
Dichotomy for Digraph Homomorphism
Problems

Tomás Feder∗ Jeff Kinne † Arash Rafiey ‡

Abstract

We consider the problem of finding a homomorphism from an input digraph G to
a fixed digraph H. We show that if H admits a weak-near-unanimity polymorphism
φ then deciding whether G admits a homomorphism to H (HOM(H)) is polynomial
time solvable. This confirms the conjecture of Maroti and McKenzie [MM08], and
consequently implies the validity of the dichotomy conjecture due to Feder and Vardi
[FV93].

1 Introduction

For a digraph G, let V (G) denote the vertex set of G and let A(G) denote the arcs (aka
edges) of G. An arc (u, v) is often written as simply uv to shorten expressions. Let |G|
denote the number of vertices in G.

A homomorphism of a digraph G to a digraph H is a mapping g of the vertex set of G
to the vertex set of H so that for every arc uv of G the image g(u)g(v) is an arc of H. A
natural decision problem is whether for given digraphs G and H there is a homomorphism
of G to H. If we view (undirected) graphs as digraphs in which each edge is replaced by the
two opposite directed arcs, we may apply the definition to graphs as well. An easy reduction
from the k-coloring problem shows that this decision problem is NP -hard: a graph G admits
a 3-coloring if and only if there is a homomorphism from G to K3, the complete graph on 3
vertices. As a homomorphism is easily verified if the mapping is given, the homomorphism
problem is contained in NP and is thus NP -complete.

∗268 Waverley Street, Palo Alto, CA 94301, United States, tomas@theory.stanford.edu
†Indiana State University, IN, USA, jkinne@cs.indstate.edu
‡Indiana State University, IN, USA arash.rafiey@indstate.edu and Simon Fraser University, BC, Canada,

arashr@sfu.ca

1

The following version of the problem has attracted much recent attention. For a fixed
digraph H the problem HOM(H) asks if a given input digraph G admits a homomorphism
to H. Note that while the above reduction shows HOM(K3) is NP-complete, HOM(H)
can be easy (in P) for some graphs H: for instance if H contains a vertex with a self-loop,
then every graph G admits a homomorphism to H. Less trivially, for H = K2 (or more
generally, for any bipartite graph H), there is a homomorphism from G to K2 if and only
if G is bipartite. A very natural goal is to identify precisely for which digraphs H the
problem HOM(H) is easy. In the special case of graphs the classification has turned out
to be this: if H contains a vertex with a self-loop or is bipartite, then HOM(H) is in P ,
otherwise it is NP -complete [HN90] (see [B05, S10] for shorter proofs). This classification
result implies a dichotomy of possibilities for the problems HOM(H) when H is a graph,
each problem being NP -complete or in P . However, the dichotomy of HOM(H) remained
open for general digraphs H. It was observed by Feder and Vardi [FV93] that this problem
is equivalent to the dichotomy of a much larger class of problems in NP , in which H is
a fixed finite relational structure. These problems can be viewed as constraint satisfaction
problems with a fixed template H [FV93], written as CSP (H). A constraint satisfaction
problem CSP (H) consists of (a) a relational structure H that specifies a set V of variables
that each come from some domain D and (b) a set C of constraints giving restrictions on
the values allowed on the variables.

The question is whether all constraints can be simultaneously satisfied. 3SAT is a proto-
typical instance of CSP, where each variable takes values of true or false (a domain size of
two) and the clauses are the constraints. Digraph homomorphism problems can also easily
be converted into CSPs: the variables V are the vertices of G, each must be assigned a vertex
in H (meaning a domain size of |V (H)|), and the constraints encode that each arc of G must
be mapped to an arc in H.

Feder and Vardi argued in [FV93] that in a well defined sense the class of problems
CSP (H) would be the largest subclass of NP in which a dichotomy holds. A fundamental
result of Ladner [L75] asserts that if P 6= NP then there exist NP -intermediate problems
(problems neither in P nor NP -complete), which implies that there is no such dichotomy
theorem for the class of all NP problems. Non-trivial and natural subclasses which do have
dichotomy theorems are of great interest. Feder and Vardi made the following Dichotomy
Conjecture: every problem CSP (H) is NP -complete or is in P . This problem has animated
much research in theoretical computer science. For instance the conjecture has been verified
when H is a conservative relational structure [B11], or a digraph with all in-degrees and
all-out-degrees at least one [BKN09]. Numerous special cases of this conjecture have been
verified [ABISV09, B06, BH90, BHM88, CVK10, D00, F01, F06, FMS04, LZ03, S78].

Bulatov announced his proof for the conjecture earlier this year [B17] and later Zhuk [Z17]
also announced another algebraic proof of the conjecture.

It should be remarked that constraint satisfaction problems encompass many well known
computational problems, in scheduling, planning, database, artificial intelligence, and consti-
tute an important area of applications, in addition to their interest in theoretical computer

2

science [CKS01, D92, V00, K92].
While the paper of Feder and Vardi [FV93] did identify some likely candidates for the

boundary between easy and hard CSP -s, it was the development of algebraic techniques
by Jeavons [J98] that lead to the first proposed classification [BJK05]. The algebraic ap-
proach depends on the observation that the complexity of CSP (H) only depends on certain
symmetries of H, the so-called polymorphisms of H. For a digraph H a polymorphism φ
of arity k on H is a homomorphism from Hk to H. Here Hk is a digraph with vertex set
{(a1, a2, . . . , ak)|a1, a2, . . . , ak ∈ V (H)} and arc set {(a1, a2, . . . , ak)(b1, b2, . . . , bk) | aibi ∈
A(H) for all 1 ≤ i ≤ k}. For a polymorphism φ, φ(a1, a2, . . . , ak)φ(b1, b2, . . . , bk) is an arc of
H whenever (a1, a2, . . . , ak)(b1, b2, . . . , bk) is an arc of Hk.

Over time, one concrete classification has emerged as the likely candidate for the di-
chotomy. It is expressible in many equivalent ways, including the first one proposed in
[BJK05]. There were thus a number of equivalent conditions on H that were postulated to
describe which problems CSP (H) are in P . For each, it was shown that if the condition
is not satisfied then the problem CSP (H) is NP -complete (see also the survey [HN08]).
One such condition is the existence of a weak near-unanimity polymorphism (Maroti and
McKenzie [MM08]). A polymorphism φ of H of arity k is a k near unanimity function (k-
nu) on H, if φ(a, a, . . . , a) = a for every a ∈ V (H), and φ(a, a, . . . , a, b) = φ(a, a, . . . , b, a) =
· · · = φ(b, a, . . . , a) = a for every a, b ∈ V (H). If we only have φ(a, a, . . . , a) = a for every
a ∈ V (H) and φ(a, a, . . . , a, b) = φ(a, a, . . . , b, a) = · · · = φ(b, a, . . . , a) [not necessarily a] for
every a, b ∈ V (H), then φ is a weak k-near unanimity function (weak k-nu).

Given the NP -completeness proofs that are known, the proof of the Dichotomy Conjecture
reduces to the claim that a relational structure H which admits a weak near-unanimity
polymorphism has a polynomial time algorithm for CSP (H). As mentioned earlier, Feder
and Vardi have shown that is suffices to prove this for HOM(H) when H is a digraph. This
is the main result of our paper.

Note that the real difficulty in the proof of the graph dichotomy theorem in [HN90] lies in
proving the NP -completeness. By contrast, in the digraph dichotomy theorem proved here
it is the polynomial-time algorithm that has proven more difficult.

While the main approach in attacking the conjecture has mostly been to use the highly
developed techniques from logic and algebra, and to obtain an algebraic proof, we go in the
opposite direction and develop a combinatorial algorithm. Our main result is the following.

Theorem 1.1 Let H be a digraph that admits a weak near-unanimity function. Then
HOM(H) is in P . Deciding whether an input digraph G admits a homomorphism to H
can be done in time O(|G|6|H|k+3).

Together with the NP -completeness result of [MM08], this settles the CSP Conjecture in
the affirmative. We note that H is fixed and also k ≤ 2|H| according to [JB17].

3

Our Methods, Very High Level View We start with a general digraph H and a weak k-nu
φ of H. We turn the problem HOM(H) into a related problem of seeking a homomorphism
with lists of allowed images. The list homomorphism problem for a fixed digraph H, denoted
LHOM(H), has as input a digraph G, and for each vertex x of G an associated list (set)
of vertices L(x) ⊆ V (H), and asks whether there is a homomorphism g of G to H such
that for each x ∈ V (G), the image g(x) is in L(x). Such a homomorphism is called a list
homomorphism of G to H with respect to the lists L. List homomorphism problems are
known to have nice dichotomies. For instance when H is a reflexive graph (each vertex has
a loop), the problem LHOM(H) is polynomial when H is an interval graph and is NP -
complete otherwise [FH98]. Similar list homomorphism dichotomies were proved for general
graphs [FHH03, FHH07], and more recently also for digraphs [HR11]. In fact, motivated
by the results in [FH98, FHH03], Bulatov [B11] proved that the list version of constraint
satisfaction problems has a dichotomy for general relational systems.

It is not difficult to see that there are digraphs H such that HOM(H) is polynomial
while LHOM(H) is NP -complete. For instance, the reflexive four-cycle H has loops and
so HOM(H) is trivial, while LHOM(H) is NP-complete since H is not an interval graph.
However, we transform the problem HOM(H) into a restricted version of LHOM(H) in
which the lists satisfy an additional property related to the weak k-nu φ.

One of the common ingredients in CSP algorithms is the use of consistency checks to
reduce the set of possible values for each variable (see, for example the algorithm outlined
in [HN04] for CSP (H) when H admits a near unanimity function). Our algorithm includes
such a consistency check as a first step. We begin by performing a pair consistency check of
the list of vertices in the input digraph G. For each pair (x, y) of V (G)× V (G) we consider
a list of possible pairs (a, b), a ∈ L(x) (the list in H associated with x ∈ G) and b ∈ L(y).
Note that if xy is an arc of G and ab is not an arc of H then we remove (a, b) from the list
of (x, y). Moreover, if (a, b) ∈ L(x, y) and there exists z such that there is no c for which
(a, c) ∈ L(x, z) and (c, b) ∈ L(z, y) then we remove (a, b) from the list of (x, y). We continue
this process until no list can be modified. If there are empty lists then clearly there is no
list homomorphism.

After performing pair consistency checks (and repeating the consistency checks throughout
the algorithm), the main structure of the algorithm is to perform pairwise elimination, which
focuses on two vertices a, b of H that occur together in some list L(x), x ∈ V (G), and finds
a way to eliminate a or b from L(x) without changing a feasible problem into an unfeasible
one. In other words if there was a list homomorphism with respect to the old lists L, there
will still be one with respect to the updated lists L. This process continues until either
a list becomes empty, certifying that there is no homomorphism with respect to L (and
hence no homomorphism at all), or until all lists become singletons, specifying a concrete
homomorphism of G to H. This technique, due to the last author, has been successfully
used in several other papers [HR11, HR12, EHLR14]. In this paper, the choice of which a
or b is eliminated, and how, is governed by the given weak near-unanimity polymorphism
φ. In fact, we define a family of mappings fx, x ∈ V (G) which are each polymorphisms

4

derived from φ and use these polymorphisms as a guide. The heart of the algorithm is a
delicate procedure for updating the lists L(x) and polymorphisms fx in such a way that (i)
feasibility is maintained, and (ii) the polymorphisms fx remain polymorphisms (which is key
to maintaining feasibility).

