proved in [7].
$2 \Rightarrow 3$ is seen as follows: Suppose H is a co-circular arc bigraph; thus the complement \bar{H} is a circular arc graph that can be covered by two cliques. It is known for such graphs that there exist two points, the north pole and the south pole, on the circle, so that the white vertices u of H correspond to arcs A_{u} containing the north pole but not the south pole, and the black vertices v of H correspond to arcs A_{v} containing the south pole but not the north pole. We now define a min ordering of H as follows. The white vertices are ordered according to the clockwise order of the corresponding clockwise extremes, i.e., u comes before u^{\prime} if the clockwise end of A_{u} precedes the clockwise end of $A_{u^{\prime}}$. The same definition, applied to the black vertices v and $\operatorname{arcs} A_{v}$, gives an ordering of the black vertices of H. It is now easy to see from the definitions that if $u v, u^{\prime} v^{\prime}$ are edges of H with $u<u^{\prime}$ and $v>v^{\prime}$, then A_{u} and $A_{v^{\prime}}$ must be disjoint, and so $u v^{\prime}$ is an edge of H.
$3 \Rightarrow 4$ is easy to see from the definitions (see, for instance [9]).
$4 \Rightarrow 1$ is checked as follows: If C is an induced cycle in H, then C must be even, and any two of its opposite vertices together with the walks around the cycle form an invertible pair of H. In an edge-asteroid $a_{0} b_{0}, \ldots, a_{2 k} b_{2 k}$ as defined above, it is easy to see that, say, a_{0}, a_{k} is an invertible pair. Indeed, there is, for any i, a walk from a_{i} to a_{i+1} that has no edges to the walk $a_{i+k}, b_{i+k}, a_{i+k}, b_{i+k}, \ldots, a_{i+k}$ of the same length. Similarly, a walk $a_{i+1}, b_{i+1}, a_{i+1}$, b_{i+1}, \ldots, a_{i+1} has no edges to a walk from a_{i+k} to a_{i+k+1} implied by the definition of an edge-asteroid. By composing such walks we see that a_{0}, a_{k} is an invertible pair.

We note that it can be decided in time polynomial in the size of H, whether a graph H is a (co-)circular arc bigraph [15].

3 Approximation of MinHOM for bipartite graphs

In this section we describe our approximation algorithm for $\operatorname{MinHOM}(H)$ in the case the fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph, cf. Theorem 2.1. We recall that if H is not a co-circular arc bigraph, then the list homomorphism problem ListHOM (H) is NP-complete [7], and this implies that $\operatorname{MinHOM}(H)$ is not approximable for such graphs H [28]. By Theorem 2.1 we conclude the following.

Theorem 3.1. If a bigraph H has no min ordering, then $\operatorname{MinHOM}(H)$ is not approximable.
Our main result is the following converse: if H has a min ordering (is a co-circular arc bigraph), then there exists a constant ratio approximation algorithm (since H is fixed, $|V(H)|$ is a constant.).

Theorem 3.2. If H is a bigraph that admits a min ordering, then $\operatorname{MinHOM}(H)$ has a $|V(H)|$-approximation algorithm.

To prove the above theorem we first design an approximation algorithm.

Fixing a min ordering for H. Suppose H has a min ordering with the white vertices ordered $a_{1}, a_{2}, \cdots, a_{p}$, and the black vertices ordered $b_{1}, b_{2}, \cdots, b_{q}$. For every $1 \leq i \leq p$, let $r(i)$ be the first subscript that $a_{i} b_{r(i)}$ is an edge of H. For every $1 \leq i \leq q$, let $\ell(i)$ be the first subscript that $a_{\ell(i)} b_{i}$ is an edge of H.

Definition 3.3 (H^{\prime} and E^{\prime} construction). Let E^{\prime} denote the set of all pairs $a_{i} b_{j}$ such that $a_{i} b_{j}$ is not an edge of H, but there is an edge $a_{i} b_{j^{\prime}}$ of H with $j^{\prime}<j$ and an edge $a_{i^{\prime}} b_{j}$ of H with $i^{\prime}<i$. Define H^{\prime} to be the graph with vertex set $V(H)$ and edge set $E(H) \cup E^{\prime}$. (Note that $E(H)$ and E^{\prime} are disjoint sets.)

Observation 3.4. The ordering $a_{1}, a_{2}, \cdots, a_{p}$, and $b_{1}, b_{2}, \cdots, b_{q}$ is a min-max ordering of H^{\prime}.

Proof. We show that for every pair of edges $e=a_{i} b_{j^{\prime}}$ and $e^{\prime}=a_{i^{\prime}} b_{j}$ in $E(H) \cup E^{\prime}$, with $i^{\prime}<i$ and $j^{\prime}<j$, both $f=a_{i} b_{j}$ and $f^{\prime}=a_{i^{\prime}} b_{j^{\prime}}$ are in $E(H) \cup E^{\prime}$. If both e and e^{\prime} are in $E(H), f \in E(H) \cup E^{\prime}$ and $f^{\prime} \in E(H)$. If one of the edges, say e, is in E^{\prime}, there is a vertex $b_{j^{\prime \prime}}$ with $a_{i} b_{j^{\prime \prime}} \in E(H)$ and $j^{\prime \prime}<j^{\prime}$, and a vertex $a_{i^{\prime \prime}}$ with $a_{i^{\prime \prime}} b_{j^{\prime}} \in E(H)$ and $i^{\prime \prime}<i$. Now, $a_{i^{\prime}} b_{j}$ and $a_{i} b_{j^{\prime \prime}}$ are both in $E(H)$, so $f \in E(H) \cup E^{\prime}$. We may assume that $i^{\prime \prime} \neq i^{\prime}$, otherwise $f^{\prime}=a_{i^{\prime \prime}} b_{j^{\prime}} \in E(H)$. If $i^{\prime \prime}<i^{\prime}$, then $f^{\prime} \in E(H) \cup E^{\prime}$ because $a_{i^{\prime}} b_{j^{\prime \prime}} \in E(H)$; and if $i^{\prime \prime}>i^{\prime}$, then $f^{\prime} \in E(H)$ because $a_{i^{\prime}} b_{j} \in E(H)$.

If both edges e, e^{\prime} are in E^{\prime}, then the earlier neighbours of a_{i} and b_{j} in $E(H)$ imply that $f \in E(H) \cup E^{\prime}$, and the earlier neighbours of $a_{i^{\prime}}$ and $b_{j^{\prime}}$ in $E(H)$ imply that $f^{\prime} \in$ $E(H) \cup E^{\prime}$.

Observation 3.5. Let $e=a_{i} b_{j} \in E^{\prime}$. Then a_{i} is not adjacent in $E(H)$ to any vertex after b_{j}, or b_{j} is not adjacent in $E(H)$ to any vertex after a_{i}.

Proof. This easily follows from the fact that $a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{q}$ is a min ordering.

$\text { Minimize } \sum_{u \in U, i \in[p]} c\left(u, a_{i}\right)\left(x_{u, a_{i}}-x_{u, a_{i+1}}\right)+\sum_{v \in V, j \in[q]} c\left(v, b_{j}\right)\left(x_{v, b_{i}}-x_{v, b_{j+1}}\right)$		
Subject to:		
$0 \leq x_{u, a_{i}}, v_{v, b_{j}} \leq 1$	$\forall u, v \in V(G), a_{i}, b_{j} \in V(H)$	(C1)
$x_{u, a_{1}}=x_{v, b_{1}}=1$ and $x_{u, a_{p+1}}=x_{v, b_{q+1}}=0$		(C2)
$x_{v, b_{i+1}} \leq x_{v, b_{i}}$ and $x_{u, a_{i+1}} \leq x_{u, a_{i}}$	$\forall v \in V, u \in U, a_{i}, b_{i} \in V(H)$	(C3)
$x_{u, a_{i}} \leq x_{v, b_{r(i)}}$ and $x_{v, b_{i}} \leq x_{u, a_{\ell(i)}}$	$\forall u v \in E(G)$	(C4)
$x_{v, b_{j}} \leq x_{u, a_{s}}+\sum_{a_{t} b_{j} \in E(H), t<i}\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)$	$\forall u v \in E(G), a_{i} b_{j} \in E^{\prime}, a_{s}$ is the first neighbor of b_{j} after a_{i}	(C5)
$x_{u, a_{i}} \leq x_{v, b_{s}}+\sum_{a_{i} b_{t} \in E(H), t<j}\left(x_{v, b_{t}}-x_{v, b_{t+1}}\right)$	$\forall u v \in E(G), a_{i} b_{j} \in E^{\prime} b_{s}$ is the first neighbor of a_{i} after b_{j}	(C6)
$x_{u, a_{i}}-x_{u, a_{i+1}} \leq \sum_{a_{i} b_{t} \in E(H), t<j}\left(x_{v, b_{t}}-x_{v, b_{t+1}}\right)$	$\forall u v \in E(G), a_{i} b_{j} \in E^{\prime}$, and a_{i} has no neighbor after b_{j}	(C7)
$x_{v, b_{j}}-x_{v, b_{j+1}} \leq \sum_{a_{t} b_{j} \in E(H), t<i}\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)$	$\forall u v \in E(G), a_{i} b_{j} \in E^{\prime}$, and b_{j} has no neighbor after a_{i}	(C8)

Table 1: Linear program \mathcal{S}

Assumption about the input and introducing the variables. First we assume input bipartite graph $G=(U, V)$ is connected, as otherwise, we solve the problem for each connected component of G. Here U represent the left vertices of G and V represent the right vertices of G. We further look for a homomorphism f that maps vertices U to $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and vertices V to $\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$.

For every vertex $u \in U$, and every a_{i}, define the variable $x_{u, a_{i}}$, and for every $v \in V$ and b_{j}, define the variable $x_{v, b_{j}}$.

System of linear equations S. Having defined the variables $x_{u, a_{i}}, x_{v, b_{j}}$, we introduce the linear program \mathcal{S} shown in table 1 that formulates $\operatorname{MinHOM}(H)$. The intuition is if variable $x_{u, a_{i}}=1$ and $x_{u, a_{i+1}}=0$, then we map u to a_{i}. Thus, we add constraint (C3) that has inequalities $x_{u, a_{i+1}} \leq x_{u, a_{i}}$ and $x_{v, a_{j+1}} \leq x_{v, a_{j}}$. Now, from constraint (C3) and the min ordering, we add constraint (C4). Constraints (C5,C6) are the most important constraints capturing the min ordering property. Using Observation 3.5, constraint (C7,C8) are added to make sure that if we map $u \in U(v \in V)$ to $a_{i}\left(b_{j}\right)$ then the neighbor of $u(v)$, say $v(u)$ is mapped to a neighbor of $a_{i}\left(b_{j}\right)$.

Lemma 3.6. If H admits a min-ordering then there is a one to one correspondence between homomorphisms of G to H and the integer solutions of \mathcal{S}.

Proof. Suppose f is a homomorphism from G to H. If $f(u)=a_{i}$ then set $x_{u, a_{j}}=1$, for all $j \leq i$ and $x_{u, a_{j}}=0$ for all $j>i$. Similar treatment for v and b_{j}. Clearly, constraints $C 1, C 2, C 3$, and $C 4$ are satisfied. Now for all u and v in G with $f(u)=a_{i}$ and $f(v)=b_{j}$ we have that $x_{u, a_{i}}-x_{u, a_{i+1}}=x_{v, b_{j}}-x_{v, b_{j+1}}=1$. Moreover, since f is a homomorphism constraint (C7,C8) are also satisfied.

We show that constraint (C5) holds. For, contradiction, assume that the inequality in (C5) fails. This means that for some edge $u v$ of G and some arc $a_{i} b_{j} \in E^{\prime}$, we have $x_{v, b_{j}}=1$, $x_{u, a_{s}}=0$, and the sum of $\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)$, over all $t<i$ such that a_{t} is a neighbor of a_{j}, is zero. The latter two facts easily imply that $f(u)=a_{i}$. Since b_{j} has a neighbor after a_{i}, Observation 3.5 tells us that a_{i} has no neighbor after b_{j} and $x_{v, b_{j+1}}=0$, whence $f(v)=b_{j}$ and thus $a_{i} b_{j} \in E(H)$, a contradiction the assumption $a_{i} b_{j} \in E^{\prime}$. By a similar argument (C6) is also satisfied.

Conversely, from an integer solution for \mathcal{S}, we define a mapping f from G to H as follows. For every $u \in U$, set $f(u)=a_{i}$ when i is the largest subscript with $x_{u, a_{i}}=1$. Similarly, for every $v \in V$ set $f(v)=b_{j}$ when j is the largest subscript with $x_{v, b_{j}}=1$.

Let $u v$ be an edge of G and assume $f(u)=a_{i}, f(v)=b_{j}$. Note that $x_{u, a_{i}}-x_{u, a_{i+1}}=$ $x_{v, b_{j}}-x_{v, b_{j+1}}=1$ and for all other t we have $x_{v, b_{t}}-x_{v, b_{t+1}}=0$. If $a_{i} b_{j}$ is an edge of H we are done. Suppose this is not the case. Since constraints C4 is satisfied, a_{i} has a neighbor before b_{j} and b_{j} has a neighbor before a_{i} Thus, $a_{i} b_{j} \in E^{\prime}$. First suppose a_{i} has no neighbor after b_{j}. Now, $0=\sum_{a_{i} b_{t} \in E(H), t<j}\left(x_{v, b_{t}}-x_{v, b_{t+1}}\right)$, violating constraint (C7). Thus, assume a_{i} has a neighbor after b_{j}. Now $x_{u, a_{i}}=1$, while $x_{v, b_{s}}=0$, and for every $t<j, x_{v, b_{t}}-x_{v, b_{t+1}}=0$, and hence, constraint (C6) is not satisfied, a contradiction.