2 Issue with the previous manuscript

In this brief update we aim the discussion at those who already are familiar with our approach
from reading this or another manuscript. Our algorithm makes a decision based on the output
of a test Tx,a,b on a smaller instance of the homomorphism problem. Here a, b are possible
images for x ∈ V (G), of a homomorphism from G to H.

The present manuscript assumes that the test Tx,a,b outputs“yes” and based on the cor-
rectness of the test a is removed from further consideration for x. The test Tx,a,b uses the
properties of the weak-nuf polymorphism φ. However, it is conceivable that the test Tx,a,b
fails and this means we should not remove a from the list of possible images of x. We had
incorrectly claimed in the manuscript that the properties of φ and pre-tests in the algorithm
guarantee the test always passes. But we can simply construct such an example where the
test must fail in the algorithm as follows. Let H be a digraph with two weakly connected
components H1, H2. The weak-nu polymorphism φ could be of arity 3 and such that for ev-
ery a ∈ H1 and every b ∈ H2, φ(a, b, b) = φ(b, b, a) = φ(b, a, b) = c for some c ∈ H2. Suppose
there exists a homomorphism from G (weakly connected) to H that maps x to a and hence
the entire graph G must be mapped to H1. Moreover, suppose there is no homomorphism
from G to H2. The algorithm does consider the test Tx,a,b eventually for such G and H.
According to the test Tx,a,b, we remove a from further consideration for x which leads us to
remove the possible homomorphism from G to H.

Note that one can assume H is weakly connected as follows. Suppose H1, H2 are balanced
digraphs with ` levels (we can partitioned the vertics of Hi, i = 1, 2, into ` parts where all
the arcs of Hi go from a vertex in some part j to part j+ 1). Then an extra vertex a′ can be
added and connected to all the vertices of H1, H2 on the lowest level. This way we obtain
the weakly connected digraph H = H1 ∪H2 ∪ {a′} with `+ 1 levels.

We may assume G is also balanced and has ` levels. An extra vertex x′ can be added to
G with arcs to every vertex of G on the lowest level. Now G′ = G ∪ {x′} is also a balanced
digraph with `+1 levels. Note that in any homomorphism from G′ to H, x′ must be mapped
to a′ and any other vertex of G′ must map to H − {x}.

We note that Ross Willard may post a concrete counter-example (and further discussion of
his example) for which H contains 197 vertices in H. The example is inspired from instances
of the CSP problem, so called Semi-lattice block Maltsev.

5

3 Algorithm

An oriented walk (path) is obtained from a walk (path) by orienting each of its edges. The
net-length of a walk W , is the number of forward arcs minus the number of backward arcs
following W from the beginning to the end. An oriented cycle is obtained from a cycle by
orienting each of its edges. We say two oriented walks X, Y are congruent if they follow the
same patterns of forward and backward arcs.

Given digraphs G and H, let G×Hk be a digraph on the vertices {(y; a1, a2, . . . , ak)|y ∈
V (G), ai ∈ V (H), 1 ≤ i ≤ k} with the arcs (y; a1, a2, ..., ak)(y′; b1, b2, ..., bk) where yy′ is an
arc of G and each aibi, 1 ≤ i ≤ k, is an arc of H. By convention, we shall further restrict the
use of the symbol G×Hk to the digraph induced on the vertices {(y; a1, a2, . . . , ak)|y ∈ V (G),
ai ∈ L(y), 1 ≤ i ≤ k} where L(y) is the set of vertices in H that are being considered as
images of a homomorphism from G to H.

Definition 3.1 (Homomorphism consistent with Lists) Let G and H be digraphs. For
each x ∈ V (G), let list of x, L(x), be a subset of H. Let k > 1 be a constant integer.

A function f : G×Hk → H is a homomorphism consistent with L if the following hold.

• List property : for every x ∈ V (G) and every a1, a2, . . . , ak ∈ L(x), f(x; a1, a2, . . . , ak) ∈
L(x)

• Adjacency property: for every x, y ∈ V (G) and every a1, ..., ak ∈ L(x), b1, ..., bk ∈ L(y),
if xy is an arc of G and aibi is an arc of H for each 1 ≤ i ≤ k then f(x; a1, ..., ak)f(y; b1, ..., bk)
is an arc of H.

In addition if f has the following property then we say f has the weak-nu property.

• for every x ∈ V (G), {a, b} ⊆ L(x), we have f(x; a, b, b, ..., b) = f(x; b, a, b, ..., b) = ... =
f(x; b, b, b, ...a).

We note that this definition is tailored to our purposes and in particular differs from the
standard definition of weak k-nu as follows.

(a) f is based on two digraphs G and H rather than just H (we think of this as starting
with a traditional weak k-nu on H and then allowing it to vary somewhat for each
x ∈ G),

(b) We do not require that f(y; d, d, d, ..., d) = d (this is not required in our algorithm, and
in fact is more convenient to leave out).

Notation For simplicity let (bk, a) = (b, b, . . . , b, a) be a k-tuple of all b’s but with an a in
the kth coordinate. Let (x; bk, a) be a (k + 1)-tuple of x, (k − 1) b’s and a in the (k + 1)th

coordinate.

6

Algorithm 1 The main algorithm for solving the digraph homomorphism problem.

1: function DigraphHom(G,H, φ) . G and H digraphs, φ a weak k-nu on H
2: for all x ∈ G, let L(x) = V (H)
3: for all x ∈ G and a1, ..., ak ∈ V (H), let f(x; a1, ..., ak) = φ(a1, ..., ak)
4: if PreProcessing(G,H,L) is false then print ”no homomorphism” and terminate

5: RemoveNotMinority(G,H,L, f)
6: Note: now, for all x ∈ V (G) and a, b ∈ L(x) we know f(x; bk, a) = a
7: RemoveMinority(G,H,L, f)
8: if RemoveMinority produces a homomorphism then return true
9: else return false

3.1 Main Procedure

The main algorithm starts with applying the arc consistency and pair consistency on the
lists L by calling Algorithm 2.

Algorithm 4 (RemoveNotMinority function) is the key subroutine of the main algorithm.
It starts with w = (x; bk, a) where f(w) = c 6= a and then its goal is to modify f by setting
f(x; e1, e2, . . . , ek) = f(w) for every k-tuple e1, e2, . . . , ek ∈ L(x) with f(x; e1, e2, . . . , ek) = a.
Now in order to do this modification and have a homomorphism from G×Hk to H consistent
with L, it recursively solves a smaller instance of the problem and if the test is successful,
then it modifies f .

After the main loop in Algorithm 1, we end up with a so-called Maltsev or minority in-
stance of the problem – in which we have a homomorphism f consistent with L such that
for every y ∈ V (G) and every c, d ∈ L(y) we have f(y; ck, d) = d. We argue in the next
subsection that such instances can be solved by using the known algorithm of [BD06] (see
the remark at the end of Subsection 3.2). The Maltsev/minority instances can also be solved
in a manner similar to our arguments for RemoveNotMinority (see Section 5) .

In what follows we give an insight of why the weak-nu property of H is necessary for our
algorithm. For contrary suppose w1 = (x; bk, a) with f(w1) = c and w2 = (x; a, b, b, . . . , b)
with f(w2) = d. If d = a then in RemoveNotMinority we try to remove a from L(x) if we
start with w1 while we do need to keep a in L(x) because we later need a in L(x) for the
Maltsev algorithm. It might be the case that d 6= a but during the execution of Algorithm 4
for some w3 = (x; bk, e) with f(w3) 6= e we set f(w3) to e. So we need to have f(w1) = f(w2),
the weak-nu property, to start in the main algorithm, Algorithm 1.

Definition 3.2 (f-closure of a list :) We say a set S ⊆ L(y) is closed under f if for
every k-tuple a′1, a

′
2, . . . , a

′
k ∈ S we have f(y; a′1, a

′
2, . . . , a

′
k) ∈ S.

For S ⊆ L(y), let f̂y,S be a minimal set that includes all the elements of S and it is closed
under f .

Definition 3.3 We say a ∈ L(x) is relevant if ∃w2 ∈ V (G×Hk) such that f(w2) = a.

7

Algorithm 2 Update lists of x, y based on edge constraints and pair constraint. Call by
reference, i.e. the update to L will be reflected in the calling function

1: function PreProcessing(G,H,L)
2: Input: digraphs G,H, lists L(x) ⊆ V (H) for each x

. L lists are unary and binary
3: . The update to L would be available for the function calling PreProcessing
4: ArcConsistency(G,H,L) and PairConsistency(G,H,L)

5: function ArcConsistency(G,H,L)
6: update=True
7: while update do
8: if ∃xy(yx) ∈ A(G), a ∈ L(x) s.t. @b ∈ L(y) with ab(ba) ∈ A(H) then
9: remove a from L(x) and set update=True.

10: else update=False.

11: if there is an empty list then return false.

12: function PairConsistency(G,H,L)
13: for all (x, y) ∈ V (G)× V (G) do set L(x, y) = {(a, b)|a ∈ L(x), b ∈ L(y)}
14: for all x ∈ V (G) do set L(x, x) = {(a, a)|a ∈ L(x)}.
15: for all xy ∈ A(G), a ∈ L(x), b ∈ L(y) do
16: if ab 6∈ A(H) then remove (a, b) from L(x, y).

17: update=True
18: while update do
19: if ∃x, y, z s.t. @c ∈ L(z) s.t. (a, c) ∈ L(x, z)&(c, b) ∈ L(z, y) then
20: remove (a, b) from L(x, y) and set update=True.
21: else update=False.

22: if there is an empty list then return false.

8

Definition 3.4 (restriction of f to a sub-list:) Let L′ be a subset of L, i.e. ∀y ∈ V (G),
L′(y) ⊆ L(y). Let f |L′ denote the restriction of f under L′, i.e. for all y ∈ V (G), and for
all a1, a2, . . . , ak ∈ L′(y) we have f |L′(y; a1, a2, . . . , ak) = f(y; a1, a2, . . . , ak).

Let X : x1, x2, . . . , xn be an oriented walk in G. Let L(X) denote the vertices of H that
lie in the list of the vertices of X. Let X[xi, xj], 1 ≤ i ≤ j ≤ n, denote the induced sub-path
of X from xi to xj.

Definition 3.5 (induced bi-clique) We say two vertices x, y induced a bi-clique B in L
if there exist vertices a1, a2, . . . , ar ∈ L(x), r > 1 and b1, b2, . . . , bs ∈ L(y) such that (ai, bj) ∈
L(x, y) for every 1 ≤ i ≤ r and 1 ≤ j ≤ s. Let Y be an oriented path from x to y. We say
bi-clique B is minimal if for every ai, aj ∈ L(x) of B, (ai, aj) does not induced a Bi-clique
on x, x1 where x1 ∈ Y − y.

Let a1, a2 ∈ L(x) and suppose there exist b1, b2 ∈ L(y) such that (a1, b1), (a1, b2), (a2, b1),

(a2, b2) ∈ L(x, y). Then f̂x,{a1,a2} and f̂y,{b1,b2} induce a bi-clique on x, y.

Definition 3.6 (weakly connected component in lists L and cut points) Let G×L

H be the digraph with vertices {(x, a)|x ∈ V (G), a ∈ L(x)}. The arc set of G ×L H is
A(G×LH) = {(y, d)(y′, d′)| yy′ ∈ A(G), dd′ ∈ A(H), (d, d′) ∈ L(y, y′)}∪{(y, d)(y′, d′)| y′y ∈
A(G), dd′ ∈ A(H), (d, d′) ∈ L(y, y′)}. We say (x, a) is a cut vertex if either x is a cut-vertex
in G or by removing (x, a) the number of connected component of G×LH (after Preprocessing;
updating the pair lists) increases. We say a connected component C of G ×L H is valid if
for every y ∈ V (G), there exists a vertex b ∈ L(y) such that (y, b) ∈ C.

Observation 3.7 If there exists a homomorphism g : V (G) → V (H) then all the vertices
(y, g(y)), y ∈ V (G) belong to the same connected component of G×L H.

Definition 3.8 (GL(x, a, c)) For x ∈ V (G), and a, c ∈ L(x), let GL(x, a, c) be a digraph
with vertices V (GL(x, a, c)) = {(y, d, e)|(c, e) ∈ L(x, y), d ∈ L(y)}. The arc set of GL(x, a, c)
is A(GL(x, a, c)) = {(y, d, e)(y′, d′, e′)| yy′ ∈ A(G), dd′, ee′ ∈ A(H), ed′ 6∈ A(H)} ∪
{(y, d, e)(y′, d′, e′)| y′y ∈ A(G), d′d, e′e ∈ A(H), d′e 6∈ A(H)}. Moreover, every vertex of
GL(x, a, c) is reachable from (x, a, c). Note that (x, a, c) is a vertex of GL(x, a, c).

Definition 3.9 We say w = (x; bk, a) is a non-minority pair if f(w) = c 6= a.

9

Algorithm 3 It prepares the arguments for Remove-NM

1: function RemoveNotMinority(G,H,L, f)
2: for all x ∈ V (G) and a ∈ L(x) do
3: Set flag[x, a] = true

4: for all x, y ∈ V (G), (a, b) ∈ L(x, y) do
5: flag[x, a](y, b) = true
6: for all z ∈ V (G) \ {x, y}, c ∈ L(z) with (a, c) ∈ L(x, z), (b, c) ∈ L(y, z) do
7: set flag[x, y, a, b](z, c) = true

. flag refers to the flag[x, a] and also refers to flag[x, y, a, b]
8: In any other case flag is set to false, i.e. flag[x, a](y, b) = false when (a, b) 6∈ L(x, y).
9: Initiate an empty vector V . is used for decomposing the input into bi-cliques

10: Remove-NM(G,L, f, flag, V)

The RemoveNotMinority takes G,H,L, f as input. It defines flag variables that are used
to eliminate some of the wrong choices. We look at them as hybrid variable. flag[x, a] being
false means that there is no L-homomorphism from G to H that maps x to a. This is because
we have made a test and the answer of the test was false (no solution). flag[x, y, a, b] defines
a set of boolean variables, with the intention that we are looking for an L-homomorphism
from G to H that maps x to a and y to b. If flag[x, a](y, b) is false then it means there is
no such a homomorphism.
Having flag[x, y, a, b](z, c) = false means that there is no L-homomorphism that maps x to
a, y to b and z to c. Initially all these variable are true. The vector V is used for decomposing
the instance into bi-cliques.

x y z

c1

c2

d1

d2

e1

e2

Path Y in G

In L(Y) in H

Figure 1: An example of a Bi-clique

10

Algorithm 4 updating f so that it remains a homomorphism of G × Hk to H consistent
with L and for every x ∈ V (G), a′, b′ ∈ L(x), we have f(x; a′k, b′) = b′

1: function Remove-NM(G,L, f, flag, V)
2: Input: digraphs G,H, lists L and, weak-nu homomorphism f : G×Hk → H
3: If |L(x)| = 1 then assign L(x) to x and PreProcessing(G,L)
4: If G×LH is not connected then consider each valid connected component separately
5: if there is no non-minority pair then
6: g = RemoveMinority(G,H,L, f)
7: return g

8: while exists a non-minority pair do
9: if exists a cut vertex (x, a) then

10: (L, f, flag) = Cut-Vertex-Case(G,L, f, x, a, flag)
11: else
12: (L, f, flag) =Symmetric-Difference(G,L, f, flag)
13: (L, f, flag) =Bi-Clique-Instances(G,L, f, flag, V)

14: (L, f, flag) = Making-f-consistent(G,L, f, flag)
15: for all x ∈ V (G), a ∈ L(x) do
16: if ∃y ∈ V (G) s.t. y 6= x & ∀(a, di) ∈ L(x, y), flag[x, a](y, di) = false then
17: flag[x, a] = false

18: for all x ∈ V (G), a ∈ L(x) do
19: if a is not relevant OR flag[x, a] = false then Remove a from L(x).

20: PreProcessing(G,L)
21: return flag

11

The Remove-NM takes G,L, f, flag, V and it checks whether there are lists with only one
element and in this case the decision is clear. It also handle each connected component of
G ×L H independently. If there is no non-minority pair then it calls RemoveMinority.
Otherwise it starts with the cut vertices in G ×L H first. It is clear that if the test for cut
vertex (x, a), fails then the remaining instance has different components and each connected
component is handled separately.
If the test Tx,c for a smaller instance succeeds then it means there exists an L homomorphism
g from G′ (a sub-digraph of G) to H. Here G′ is the digraph induced by the first coordinates
on the vertices GL(x, a, c). We modify f on the vertices G′ and lists L using g in function
Update-f and at the end there is no vertex w ∈ G×Hk with f(w) = a.
If there is no cut vertex then Remove-NM calls the Symmetric-Difference function.
In this function we make a smaller test which actually tests a necessary condition for having
a homomorphism that maps x to c and y to d1 and z to e1 in a sub-digraph of G. For every
v ∈ V (G), the list L′(v) is a subset L(v) consisting of vertices i such that (i, d2) 6∈ L(v, y).
After that we handle the Bi-Clique instances. At the end of while loop at line (8) we need
to make f consistent. This is we are going to remove some vertex a from L(x) because the
test Tx,a fails. Now if there exists a1, a2 ∈ L(x) such that f(x; ak1, a2) = a then f will no
longer be consistent with the lists. Therefore we argue that at least one of the Tx,a1 , Tx,a2
should be false. In the Making-f-consistent we check which of the a1, a2 should also be
removed from L(x). At line 15-16 we make a decision for flag[x, a] if there exists a vertex y
such that there is no homomorphism that maps x to a and y to any of the elements in L(y).

1: function Cut-Vertex-Case(G,L, f, x, a, flag)
2: Let (L′, f ′)= Small-Instance(L, f, x, a, f lag)
3: flag = Remove-NM(G,L′, f ′, f lag, ∅)
4: g = RemoveMinority(G,H,L′, f ′)
5: if g is not empty then
6: Update-f(g, L, ∅, ∅, x, a, f)
7: else flag[x, a] = false and remove (x, a) from G×L H.

8: return L, f, flag

Here we create an instance in which L′(x) = a and L′(y) contains element e′ with (a, e) ∈
L(x, y). We also take into account that it is conceivable that y can be mapped to e as
otherwise flag[y, e] has been set to be false at some earlier steps of the algorithm.

12

1: function Small-Instance(G,L, f, x, a, flag)
2: Create new empty lists L′.
3: for all y ∈ V (G) do
4: L′(y) = { e | (a, e) ∈ L(x, y) & e is relevant & flag[y, e] }.
5: Set f ′ = f |L′ . see definitions 3.4
6: return (G,L′, f ′)

1: function Update-f(g, L, x0, c0, x, c, f)
2: if x0 = ∅ then set L′ = L
3: else
4: Set L′(x0) = c0
5: for all y ∈ V (G) do L′(y) = {e|(c0, e) ∈ L(x0, y)}
6: for all a ∈ L(x) s.t. a 6= c, (x, a), (x, c) are in the same component of G×L′ H do
7: Construct GL′(x, a, c).
8: for all (y, d, g(y)) ∈ GL′(x, a, c) do
9: for all w1 = (y; a1, a2, . . . , ak) with f(w1) = d do set f(w1) = g(y)

13

1: function Symmetric-Difference(G,L, f)
2: Create new flag variables and set them to be true.
3: Create new empty lists L′.

. Considering all the forks
4: for all x, y ∈ V (G), c1 ∈ L(x), d1, d2 ∈ L(y) with
5: flag[x, c1](y, d1) & (c1, d1), (c1, d2) ∈ L(x, y) do
6: Set L′(x) = c, L′(y) = d1
7: for all v ∈ V (G) s.t. for every i ∈ L(v), (d2, i) 6∈ L(y, v) do
8: L′(v) = {i|(c1, i) ∈ L(x, v), (d1, i) ∈ L(y, v),&flag[x, c1](v, i), f lag[y, d1](v, i), f lag[v, i]}
9: Let G′ be the induced sub-digraph of G with vertices v s.t. L′(v) 6= ∅

10: flag = Remove-NM(G′, L′, f ′, f lag, ∅)
11: g = RemoveMinority(G′, H, L′, f ′)
12: if g is empty then flag[x, c1](y, d1) = flag[y, d1](x, c1) = false.

. Definition : x, y, z ∈ V (G), c1 ∈ L(x), d1, d2 ∈ L(y), e1 ∈ L(z) make a diamond
when (c1, d1), (c1, d2) ∈ L(x, y) & (c1, e1) ∈ L(x, z) & (d1, e1), (d2, e1) ∈ L(y, z)

. use the same flag variables
Note that if flag[x, c1](y, d1) = false then flag[x, y, c1, d1](z, e1) = false

13: Create new empty lists L′.
14: for all x, y, z ∈ V (G), c1 ∈ L(x), d1, d2 ∈ L(y), e1 ∈ L(z) with
15: flag[x, y, c1, d1](z, e1) & x, y, z, c1, d1, d2, e1 make a diamond do
16: Set L′(x) = c, L′(y) = d1, and L′(z) = e1.
17: for all v ∈ V (G) s.t. for every j ∈ L(v), (d2, j) 6∈ L(y, v) do
18: X = {i|flag[x, c1](v, i), f lag[y, d1](v, i), f lag[z, e1](v, i), f lag[v, i] all true }
19: L′(v) = {i|(c1, i) ∈ L(x, v), (d1, i) ∈ L(y, v), (e1, i) ∈ L(z, v), and i ∈ X }
20: Let G′ be an induced sub-digraph of G on the vertices v such that L′(v) 6= ∅
21: flag = Remove-NM(G′, L′, f ′, f lag, ∅)
22: g = RemoveMinority(G′, H, L′, f ′)
23: if g is empty then flag[x, y, c1, d1](z, e1) = false.

. Cleaning up the flag variables
24: for all x, y ∈ V (G), a1 ∈ L(x), b1 ∈ L(y) do
25: if ∃z ∈ V (G) s.t.