Overview of the rounding procedure. Our algorithm will minimize the cost function over \mathcal{S} in polynomial time using a linear programming algorithm. This will generally result in a fractional solution. We will obtain an integer solution by a randomized procedure called rounding. We choose a random variable $X \in[0,1]$, and define the rounded values $\chi_{u, a_{i}}=1$ when $x_{u, a_{i}} \geq X$, and $\chi_{u, a_{i}}=0$ otherwise; and similarly define the rounded value $\chi_{v, b_{j}}$ from $x_{v, b_{j}}$. Now set $f(u)=a_{i}$ where $\chi_{u, a_{i}}=1, \chi_{u, a_{i+1}}=0$ and set $f(v)=b_{j}$ where $\chi_{v, b_{j}}=1$, $\chi_{v, b_{j+1}}=0$. In Lemma 3.7 we show that the mapping f is a homomorphism from G to H^{\prime}. However, f may not be a homomorphism from G to H. Now the algorithm will once more modify the solution f to become a homomorphism of G to H, i.e., to avoid mapping edges of G to the edges in E^{\prime}. This will be accomplished by another randomized procedure, which we call shifting. We choose another random variable $Y \in[0,1]$, which will guide the shifting. Let F denote the set of all edges in E^{\prime} to which some edge of G is mapped by f. We also let $F(G)=\left\{(u, v, f(u), f(v)) \mid u v \in E(G), f(u) f(v) \in E^{\prime}\right\}$.

If F is empty, we need no shifting. Otherwise, let $a_{i} b_{j}$ be an edge of F with maximum sum $i+j$ (among all edges of F). By the maximality of $i+j$, we know that $a_{i} b_{j}$ is the last edge of F from both a_{i} and b_{j}. Now we consider, one by one, $\left(u, v, a_{i}, b_{j}\right) \in F(G)$ (i.e. $u v \in E(G))$ where $f(u)=a_{i}$ and $f(v)=b_{j}$. Since $F \subseteq E^{\prime}$, by Observation 3.5 either a_{i} has no neighbor after b_{j} or b_{j} has no neighbor after a_{i}.

Suppose $f(u)=a_{i}$ and a_{i} have no neighbor after b_{j} (the other case is where $f(v)=b_{j}$ and b_{j} has no neighbor after a_{i}). For such a vertex u, consider the set of all vertices a_{t} with $t<i$ such that $a_{t} b_{j} \in E(H)$. This set is not empty, since e is in E^{\prime} because of two edges of $E(H)$. Suppose the set consists of a_{t} with subscripts t ordered as $t_{1}<t_{2}<\ldots t_{k}$. The
algorithm now selects one vertex from this set as follows. Let $P_{u, t}=\frac{x_{u, a_{t}}-x_{u, a_{t+1}}}{P_{u}}$, where

$$
P_{u}=\sum_{a_{t} b_{j} \in E(H), t<i}\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right) .
$$

Then $a_{t_{q}}$ is selected if $\sum_{p=1}^{q} P_{u, t_{p}}<Y \leq \sum_{p=1}^{q+1} P_{u, t_{p}}$. Thus, a concrete a_{t} is selected with probability $P_{u, t}$, which is proportional to the difference of the fractional values $x_{u, a_{t}}-x_{u, a_{t+1}}$.

When the selected vertex is a_{t}, we shift the image of the vertex u from a_{i} to a_{t}. This modifies the homomorphism f, and hence the corresponding values of the variables. Namely, $\chi_{u, a_{t+1}}, \ldots, \chi_{u, a_{i}}$ are reset to 0 , keeping all other values the same. Note that the modified mapping is still a homomorphism from G to H^{\prime}.

We repeat the same process for the next u with these properties, until $a_{i} b_{j}$ is no longer in F (because no edge of G maps to it). This ends the iteration on $a_{i} b_{j}$, and we proceed to the next edge $a_{i^{\prime}} b_{j^{\prime}}$ with maximum $i^{\prime}+j^{\prime}$ for the next iteration. Each iteration involves at most $|V(G)|$ shifts. After at most $\left|E^{\prime}\right|$ iterations, the set F is empty and no shift is needed.

It is easy to see, due to min ordering, if the image of vertex u changes because of edge $u v$ with $f(u) f(v) \notin E(H)$, while $f(u) f(w) \in E(H)$ for some other neighbor w of u, by changing the image of u there is no need to change the image of w. We also show that the image of every vertex w in G changes at most once. More details are provided at the beginning of Lemma 3.8

```
Algorithm 2 Procedures Shift-LEFT and Shift-Right
    procedure \(\operatorname{Shift}-\operatorname{Left}\left(f, u, v, a_{i}, b_{j}, Y\right)\)
        Let \(a_{t_{1}}, a_{t_{2}}, \ldots, a_{t_{k}}\) be the neighbors of \(b_{j}\) in \(H\) before \(a_{i}\)
        Let \(P_{u} \leftarrow \sum_{l=1}^{k}\left(x_{u, a_{t_{l}}}-x_{u, a_{t_{l}+1}}\right)\), and let \(P_{u, a_{t_{q}}} \leftarrow \sum_{l=1}^{q}\left(x_{u, a_{t_{l}}}-x_{u, a_{l}+1}\right) / P_{u}\)
        if \(P_{u, a_{t_{q}}}<Y \leq P_{u, a_{t_{q+1}}}\) then
            \(f(u) \leftarrow a_{t_{q}}\)
            Set \(\chi_{u, a_{\iota}}=1\) for \(1 \leq \iota \leq t_{q}\), and set \(\chi_{u, a_{\iota}}=0\) for \(t_{q}<\iota \leq p+1\)
    procedure \(\operatorname{Shift-Right}\left(f, v, u, a_{i}, b_{j}, Y\right)\)
            Let \(b_{t_{1}}, b_{t_{2}}, \ldots, b_{t_{k}}\) be the neighbors of \(a_{i}\) in \(H\) before \(b_{j}\)
        Let \(P_{v} \leftarrow \sum_{l=1}^{k}\left(x_{v, b_{t_{l}}}-x_{v, b_{t_{l}+1}}\right)\), and let \(P_{v, b_{t_{q}}} \leftarrow \sum_{l=1}^{q}\left(x_{v, b_{t_{l}}}-x_{v, b_{t_{l}+1}}\right) / P_{v}\)
        if \(P_{v, b_{t_{q}}}<Y \leq P_{v, b_{b_{q+1}}}\) then
            \(f(v) \leftarrow b_{t_{q}}\)
            Set \(\chi_{v, b_{\iota}}=1\) for \(1 \leq \iota \leq t_{q}\), and set \(\chi_{v, b_{\iota}}=0\) for \(t_{q}<\iota \leq p+1\)
```

Lemma 3.7. The mapping f returned at line 7 of Algorithm 1 is a homomorphism from G to H^{\prime}.

Proof. Consider the edge $u v \in E(G)$ and suppose $f(u)=a_{i}$ and $f(v)=b_{j}$. Thus, we have $x_{u, a_{i+1}}<X \leq x_{u, a_{i}}$, and $x_{v, b_{j+1}}<X \leq x_{v, b_{j}}$. Now, by constraint (C5), we have $x_{u, a_{i}} \leq x_{v, b_{r(i)}}$,

```
Algorithm 1 Rounding the fractional values of \(\mathcal{S}\)
    procedure Rounding-Shifting \((\mathcal{S})\)
            Let \(\left\{x_{u, a_{i}}\right\}\) and \(\left\{x_{v, b_{j}}\right\}\) be the (fractional) values returned by solving \(\mathcal{S}\)
            Sample \(X \in[0,1]\) uniformly at random
            For all \(x_{u, a_{i}}\) : if \(X \leq x_{u, a_{i}}\) set \(\chi_{u, a_{i}}=1\), else set \(\chi_{u, a_{i}}=0\)
            For all \(x_{v, b_{j}}\) : if \(X \leq x_{v, b_{j}}\) set \(\chi_{v, b_{j}}=1\), else set \(\chi_{v, b_{j}}=0\)
            Set \(f(u)=a_{i}\) where \(\chi_{u, a_{i}}=1, \chi_{u, a_{i+1}}=0\)
            Set \(f(v)=b_{j}\) where \(\chi_{v, b_{j}}=1, \chi_{v, b_{j+1}}=0\)
                                    \(\triangleright\) At this point \(f\) is a homomorphism from \(G\) to \(H^{\prime}\).
            Let \(F(G)=\left\{(u, v, f(u), f(v)) \mid u v \in E(G), f(u) f(v) \in E^{\prime}\right\}\).
            Let \(F \subset E^{\prime}\) be the set of edges \(a_{i} b_{j}\) with some \(\left(u, v, a_{i}, b_{j}\right) \in F(G)\)
            Choose a random variable \(Y\) with values in \([0,1]\)
            while \(\exists\) edge \(a_{i} b_{j} \in F\) with \(i+j\) is maximum do
                while \(\exists\left(u, v, a_{i}, b_{j}\right) \in F(G)\) do
                if \(a_{i}\) does not have a neighbor after \(b_{j}\) and \(f(u)=a_{i}\) then
                    \(\operatorname{Shift}-\operatorname{Left}\left(f, u, v, a_{i}, b_{j}, Y\right)\)
                else if \(b_{j}\) does not have a neighbor after \(a_{i}\) and \(f(v)=b_{j}\) then
                    \(\operatorname{Shift-Right}\left(f, v, u, a_{i}, b_{j}, Y\right)\)
                Remove \(\left(u, v, a_{i}, b_{j}\right)\) from \(F(G)\)
            Remove \(a_{i} b_{j}\) from \(F\)
                    17: \(\quad\) return \(f \quad \triangleright f\) is a homomorphism from \(G\) to \(H\).
                    \(\triangleright\) At this point \(f\) is a homomorphism from \(G\) to \(H\).
```

and hence $X \leq x_{v, b_{r(i)}}$. Since $x_{v, b_{j+1}}<X$, by constraint (C3), we have $r(i) \leq j$. Similarly, using the same argument for $\ell(j)$, we conclude that $\ell(j) \leq i$. Therefore, a_{i} has a neighbor not after b_{j}, and b_{j} has a neighbor not after a_{i}. Now, either $a_{i} a_{j} \in E(H)$, or by the definition of $E^{\prime}, a_{i} b_{j} \in E^{\prime}$.

Let W denote the value of the objective function with the fractional optimum $x_{u, a_{i}}, x_{v, b_{j}}$, and W^{\prime} denote the value of the objective function with the final values $\chi_{u, a_{i}}, \chi_{v, b_{j}}$, after the rounding and all the shifting. Also, let W^{*} be the minimum cost of a homomorphism from G to H. Obviously, $W \leq W^{*} \leq W^{\prime}$. We now show that the expected value of W^{\prime} is at most a constant times W.

Lemma 3.8. Algorithm 1 runs in polynomial-time and it returns the homormorphism f from G to H such that for $u, v \in G$ and $a_{t}, b_{j} \in H$ we have

$$
\begin{align*}
& \mathbb{P}\left[\chi_{u, a_{t}}=1, \chi_{u, a_{t+1}}=0 \text { i.e. } f(u)=a_{t}\right] \leq x_{u, a_{t}}-x_{u, a_{t+1}} \tag{1}\\
& \mathbb{P}\left[\chi_{v, b_{j}}=1, \chi_{v, b_{j+1}}=0 \text { i.e. } f(v)=b_{j}\right] \leq x_{v, b_{j}}-x_{v, b_{j+1}} \tag{2}
\end{align*}
$$

Moreover, the expected contribution of each summand, say $c\left(u, a_{t}\right)\left(\chi_{u, a_{t}}-\chi_{u, a_{t+1}}\right)$, to the expected cost of W^{\prime} is at most $|V(H)| c\left(u, a_{t}\right)\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)$.

Proof. Recall that after the rounding step using the random variable X, we have a partial homomorphism $f: V(G) \rightarrow V(H)$, where $f(u)=a_{i}$ if $x_{u, a_{i+1}}<X \leq x_{u, a_{i}}$, and $f(v)=b_{j}$ if $x_{v, b_{j+1}}<X \leq x_{v, b_{j}}$. By Lemma 3.7, f is a homomorphism from G to H^{\prime}. We show the following claims, which help us through the rest of the proof.

Claim 3.9. Let $u v, u w \in E(G)$. Suppose $f(u) f(v) \in E^{\prime}$, and $f(u) f(w) \in E(H)$. After shifting the image of u to a_{t}, we have $a_{t} f(w) \in E(H)$.

Proof. Let $f(u)=a_{i}$ and $f(v)=b_{j}$ and $a_{i} b_{j} \notin E(H)$, and $a_{i} a_{l} \in E(H)$ where $b_{l}=f(w)$. Since we have shifted the image of u in Algorithm 1, according to Observation 3.5, a_{i} has no neighbor after b_{j}. Now because $a_{i} b_{l} \in E(H)$, we have $b_{l}<b_{j}$. Since $a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{q}$ is a min ordering, and $a_{i} b_{l}, a_{t} b_{j} \in E(H)$ with $t<i, l<j$, we conclude that $a_{t} b_{l} \in E(H)$.