∀(a1, di) ∈ L(x, z), (b1, di) ∈ L(y, z), flag[y, b1](z, di) = false then
26: flag[x, a1](y, b1) = false

27: return flag

14

1: function Bi-Clique-Instances(G,L, f, flag, V)
2: (x, a, c, y, d, d′, z, e1, e2) = Bi-Clique-1(G,L, f, flag, V)

. Bi-Clique-1 is call by reference for vector V, it updates the current vector V
3: Let S1 = f̂x,{a,c}, S2 = f̂y,{d,d′}, S3 = f̂z,{e1,e2}
4: for all c0, c1 ∈ S1 s.t. flag[x, c1] & f(x; c′k0 , c0) = c1 6= c0 for some c′0 ∈ S1 do
5: for all d1, d2 ∈ S2 s.t. flag[x, c1](y, d2) do
6: for all e1 ∈ S3 do
7: test1 = flag[x, y, c1, d1](z, e1)
8: test2 = flag[x, y, c1, d2](z, e1)
9: if test1 and test2 then

. it means we can replace d1, d2, . . . , di with one element
10: (L′, f ′, d) = Restricted-Instance(G,L, f, x, c1, y, d1, d2, z, e1, f lag)
11: flag[x, y, c1, d] = Remove-NM(G′, L′, f ′, f lag, V)
12: g = RemoveMinority(G′, H, L′, f ′)
13: if g is not empty then
14: Update-f(g, L, x, c1, y, d, f) and update V accordingly
15: else
16: for all di ∈ f̂y,{d1,d2} do flag[x, y, c1, di](z, e1) = false

17: Remove the last element of V
. no more such z, e1 and hence each component is treated separately

18: (G′, L′, f ′) = Small-Instance-2(G,L, f, x, c1, y, d1, f lag)
19: flag[x, y, c1, d1] = Remove-NM(G′, L′, f ′, f lag, V)
20: g = RemoveMinority(G′, H, L′, f ′)
21: if g is not empty then
22: Update-f(g, L, x, c1, y, d1, f)
23: else
24: flag[x, c1](y, d1) = flag[y, d1](x, c1) = false

25: return (L, f, flag)

15

Let x, y ∈ V (G) and c1, c2 ∈ L(x) and d1, d2 ∈ L(y) induce a Bi-Clique in G×LH. Let e1 ∈
L(z) such that (c1, e1) ∈ L(x, z), (c1, d1), (c1, d2) ∈ L(x, y) and (d1, e1), (d2, e1) ∈ L(z). Then
in the Bi-Clique-Instance we want to see whether it is possible to replace d1, d2 ∈ L(z)
by some other elements, say for example f(y; dk1, d2). To do that we have already made a
smaller test, say test1 in which we checked whether flag[x, y, c1, d1](z, e1) is true or false. We
consider the list L′(v) consists of the vertices that are reachable from d1 ∈ L(y), c1 ∈ L(x),
e1 ∈ L(z) but not reachable from d2 ∈ L(y). This mean we check whether there exists an
L′-homomorphism from G′ (an induced sub-digraph of G) to H that maps x to c1 and z
to e1 (if such e1 exists) and y to d1. Analogously we have made a smaller test, say test2
in which we checked whether flag[x, y, c1, d2](z, e1) is true or false. If both test1, test2 are

true then we construct an instance (Restricted-Instace) in which we replace f̂y,{d1,d2}
by just one element in f̂y,{d1,d2} and continue. Note that if there is no such e1 then it means
instances I1(x, c1, y, d1) (assigning x to c1 and y to d1) and I2(x, c1, y, d2) create different
connected components in G×L H and each of them is treated separately. To do so, we call
small-instance-2 function that creates lists L′ for which L′(x) = c1 and L′(y) = d1 and
ask whether such a homomorphism exists. If the answer is yes then we update f by calling
update-f function. Otherwise we set flag[x, c1](y, d1) = false.

1: function Restricted-Instance(G,L, f, x, c1, y, d1, d2, z, e1, f lag)
2: Create new empty lists L′

3: Let d be the unique vertex in L(y) which is at the end of f̂y,{d1,d2}. This means

d ∈ f̂y,{d1,d2} and for every d′ ∈ f(y; d′k, d) = d or if no such d exists then there are
di, di+1, . . . , dt s.t. f(y; dkj , dj+1) = dj+2, i ≤ j ≤ t where dt+1 = di, dt+2 = di+1.

4: L′(x) = {c}, L′(y) = {d}
5: for all v ∈ V (G) \ {x, y, z} do
6: X = {i|flag[x, c1](v, i), f lag[y, d1](v, i), f lag[z, e1](v, i), f lag[v, i] all true }
7: L′(v) = {i| (c1, i) ∈ L(x, v), (d, i) ∈ L(y, v), (e1, i) ∈ L(z, v) & i ∈ X }
8: Set f ′ = f |L′ . see definitions 3.4
9: return (L′, f ′, d)

16

1: function Bi-Clique-1(G,L, f, flag, V)
2: if V is empty then
3: Let x, y, z be three distinct vertices of G s.t. the following hold :
4: ∃a, b ∈ L(x) s.t. a is relevant & f(x; bk, a) = c 6= a
5: d, d′ ∈ L(y) where x, a, c together with y, d, d′ induce a minimal bi-clique in L

(here d′ could be d)
6: flag[x, c] = true, flag[x, c](y, d) = true
7: Let e1, e2 be two vertices in L(z) s.t. y, d, d′, z, e1, e2 induce a minimal bi-clique

and (a, e1), (a, e2) ∈ L(x, z). If there is a choice then (c, e1), (c, e2) ∈ L(x, z).
. Note that such y, d must exist otherwise different connected component

8: Add (x, a, c, y, d, d′, z, e1, e2) to the end of V
9: else

10: Let (x, a, c), (y, d, d′) be the last two elements of V
11: Let z 6= x, y be a vertex of G s.t the following hold :
12: ∃e1, e2 ∈ L(z) where y, d, d′ together with z, e1, e2 induce a minimal bi-clique

in L and (a, e1), (a, e2) ∈ L(x, z) and flag[x, y, c1, d1](z, e1) = true. If there is
a choice then (c, e1), (c, e2) ∈ L(x, z) (here e1 could be e2)

. if no such z, e1, e2 exist then different component
13: Add (z, e1, e2) to the end of V

1: function Small-Instance-2(G,L, f, x, a, y, d, f lag)
2: Create new empty lists L′.
3: for all v ∈ V (G) \ {x, y} do
4: X = {i|flag[x, a](v, i), f lag[y, d](v, i), f lag[v, i] are all true }
5: L′(v) = { i | (a, i) ∈ L(x, v), (d, i) ∈ L(y, v) & i is relevant }.
6: Set f ′ = f |L′ . see definitions 3.4
7: return (G,L′, f ′)

1: function Make-f-consistent(G,L, f, flag)
2: while ∃ a, b, c ∈ L(x) s.t. f(x; bk, a) = c & flag[x, a], f lag[x, b] , ¬flag[x, c] do
3: Let (L′, f ′)= Small-Instance(L, f, x, a, f lag)
4: flag = Remove-NM(G,L′, f ′, ∅)
5: g = RemoveMinority(G,H,L′, f ′)
6: if g is not empty then
7: for all d ∈ L(x) s.t f(x; dk, a) = c do flag[x, d] = false

8: else flag[x, a] = false

9: return L, f, flag

17

3.2 Minority Algorithm (RemoveMinority)

In this section we show that once the minority case has been reached in our main algorithm,
we can reduce to an already solved setting for homomorphism testing – namely that of the
Mal’tsev case. We note that this section is independent of the rest of the algorithm.

Note that at this point for every a, b ∈ L(x) we have f(x; bk, a) = a and in particular when
a = b we have f(x; a, a, . . . , a) = a (idempotent property). This is because when a is in L(x)
then it means the Remove-NM procedure did not consider a and in fact did not change the
value of f(x; ...) from a to something else. Note that for the argument below we just need
the idempotent property for those vertices that are in L(x), x ∈ V (G).

A ternary polymorphism h′ is called Maltsev if for all a 6= b, h′(a, b, b) = h′(b, b, a) = a.
Note that the value of h′(b, a, b) is unspecified by this definition.

Let G and H be as input to Algorithm 1, and suppose line 6 of the algorithm has been
reached. We define a homomorphism h : G×H3 → H consistent with the lists L by setting
h(x; a, b, c) = f(x; a, b, b, . . . , b, c) for a, b, c ∈ L(x). Note that because f has the minority
property for all x ∈ G, a, b ∈ L(x), h is a Maltsev homomorphism consistent with the lists
L.

Note that for the argument below we just need the idempotent property for those vertices
that are in L(x), x ∈ V (G).

Let G′ be the structure obtained from G by making each arc a different binary relation.
In other words, G′ has vertices V (G) and |E(G)| binary relations Re, e ∈ E(G), where
Re = {xy} if e is the arc e = xy.

Let H ′ be the structure where V (H ′) is the disjoint union of L(x), x ∈ V (G), and there
are also |E(G)| binary relations Se, e ∈ E(G), where Se is the set of all ordered pairs ab with
ab ∈ E(H), a ∈ L(x), b ∈ L(y), where e = xy. Note that |V (H ′)| ≥ |V (G′)| if each L(x) is
non-empty. This may seem unusual for the homomorphism setting, but is certainly allowed.

Now note that there is an L-homomorphism ofG toH (i.e., a list homomorphism consistent
with lists L) if and only if there is a homomorphism of G′ to H ′. Homomorphisms of such
structures are mappings f : V (G′)→ V (H ′) such that xy ∈ Re implies f(x)f(y) ∈ Se for all
e ∈ E(G).

Finally, note that the structure H ′ has a Maltsev polymorphism h′ of the ordinary kind.
Indeed, let hx be our Maltsev polymorphisms defined on L(x) by setting hx(a, b, c) =
h(x; a, b, c). We let h′(a, b, c) = h(x; a, b, c) if a, b, c are from the same L(x), and for a, b, c
not from the same L(x) define h′(a, b, c) = a unless a = b, in which case define it as
h′(a, b, c) = c. The definition ensures that h is Maltsev. To check it is a polymorphism, note
that aa′, bb′, cc′ ∈ Se is only possible if a, b, c ∈ L(x), a′, b′, c′ ∈ L(y), where e = xy. For
those, we have the polymorphism property by assumption.

Now we have a structure with a Maltsev polymorphism, so the Bulatov-Dalmau [BD06]
algorithm applies and solves the homomorphism problem. Note that Corollary 4.2 of the
Bulatov-Dalmau paper explicitly mentions that it is polynomial in both the sizes of G and

18

H.
Therefore we have the following theorem.

Theorem 3.10 Suppose h : G×Hk → H is a minority homomorphism consistent with lists
L on G. Then the existence of an L-homomorphism of G to H can be decided in polynomial
time.

Remark : We have communicated with the authors of [BD06] and they confirmed that
indeed we can apply their algorithm as explained above. We note that it is also possible
to give a direct algorithm for the minority case that is similar to how we handle the ”not
minority” case.