Claim 3.10. Let $u v, u w \in E(G)$. Suppose $f(u) f(v) \in E^{\prime}$. Suppose that the image of u is shifted to a_{t}, and $a_{t} f(w) \notin E(H)$, then the Shift-Right shifts the image of $f(w)$ to a neighbor of a_{t}.

Proof. Let $a_{i}=f(u), b_{j}=f(v)$. Let $b_{s}=f(w)$. If $a_{i} b_{s} \in E(H)$, as we argued in the Claim 3.9, $a_{t} b_{s} \in E(H)$ and we don't need to change the image of w because of u. Thus, we may assume $a_{t} b_{s} \in E^{\prime}$. Now since $i+j$ is maximum, $b_{s}<b_{j}$. This would imply that $a_{i} b_{s} \in E^{\prime}$, and hence, we shift the image of w according to the rules of the Algorithm 1 to a neighbor of a_{i}, say b_{l} and before b_{s}. Now by the min ordering property $a_{t} b_{l} \in E(H)$.

From the proof of Claims 3.9 and 3.10 the image of each vertex u is shifted at most one. We observe that the image of vertex u is always changed to a smaller element. Moreover, at each step one element is removed from $F(G)$. Suppose $u v, u w \in E(G)$. By Claim 3.9, if $f(u) f(w)$ is in $E(H)$, then by shifting the image of $f(u)$ because of $u v$ being mapped to E^{\prime}, there is no need to change the image of w. Furthermore, by claim 3.10 if by shifting the image of $f(u)$ from a_{i} to a_{t}, there is no edge between $f(w) a_{t}$ then w is shifted to a neighbor of a_{i} that is also a neighbor of a_{t}. These conclusions guarantee that at each step the number of elements in $F(G)$ is decreased. It is clear that for each $a_{i} b_{j}$ in F, at most $|V(G)|$ shifts are needed. Therefore, Algorithm 1 runs in polynomial-time and f is a homomorphism from G to H.

According to the rules of the Algorithm 1, vertex u is mapped to a_{t} in two cases. The first case is where u is mapped to a_{t} by rounding, and is not shifted away. In other words, we have $\chi_{u, a_{t}}=1$ and $\chi_{u, a_{t+1}}=0$ after rounding, and these values do not change by procedures Shift-Left. Hence, for this case we have:

$$
\mathbb{P}\left[f(u)=a_{t}\right] \leq \mathbb{P}\left[x_{u, a_{t+1}}<X \leq x_{u, a_{t}}\right]=x_{u, a_{t}}-x_{u, a_{t+1}}
$$

where the first inequality follows from the fact that the probability that the image of u is not changed by either of shifting procedures is at most 1 . Whence, this situation occurs with probability at most $x_{u, a_{t}}-x_{u, a_{t+1}}$, and the expected contribution of the corresponding summand is at most $c\left(u, a_{t}\right)\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)$.

Second case is where $f(u)$ is set to a_{t} during Shift-Left. We first calculate the contribution for a fixed i, that is, the contribution of shifting u from a fixed a_{i} to a_{t} in ShifT-LEFT.

Note that u is first mapped to $a_{i}, i>t$, by rounding, and then re-mapped to a_{t} during procedure Shift-Left. This happens if there exists j and v such that $u v$ is an edge of G, and $a_{i} b_{j} \in F \subseteq E^{\prime}$ (with $i+j$ being maximum) and then the image of u is shifted to a_{t} ($a_{t}<a_{i}$ in the min ordering), where $a_{t} b_{j} \in E(H)$. In other words, we have $\chi_{u, a_{i}}=\chi_{v, b_{j}}=1$ and $\chi_{u, a_{i+1}}=\chi_{v, b_{j+1}}=0$ after rounding; and then u is shifted from a_{i} to a_{t}.

Recall that this shift occurs when a_{i} does not have any neighbors after b_{j} and Algorithm 1 calls Shift-Left. Furthermore, $a_{i} b_{j} \in F$ is chosen so that $i+j$ is maximized. We show the following claim which enables us to assume we only need to consider only one neighbor of u, namely, v in our calculation.
Claim 3.11., For every neighbor w of u where $X \leq x_{w, b_{j}}$, we must have $x_{w, b_{j+1}}<X$.
Proof. By Observation 3.4, the ordering $a_{1}<a_{2}<\cdots<a_{p}<b_{1}<b_{2}<\cdots<b_{p}$ is a minmax ordering with respect to $E(H) \cup E^{\prime}$, and by Lemma 3.7 every edge of G is mapped to an edge in $E(H) \cup E^{\prime}$, after the rounding step by variable X. Suppose for some $u w \in E(G)$ we have $x_{w, b_{j+1}} \geq X$ which implies that $u w$ is mapped to $a_{i} b_{j^{\prime}} \in E(H) \cup E^{\prime}$ with $j<j^{\prime}$, this in turn contradicts our assumptions that a_{i} does not have any neighbor after b_{j} and $i+j$ is maximum.

By the above claim no neighbor of u is mapped to a vertex after b_{j} in the rounding step. By Claim 3.11 we must have $x_{w, b_{j+1}}<X$ for all w with $u w \in E(G)$. That is,

$$
\begin{equation*}
\alpha=\max _{w: u w \in E(G)} x_{w, b_{j+1}}<X \tag{3}
\end{equation*}
$$

Define events \mathcal{A} and \mathcal{B} as follows:
Event \mathcal{A} : there exists v such that $u v$ is an edge of G, and u is mapped to a_{i} and v is mapped to b_{j} during rounding step. That is the event $\chi_{u, a_{i}}=\chi_{v, b_{j}}=1, \chi_{u, a_{i+1}}=$ $\chi_{v, b_{j+1}}=0$.

Event \mathcal{B} : the image of u is shifted to a_{t} from $a_{i}(t<i)$. That is the event $P_{u, a_{t_{j}}}<Y \leq$ $P_{u, a_{t_{j+1}}}$.
Consider event \mathcal{A} and two cases where b_{j} has some neighbor after a_{i} and the case where b_{j} does not have a neighbor after a_{i}. Let C be the non-empty set of indices $C=\{t \mid t<$ $\left.i, a_{t} b_{j} \in E(H)\right\}$. In the first case, we have:

$$
\begin{align*}
& \mathbb{P}[\operatorname{event} \mathcal{A} \text { happens }]=\mathbb{P}\left[\exists u w \in E(G): \chi_{u, a_{i}}=\chi_{w, b_{j}}=1, \chi_{u, a_{i+1}}=\chi_{w, b_{j+1}}=0\right] \tag{4}\\
& =\mathbb{P}\left[\exists u w \in E(G): \max \left\{x_{u, a_{i+1}}, \alpha\right\}<X \leq \min \left\{x_{u, a_{i}}, x_{w, b_{j}}\right\}\right] \tag{5}\\
& \leq \min \left\{x_{u, a_{i}}, \max _{w: u w \in E(G)} x_{w, b_{j}}\right\}-\max \left\{x_{u, a_{i+1}}, \alpha\right\} \tag{6}\\
& \leq x_{v, b_{j}}-x_{u, a_{i+1}} \\
& \leq x_{v, b_{j}}-x_{u, a_{s}} \quad\left(a_{s} \text { is the first neighbor of } b_{j} \text { after } a_{i}, \text { and we have } x_{u, a_{s}} \leq x_{u, a_{i+1}}\right) \\
& \leq \sum_{t \in C}^{\operatorname{argmax}}\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)=P_{u} \tag{7}
\end{align*}
$$

The last inequality is because a_{i} has no neighbor after b_{j} and it follows from constraint $(C 5)$. Second for the case where b_{j} has no neighbor after a_{i}. By constraint (C8), for every v that is a neighbor of u we have:

$$
\begin{equation*}
x_{v, b_{j}}-x_{v, b_{j+1}} \leq \sum_{t \in C} x_{u, a_{t}}-x_{u, a_{t+1}}=P_{u} \tag{8}
\end{equation*}
$$

We therefore obtain:

$$
\begin{align*}
& \mathbb{P}[\operatorname{event} \mathcal{A} \text { happens }]=\mathbb{P}\left[\exists u w \in E(G): \chi_{u, a_{i}}=\chi_{w, b_{j}}=1, \chi_{u, a_{i+1}}=\chi_{w, b_{j+1}}=0\right] \tag{9}\\
& =\mathbb{P}\left[\exists u w \in E(G): \max \left\{x_{u, a_{i+1}}, \alpha\right\}<X \leq \min \left\{x_{u, a_{i}}, x_{w, b_{j}}\right\}\right] \tag{10}\\
& \leq \min \left\{x_{u, a_{i}}, \max _{w: u w \in E(G)} x_{w, b_{j}}\right\}-\max \left\{x_{u, a_{i+1}}, \alpha\right\} \tag{11}\\
& \leq x_{v, b_{j}}-\alpha \\
& \leq x_{v, b_{j+1}}+P_{u}-\alpha \\
& \leq x_{v, b_{j+1}}+P_{u}-x_{v, b_{j+1}} \tag{3}\\
& =P_{u} \tag{12}
\end{align*}
$$

Having $u v$ mapped to $a_{i} b_{j}$ in the rounding step, we shift u to a_{t} with probability $P_{u, t}=$ $\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right) / P_{u}$. That is $\mathbb{P}[\mathcal{B} \mid \mathcal{A}]=P_{u, t}$. Note that the upper bound $\mathbb{P}[\mathcal{A}] \leq P_{u}$ is independent from the choice of v and b_{j}. Moreover, recall that random variables X and Y are independent. Therefore, for a fixed a_{i}, the probability that u is shifted from a_{i} to a_{t} is at most

$$
\mathbb{P}[\mathcal{B} \mid \mathcal{A}] \cdot \mathbb{P}[\mathcal{A}] \leq\left(\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right) / P_{u}\right) \cdot P_{u}=x_{u, a_{t}}-x_{u, a_{t+1}}
$$

Thus, the expected contribution for a fixed a_{i} (with its b_{j} and v) is also at most $c\left(u, a_{t}\right)\left(x_{u, a_{t}}-\right.$ $\left.x_{u, a_{t+1}}\right)$. Notice that there are at most $|V(H)|-1$ of such $a_{i}{ }^{\prime}$ s, thus the expected contribution of $c\left(u, a_{t}\right)$ to the expected value of W^{\prime} is at most $|V(H)| c\left(u, a_{t}\right)\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right)$.

Theorem 3.12. Algorithm 1 returns a homomorphism with expected cost at most $|V(H)|$ times optimal solution. The algorithm can be derandomized to obtain a deterministic $|V(H)|-$ approximation algorithm.

Proof. By Lemma 3.8 and linearity of expectation, for the expected value of W^{\prime} we have

$$
\begin{aligned}
\mathbb{E}\left[W^{\prime}\right] & =\mathbb{E}\left[\sum_{u, i} c\left(u, a_{i}\right)\left(\chi_{u, a_{i}}-\chi_{u, a_{i+1}}\right)+\sum_{v, j} c\left(v, b_{j}\right)\left(\chi_{v, b_{j}}-\chi_{v, b_{j+1}}\right)\right] \\
& =\sum_{u, i} c\left(u, a_{i}\right) \mathbb{E}\left[\chi_{u, a_{i}}-\chi_{u, a_{i+1}}\right]+\sum_{v, j} c\left(v, b_{j}\right) \mathbb{E}\left[\chi_{v, b_{j}}-\chi_{v, b_{j+1}}\right] \\
& \leq|V(H)|\left(\sum_{u, i} c\left(u, a_{i}\right)\left(x_{u, a_{i}}-x_{u, a_{i+1}}\right)+\sum_{v, j} c\left(v, b_{j}\right)\left(\chi_{v, b_{j}}-\chi_{v, b_{j+1}}\right)\right) \\
& \leq|V(H)| W \leq|V(H)| W^{*} .
\end{aligned}
$$

Thus Algorithm 1 outputs a homomorphism whose expected cost is at most $|V(H)|$ times the minimum cost. It can be transformed to a deterministic algorithm as follows. There are only polynomially many values $x_{u, a_{i}}, x_{v, b_{j}}$ (at most $|V(G)| \cdot|V(H)|$). When X lies anywhere between two such consecutive values, all computations will remain the same. Similarly, there are only polynomially many values of the partial sums $\sum_{p=1}^{q} P_{u, t_{p}}$, and when Y lies anywhere between two consecutive values, all the computations remain the same. Moreover, for any given X and Y, the rounding and shifting algorithms can be performed in polynomial time. Thus, we can derandomize the algorithm by trying all the possible values for X and Y and simply choose the pair that gives us the minimum homomorphism cost. Since the expected value is at most $|V(H)|$ times the minimum cost, this bound also applies to this best solution.

4 A dichotomy for graphs

Feder et al., 8 showed that $\operatorname{LHOM}(\mathrm{H})$ is polynomial-time solvable if and only if H is a bi-arc graph. Bi-arc graphs are defined as follows.

Let C be a circle with two specified points p and q on C. A bi-arc is an ordered pair of $\operatorname{arcs}(N, S)$ on C such that N contains p but not q, and S contains q but not p. A graph H is a bi-arc graph if there is a family of bi-arcs $\left\{\left(N_{x}, S_{x}\right): x \in V(H)\right\}$ such that, for any $x, y \in V(H)$, not necessarily distinct, the following hold:

- if x and y are adjacent, then neither N_{x} intersects S_{y} nor N_{y} intersects S_{x};
- if x and y are not adjacent, then N_{x} intersects S_{y} and N_{y} intersects S_{x}.