4 Proofs

4.1 PreProcessing and List Update

We first show that the standard properties of consistency checking remain true in our setting
– namely, that if the PreProcessing algorithms succeed then f remains a homomorphism
consistent with the lists L if it was before the PreProcessing.

Lemma 4.1 If f is a homomorphism of G×Hk → H consistent with L then f is a homo-
morphism consistent with L after running the pre-processing.

Proof: We need to show that if a1, a2, . . . , ak are in L(y) after the pre-processing then
f(y; a1, a2, . . . , ak) ∈ L(y) after the pre-processing. By definition vertex a is in L(y) after
the pre-processing because for every oriented path Y (of some length m) in G from y to a
fixed vertex z ∈ V (G) there is a vertex a′ ∈ L(z) and there exists a walk B in H from a to
a′ and congruent with Y that lies in L(Y).

Let a′1, a
′
2, a
′
3, . . . , a

′
k ∈ L(z). Let Ai, 1 ≤ i ≤ k be a walk from ai to a′i in L(Y) and

congruent to Y . Let Ai = ai, a
i
1, a

2
i , . . . , a

m
i , a

′
i and let Y = y, y1, y2, . . . , ym, z.

Since f is a homomorphism consistent with L before the pre-processing, f(y; a1, a2, . . . , ak),
f(y1; a

1
1, a

1
2, . . . , a

1
k), . . . , f(yi; a

i
1, a

i
2, . . . , a

i
k), . . . , f(ym; am1 , a

m
2 , . . . , a

m
k), f(z; a′1, a

′
2, . . . , a

′
k) is

a walk congruent with Y . This would imply that there is a walk from f(y; a1, a2, . . . , ak) to
f(z; a′1, a

′
2, . . . , a

′
k) congruent with Y in L(Y) and hence f(y; a1, a2, . . . , ak) ∈ L(y). �

By a similar argument as in the proof of Lemma 4.1 we have the following lemma.

Lemma 4.2 If f is a homomorphism of G×Hk → H, consistent with L and a1, a2, . . . , ak ∈
L(x), b1, b2, . . . , bk ∈ L(y), and (ai, bi) ∈ L(x, y), 1 ≤ i ≤ k, after pre-processing then
(f(x; a1, a2, . . . , ak), f(y; b1, b2, . . . , bk)) ∈ L(x, y) after the pre-processing.

19

4.2 RemoveNotMinority Correctness Proof

The main argument is proving that after RemoveNotMinority algorithm, f still is a homo-
morphism consistent with the lists and has weak-nu property (Lemma 4.3). Moreover, after
RemoveNotMinority there still exists a homomorphism from G to H if there was one before
RemoveNotMinority.

Lemma 4.3 If f is a homomorphism of G×Hk → H, consistent with L and with weak-nu
property before RemoveNotMinority then the modified f remains a homomorphism consistent
with L and with weak-nu property afterwards. Moreover, if there is a homomorphism ψ :
G→ H then there is a homomorphism from G to H after RemoveNotMinority.

Proof: It is enough to show the following :
f is a homomorphism of G × Hk → H consistent with the lists (with weak-nu
property) after removing a from L(x) in the while loop in Algorithm 4 (Remove-
NM).

We need to address items 1,2,3,4 below.

1. The weak-nu property is preserved.

2. The adjacency property is preserved: for an arbitrary arc yz ∈ A(G) (zy ∈ A(G))
and for every a′1, a

′
2, . . . , a

′
k ∈ L(y) and b′1, b

′
2, . . . , b

′
k ∈ L(z) where a′ib

′
i ∈ A(H) (b′ia

′
i ∈

A(H)), 1 ≤ i ≤ k, we have f(y; a′1, a
′
2, . . . , a

′
k)f(z; b′1, b

′
2, . . . , b

′
k) ∈ A(H)

(f(z; b′1, b
′
2, . . . , b

′
k)f(y; a′1, a

′
2, . . . , a

′
k) ∈ A(H)).

3. There exists a homomorphism from G to H after Remove-NM if there exists one before.

4. The Running time of Remove-NM function is polynomial .

Proof of 1 : Since in the Update-f function we change the value f(y; a′1, a
′
2, ..., a

′
k) from

a2 to f(y; ak1, a2) for every k-tuple a′1, a
′
2, . . . , a

′
k ∈ L(y), we change f(y; b1, b1, . . . , b1, b2) =

f(y; b1, b1, . . . , b2, b1) = · · · = f(y; b2, b1, . . . , b1) to the same value. Therefore f still has the
weak k-nu property.

Proof of 2 : Let ak+1 = f(w1 = (y; a′1, a
′
2, . . . , a

′
k)) and bk+1 = f(w2 = (z; b′1, b

′
2, . . . , b

′
k)).

We need to show that ak+1bk+1 ∈ A(H) when w1w2 is an arc of G ×Hk. Note that ak+1 is
the last value of f(y; a′1, a

′
2, . . . , a

′
k) and bk+1 is the last value of f(x; b′1, b

′
2, . . . , b

′
k). Suppose

a1 was the initial value of f(w1) and b1 is the initial value of f(w2). Note that yz ∈ A(G)
and a1b1 ∈ A(H) because f is initially a homomorphism consistent with the lists L.

Observe that the value of f(y; a′1, a
′
2, . . . , a

′
k) could have been changed several times before

finally being set to ak+1. We show that at each step of the Algorithm 4 if f(w1) changes
from a1 to some new value a2 then f(w2) is also changes from b1 to some out-neighbor of a2
say b2.

20

We also remember that at each step of the recursive call we deal with some vertex x of G
and two vertices a, b ∈ L(x) such that f(x; bk, a) = c 6= a, and f(x; c, c, . . . , c) = c considered
in Algorithm 4 (line 4). Moreover, the assumption is that f is a homomorphism consistent
with the lists L and if f(y; e′1, e

′
2, . . . , e

′
k) = e1 then f(y; e1, e1, . . . , e1) = e1

We need to show that after each step if there exists an L-homomorphism g obtained from
Remove-NM function, then f is still a homomorphism consistent with the lists.

Suppose in function Update-F line 4, we change f(w1) from d to g(y). Let Y be an
oriented path from x to y on the digraph G′ obtained from the first coordiates of GL(x, a, c).
Therefore there exists a walk A1 from a to d in L(Y) and congruent with Y . Now A′1 = A1b1
is a walk in L(Y z) and congruent with Y z (obtained by adding arc yz to the end of Y).

Because of PreProcessing, there exists some vertex c1 ∈ L(y) such that (c, c1) ∈ L(x, y)
and hence there exists a walk C1 in L(Y) from c to c1 and congruent to A1. Now since yz is
an arc, c1 must have some neighbor d1 in L(z) and hence L′(z) is not empty. First assume
that g(y)b1 6∈ A(H), and hence by definition of GL(x, a, c) we have (z, b1, c1) ∈ GL(x, a, c).
This would mean we change f(w2) from b1 to g(z) and since g(y)g(z) is an arc, we have
f(w1)f(w2) ∈ A(H). If g(y)b1 is an arc then it means we did not change f(w2) and hence
again f(w1)f(w2) = g(y)b1 ∈ A(H).

In what follows we show the correctness of Make-F-consistence function. If we have set
flag[x, c] = false, after running Small-Instance then at least one of the flag[x, a], f lag[x, b],
where c = f(x; bk, a) should be false after running Small-Instance. This is equivalent to
show the following.

Claim 4.4 If a, b remain in L(x) after step 5 of function Make-f-consistence then c =
f(x; bk, a) ∈ L(x).

Proof: We need to show that if flag[x, a] = flag[x, b] = true after running line 5 of function
Make-f-consistence then flag[x, c] is also true and hence c will be in L(x).

Let (L′a, f
′
a) be an instance obtained from Small-Instance (G,L, f, x, a, flag) and (L′b, f

′
b)

be an instance obtained from Small-Instance (G,L, f, x, b, f lag).
Suppose ga, an L′a homomorphism from G to H exists and gb, an L′b homomorphism

from G to H also exists. Suppose L′a(y) has some vertex a1. This means there exists an
oriented path Y in G and a walk A1 in L(Y) from a ∈ L(x) to a1. Since we have performed
PreProcessing and b ∈ L(x), there must exist a vertex b1 ∈ L(y) and a walk B1 in L(Y)
from b to b1 which is congruent to A1.

This means if L′a(y) is not empty then L′b(y) is not empty. Now there exists a directed
path W in G×Hk, from w = (x; bk, a) to (y; bk1, a1) with n vertices, such that the ith vertex
of W is of form wi = (vi; d

k
i , ei) where vi is the ith vertex of Y and di, ei are the ith vertices

of B1, A1 respectively. Now since f is a homomorphism, f(w1), f(w2), . . . , f(wn) is a walk
in L(Y), from c to c′ ∈ L(z), and congruent with Y . This would imply that (c, c′) ∈ L(x, z)
and hence L′(y) is not empty. Here L′ is the list of vertices that are constructed in test
Tx,c. Conversely, if there is a c′ ∈ L′(y) then because of the PreProcessing L′a(y) and L′b(y)
are not empty. Now define mapping g from G to H with g(y) = f(y; gb(y)k, ga(y)). Note

21

that g(x) = c. Since f is a homomorphism from G to Hk and consistent with the list L,
g(y) ∈ L′(y). Let yz ∈ A(G) be an arbitrary arc. Then (y; gb(y)k, ga(y))(z; gb(z)k, ga(z)) is
an arc of G×Hk and hence g(y)g(z) ∈ A(H). This implies that g is an L′ homomorphism
from G to H that maps x to c, a contradiction. �

Proof of 3 : The algorithm 4 make a test Tx,c on a smaller instance of the problem to decide
whether f can be modified in such a way that f(x; . . .) is set to c from a, i.e. a is not a
relevant vertex in L(x). We show the following.

Claim 4.5 Let G′, L′, f ′ be an instance of the problem to perform the test Tx,c. Then the
following hold.

I. Suppose Tx,c passes. If there exists a L-homomorphism from G to H that maps x to a
where (x, a), (x, c) are in the same component G ×L H then there is one that maps x
to c.

II. If Tx,c fails then there is no L-homomorphism from G to H that maps x to c.

Proof: Proof of I : It is enough to show that if there is a homomorphism ψ : G → H
with α(x) = a then there is a homomorphism from G to H after removing a from L(x) in
Algorithm 4. Since the test Tx,c has been passed, there exists an L′-homomorphism g from G′

to H that is obtained from solving instance I1 = (L′, f ′). Since (x, a), (x, c) are in the same
connected component of G×L H and α is a homomorphism from G′ to H, for every vertex
v ∈ V (G), L′(v) 6= ∅. This would imply that G′ = G and hence we have a L-homomorphism
α from G to H. �

Proof of II : We use induction on the size of the instance, |G||L|, where |L| =
∑

v∈(G) |L(v)|.
We first look at the instance I1 = (L′, f ′) considered in Small-Instance(G,L, f, x, a, flag).
The argument for other functions is similar because in each recursive call we may encounter
all the functions inside the Algorithm 4.

First suppose in constructing the L′ lists (see function Small-Instance (line 3)) every
vertex e ∈ L(y), e is a relevant vertex in L(v) and flag[y, e] is true. Therefore L′(y) =
{e|(e, a) ∈ L(x, y)} and hence none of the smaller test has actually affected any of the flag
variables. In this scenario the only problem would be that the RemoveMinority returns an
empty homomorphism and hence there is no homomorphism from G to H that maps x to a.

Now consider the case in which for some vertex y ∈ V (G), e ∈ L(y) where (a, e) ∈ L(x, y),
L′(y) does not contain e because e is not a relevant vertex. Note that in this case we may
assume that there exists some homomorphism ψ that maps x to a and y to e. Now the reason
that the test Tx,a fails is because we did not include e into the L′(y). The reason that e is
not relevant is because at some earlier step of algorithm some test Ty,e has been passed (or
some test Tz,e′ has been passed and (y, e) and (z, e′) where in the same connected component
of G ×L H) and hence according to function Update-F we have modified f so that no

22

w = (y; . . .) ∈ G×Hk, f(w) = e. For simplicity we may assume test Ty,e has been passed.
Now according to (I) if there exists a homomorphism σ from G to H that maps y to e then
there must be a homomorphism σ′ from G to H that maps y to some other vertex e′ ∈ L′(y).
We may assume that σ′(x) = a and σ′(y) = e′. This would imply that (a, e′) ∈ L(x, y).
Therefore in the instance I1 we may assume that e 6∈ L′(y). Therefore I1 has a smaller size
and by induction hypothesis if the test Tx,a fails then there is no homomorphism form G to
H that maps x to a.

We continue by considering another reason. Suppose in instance I1, L
′(y) does not include

e where (a, e) ∈ L(x, y) because flag[y, e] = false and this may have caused the test Tx,a
to fail. The reason that flag[y, e] = false is because of induction hypothesis when we call
Small-Instance in the earlier stage of the procedure or because of the other parts of the
algorithm which we address below.

Handling Bi-Cliques : The heart of the algorithm is the following: We start with some
vertex x of G and some c ∈ L(x). We look at the instance of the problem I1 = (G′, L′, f ′)
obtained where in L′(x) = {c} and for every vertex v ∈ V (G), L′(v) = {d|(c, d) ∈ L(x, v)}.
Now we look at some vertex y ∈ V (G′) according to the construction of GL(x, a, c). The
Algorithm looks at pairs c1, c2 ∈ L′(y) and it makes a decision to see whether f ′ can be
modified so that f ′(w1 = (y, e1, e2, . . . , ek)) 6= c1 and instead the f ′(w1) is set to f ′(y; ck2, c1)
if it possible (by the argument in Claim 4.6 (1), (c, f(y; ck2, c1)) ∈ L(x, y)). If this modifica-
tion is not possible then it means if there exists a homomorphism ψ : V (G) → V (H) that
maps x to c then ψ does not map y to c′ = f ′(y; ck2, c1) and hence flag[x, c](y, c′) is set to
false. The Algorithm tries different pairs and there must be at least one pair for which this
transformation is possible or at the end it reaches to a point that for each c1, c2 ∈ L(y),
f ′(y; ck2, c1) = c1 and f ′(y; ck1, c2) = c2.

Claim 4.6 Let (a, d), (c, d), (a, d′), (c, d′) ∈ L(x, y). Here d could be the same as d′ but

a 6= c. Let c1 ∈ f̂x,{a,c} and d1 ∈ f̂y,{d,d′} be an arbitrary elements. Let e1, e2 ∈ L(z) such that
(a, e1), (a, e2), (c, e1), (c, e2) ∈ L(x, z) and (d, e1), (d, e2) ∈ L(y, z). Then the following hold :

(a) (c1, d1) ∈ L(x, y).

(b) (c1, e1), (c1, e2) ∈ L(x, z) and (d1, e1), (d1, e2) ∈ L(x, y),

(c) (c1, e3) ∈ L(x, z) and (d1, e3) ∈ L(y, z) where e3 = f(z; ek1, e2).

Proof: Proof of (a) : Let (a1, b1) ∈ L(x, y) and (a2, b2) ∈ L(x, y).
Let Y be an arbitrary oriented path from x to y in G and let A1 be a walk in L(Y) from

a1 to b1 and A2 be a walk in L(Y) from a2 to b2 such that A1, A2 are congruent.
Let Y = y1, y2, . . . , ym where y1 = x and ym = y. Let a3 = f(x; ak1, a2) and b3 = f(y; bk1, b2).

Now consider the walk A3 : f(y1; r
k
1 , s1), . . . , f(yi; r

k
i , si), . . . , f(ym; rkm, sm), where ri is the

23

ith vertex of A1 and si is the ith vertex of A2 and yi is the ith vertex of Y . Since f is an
L-homomorphism from G×Hk to H, A3 is a walk inside L(Y) from a3 to b3. Since Y is an
arbitrary oriented path, we conclude that (a3, b3) ∈ L(x, y).

Now by applying the above argument and assuming b1 = b2 = d we conclude that
(f(x; ak, c), d) ∈ L(x, y). This would imply that (c1, d) ∈ L(x, y). By similar argument
one can show that (c, f(y; dk, d′)) ∈ L(x, y) (assuming a1 = a2 = c). Now by setting a1 =
a2 = f(x; ak, c) and b1 = d and b2 = d′ we conclude that (f(x; ak, c), f(y; dk, d′)) ∈ L(x, y).
Therefore by continuing this argument (1) is proved.

Proof of (b) : By similar argument as in (1) we conclude that (f(x; ak, c), e1) ∈ L(x, z)
because (c, e1), (a, e1) ∈ L(x, z). Moreover, if (c′1, e1), (c

′
2, e1), . . . , (c

′
k, e1) ∈ L(x, z) then by

applying similar argument as in (1) we conclude that (f(x; c′1, c
′
2, . . . , c

′
k), e1) ∈ L(x, y). Since

c1 is obtained from f̂x,{a,c}, we conclude that (c1, e1) ∈ L(x, z). Analogously one can show
that (d1, e1), (d1, e2) ∈ L(y, z).

Proof of (c) : Let Z = y1, y2, . . . , yn where y1 = y and yn = z be an arbitrary oriented path
in G. Since (d1, e1), (d1, e2) ∈ L(y, z), there exist two walks D1, D2 from d1, d1 to e1, e2 in
L(Z) that are congruent to Z. Now f(yn; rkp , sp), . . . , f(yi; r

k
i , si), . . . , f(y1; r

k
1 , s1),

f(y; d, d, . . . , d) is a walk from e3 = f(z; ek1, e2) to e in L(Z−1) (reverse of Z). Here ri is the
ith vertex of D−11 and si is the ith vertex of D2. Therefore (d1, f(z; ek1, e2)) ∈ L(y, z). �

Claim 4.7 In function Bi-Clique-Instance we have the following :

α. If test1 is false then there is no homomorphism from G to H that maps x to c1 and y
to d1 and z to e1.

β. If test2 is false then there is no homomorphism from G to H that maps x to c1 and y
to d2 and z to e1.

γ. Suppose the test1, test2 are both true. Suppose there exists a homomorphism ψ from G
to H with ψ(x) = c1 and ψ(y) = d1 and ψ(z) = e1. Then there exist a homomorphism

ψ′ from G to H with ψ′(x) = c1 and ψ′(y) = d and ψ′(z) = e1 (here d ∈ f̂y,{d1,d2}).

Proof: Let Lx,c,y,d,z,e be the subset of L where for every z′ ∈ V (G), Lx,c,y,d,z,e(z
′) =

{e′|(c, e′) ∈ L(x, z′), (d, e′) ∈ L(y, z′), (e1, e
′) ∈ L(z, z′)}.

LetG′, L′ ⊆ Lx,c1,y,d1,z,e1 be the instance in Symmetric-Difference(G,L, f, x, c1, y, d1, d2, z, e1)
in which L′(x) = c1, L

′(y) = d1 and L′(z) = e1.

Proof of (α, β) : Note that G′ is an induced sub-digraph of G. The list L′ is a proper
subset of L because L′(y) contains only d1 and not d2. If there exists a homomorphism g′

from G′ to H then by definition for every v ∈ V (G′), g′(v) ∈ L′(v). This would mean by

24

induction hypothesis on the correctness of the entire Algorithm 4 that flag[x, y, c1, d1](z, e1)
should be true, a contradiction.

Proof of (γ). Suppose test1 is true. Suppose there exists a homomorphism h2 : G→ H
with h2(x) = c1, h2(y) = d2, h2(z) = e1. Then we show that there exists a homomorphism
h1 : G→ H with h1(x) = c1, h1(y) = d1, h1(z) = e1.

Let Gr
L(y, d1, d2) be the induced sub-digraph of G ×L H

2 with vertices (x1, i1, i2) where
i1, i2 ∈ L(x1) and for every vertex j1 ∈ L(x1), (d2, j1) 6∈ L(y, x1). The arcs set of Gr

L(y, d1, d2)
is {(x1, i1, i2)(y1, j1, j2)|x1y1 ∈ A(G), i1j1, i2j2 ∈ A(H), i1j2 6∈ A(H)}∪{(x1, i1, i2)(y1, j1, j2)|y1x1 ∈
A(G), j1i1, j2i2 ∈ A(H), j2i1 6∈ A(H)}.

We note that since test1 is true, there exists a homomorphism g1 from G′ to H with
g1(x) = c1, g1(y) = d1 and g1(z) = e1.

Case 1. First assume there is no u ∈ V (G) \ {x, y, z} where (d1, e), (d2, e) ∈ L(y, u).
Let G0 be the induced sub-digraph of G′ with the vertices v where (v, a′, b′) ∈ Gr

L(y, d1, d2).
Now add x and z into G0. Define h1(v) = g1(v) when v ∈ V (G′0). Note that in this case

G′0 = G and hence h1 is a homomorphism from G to H.

Let V be a bi-clique vector starting at x, y, z with c1, d1, d2, e1 for x, y, y, z. The next vertex
of the bi-clique is z1 ∈ V (G) with vertices a1, b1 ∈ L(z1), (b1 could be the same as a1) where
(c1, a1), (c1, b1) ∈ L(x, z1), (di, a1), (di, b1) ∈ L(y, z1), 1 ≤ i ≤ 2. In general the (`+3)th vertex
of V is a new vertex z` with the vertices a`, b` ∈ L(z`) such that (aj, a`), (bj, b`) ∈ L(zj, z`),
j ≤ `, and also (c1, a`), (c1, b`) ∈ L(x, z`), (d1, a`), (d1, b`), (d2, a`), (d2, b`) ∈ L(y, z`) and
(e1, a`), (e1, b`) ∈ L(z, zi). We also assume that flag[x, y, c1, d1](z`, a`) is true if there is a
choice.

Recall that we have assumed that h2(z) = e1 otherwise we handle the case when there is
no intersection between g1 and h2. According to the Symmetric-Difference function we
observe the following.

Observation 4.8 Consider the lists L(x, c1, y, d1, z, e1). We may assume that for each v ∈
V (G) there exists at least one i ∈ L(x, c1, y, d1, z, e1)(v) such that flag[y, d1](v, i) is true.

Now we are going to define h1 from G to H which is constructed piecewise. Let C ⊆ V (G′)
consisting of vertices v′ where there exists some element i ∈ L′(v′) such that (i, a1) ∈ L(v′, z1),
and flag[z, e1](z1, a1) = true, and flag[x, y, c1, d1](z1, a1) = true. This is because of the
above Observations.