We shall refer to $\left\{\left(N_{x}, S_{x}\right): x \in V(H)\right\}$ as a bi-arc representation of H. Note that a bi-arc representation cannot contain bi-arcs $(N, S),\left(N^{\prime}, S^{\prime}\right)$ such that N intersects S^{\prime} but S does not intersect N^{\prime} and vice versa. Furthermore, by the above definition a vertex may have a self loop.

Theorem 4.1 ([4, 8]). A graph admits a conservative majority polymorphism if and only if it is a bi-arc graph.

Definition $4.2\left(H^{*}\right)$. Let $H=(V, E)$ be a graph. Let H^{*} be a bipartite graph with partite sets V, V^{\prime} where V^{\prime} is a copy of V. Two vertices $u \in V$, and $v^{\prime} \in V^{\prime}$ of H^{*} are adjacent in H^{*} if and only if $u v$ is an edge of H.

Lemma 4.3. Let H^{*} be the bipartite graph constructed from a bi-arc graph H, according to Definition 4.2. Then the following hold.

- H^{*} is a co-circular arc graph.
- H^{*} admits a min-ordering.

Proof. It is easy to see that H^{*} is a co-circular arc graph. From a bi-arc representation $\left\{\left(N_{i}, S_{i}\right): i \in V(H)\right\}$ of H, we obtain a co-circular arc representation of H^{*} by choosing, for $i \in H$, the $\operatorname{arc} N_{i}$ for vertex $i \in H^{*}$ and the $\operatorname{arc} S_{i}$ for vertex $i^{\prime} \in H^{*}$. A bipartite graph admits a min-ordering if and only if it is co-circular arc graph [16]. H^{*} is a co-circular arc graph, and hence, it admits a min-ordering.

Construction of H^{*} and choosing a min ordering Let H be a bi-arc graph, with vertex set I, and let H^{*} be the bipartite graph constructed from H having vertices $\left(I, I^{\prime}\right)$ according to Definition 4.2. Let $a_{1}, a_{2}, \ldots, a_{p}$ be an ordering of the vertices in I and $b_{1}, b_{2}, \ldots, b_{p}$ be an ordering of the vertices of I^{\prime}. Note that each a_{i} has a copy $b_{\pi(i)}$ in $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ where π is a permutation on $\{1,2,3, \ldots, p\}$. By Lemma 4.3, let us assume $a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{p}$ is a min-ordering for H^{*}. For every a_{i}, let $r(i)$ be the smallest subscript such that $a_{i} b_{r(i)}$ is an edge of H^{*} and for every b_{j}, let $\ell(j)$ be the smallest subscript such that $a_{\ell(j)} b_{j}$ is an edge of H^{*}.

Let G be the input graph with vertex set V and let c be a given cost function. Construct G^{*} from G with vertex set $V \cup V^{\prime}$ as in Definition 4.2. Now construct an instance of the $\operatorname{MinHOM}\left(H^{*}\right)$ for the input graph G^{*} and set $c\left(v^{\prime}, b_{\pi(i)}\right)=c\left(v, a_{i}\right)$ for $v \in V, v^{\prime} \in V^{\prime}$.

Lemma 4.4. There exists a homomorphism $f: G \rightarrow H$ with cost \mathfrak{C} if and only if there exists homomorphism $f^{*}: G^{*} \rightarrow H^{*}$ with cost $2 \mathfrak{C}$ such that, if $f^{*}(v)=a_{i}$ then $f^{*}\left(v^{\prime}\right)=b_{j}$ with $j=\pi(i)$.

Introducing the lists Let $G=(V, E(G))$ be our input bipartite graph. We assume G is connected.

To each vertex $u \in V$, we associate a list $L(v)$ that initially contains $V(H)$. Think of $L(u)$ as the set of possible images for u in a homomorphism from G to H.

Apply the arc consistency procedure as follows. Take an arbitrary edge $x y \in E(G)$ and let $a \in L(x)$. If there is no neighbor of a in $L(y)$ then remove a from $L(x)$. Repeat this until a list becomes empty or no more changes can be made. Note that if we end up with an empty list after arc consistency, then there is no homomorphism of G to H. After the arc consistency check, we perform the pair consistency check.

$$
\begin{align*}
& \text { Minimize } \sum_{v, i} c\left(v, a_{i}\right)\left(x_{v, a_{i}}-x_{v, a_{i+1}}\right)+\sum_{v^{\prime}, j} c\left(v^{\prime}, b_{i}\right)\left(x_{v^{\prime}, b_{j}}-x_{v^{\prime}, b_{j+1}}\right) \\
& \text { Subject to: } \\
& x_{v, a_{i}}, x_{v^{\prime}, b_{\pi(i)}} \geq 0 \quad \forall v, v^{\prime} \in G^{*}, a_{i}, b_{\pi(i)} \in H^{*} \tag{CM1}\\
& x_{v, a_{1}}=x_{v^{\prime}, b_{1}}=1 \tag{CM2}\\
& x_{v, a_{p+1}}=x_{v^{\prime}, b_{p+1}}=0 \tag{CM3}\\
& x_{v, a_{i+1}} \leq x_{v, a_{i}} \text { and } x_{v^{\prime}, b_{j+1}} \leq x_{v^{\prime}, b_{j}} \quad \forall v, v^{\prime} \in G^{*}, a_{i}, b_{j} \in H^{*} \tag{CM4}\\
& x_{v, a_{i+1}}=x_{v, a_{i}} \text { and } x_{v^{\prime}, b_{\pi(i)+1}}=x_{v^{\prime}, b_{\pi(i)}} \quad \forall v \in V\left(G^{*}\right), a_{i} \in V(H) \text { if } a_{i} \notin \tag{CM5}\\
& L(v) \\
& x_{u, a_{i}} \leq x_{v^{\prime}, b_{r(i)}} \text { and } x_{v^{\prime}, b_{i}} \leq x_{u, a_{l(i)}} \quad \forall u v \in E\left(G^{*}\right) \tag{CM6}\\
& x_{u, a_{i}}-x_{u, a_{i+1}}=x_{u^{\prime}, b_{\pi(i)}}-x_{u^{\prime}, b_{\pi(i)+1}} \quad \forall u, u^{\prime} \in G^{*}, \forall a_{i}, b_{\pi(i)} \in H^{*} \tag{CM7}\\
& x_{v^{\prime}, b_{j}} \leq x_{u, a_{s}}+\sum_{t<i}\left(x_{u, a_{t}}-x_{u, a_{t+1}}\right) \quad \forall u v^{\prime} \in E\left(G^{*}\right), a_{i} b_{j} \in E^{\prime} \text {, and } a_{s} \tag{CM8}\\
& \text { is the first neighbor of } b_{j} \text { after } a_{i} \\
& \text { in } L(u) \\
& x_{u, a_{i}} \leq x_{v^{\prime}, b_{s}}+\sum_{t<j}\left(x_{v^{\prime}, b_{t}}-x_{v^{\prime}, b_{t+1}}\right) \quad \forall u v^{\prime} \in E\left(G^{*}\right), a_{i} b_{j} \in E^{\prime} \text {, and } b_{s} \text { is } \tag{CM9}\\
& \text { the first neighbor of } a_{i} \text { after } b_{j} \text { in } \\
& L\left(v^{\prime}\right) \\
& x_{u, a_{i}}-x_{u, a_{i+1}} \leq \sum_{\substack{j \\
\left(a_{i}, a_{j}\right) \in L(u, v)}}\left(x_{v, a_{j}}-x_{v, a_{j+1}}\right) \quad \forall u, v \in G^{*} \tag{CM10}
\end{align*}
$$

Table 2: Linear program \mathcal{S}^{*}

After the arc consistency process, the pair lists L lists are initialized by setting $L(x, y)=$ $\{(a, b) \mid a \in L(x), b \in L(y)\}$ for every $x, y \in G$. Now for every $x, y \in G$ and every $(a, b) \in L(x, y)$, if there exists z such that for every $c \in L(z)$ either $(a, c) \notin L(x, z)$ or $(b, c) \notin L(y, z)$ then we remove (a, b) from $L(x, y)$. We continue this process until no list can be modified. If for some $a \in L(x)$, there is some $y \in D$ so that a does not appear as the first component of any pair in $L(x, y)$, then a is removed from $L(x)$. In the end, if there is any empty list, then clearly there is no homomorphism from D to H. Therefore, in the rest of the paper, we assume that all lists are non-empty. We extend the lists to G^{*} where $L(u)$ contains the element a_{i} if and only if $L\left(u^{\prime}\right)$ contains $b_{\pi(i)}$.

Consider the system of linear equations \mathcal{S}^{*}. For every vertex $v \in V$ from $V\left(G^{*}\right)=V \cup V^{\prime}$ and every vertex $a_{i} \in I$ from $V\left(H^{*}\right)=I \cup I^{\prime}$ define a variable $x_{v, a_{i}}$. For every vertex $v^{\prime} \in V^{\prime}$ from $V\left(G^{*}\right)$ and every vertex $b_{i} \in I^{\prime}$ from $V\left(H^{*}\right)$ define a variable $x_{v^{\prime}, b_{i}}$. We also define the variables $x_{v, a_{p+1}}, x_{v^{\prime}, b_{p+1}}$ for every $v \in V$ whose value is set to zero. Now the goal is to solve the following linear program \mathcal{S}^{*} depicted in Tabble 2.

Let E^{\prime} denote the set of all pairs $\left(a_{i}, b_{j}\right)$ such that $a_{i} b_{j}$ is not an edge of H^{*}, but there is an edge $a_{i} b_{j^{\prime}}$ of H^{*} with $j^{\prime}<j$ and an edge $a_{i^{\prime}} b_{j}$ of H^{*} with $i^{\prime}<i$. Define $H^{* *}$ to be bipartite graph with vertex set $V\left(H^{*}\right)$ and edge set $E\left(H^{*}\right) \cup E^{\prime}$. Note that $E\left(H^{*}\right)$ and E^{\prime} are disjoint sets.

Lemma 4.5. There is a one-to-one correspondence between homomorphisms from G to H
and integer solutions of \mathcal{S}^{*}.
Proof. For a homomorphism $f: G \rightarrow H$, if $f(v)=a_{t}$ we set $x_{v, a_{i}}=1$ for all $i \leq t$, otherwise, we set $x_{v, a_{i}}=0$, we also set $x_{v^{\prime}, b_{j}}=1$ for all $j \leq \pi(t)$ else set $x_{v^{\prime}, b_{j}}=0$. We set $x_{v, a_{1}}=1$, $x_{v^{\prime}, a_{1}}=1$ and $x_{v, a_{p+1}}=x_{v^{\prime}, b_{p+1}}=0$ for all $v, v^{\prime} \in V\left(G^{*}\right)$. Now all the variables are nonnegative and we have $x_{v, a_{i+1}} \leq x_{v, a_{i}}$ and $x_{v^{\prime}, b_{j+1}} \leq x_{v^{\prime}, b_{j}}$. Observe that by this assignment, the constraint (CM1) (CM7) are satisfied.

Now for all u and v in D with $f(u)=a_{i}$ and $f(v)=a_{j}$ we have $x_{u, a_{i}}-x_{u, a_{i+1}}=$ $x_{v, a_{j}}-x_{v, a_{j+1}}=1$. Moreover, since f is a homomorphism, we have $\left(a_{i}, a_{j}\right) \in L(u, v)$, and hence, constraint (CM10) is also satisfied.

We show that constraint (CM8) holds. For, contradiction, assume that the inequality in (CM8) fails. This means that for some edge $u v^{\prime}$ of G^{*} and some edge $a_{i} b_{j} \in E^{\prime}$ (the extra edges added into to make the ordering of H^{*}, a min-max ordering, we have $x_{v^{\prime}, b_{j}}=1$, $x_{u, a_{s}}=0$, and the sum of $x_{u, a_{t}}-x_{u, a_{t+1}}$ (over all $t<i$ such that a_{t} is a neighbor of b_{j}) is zero. The latter two facts imply that $f(u)=a_{i}$. Since b_{j} has a neighbor after a_{i}, Observation 2 tells us that a_{i} has no neighbor after b_{j}, whence $f\left(v^{\prime}\right)=b_{j}$ and thus $a_{i} b_{j} \in E\left(H^{*}\right)$, a contradiction the fact that $a_{i} b_{j} \in E^{\prime}$. By a similar argument (CM9) is also satisfied.

Conversely, from an integer solution for \mathcal{S}^{*}, we define a homomorphism f from D to H as follows. For every $u \in D$, set $f(u)=a_{i}$ when i is the largest subscript with $x_{u, a_{i}}=1$. Let $u v$ be an edge of G and assume that $f(u)=a_{i}, f(v)=a_{j}$. Note that $x_{u, a_{i}}-x_{u, a_{i+1}}=$ $x_{v, a_{j}}-x_{v, a_{j+1}}=1$ and for all other $s \neq j$ we have $x_{v, a_{s}}-x_{v, a_{s+1}}=0$. Since constraint (CM9) is satisfied,

$$
1=x_{u, a_{i}}-x_{u, a_{i+1}} \leq \sum_{\left(a_{i}, a_{s}\right) \in L(u, v)}\left(x_{v, a_{s}}-x_{v, a_{s+1}}\right)
$$

where j is the only index with $x_{v, a_{j}}-x_{v, a_{j+1}} \neq 0$. Therefore, $\left(a_{i}, a_{j}\right) \in L(u, v)$ and $a_{i} a_{j} \in E(H)$.

Theorem 4.6. Algorithm 3, given an optimal solution for the linear program \mathcal{S}^{*}, produces a homomorphism from G to H. Furthermore, the expected cost of the homomorphism returned by this algorithm is at most $2|V(H)| \cdot O P T$.

Proof. In Algorithm 3, lines 5 and 6, for every variable $x_{u, a_{i}}, u \in V\left(G^{*}\right)$, set $\chi_{u, a_{i}}=1$ if $X \leq x_{u, a_{i}}$ else $\chi_{u, a_{i}}=0$. Similarly, for every $x_{v^{\prime}, b_{j}}, v^{\prime} \in V\left(G^{*}\right)$, set $\chi_{v^{\prime}, b_{j}}=1$ if $X \leq x_{v^{\prime}, b_{j}}$ else $\chi_{v^{\prime}, b_{i}}=0$. Let $f(u)=a_{i}$ where i is the largest subscript with $\chi_{u, a_{i}}=1$, and let $f\left(v^{\prime}\right)=b_{j}$ where j is the largest subscript with $\chi_{v^{\prime}, b_{j}}=1$. Notice that similar to the argument as in Claim 3.7, the mapping f produced in Line 6 of Algorithm 3, maps the edges of G^{*} to $E\left(H^{*}\right) \cup E^{\prime}$. The algorithm has two stages after rounding the fractional solution using the random variable X.

Stage 1. Modifying f so that it becomes a homomorphism from G^{*} to H^{*}. Choose a random variable $Y \in[0,1]$. Let F be the subset of edges in E^{\prime} for which there exists an edge $u v^{\prime} \in E\left(G^{*}\right)$ where $u v^{\prime}$ is mapped to that edge. Let $a_{i} b_{j} \in F$ where $i+j$ is maximum

```
Algorithm 3 Approximation \(\operatorname{MinHOM}(H)\) for graphs
    procedure Approx-Graph-MinHOM \((H)\)
        Construct \(H^{*}, G^{*}\) from \(H, G\) respectively, as in Definition 4.2
        Let \(x_{u, a_{i}}, u_{j}^{\prime}\) s be the (fractional) values returned after solving LP \(\widehat{\mathcal{S}^{*}}\).
        Sample \(X\) uniformly from \([0,1]\)
        For all \(x_{u, a_{i}}\) s: if \(X \leq x_{u, a_{i}}\) let \(\chi_{u, a_{i}}=1\), else let \(\chi_{u, a_{i}}=0\), and \(\chi_{v^{\prime}, b_{j}}=1\) if \(X \leq x_{v^{\prime}, b_{j}}\)
        else \(\chi_{v^{\prime}, b_{j}}=0\)
        Let \(f(u)=a_{i}\) where \(i\) is the largest subscript with \(\chi_{u, a_{i}}=1\), and let \(f\left(v^{\prime}\right)=b_{j}\) where
        \(j\) is the largest subscript with \(\chi_{v^{\prime}, b_{j}}=1\),
                                    \(\triangleright f\) is a homomorphism from \(G^{*}\) to \(\left(H^{*}\right)^{\prime}\)
        Sample \(Y\) uniformly from \([0,1]\)
        Let \(F\left(G^{*}\right)=\left\{\left(u, v^{\prime}, f(u), f\left(v^{\prime}\right)\right) \mid u v^{\prime} \in E\left(G^{*}\right), f(u) f\left(v^{\prime}\right) \in E^{\prime}\right\}\)
        \(F \subset E^{\prime}\) be the set of edges \(a_{i} b_{j}\) with some \(\left(u, v, a_{i}, b_{j}\right) \in F\left(G^{*}\right)\).
        while \(\exists\) edge \(a_{i} b_{j} \in F\) with \(i+j\) is maximum do
            while \(\exists\left(u, v^{\prime}, a_{i}, b_{j}\right) \in F\left(G^{*}\right)\) do
                if \(a_{i}\) does not have a neighbor after \(b_{j}\) and \(f(u)=a_{i}\) then
                    \(\operatorname{Shift-LEFt}\left(f, u, v^{\prime}, a_{i}, b_{j}, Y\right)\)
                else if \(b_{j}\) does not have a neighbor after \(a_{i}\) and \(f\left(v^{\prime}\right)=b_{j}\) then
                    \(\operatorname{Shift-Right}\left(f, v^{\prime}, u, a_{i}, b_{j}, Y\right)\)
                Remove ( \(u, v^{\prime}, a_{i}, b_{j}\) ) from \(F\left(G^{*}\right)\)
            Remove \(a_{i} b_{j}\) from \(F\)
                            \(\triangleright\) At this point \(f\) is a homomorphism from \(G^{*}\) to \(H^{*}\).
        Let \(f\) be the homomorphism from \(G^{*}\) to \(H^{*}\) returned in the previous step
        \(f=\operatorname{SHIFT}(f)\)
        return \(f\)
        \(\triangleright f\) is a homomorphism from \(G\) to \(H\)
```

and for some $u v^{\prime} \in E\left(G^{*}\right), f(u)=a_{i}$ and $f(v)=b_{j}$. Similar to Observation 2, either b_{j} has no neighbor after a_{i} or a_{i} has no neighbor after b_{j}. Suppose the former is the case.

Random variable $Y \in[0,1]$ is used as guide to shift the image of v^{\prime} from b_{j} to some b_{t} where $a_{i} b_{t} \in E\left(H^{*}\right)$, and b_{t} appears before b_{j} in the min-ordering of H^{*}. Consider the set of such $b_{t} \mathrm{~s}$ (by definition of the min-ordering of H^{*}, this set is non-empty), and suppose it consists of b_{t} with subscripts t ordered as $t_{1}<t_{2}<\ldots t_{k}$. Let $P_{v^{\prime}, t}=\frac{x_{v^{\prime}, b_{t}}-x_{v^{\prime}, b_{t+1}}}{P_{v^{\prime}}}$ with $P_{v^{\prime}}=\sum_{a_{i} b_{t} \in E\left(H^{*}\right), t<j}\left(x_{v^{\prime}, b_{t}}-x_{v^{\prime}, b_{t+1}}\right)$. Select the vertex $b_{t_{q}}$ if $\sum_{p=1}^{q} P_{v^{\prime}, t_{p}}<Y \leq \sum_{p=1}^{q+1} P_{v^{\prime}, t_{p}}$. Thus, b_{t} is selected with probability $P_{v^{\prime}, t}$, which is proportional to the difference of fractional values $x_{v^{\prime}, b_{t}}-x_{v^{\prime}, b_{t+1}}$.

The proof of the following Claim is similar to Claim 3.7.
Claim 4.7. Let w be a neighbor of v^{\prime}, where $f(w)=a_{s}$ and $a_{s} b_{j} \in E\left(H^{*}\right) \cup E^{\prime}$. Then $f(w) b_{t} \in E\left(H^{*}\right) \cup E^{\prime}$.

Proof. Proof is almost identical to the proof of Claim 3.7.

```
```

Algorithm 4 Procedures Shift-Left and Shift-Right

```
```

Algorithm 4 Procedures Shift-Left and Shift-Right
procedure Shift-LEFT $\left(f, u, v^{\prime}, a_{i}, b_{j}, Y\right)$
procedure Shift-LEFT $\left(f, u, v^{\prime}, a_{i}, b_{j}, Y\right)$
Let $a_{t_{1}}, a_{t_{2}}, \ldots, a_{t_{k}}$ be the neighbors of b_{j} in $L(u)$ and before a_{i}
Let $a_{t_{1}}, a_{t_{2}}, \ldots, a_{t_{k}}$ be the neighbors of b_{j} in $L(u)$ and before a_{i}
Let $P_{u} \leftarrow \sum_{l=1}^{k}\left(x_{u, a_{t_{l}}}-x_{u, a_{t_{l}+1}}\right)$, and let $P_{u, t_{j}} \leftarrow \sum_{l=1}^{j}\left(x_{u, a_{t_{l}}}-x_{u, a_{t_{l}+1}}\right) / P_{u}$
Let $P_{u} \leftarrow \sum_{l=1}^{k}\left(x_{u, a_{t_{l}}}-x_{u, a_{t_{l}+1}}\right)$, and let $P_{u, t_{j}} \leftarrow \sum_{l=1}^{j}\left(x_{u, a_{t_{l}}}-x_{u, a_{t_{l}+1}}\right) / P_{u}$
if $P_{u, t_{j}}<Y \leq P_{u, t_{j+1}}$ then
if $P_{u, t_{j}}<Y \leq P_{u, t_{j+1}}$ then
$f(u) \leftarrow a_{t_{j}}$
$f(u) \leftarrow a_{t_{j}}$
procedure $\operatorname{Shift}-\operatorname{Right}\left(f, v^{\prime}, u, a_{i}, b_{j}, Y\right)$
procedure $\operatorname{Shift}-\operatorname{Right}\left(f, v^{\prime}, u, a_{i}, b_{j}, Y\right)$
Let $b_{t_{1}}, b_{t_{2}}, \ldots, b_{t_{k}}$ be the neighbors of a_{i} in $L\left(v^{\prime}\right)$ and before b_{j}
Let $b_{t_{1}}, b_{t_{2}}, \ldots, b_{t_{k}}$ be the neighbors of a_{i} in $L\left(v^{\prime}\right)$ and before b_{j}
8: \quad Let $P_{v^{\prime}} \leftarrow \sum_{l=1}^{k}\left(x_{v^{\prime}, b_{t_{l}}}-x_{v^{\prime}, b_{t_{l}+1}}\right)$, and let $P_{v^{\prime}, t_{j}} \leftarrow \sum_{l=1}^{j}\left(x_{v^{\prime}, b_{t_{l}}}-x_{v^{\prime}, b_{t_{l}+1}}\right) / P_{v^{\prime}}$
8: \quad Let $P_{v^{\prime}} \leftarrow \sum_{l=1}^{k}\left(x_{v^{\prime}, b_{t_{l}}}-x_{v^{\prime}, b_{t_{l}+1}}\right)$, and let $P_{v^{\prime}, t_{j}} \leftarrow \sum_{l=1}^{j}\left(x_{v^{\prime}, b_{t_{l}}}-x_{v^{\prime}, b_{t_{l}+1}}\right) / P_{v^{\prime}}$
if $P_{v^{\prime}, t_{j}}<Y \leq P_{v^{\prime}, t_{j+1}}$ then
if $P_{v^{\prime}, t_{j}}<Y \leq P_{v^{\prime}, t_{j+1}}$ then
$f\left(v^{\prime}\right) \leftarrow b_{t_{j}}$

```
```

 \(f\left(v^{\prime}\right) \leftarrow b_{t_{j}}\)
    ```
```

Note that as long as F is not empty, we repeat the shifting procedure. By Claim 4.7 after each shift the resulting f is a homomorphism from G^{*} to the graph induced by edges $E\left(H^{*}\right) \cup E^{\prime}$. Once, there is no edges of G^{*} whose imgae under f is mapped to E^{\prime}; i.e. F is empty, f is a homomorphism from G^{*} to H^{*}.