The case when flag[x, y, c1, d1](z1, a1) = false is handled similarly. Recall that a1 ∈ L(z1)
is a fixed element and note that (e1, a1) ∈ L(z, z1) by the construction of V .

Case 2. Assume that (d1, h2(z1)) 6∈ L(y, z1). Note that since flag[x, y, c1, d1](z1, a1) and
flag[z, e1](z1, a1) are true, we may assume the homomorphism g1 is a homomorphism from
G0, the sub-digraph ofG′ induced by the vertices in C, toH. Note that now by definition of C

25

x y z z1

c1 d1

d2

e1

v′

a1

h2(z1)

g1

In H

In G

Figure 2: First illustration for proof of γ

we may assume that g1 is in such a way that if v′ ∈ G′ and v′z1 ∈ A(G) then g1(v
′)a1 ∈ A(H).

This can be assumed because in construction of V we assume that flag[x, y, c1, d1](z1, a1) is
true. Now add x and z into G0. Define h1(v) = g1(v) when v ∈ V (G0) (see Figure 2). Now
if one of the following holds :

1. there is no other vertex in V , i.e. ` = 1.

2. h2 is in such a way that (d1, h2(zi)) 6∈ (y, zi), 2 ≤ i ≤ `.

Then we define h1 for G\G0 to be g11 : a homomorphism obtained from calling Symmetric-
Difference(G,L, f, z, e1, z1, a1, h2(z1)). Note that h1 on G0 is a homomorphism and h2
on G \ G0 is also a homomorphism. For the arcs that goes across G0, G \ G0, h1 is a
homomorphism because of the assumption on g1.

If none of the 1, 2 above holds we continue as follows. By induction hypothesis and because
we have run Symmetric-Difference we may assume there exists a homomorphism g11 on
the digraph considered in Symmetric-Difference(z, e1, z1, a1, b1, z2, a2). Here a2 = h2(z1)
and b2 = h2(z2) (see Figure 3). Let G1 be the induced sub-digraph of G with the vertices
v such that (v, g11(v), h2(v)) ∈ Gr

L1
(z1, a1, b1). Here L1(v) = {e′|(d1, e′) ∈ Lx,c1,y,d1,z,e1(y, v)}.

Define h1(v1) = g11(v1) when v1 ∈ V (G1). If for no other vertex w of G, w is in V then we
define h1(w) = h2(w) and as we argue above h1 is a homomorphism from G to H. Otherwise
we continue this way. Since we handle cut-vertices first, every vertex ofG would be considered
in this process and an in particular we would be considering vertex z2 which plays the same
role as z1. As we continue we can partition the vertices of G into G0, G1, . . . , Gt where there
exist homomorphisms gi1, 1 ≤ i ≤ t which are bases of the homomorphism h1.

This would imply that in the construction of the lists in funvtion Bi-clique-Instace we
may assume assume that d2 is not included in the list of y.

Case 3. Assume that (d1, h2(z1)) ∈ L(y, z1). According to the argument in Case 2 we
may assume that homomorphism g1 is in such a way that if v′ ∈ G′ and v′z1 ∈ A(G) then
g1(v

′)h2(z1) ∈ A(H).

26

x y z z1

c1 d1

d2

e1

v′

a1

h2(z2)

g1

In H

In G

a2

z2

g11

Figure 3: Second illustration for proof of γ.

Now add x and z into G0. Define h1(v
′) = g1(v

′) when v′ ∈ V (G0). If for every vertex
u ∈ G\G0, (d1, h2(u)) ∈ L(y, u) then we set h1(u) = h2(u). Note that h1 on G0 is a homomor-
phism and h2 on G\G0 is also a homomorphism. For the arcs that goes across G0 and G\G0,
h1 is a homomorphism because of the assumption on g1. If there exists some vertex u ∈ G\G0

where (d1, h2(u)) 6∈ L(z, u) then similar to Case 2 we define h1 piecewise. This means we
assume that (e1, h2(z2)) 6∈ L(z, z2), and again we define part of h1 according to the homo-
morphism g21 which is from the instance Symmertic-Differece(z, e1, z2, a2, h2(z2), z1, a1)
and continue as in Case 2.

Since test1, test2 are true, there exist homomorphisms g1 and g2 from G′1 to H and from
G′2 to H where G′1, G

′
2 are induced sub-digraph of G in instances Symmetric-Difference

for G,L, f, x, c1, y, d1, d2, z, e1 and Symmetric-Difference for G,L, f, x, c1, y, d2, d1, z, e1
respectively. By Claim 4.6 we conclude if g1 and g2 exist then the out-put of instance
Symmetric-Difference(G,L, f, x, c1, y, d3, d1, z, e1) where d3 = f(y, dk1, d2), is a homo-
morphism g3 that obtained as follows. For a vertex v ∈ V (G′), set g3(v) = f(v, g1(v)k, g2(v)).

This would imply that we can replace f̂y,{d1,d2} with only one element d ∈ f̂y,{d1,d2} obtained
by function Restricted-Instace (line 3). �

Proof of 4 : In the Algorithm 4 we consider pairs (x, a) ∈ V (G × H) where a ∈ L(x)
and ∃w2 ∈ V (G × Hk) with f(w1 = (x; a′1, a

′
2, . . . , a

′
k)) = a. Suppose the test Tx,c (where

f(x; bk, a) = c) with respect to the lists L′ succeeds, in other words, the L′-homomorphism
g exists at some stage of the algorithm.

In the Update-F function for every y ∈ V (G′) and every a1 ∈ L(y), such that (y, a1, g(y))
belongs to GL(x, a, c), the f value of w2 = (y; b′1, b

′
2, . . . , b

′
k) with f(w2) = a1 is going to

changed to some new value. Once the f value of some k-tuple in L(y) changed from a1 to
something else, there would be no k-tuple in L(y) that its value is set to a1 in the further
steps of the Algorithm. Moreover, for every (a, e) ∈ L(x, y) the value of f for w1, w2 with
f(w1) = a and f(w2) = e would change simultaneously.

We also note that if flag[y, a1] is set to be false inside the main loop (after it was considered

27

for a test) then it is not going to be considered in testing for another Small-Instance or
Restricted-Instance.

Consider the case when we enp up having cut-vertices at each step of the Algorithm 4. We
choose a cut vertex (x, a) and assign x to a. Now either this assignment would work out or
it fails. If it fails then we remove (x, a) from G×LH and hence we end up having connected
components and according to Observation 3.7 we consider each valid connected component
of G×L H separately. Therefore the overall running time would be the sum of the running
time of each connected components. This means that we partition the vertices of G ×L H
into connected components. The work to do in each component would be modifying f which
would takes O(|G||H|k) because we potentially modify each k tuple inside the list of each
vertex y of G. Therefore overall it takes O(|G|3|H|k+2) if we end up having the L lists not
weakly connected. Note that at the end we need to apply RemoveMinority algorithm which
we assume there exists one with running time O(|G|3|H|3).

Now consider the case where we look at bi-cliques at some stage of the algorithm. We
first perform Symmetric-Difference test. We consider triple x, y, z ∈ V (G) and four vertices
c1 ∈ L(x), d1, d2 ∈ L(y), e1 ∈ L(z). The instance we construct in I1 = Symmetric-
Difference(G,L, f, x, c1, y, d1, d2, z, e1) partition the lists L into two disjoint lists. L1(v) =
{i|(c, i) ∈ L(x, v), (d1, i) ∈ L(y, v), (e1, i) ∈ L(z, v), (y, d2) 6∈ L(y, v)}. L2(v) = L(v) \ L1(v).
Now solving I2 = Symmetric-Difference(G,L, f,
x, c1, y, d2, d1, z, e1) uses a subset of L2. Therefore the running time for I1 and I2 would be
the summation of the tasks for two disjoint smaller instances. Now if we keep continue seeing
cut-vertices in I1 and I2 then overall we would have a polynomial algorithm which in this
case has running time O(|G|6|H|k+2).

Let c1, c2, . . . , ct ∈ L(x) and d1, d2, . . . , dr ∈ L(y) such that they induce a bi-clique in L.
Now consider an instance I1 of the problem started at (x, c1, y, d1). If there does not exist
z, e1 ∈ L(z) such that (d1, e1) ∈ L(y, z) and (d2, e1) ∈ L(y, z) then its means we should
consider each connected component of the lists in instance I1 which partition the tasks into
disjoint sub-tasks. Thus we may assume that such z and e1 ∈ L(z) exist. According to the
Algorithm 4 function Bi-Clique-Instances instead of d1, d2, . . . , dk we only use one element d
or we won’t consider instance (x, c1, y, d1, z, e1).

Let V be a bi-clique vector starting at x, y, z with c1, d1, d2, e1 for x, y, y, z and suppose d
exists. Let I1 be such an instance. The next vertex of the bi-clique is z1 ∈ V (G) with vertices
a1, b1 ∈ L(z1), (a1 could be the same as b1) where (c, a1), (c, a2) ∈ L(x, z1), (di, aj) ∈ L(y, z1),
1 ≤ i, j,≤ 2. In general the (`+ 3)th vertex of V is a new vertex z` with the vertices a`, b` ∈
L(z`) such that (aj, a`), (bj, b`) ∈ L(zj, z`), j ≤ `, and moreover (c, a`), (c, b`) ∈ L(x, z`) and
(d1, a`), (d1, b`), (d2, a`), (d2, b`) ∈ L(y, z`) and (e1, a`), (e1, b`) ∈ L(z, zi).

At each step we replace f̂zj ,{aj ,bj} in L(zj) by one element b. Therefore the entire instance
I1 becomes just singleton elements at each vertex zj in V .

However, there could be some other bi-clique of L on x, z with c, c1, c2, . . . , ct ∈ L(x) and
e1, e2, . . . , er ∈ L(z) and in this case the flag[x, c](z, ei), 1 ≤ i ≤ r may not be false. But this

28

means we have not reached (z, ei) inside instance I1, i.e. in the recursive call in I1 starting
at y we don’t get into vertex z and ei ∈ L′(z). In other words, (x, c) is cut vertex and that
contradicts the assumption that we have a weakly connected component in I1.

Now suppose inside (L′, f ′)=Small-Instance(L, f, x, c1, f lag) there is no bi-clique. This
means when we look at y for every pair of vertices d1, d2 ∈ L′(y) with f ′(y; d′k, d1) = d2,
there is no vertex z such that (d1, e1), (d2, e1) ∈ L′(y, z) (here e1 ∈ L′(y)). This means when
we construct sub-instance inside (L′, f ′) starting at d1 ∈ L′(y) we would have connected
components.

Therefore the entire algorithm runs in O(|G|6|H|k+3). This is because we consider every
triple x, y, z and we run O(|A(G)||H|k+3) to create each instance.

Closing remark Once we change the value of f(x; a1, a2, . . . , ak) from a to c then po-
tentially we need to modify the value for f(y; b1, b2, . . . , bk) from an out-neighbor of a, say
a′ in L(y) to an out-neighbor of c. As far as the modifying f is concern it would yield the
same result if we start from (x; b, . . . , a, b, . . . , b), a is in the ith coordinate. �

4.3 Proof of Theorem 1.1

By Lemma 4.3 f is still a homomorphism from G ×Hk → H consistent with the lists L of
G after Algorithm 4. Moreover, we preserve the existence of a homomorphism from G to H
after Algorithm 4. Now we can apply Theorem 3.10. We observe that the running time of
PreProcessing function is O(|G|3|H|2).