```
Algorithm 5 The shifting procedure for unstable vertices (Stage 2)
    procedure \(\operatorname{SHIFT}(f)\)
        while there are unstable vertices do
            Let \(u\) be a vertex with \(f(u)=a_{i}\) and \(f\left(u^{\prime}\right) \neq b_{\pi(i)}\) where \(i\) is maximum.
            Let Q be a Queue. Q.enqueue ( \(u^{\prime}\) )
            while \(Q\) is not empty do
            \(x \leftarrow Q\).dequeue ()
            if \(x=v^{\prime}\) then
                    \(f\left(v^{\prime}\right) \leftarrow b_{\pi(i)}\) where \(f(v)=a_{i}\).
                    for \(w v^{\prime} \in E(D)\) with \(a_{\ell}=f(w)\) and \(f\left(w^{\prime}\right) \neq b_{\pi(\ell)}\) do
                    \(Q . e n q u e u e(w)\)
            else if \(x=v\) then
                    \(f(v) \leftarrow a_{i}\) where \(f\left(v^{\prime}\right)=b_{\pi(i)}\).
                    for \(v w^{\prime} \in E(D)\) with \(a_{\ell}=f(w)\) and \(f\left(w^{\prime}\right) \neq b_{\pi(\ell)}\) do
                Q.enqueue( \(w^{\prime}\) )
    return \(f\)
                        \(\triangleright f\) is a homomorphism from \(G\) to \(H\)
```

Stage 2. Making the assignment consistent with respect to both orderings: We say a vertex $u \in V$ is unstable if $f(u)=a_{i}, f\left(u^{\prime}\right)=b_{q}$ where $q \neq \pi(i)$. Now we start a BFS in $V\left(G^{*}\right)$ and continue as long as there exists an unstable vertex. At each step, we start from the greatest subscripts i for which there exists an unstable u with $f(u)=a_{i}$. During
the BFS, one of the following is performed:

1. shift the image of u^{\prime} from b_{q} to $b_{\pi(i)}$.
2. shift the image of u from a_{i} to $a_{\pi^{-1}(q)}$.

As a consequence of the above actions, we would have the following cases:
Case 1: We change the image of u^{\prime} from b_{q} to $b_{\pi(i)}$ (with $f(u)=a_{i}$), and there exists some $v^{\prime} \in V^{\prime}$ such that $u v^{\prime} \in E\left(G^{*}\right)$ with $f(v)=a_{j}$ and $f\left(v^{\prime}\right)=b_{\pi(j)}$.

We note that $a_{i} b_{\pi(j)}$ is an edge because $u v^{\prime}$ is an edge, and hence, $a_{j} b_{\pi(i)}$ is an edge of H^{*}. This would mean there is no need to shift the image of v from a_{j} to something else (see the Figure 1 a.

Case 2: We change the image of u^{\prime} from b_{q} to $b_{\pi(i)}$ (with $f(u)=a_{i}$), and there exists some edge $v u^{\prime}$ of H^{*} with $f(v)=a_{j}$ and $f\left(v^{\prime}\right)=b_{\ell}$ with $\ell \neq \pi(j)$.

Such vertex v is added into the queue, and once we retrieve v from the queue we do the following: changing the image of v from a_{j} to $a_{\pi^{-1}(\ell)}$ (see the Figure 1b).

Note that $a_{i} b_{\ell} \in E\left(H^{*}\right)$ because $v u^{\prime}$ is an edge of G^{*}, and hence $a_{\pi^{-1}(\ell)} b_{\pi(i)}$ is an edge of H^{*}.

Case 3: We change the image of v from a_{j} to some $a_{\pi^{-1}(\ell)}$ (with $f\left(v^{\prime}\right)=b_{\pi(\ell)}$) and there exists some $v w^{\prime}$ such that $f(w)=a_{t}$ and $f\left(w^{\prime}\right)=b_{\pi(t)}$. We note that $a_{t} b_{\ell} \in E\left(H^{*}\right)$ because $v^{\prime} w$ is an edge, and hence, $a_{\pi^{-1}(\ell)} b_{r}$ is an edge of H^{*}. This would mean there is no need to shift the image of w^{\prime} to something else.

Case 4: We change the image of v from a_{j} to some $a_{\pi^{-1}(\ell)}$ (with $f\left(v^{\prime}\right)=b_{\ell}$). Let r be a greatest subscript such that there exists some $v w^{\prime}$ where $f(w)=a_{t}$ and $f\left(w^{\prime}\right)=b_{r}$ with $r \neq \pi(t), t<i$. Such vertex w^{\prime} is added into the queue, and once we retrieve w^{\prime} from the queue we do the following: changing the image of w^{\prime} from b_{r} to $b_{\pi^{-1}(t)}$.

Note that $a_{t} b_{\ell} \in E\left(H^{*}\right)$ because $w v^{\prime}$ is also an edge of G^{*}. Hence, $a_{\pi^{-1}(\ell)} b_{\pi^{-1}(t)}$ is an edge of H^{*}.

When Case 2 occurs, we continue the shifting. This would mean we may need to shift the image of some neighbor w^{\prime} of v accordingly. We continue the BFS from v, and modify the images of neighbors of v, say w^{\prime}, to be consistent with new image of v. This means we encounter either Case 3 or Case 4. Suppose $f\left(w^{\prime}\right)=b_{t}$ or $f\left(w^{\prime}\right)=b_{\pi(t)}$ Then there is no need to change the image of w^{\prime}. Otherwise, we change the image of w^{\prime} from b_{t} to b_{j} where $a_{\pi^{-1}(\ell)} b_{j}$ is an edge of H^{*} and we need to consider Cases 3,4 for the current vertex w. When we are in Case 4 , then consider Cases 1,2 and proceed accordingly.

During the BFS, the image of a stable vertex remains unchanged, as specified in Cases 1 and 3. This holds true not only for pre-existing stable vertices but also for vertices that become stable as the algorithm progresses. Furthermore, as the algorithm progresses, the number of unstable vertices consistently decreases. Consequently, the entire process terminates after, at most $O(|V(G)|)$ iterations.

Figure 1: Illustrating the shifting process in Stage 2 of the algorithm.

Estimating the ratio. Vertex $v\left(v^{\prime}\right.$, resp.) is mapped to a_{t} (b_{t}, resp.) in three situations. The first scenario is where v is mapped to a_{t} by rounding (according to random variable X in Stage 1) and is not shifted away. In other words, we have $\chi_{v, a_{t}}=1$ and $\chi_{v, a_{t+1}}=0$ (i.e. $x_{v, a_{t+1}} \leq X<x_{v, a_{t}}$) and these values do not change by the shifting procedure. Hence, for this case we have: $\mathbb{P}\left[f(v)=a_{t}\right]=\mathbb{P}\left[x_{v, a_{t+1}}<X \leq x_{v, a_{t}}\right] \leq x_{v, a_{t}}-x_{v, a_{t+1}}$. Whence this situation occurs with probability at most $x_{v, a_{t}}-x_{v, a_{t+1}}$, and the expected contribution is at $\operatorname{most} c\left(v, a_{t}\right)\left(x_{v, a_{t}}-x_{v, a_{t+1}}\right)$.
The second scenario is where $f(v)$ is set to a_{t} according to the random variable Y in Stage 1 . In this case v is first mapped to $a_{j}, j>t$, by rounding according to variable X and then remapped to a_{t} during the shifting according to variable Y. Similar to the argument in Lemma 3.8 this situation occurs with probability at most $x_{v, a_{t}}-x_{v, a_{t+1}}$. Therefore, the expected contribution of $x_{v, a_{t}}-x_{v, a_{t+1}}$ to the objective function is at most $|V(H)| c\left(v, a_{t}\right)\left(x_{v, a_{t}}-x_{v, a_{t+1}}\right)$. The third scenario is when the image of v is shifted from some a_{j} to a_{t} in the second Stage of the shifting. More precisely, when one of the actions 1|2 occurs. This happens because the image of v^{\prime} has been shifted to $b_{\pi(t)}$ in Stage 2 according to variables X or Y (i.e. BFS). As we argued, in the previous scenarios in Stage 1, the overall expected contribution of $c\left(v^{\prime}, b_{\pi(t)}\right)$ into the objective function is $|V(H)| c\left(v, a_{t}\right)\left(x_{v^{\prime}, b_{\pi(t)}}-x_{v^{\prime}, b_{\pi(t)+1}}\right)$. In Stage 2, we shift the image of v to a_{t} because v is unstable and the image of v^{\prime} is $b_{\pi(t)}$. In Stage 1 , the expected contribution of $c\left(v, a_{t}\right)$ into the objective function is $|V(H)| c\left(v, a_{t}\right)\left(x_{v, a_{t}}-x_{v, a_{t+1}}\right)$. Since $x_{v, a_{t}}-x_{v, a_{t+1}}=x_{v^{\prime}, b_{\pi(t)}}-x_{v^{\prime}, b_{\pi(t)+1}}$, the overall expected value of shifting v to a_{t} is $2|V(H)| c\left(v, a_{t}\right)\left(x_{v, a_{t}}-x_{v, a_{t+1}}\right)$.

We remark that, as in the proof of Theorem 3.12, the above algorithm can be derandomized. By Lemma 4.3 and Theorem 4.6 we obtain the following classification theorem.

Theorem 4.8. If H admits a conservative majority polymorphism, then $\operatorname{MinHOM}(H)$ has a (deterministic) $2|V(H)|$-approximation algorithm, otherwise, $\operatorname{MinHOM}(H)$ is inapproximable unless $P=N P$.

5 Inapproximability of H-coloring for graphs

We say an optimization problem \mathcal{P} is α-approx-hard, $\alpha>0$, if it is NP-hard to find an α-approximation for \mathcal{P}. Note that if \mathcal{P} is a maximization problem then $\alpha \leq 1$, and if it a
minimization problem then $\alpha \geq 1$.
We also use another notion of inapproximability under the Unique Game Conjecture [24], UGC for short. We say an optimization problem \mathcal{P} is α-UG-hard if it is UG-hard to approximate \mathcal{P} within factor α. See [2] for further details.

A nice property of the MinHOM problem is that the hardness results for approximation are "carried over" by induced sub-graphs. This means if $\operatorname{MinHOM}(H)$ is α-approx-hard or it is α-UG-hard, then the same holds for any graph which has H as its induced sub-graph. Informally speaking, such a property holds since the cost functions in the MinHOM problem are part of inputs, hence, modifying cost functions gives rise to hardness results for every graph H^{\prime} which has H as its induced graph. This is proved formally as follows.

Lemma 5.1. [Hardness of approximation for sub-graph] Let H be an induced sub-graph of graph H^{\prime}. If $\operatorname{MinHOM}(H)$ is α-approx-hard [α-UG-hard], then $\left.\operatorname{MinHOM(} H^{\prime}\right)$ is α-approxhard [α-UG-hard].

Proof. Let G, H together with cost function $c: G \times H \rightarrow \mathbb{Q}_{\geq 0}$ be an instance of $\operatorname{MinHOM}(H)$. Construct an instance of $\operatorname{MinHOM}\left(H^{\prime}\right)$ with graphs G, H^{\prime} and cost function $c^{\prime}: G \times H^{\prime} \rightarrow$ $\mathbb{Q}_{\geq 0}$ where $c^{\prime}(u, i)=c(u, i)$ for every $u \in G$ and $i \in H$, otherwise, for every $u \in G$ and $i \in H^{\prime} \backslash H, c^{\prime}(u, i)=W$ where W is a number greater than $(1+\max \{c(u, i) \mid u \in G, i \in$ $H\})|G|)$. Notice that the cost of any homomorphism from G to H is strictly less than W.

Notice that $f^{\prime *}: V(G) \rightarrow V\left(H^{\prime}\right)$, the minimum cost homomorphism from G to H^{\prime}, does not map any of the vertices of G to any vertex in $H^{\prime} \backslash H$ due to the way we have defined c^{\prime}. Therefore, $f^{\prime *}$ is also the minimum cost homomorphism for H. Now it is straightforward to see that if an algorithm approximates $f^{*}: V(G) \rightarrow V(H)$, the minimum cost homomorphism from G to H within a factor α, it is, in fact, computing an α-approximation of $f^{\prime *}$.

5.1 Hardness of approximation for graphs

In this subsection we prove that MinHOM for graphs does not admit any PTAS and in a sense a cosntant factor approximation is the best one can achieve. We start with the following theorems about the complexity of $\operatorname{MinHOM}(H)$ for graph H.

Theorem 5.2. [11] Let H be a bipartite graph. Then $\operatorname{MinHOM(H)}$ is polynomial-time solvable if and only if H admits a min-max ordering (i.e., does not contain an induced cycle of length at least six, or a bipartite claw, or a bipartite net, or a bipartite tent, see Figure 2).

Theorem 5.3. [11] Let H be graph with at least one self-loop vertex. Then $\operatorname{MinHOM(H)}$ is polynomial-time solvable if and only if H is reflexive (every vertex has a self-loop) and admits a min-max ordering (i.e., does not contain an induced cycle of length at least four, or a claw, or a net, or a tent, see Figure 3).

The obstruction to min-max ordering for graphs are invertible pairs [20]. We say two vertices a and b of graph(bipartite graph) H is an invertible pair if there exist two walks P from a to b and Q from b to a of the same length such that when $a_{i} a_{i+1}, b_{i} b_{i+1}$ are the

Figure 2: Obstruction to min-max ordering in bipartite graphs, and making $\operatorname{MinHOM}(H) \mathrm{NP}-$ complete.

Figure 3: Obstruction to min-max ordering in reflexive graphs, and making $\operatorname{MinHOM}(H)$ NPcomplete.
i-th edge of P and Q then at least one of the $a_{i} b_{i+1}, b_{i} a_{i+1}$ is not an edge of H. We use the existence of these obstruction in our gap preserving approximation reduction.

Before going to the main result, recall the following lemma that establishes the relationship between non-polynomial cases of the LHOM and the approximation of MinHOM.

Lemma 5.4. [16] If $\operatorname{LHOM}(H)$ is not polynomial-time solvable then MinHOM(H) does not have any approximation.

Now, we are ready to obtain hardness of approximation for $\operatorname{MinHOM}(H)$ when H is a graph.

Theorem 5.5. Let H be a graph where $\operatorname{MinHOM}(H)$ is $N P$-complete. Then $\operatorname{MinHOM}(H)$ is at least 1.128-approx-hard (under $P \neq N P$ assumption), and 1.242-UG-hard.

Proof. We consider two cases, where H is irreflexive (no vertex has a self-loop) and the case where H has a vertex with self-loop.
H is irreflexive: Without loss of generality, we can assume H is bipartite, as otherwise, $\operatorname{HOM}(\mathrm{H})$ is NP-complete (due to [17]). Hence, $\operatorname{LHOM}(H)$ is NP-complete, and by Lemma 5.4. $\operatorname{MinHOM}(H)$ does not have any approximation. By this argument and by Lemma 5.1 (hardness of approximation for sub-graph), if a sub-graph of H is not bipartite, again $\operatorname{MinHOM}(H)$ does not admit any approximation. Therefore, we continue by assuming that H is bipartite. Moreover, when bipartite graph H contains an induced even cycle of length at least 6, $\operatorname{LHOM}(H)$ is NP-complete due to [7], and hence, by Lemma $5.4 \operatorname{MinHOM}(H)$

Figure 4: Invertible pair for bipartite claw, tent, and net.
admits no approximation. By Theorem 5.2 and Lemma 5.1, it remains to consider the cases where H is either bipartite claw, bipartite tent, or bipartite net.

We start with bipartite claw first. Let H be a bipartite claw with the vertex set $\{a, b, d, e, i, j, k\}$ and the edge set with edge set $\{b i, a i, a j, a k, k e, d j\}$ (as depicted in Figure 4). It was shown in [25] that it is NP-hard to approximate the Vertex Cover within factor better than $\sqrt{2}-\epsilon$. Vertex Cover is also $(2-\epsilon)$-UG-hard by [26]. Let G be any of the graphs described in [5, (25], with $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. This graph has a relatively large vertex cover.

Construction of the bipartite graph G^{\prime} : We construct the bipartite graph G^{\prime} as follows. The vertex set of G^{\prime} consists of three disjoint copies V_{1}, V_{2}, V_{3} of $V(G)$ together with set U. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $V_{3}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Here, for each r $(1 \leq r \leq n), u_{r}, v_{r}$, and w_{r} are the vertices corresponding to x_{r}. As for U, we initially set $U=\varnothing$. For all $1 \leq r, s \leq n$ such that $x_{r} x_{s}$ is an edge of G, we introduce into U a new vertex $\alpha_{r, s}$ (corresponding to the pair (r, s) and add the two edges $u_{r} \alpha_{r, s}$ and $\alpha_{r, s} v_{s}$ to G^{\prime} (the 2-path $u_{r}, \alpha_{r, s}, v_{s}$ corresponds to the paths a, j, d and b, i, a in H). Note that when $x_{r} x_{s}$ is an edge of $G, x_{s} x_{r}$ is also an edge; hence, for pair (s, r) we add a new vertex $\alpha_{s, r}$.

For each pair v_{r} and w_{r} we add a new corresponding vertex β_{r} to U and add the edges $v_{r} \beta_{r}$ and $\beta_{r} w_{r}$ (corresponding to the paths d, j, a and a, k, e in H). Finally, for each pair u_{r} and w_{r}, we add a new vertex λ_{r} to U and then, add the two edges $u_{r} \lambda_{r}$ and $\lambda_{r} w_{r}$ to G^{\prime}.

Defining the cost function: Define the cost function $c: V\left(G^{\prime}\right) \times V(H) \rightarrow \mathbb{Q} \geq 0$ as follows. For each vertex $u_{r} \in V_{1}$ set $c\left(u_{r}, a\right)=1, c\left(u_{r}, b\right)=0$, and $c\left(u_{r}, l\right)=|G|$ for each $l \notin\{a, b\}$. For each vertex $v_{r} \in V_{2}$, set $c\left(v_{r}, a\right)=1, c\left(v_{r}, d\right)=0$, and $c\left(v_{r}, l\right)=|G|$ for each $l \notin\{a, d\}$. For each vertex $w_{r} \in V_{3}$, set $c\left(w_{r}, a\right)=1, c\left(w_{r}, e\right)=0$, and $c\left(w_{r}, l\right)=|G|$ for each $l \notin\{a, e\}$. Finally, for every $u \in U$, put $c(u, i)=c(u, j)=c(u, k)=0$, and for every other case, set the cost to be $|G|$.

From a vertex cover in G to a homomorphism from G^{\prime} to H : Let $V C$ be a vertex cover in the original graph G. Define the mapping $f: V\left(G^{\prime}\right) \rightarrow V(H)$ as follows. For every vertex $u_{r} \in V_{1}$ set $f\left(u_{r}\right)=a$ if $x_{r} \in V C$; otherwise, set $f\left(u_{r}\right)=b$. For every $v_{r} \in V_{2}$ set $f\left(v_{r}\right)=a$ if $x_{r} \in V C$; otherwise, set $f\left(v_{r}\right)=d$. For every $w_{r} \in V_{3}$ set $f\left(w_{r}\right)=a$ if $x_{r} \notin V C$; otherwise, set $f\left(w_{r}\right)=e$. For every vertex $\alpha_{r, s}$ corresponding to pair $\left(x_{r}, x_{s}\right)$ such that $x_{r} x_{s} \in E(G)$, set $f\left(\alpha_{r, s}\right)=i$ if $f\left(u_{r}\right)=b$; otherwise, set $f\left(\alpha_{r, s}\right)=j$. For every $\lambda_{r} \in G^{\prime}$ where $u_{r} \lambda_{r}, \lambda_{r} w_{r} \in E\left(G^{\prime}\right)$, set $f\left(\lambda_{r}\right)=i$ if $f\left(u_{r}\right)=b$; otherwise, set $f\left(\lambda_{r}\right)=k$. Finally, for every $\beta_{r} \in G^{\prime}$ with $v_{r} \beta_{r}, \beta_{r} w_{r} \in E\left(G^{\prime}\right)$, set $f\left(\beta_{r}\right)=j$ if $f\left(v_{r}\right)=d$; otherwise, set $f\left(\beta_{r}\right)=k$.

We show that f is a homomorphism from G^{\prime} to H with cost $c(f)=|V C|+|G|$. Let $u_{r} \alpha_{r, s}$ be an edge of G^{\prime}. Then, by the construction of $G^{\prime}, \alpha_{r, s} v_{s}$ is also an edge of G^{\prime}, where $\alpha_{r, s}$ corresponds to a pair $\left(x_{r}, x_{s}\right)$ with $x_{r} x_{s} \in E(G)$. Since $V C$ is a vertex cover for G, at least one of x_{r} and x_{s} is in $V C$. Without loss of generality, assume that $x_{r} \in V C$, and assume x_{r} corresponds to vertex u_{r} in V_{1}. Now, by definition, $f\left(u_{r}\right)=a$, and hence, $f\left(\alpha_{r, s}\right)=j$, where $a j \in E(H)$; thereby, $f\left(u_{r}\right) f\left(\alpha_{r, s}\right) \in E(H)$. Moreover, $f\left(v_{s}\right) \in\{a, d\}$, and hence, $f\left(\alpha_{r, s}\right) f\left(v_{s}\right) \in E(H)$. Now, consider the edge $v_{r} \beta_{r}$ in G^{\prime}. Notice that there is also an edge $\beta_{r} w_{r}$ of $G^{\prime}\left(v_{r} \in V_{2}, w_{r} \in V_{3}\right)$. First, consider the case where $x_{r} \notin V C$. Then, by definition, $f\left(w_{r}\right)=a$ and $f\left(v_{r}\right)=d$ and, consequently, $f\left(\beta_{r}\right)=j$; thus, $f\left(w_{r}\right) f\left(\beta_{r}\right) \in E(H)$, since $a j$ is an edge of H. In this case, we additionally have $\beta_{r} v_{r} \in E\left(G^{\prime}\right)$, and, hence, $f\left(\beta_{r}\right) f\left(v_{r}\right) \in E(H)$. Now, consider the case where $x_{r} \in V C$. By definition, $f\left(v_{r}\right)=a$ and $f\left(w_{r}\right)=e$. In this case, we have $f\left(\beta_{r}\right)=k$ where β_{r} is the corresponding vertex in U to v_{r} and w_{r}. Since $a k, e k \in E(H)$, we have $f\left(v_{r}\right) f\left(\beta_{r}\right), f\left(\beta_{r}\right) f\left(w_{r}\right) \in E(H)$. A similar argument is applied when we consider a vertex $\lambda_{r} \in U$ corresponding to u_{r} and w_{r}. Therefore, f is a homomorphism from G^{\prime} to H. It is easy to see that the cost of f is $|V C|+|V C|+|G|-|V C|=|G|+|V C|$.

From a homomorphism from G^{\prime} to H to a vertex cover in G : Let f be a homomorphism from G^{\prime} to H. To obtain a vertex cover in G, we modify f into a homomorphism so that it agrees on every $u_{r} \in V_{1}$ and $v_{r} \in V_{2}$. Suppose $f\left(u_{r}\right)=a$ and $f\left(v_{r}\right)=d$ for some $u_{r} \in V_{1}$ and $v_{r} \in V_{2}$. Consider the vertex $\beta_{r} \in U$ corresponding to v_{r} and w_{r}. Since v_{r}, β_{r}, w_{r} is a path in G^{\prime}, and there is no path of length two in H from d to e, we must have $f\left(w_{r}\right)=a$ and $f\left(\beta_{r}\right)=j$. Then, we define a homomorphism f^{\prime} from G^{\prime} to H as follows. We set $f^{\prime}\left(v_{r}\right)=a, f^{\prime}\left(w_{r}\right)=e$, and $f^{\prime}\left(\beta_{r}\right)=k$. Moreover, for the vertex $\lambda_{r} \in U$ corresponding to vertices u_{r} and v_{r}, we set $f^{\prime}\left(\lambda_{r}\right)=k$. Note that for every vertex $\alpha_{s, r}$ corresponding to a pair $\left(x_{s}, x_{r}\right)$ with $x_{r} x_{s} \in E(G)$, we have $f\left(\alpha_{s, r}\right)=j$ and $f\left(u_{s}\right)=a-$ notice that $\alpha_{s, r} v_{r}, u_{s} \alpha_{s, r} \in E\left(G^{\prime}\right)$. As such, we set $f^{\prime}\left(\alpha_{s, r}\right)=i$, thereby, get $f\left(u_{s}\right) f^{\prime}\left(\alpha_{s, r}\right) \in E(H)$. Finally, for every other vertex z, we set $f^{\prime}(z)=f(z)$. It is easy to see that f^{\prime} is a homomorphism from G^{\prime} to H with $c(f)=c\left(f^{\prime}\right)$. Next, suppose for some u_{s} we have $f^{\prime}\left(u_{s}\right)=b$ and $f^{\prime}\left(v_{s}\right)=a$. By a similar modification, we modify f^{\prime} further and obtain a homomorphism $f^{\prime \prime}$ so that $f^{\prime \prime}\left(u_{s}\right)=f^{\prime \prime}\left(v_{s}\right)=a$. We continue this process until we obtain a homomorphism f^{t} so that $f^{t}\left(u_{r}\right)=a$ if and only if $f^{t}\left(v_{r}\right)=a$ for every $1 \leq r \leq n$.

Therefore, for the sake of simplicity, we may assume $f^{t}=f$ and $f\left(u_{r}\right)=a$ if and only
if $f\left(v_{r}\right)=a$ for every $u_{r} \in V_{1}$. Notice that if $f\left(u_{r}\right)=f\left(v_{r}\right)=a$, then we may assume $f\left(w_{r}\right)=e$. Otherwise, we change the image of w_{r} to e, and still, f is a homomorphism from G^{\prime} to H, with a smaller cost.

Let $V C^{\prime}=\left\{u_{r}, v_{r} \mid f\left(u_{r}\right)=f\left(v_{r}\right)=a\right\}$. Notice that as we discussed just above $V C^{\prime} \cap\left\{u_{s}, v_{s} \mid f\left(w_{s}\right)=a\right\} \mid=\emptyset$. Therefore, $c(f)=\left|V C^{\prime}\right|+\left|\left\{w_{s} \mid f\left(w_{s}\right)=a\right\}\right|$, and hence, $c(f)=\left|V C^{\prime}\right|+|G|-\frac{\left|V C^{\prime}\right|}{2}$. Let $V C=\left\{x_{r} \mid f\left(u_{r}\right)=a\right\}$, and notice that $|V C|=\frac{\left|V C^{\prime}\right|}{2}$. Thus, $c(f)=|V C|+|G|$. We show that $V C$ is a vertex cover in G. Suppose $x_{r} x_{s} \in E(G)$. Now there is a vertex $\alpha_{r, s} \in U$, and two edges $u_{r} \alpha_{r, s}, \alpha_{r, s} v_{s}$ in G^{\prime}. Since, there is no path of length two between b, d in H and f is a homomorphism from G^{\prime} to H, at least one of the $f\left(u_{r}\right), f\left(v_{s}\right)$ is a, say $f\left(u_{r}\right)=a$. Thus, by definition $u_{r} \in V C^{\prime}$, and consequently $x_{r} \in V C$.

Showing the 1.128-approximation is $N P$-hard: We show that it is NP-hard to find a homomorphism $f: V\left(G^{\prime}\right) \rightarrow V(H)$ with $c(f)<(1+\lambda) c\left(f^{*}\right)$ (here $\lambda=0.128$, and f^{*} is the optimal minimum cost homomorphism from G^{\prime} to H). For contradiction, suppose there is a polynomial-time algorithm that produces such a homomorphism f. Then, $c(f)=|V C|+|G|$ and $c\left(f^{*}\right)=\left|V C^{*}\right|+|G|$ (here $V C^{*}$ is the optimal vertex cover in G). We have $|V C|+|G|<$ $(1+\lambda)\left(\left|V C^{*}\right|+|G|\right)$.

Thus, $|V C|<(1+\lambda)\left|V C^{*}\right|+\lambda|G|$, and hence, $|V C|-\lambda|G|<(1+\lambda)\left|V C^{*}\right|$. We may assume $|V C| \geq 0.639|G|$, thanks to the construction in [5]. Therefore, we have $|V C|\left(1-\frac{\lambda}{0.639}\right) \leq$ $|V C|-\lambda|G|<(1+\lambda)\left|V C^{*}\right|$, and consequently, we have $|V C|<\frac{1+\lambda}{1-\frac{.}{0.639}}\left|V C^{*}\right|$.

By setting $\frac{(1+\lambda) 0.639}{0.639-\lambda}=\sqrt{2}$, we get a contradiction since, as shown in [25], the vertex cover cannot be approximated within any factor better than $\sqrt{2}-\epsilon$. Thus, $1+\lambda=1.128$ and it is NP-hard to approximate $\operatorname{MinHOM}(H)$ within factor 1.128 when H is a bipartite claw. Moreover, by setting $\frac{(1+\lambda) 0.639}{0.639-\lambda}=2,(\lambda=0.242)$ we get a contradiction with the $(2-\epsilon)-$ UG-hardness for the Vertex Cover [26]. That is, for every $\varepsilon \geq 0, \operatorname{MinHOM}(H)$ when H is a bipartite claw is 1.242 -UG-hard.

Reduction for bipartite tent: Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{3}=$ $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be three disjoint copies of $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let set U be initially empty. At the end of the construction, the vertex set of G^{\prime} is $V_{1} \cup V_{2} \cup V_{3} \cup U$. For every edge $x_{r} x_{s}$ of G, we add the edges $u_{r} v_{s}$ and $v_{s} u_{r}$ into G^{\prime}. For every $v_{r} \in V_{2}$ and $w_{r} \in V_{3}$, corresponding to vertex $x_{r} \in G$, add edge $v_{r} w_{r}$ into G^{\prime}. Finally, for every $u_{r} \in V_{1}$ and $w_{r} \in V_{3}$, corresponding to vertex $x_{r} \in G$, add a new vertex λ_{r} to U, and add the edges $u_{r} \lambda_{r}$ and $\lambda_{r} w_{r}$ into G^{\prime}. We define the cost function $c: V\left(G^{\prime}\right) \times V(H) \rightarrow \mathbb{Q}_{\geq 0} \cup\{\infty\}$ as follows. For every $u_{r} \in V_{1}$, set $c\left(u_{r}, a\right)=1, c\left(u_{r}, b\right)=0$, and $c\left(u_{r}, p\right)=|G|$ for every $p \notin\{a, b\}$. For every $v_{r} \in V_{2}$, set $c\left(v_{r}, j\right)=1, c\left(v_{r}, l\right)=0$, and $c\left(v_{r}, p\right)=|G|$ for every $p \notin\{l, j\}$. For every $w_{r} \in V_{3}$, set $c\left(w_{r}, a\right)=1, c\left(w_{r}, d\right)=0$, and $c\left(w_{r}, p\right)=|G|$ for every $p \notin\{a, d\}$. Finally, for every λ_{r} corresponding to vertices $u_{r} \in V_{1}$ and $w_{r} \in V_{3}$, set $c\left(\lambda_{r}, i\right)=c\left(\lambda_{r}, k\right)=0$, and $c\left(\lambda_{r}, p\right)=|G|$ for every $p \notin\{i, k\}$. Now, by a similar argument as the one for the bipartite claw we get the inapproximability bound for $\operatorname{MinHOM}(H)$ when H is a bipartite tent.

Reduction for bipartite net: Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{3}=$
$\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be three disjoint copies of $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let sets U_{1}, U_{2} be initially empty. At the end of the construction, the vertex set of G^{\prime} is $V_{1} \cup V_{2} \cup V_{3} \cup U_{1} \cup U_{2}$. For every edge $x_{r} x_{s}$ of G, we add a new vertex $\alpha_{r, s}$ to U_{1} and the edges $u_{r} \alpha_{r, s}, \alpha_{r, s} v_{s}$ into G^{\prime} (here $u_{r} \in V_{1}$ is the copy of $x_{r} \in G$ and $v_{s} \in V_{2}$ is the copy of $x_{s} \in G$).

For every $v_{r} \in V_{2}$ and $w_{r} \in V_{3}$, corresponding to vertex $x_{r} \in G$, add edge $v_{r} w_{r}$ into G^{\prime}. Finally, for every $u_{r} \in V_{1}$ and $w_{r} \in V_{3}$, corresponding to vertex $x_{r} \in G$, add two new vertices λ_{r}, β_{r} to U_{2}, and add the edges $u_{r} \lambda_{r}, \lambda_{r} \beta_{r}, \beta_{r} w_{r}$ into G^{\prime}. We define the cost function $c: V\left(G^{\prime}\right) \times V(H) \rightarrow \mathbb{Q}_{\geq 0} \cup\{\infty\}$ as follows. For every $u_{r} \in V_{1}$, set $c\left(u_{r}, a\right)=1, c\left(u_{r}, b\right)=0$, and $c\left(u_{r}, p\right)=|G|$ for every $p \notin\{a, b\}$. For every $v_{r} \in V_{2}$, set $c\left(v_{r}, d\right)=1, c\left(v_{r}, e\right)=0$, and $c\left(v_{r}, p\right)=|G|$ for every $p \notin\{e, d\}$. For every $w_{r} \in V_{3}$, set $c\left(w_{r}, j\right)=1, c\left(v_{r}, k\right)=0$, and $c\left(v_{r}, p\right)=|G|$ for every $p \notin\{j, k\}$. For every $\alpha_{r, s} \in U_{1}$, set $c\left(\alpha_{r, s}, i\right)=c\left(\alpha_{r, s}, j\right)=0$, and $c\left(\alpha_{r, s}, p\right)=|G|$ for every $p \notin\{i, j\}$. Finally, every $\lambda_{r}, \beta_{r} \in U_{2}$, corresponding to vertices $u_{r} \in V_{1}$ and $w_{r} \in V_{3}$, set $c\left(\lambda_{r}, a\right)=c\left(\lambda_{r}, d\right)=c\left(\beta_{r}, i\right)=c\left(\beta_{r}, j\right)=0$ and for every other case the cost is $|G|$. Now, by a similar argument as the one for the bipartite claw, we get the inapproximability bound for $\operatorname{MinHOM}(H)$ when H is a bipartite net.

In conclusion, when H is a bipartite and $\operatorname{MinHOM}(H)$ is NP-complete, we get that $\operatorname{MinHOM}(H)$ is 1.128-approx-hard and 1.242-UG-hard.
H has vertices with self-loops: We show that H must be reflexive; meaning every vertex has a loop. Otherwise, H must contain an induced sub-graph $H_{1}=\{a a, a b\}$ where b does not have a self-loop (recall that we assume H is connected). As we mention in the introduction, Vertex Cover problem is an instance of $\operatorname{MinHOM}\left(H_{1}\right)$. Vertex Cover is $(\sqrt{2}-\epsilon)$-approx-hard and $(2-\epsilon)$-UG-hard for every $\epsilon>0$. Therefore, $\operatorname{MinHOM}\left(H_{1}\right)$ is $(\sqrt{2}-\epsilon)$-approx-hard and $(2-\epsilon)$-UG-hard for every $\epsilon>0$. By the hardness of approximation for sub-graphs (Lemma 5.1), we obtain better hardness bounds for MinHOM than the claim of the theorem. Therefore, we may assume that H is reflexive henceforth.

If H contains an induced cycle of length at least 4 (when removing the self-loops), $\operatorname{LHOM}(H)$ is NP-complete due to [6], and hence, by Lemma 5.4, $\operatorname{MinHOM}(H)$ does not admit any approximation. Thus, by Theorem 5.3 and Lemma 5.1, we need to consider the case where H is a claw, tent or net. When H is any of these three graphs, H contains an invertible pair (see Figure 5). In particular for the reflexive claw, we start with graph G as explained in the bipartite claw, and construct three partite graph G^{\prime} with V_{1}, V_{2}, V_{3}, and we add an edge between $u_{r} \in V_{1}$ and $v_{s} \in V_{2}$ (corresponding to edges $a e, a a, b a$ in the claw in Figure 5) if $x_{r} u_{s} \in E(G)$. Between $v_{r} \in V_{1}$ and $w_{r} \in V_{2}$ we place a path of length 2 (corresponding to walks a, d, d and a, d, a and e, e, a) and finally between $u_{r} \in V_{1}$ and $w_{r} \in V_{3}$ we add an edge. The cost function is defined as follows, $c\left(u_{r}, a\right)=1, c\left(u_{r}, b\right)=0$, for every $u_{r} \in V_{1}$, and $c\left(v_{r}, a\right)=1, c\left(v_{r}, e\right)=0$ for every $v_{r} \in V_{2}$. Finally for every $w_{r} \in V_{3}$, set $c\left(w_{r}, a\right)=1, c\left(w_{r}, d\right)=0$. The rest of the costs are defined in a similar way as in the bipartite claw reduction.

Now, by a similar argument for bipartite claw, we conclude that $\operatorname{MinHOM}(H)$ is 1.155 -approx-hard and 1.389-UG-hard. Similar treatment is used for $\operatorname{MinHOM}(H)$ when H is a

Figure 5: Invertible pair for claw, tent, and net.
reflexive net or a reflexive tent.
In conclusion, if H is reflexive and $\operatorname{MinHOM}(H)$ is $\mathbf{N P}$-complete then $\operatorname{MinHOM}(H)$ is 1.155-approx-hard and 1.389-UG-hard. This completes the proof of the theorem.

References

[1] G. Aggarwal, T. Feder, R. Motwani, and A. Zhu. Channel assignment in wireless networks and classification of minimum graph homomorphism. ECCC TR06, 40, 2006.
[2] P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and independent set in bounded degree graphs. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 74-80. IEEE Computer Society, 2009.
[3] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic sums and distributed resource allocation. Information and Computation, 140(2):183202, 1998.
[4] R. C. Brewster, T. Feder, P. Hell, J. Huang, and G. MacGillivray. Near-unanimity functions and varieties of reflexive graphs. SIAM Journal on Discrete Mathematics, 22(3):938-960, 2008.
[5] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Annals of Mathematics, 162(1):439-485, 2005.
[6] T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial Theory, Series B, 72(2):236-250, 1998.
[7] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica, 19(4):487-505, 1999.
[8] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homomorphisms. Journal of Graph Theory, 42(1):61-80, 2003.
[9] T. Feder, P. Hell, J. Huang, and A. Rafiey. Adjusted interval digraphs. Electronic Notes in Discrete Mathematics, 32:83-91, 2009.
[10] A. Gupta, P. Hell, M. Karimi, and A. Rafiey. Minimum cost homomorphisms to reflexive digraphs. In E. S. Laber, C. F. Bornstein, L. T. Nogueira, and L. Faria, editors, LATIN 2008: Theoretical Informatics, 8th Latin American Symposium, Búzios, Brazil, April 7-11, 2008, Proceedings, volume 4957 of Lecture Notes in Computer Science, pages 182-193. Springer, 2008.
[11] G. Gutin, P. Hell, A. Rafiey, and A. Yeo. A dichotomy for minimum cost graph homomorphisms. European Journal of Combinatorics, 29(4):900-911, 2008.
[12] G. Z. Gutin, A. Rafiey, A. Yeo, and M. Tso. Level of repair analysis and minimum cost homomorphisms of graphs. Discret. Appl. Math., 154(6):881-889, 2006.
[13] M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Minimizing average completion of dedicated tasks and interval graphs. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, pages 114-126. Springer, 2001.
[14] P. Hell and J. Huang. Interval bigraphs and circular arc graphs. Journal of Graph Theory, 46(4):313-327, 2004.
[15] P. Hell, J. Huang, R. M. McConnell, and A. Rafiey. Interval-like graphs and digraphs. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), 2018, August 27-31, 2018, Liverpool, UK, pages 68:1-68:13, 2018.
[16] P. Hell, M. Mastrolilli, M. M. Nevisi, and A. Rafiey. Approximation of minimum cost homomorphisms. In European Symposium on Algorithms (ESA), pages 587-598. Springer, 2012.
[17] P. Hell and J. Nešetřil. On the complexity of h-coloring. Journal of Combinatorial Theory, Series B, 48(1):92-110, 1990.
[18] P. Hell and J. Nesetril. Graphs and homomorphisms. Oxford University Press, 2004.
[19] P. Hell and A. Rafiey. The dichotomy of list homomorphisms for digraphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1703-1713, 2011.
[20] P. Hell and A. Rafiey. The dichotomy of minimum cost homomorphism problems for digraphs. SIAM Journal on Discrete Mathematics, 26(4):1597-1608, 2012.
[21] P. Hell and A. Rafiey. Monotone proper interval digraphs and min-max orderings. SIAM Journal on Discrete Mathematics, 26(4):1576-1596, 2012.
[22] K. Jansen. Approximation results for the optimum cost chromatic partition problem. J. Algorithms, 34(1):54-89, 2000.
[23] T. Jiang and D. B. West. Coloring of trees with minimum sum of colors. arXiv preprint math/9904140, 1999.
[24] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34 th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 767-775. ACM, 2002.
[25] S. Khot, D. Minzer, and M. Safra. On independent sets, 2-to-2 games, and grassmann graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 576-589. ACM, 2017.
[26] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335-349, 2008.
[27] L. G. Kroon, A. Sen, H. Deng, and A. Roy. The optimal cost chromatic partition problem for trees and interval graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 279-292. Springer, 1996.
[28] M. Mastrolilli and A. Rafiey. On the approximation of minimum cost homomorphism to bipartite graphs. Discrete Applied Mathematics, 161(4):670-676, 2013.
[29] H. Müller. Recognizing interval digraphs and interval bigraphs in polynomial time. Discret. Appl. Math., 78(1-3):189-205, 1997.
[30] A. Rafiey. Recognizing interval bigraphs by forbidden patterns. J. Graph Theory, 100(3):504-529, 2022.
[31] A. Rafiey, A. Rafiey, and T. Santos. Toward a dichotomy for approximation of h-coloring. In 46 th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 91:1-91:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[^0]: *An extended abstract of the approximation part has appeared in [16, 31,
 ${ }^{\dagger}$ Simon Fraser University, Burnaby, BC, Canada, pavol@sfu.ca
 ${ }^{\ddagger}$ IDSIA, Manno-Lugano, Swtizerland, monaldo@idsia.ch supported by the Swiss National Science Foundation project 200020-122110/1, "Approximation Algorithms for Machine Scheduling II"
 §Microsoft, Vancouver, Canada, mayssam@gmail.com
 IUniversity of California San Diego, San Diego, CA, USA, arafiey@ucsd.edu
 ${ }^{\|}$Indiana State University, IN, USA, arash.rafiey@indstate.edu supported by NSF 1751765, and by the Swiss National Science Foundation project 200020-122110/1, "Approximation Algorithms for Machine Scheduling II"