According to the proof of Lemma 4.3 (2) the running time of Algorithm 4 is O(|G|6|H|k+3).
The running time of Algorithm 3.2 (O(|G||A(G)||H|k+1). Therefore the running time of the
Algorithm 1 is O(|G|6|H|k+3).

5 New Minority Algorithm

We develops a direct algorithm to handle the minority case in our main algorithm. Our
algorithm by itself is interesting because it won’t use the Maltsev polymorphism and it
decides whether there exists a homomorphism from G to H providing that there G ×L H
has a Maltsev polymorphism.

Again the idea is similar to the one handling the RemoveNotMinority case. At each step
we consider a vertex x of G and two vertices a, b ∈ L(x) and try to eliminate one of the a, b
from L(x). To decide whether to remove a or b we construct a smaller instance of the problem
with respect to a say (G′, H, L′) and solve this instance recursively. Roughly speaking the
L′(y) consists of the elements e where (a, e) ∈ L(x, y) and (b, e) 6∈ L(x, y).

At the end we have singleton lists and if there is a homomorphism from G to H with
the singleton lists then success otherwise we report there is no homomorphism from G to
H. Based on the existence of a L′-list homomorphism from G′ to H we may decide to
keep in L(x) or remove a. Once we have solutions to all the small instances we construct

29

a homomorphism g from G to H using these small homomorphisms. We mainly use the
following so called rectangle property of the instance.

Definition 5.1 We say two vertices a, b ∈ L(x) lies on a rectangle if there exists vertex
y ∈ V (G) and two vertices c, d ∈ L(y) with congruent walks A1, A2, B1, B2 all in L(Y) from
a, b, a, b to c, d, d, c respectively. Here Y is an oriented path from x to y in G.

Definition 5.2 We say a, b are twin if they have the same in-neighbor and out-neighbor in
every neighbor of x.

We assume there is no twins in any L(x). Otherwise we just simply remove one of the
them.

Lemma 5.3 (rectangle-property) Let X be an oriented path in G and let B,C,D be three
walks in L(X) all congruent to X where B is from a to c and C is from b to c and D is from
b to D. Then there exists a walk E from a to d in L(X) that is congruent with X.

Proof: By following B,C,D on the vertices in X and applying the definition of polymor-
phism h, we conclude that E exists. �

Lemma 5.3 implies the following corollary.

Corollary 5.4 If (a, c) ∈ L(x, y) and (b, c), (b, d) ∈ L(x, y) then (a, d) ∈ L(x, y).

Proof: The reason that (a, c) ∈ L(x, y) is that for every oriented walk W from x to y in G
there exists an oriented walk AC from a to c in L(W). Now by assumption there exists walks
BC,BD in L(W) from b, b to c, d respectively that are congruent to W . Now by Lemma 5.3
there exists a walk in L(W) from a to d which is congruent to W . Therefore (a, d) ∈ L(x, y).
�

SDL(x, a, b) Symmetric-Difference-Construction Let SDL(x, a, b) be a digraph with the
vertices {(y, d, e) | (a, d), (b, e) ∈ L(x, y), (a, e), (b, d) 6∈ L(x, y)}. The arc set of SDL(x, a, b)
is A(SDL(x, a, b)) = {(y, d, e)(y′, d′, e′)| yy′ ∈ A(G), dd′, ee′ ∈ A(H), de′, ed′ 6∈ A(H)} ∪
{(y, d, e)(y′, d′, e′)| y′y ∈ A(G), d′d, e′e ∈ A(H), e′d, d′e 6∈ A(H)}. Moreover, every vertex of
SDL(x, a, b) is reachable from (x, a, b). Note that (x, a, b) is a vertex of SDL(x, a, b).

TRL(x, a, b) : Let TRL(x, a, b) be an induced sub-digraph of SDL(x, a, b) with the vertices
(y, d, e) such that for every z ∈ V (G), c ∈ L(z) with (a, c), (b, c) ∈ L(x, z), if (d, c) ∈ L(y, z)
then (e, c) ∈ L(y, z). Moreover, every vertex of TRL(x, a, b) is reachable from (x, a, b). Note
that (x, a, b) is a vertex of TRL(x, a, b).

30

a

b

x

x1

a1

b1

a2

x2

Figure 4: Component C shown by brown color

Strong component in TRL(x, a, b): Let C be an induced sub-digraph of TRL(x, a, b).
We say C is a strong component of TRL(x, a, b) if for every (x1, a1, b1), (x2, a2, b2) of C and
for every z ∈ V (G), c ∈ L(z) with (a, c), (b, c) ∈ L(x, z) then exactly one of the following
happens (see Figure 4).

• (a1, c) ∈ L(x1, z) and (a2, c) ∈ L(x2, z)

• (a1, c) 6∈ L(x1, z) and (a2, c) 6∈ L(x2, z).

Lemma 5.5 The Algorithm 5 runs in O(|G|3|H|3). Moreover, if there is a homomorphism
g from G to H with g(x) ∈ {a, b} then there is a homomorphism from G to H after removing
a or b from L(x) according to Maltsev-(G,H,L, h).

Proof: We first need to show that if we remove a vertex a′ from L(y), according to Algorithm
5 line (5) then the rectangle property is going to be preserved. For contradiction suppose
this property does not preserve.

Thus there exits an oriented walk Y be in G from x1 to x2 going through y and there exist
congruent walks A1, B1, A2, B2 in L(Y) and congruent to Y with the following description.
There exist a1, a2 ∈ L(x1) and b1, b2 ∈ L(x2) such that A1 is in L(Y) from a1 to b1 and A2

from a2 to b2 and B1 from a1 to b2 and B2 from a2 to b1. Moreover, we may assume A1 goes
through a′ before removing a′ from L(y). Let Z be an oriented path from x to y and then
following Y from y. Since a′ ∈ L′(y) there exists a walk in L(Z) from a to a′. Let b′ be the
next vertex after a′ in L(Z) and suppose yz is an arc of Z. Let b′′ be the vertex before a′ in
A1 and let z′ be a vertex on Y before y. We may assume that b′ stays in L(z). This means
gza′,c′ exists (here c′ ∈ A2 is the corresponding vertex to a′). Now if there is no path from a1
to b′ in L(Z) which is congruent to portion of Z from x1 to z and does not go through a′

then we should have removed a1 from L(x1) after doing the PreProcessing, a contradiction.
We use induction on the size of the input (|G||H|). The instance (G′, L′) constructed in

line 5 of the Algorithm 5 is smaller than G and the list L′ is also is a subset of L. We note
that for every y ∈ V (G′) all the vertices a′ ∈ L′(y) such that (a, a′) ∈ L′(x, y) are in L′(y).
Therefore if G′ does not admit a homomorphism to H then there is no homomorphism from
G to H that maps x to a.

Algorithm 5 RemoveMinority – Using Matlsev Property

1: function RemoveMinority(G,H,L)
2: for all x ∈ V (G) s.t |L(x) = 1| do ψ(x) = L(x)

3: PreProcessing(G,L) and if a list becomes empty return ∅.
4: If G×LH is not connected then consider each valid connected component separately
5: while ∃x ∈ V (G), a, b ∈ L(x) where a, b lie on a rectangle do
6: (G′, L′) = Symmetric-Difference(G,L, x, a, b).
7: gxa,b = RemoveMinority(G′, H, L′)

. gxa,b is a L′ homomorphism from G′ to H
8: if gxa,b is empty then
9: Remove a from L(x).

10: PreProcessing (G,H,L).

11: Set ψ(z) = c where c ∈ L(z)
12: for all x 6= z ∈ V (G) do set ψ(x) = ∅
13: for all y ∈ V (G) do L′(y) = {e|(c, e) ∈ L(z, y)}
14: while ∃x ∈ V (G) with ψ(x) = ∅ do
15: Construct TRL′(x, a, b) for some a, b ∈ L′(x)
16: Let C be a strong component of TRL′(x, a, b)
17: for all neighbors (y, a1, b1) of (x, a, b) inside C do
18: Let C1 be the set of vertices reachable from (y, a1, b1) inside C
19: for all y′ ∈ V (G) s.t (y′, a′1, b

′
1) ∈ C1 do

20: if ψ(y′) = ∅ then set ψ(y′) = gy
′

a1,b1

21: Let x1x2 ∈ A(G) (x2x1 ∈ A(G)), with ψ(x2) = ∅.
22: Let (x1, a1, b1) ∈ C with ψ(x1) = a1.
23: Set ψ(x2) = a2 where a1a2, b1a2 ∈ A(H) and a2 ∈ L′(x2).
24: for all y ∈ V (G) do
25: if (a2, e) 6∈ L′(x2, y) then remove e from L′(y).

26: return ψ.

27: function Symmetric-Difference(G,L, x, a, b)
28: Initiate empty lists L′.
29: L′(x) = {a}.
30: L′(y) = {d |(a, d) ∈ L(x, y), (b, d) 6∈ L(x, y), (y, d, e) ∈ SDL(x, a, b) for some e ∈ L(y)}
31: Let G′ be the induced sub-digraph of G with vertices y such that L′(y) 6= ∅.
32: return (G′, L′)

32

a

b

x

x1

a1

b1

a2

x2

x′
1

d1

e1

In G

In H

Figure 5: illustration of the proof

Suppose x1x2 is an arc of G. Suppose (x1, a1, b1) ∈ C and according to the Algorithm we
may assume ψ(x1) is set to a1.

First suppose (x2, a2, b2) ∈ C for some a2, b2 ∈ L′(x2). If both (x2, a2, b2), (x1, a1, b1)
are reachable from (y1, d1, e1) (a neighbor of (x, a, b)) then in this case since gy1d1,e1 exists,
we have ψ(x1)ψ(x2) = gy1d1,e1(x1)g

y1
d1,e1

(x2) ∈ A(H). Note that since (a, a1) ∈ L′(x, x1) and
(b, b1) ∈ L′(x, y), and x1x2 ∈ A(G), there exist a′2, b

′
2 ∈ L′(x2) such that a1a

′
2, b1b

′
2 ∈ A(H).

Now we may assume that (x2, a
′
2, b
′
2) ∈ C is not reachable (in TRL′(x, a, b)) from (x1, a1, a2).

This means (x2, a
′
2, b
′
2) is not adjacent to (x1, a1, b1) (in TRL′(x, a, b)) and we may assume

a1a
′
2, b1a

′
2 ∈ A(H).

Let (x′1, d1, e1) be a vertex in C right before (x2, a2, b2) on a path from (x, a, b) to (x2, a2, b2)
(see Figure 5). This means x′1x2 ∈ A(G), d1a2, e1b2 ∈ A(H), d1b2 6∈ A(H). Note that since
(x′1, d1, e1) and (x1, a1, b1) belong to the same component C, by definition we have d1a

′
2, e1a

′
2 ∈

A(H). Therefore by rectangle property we must have d1b2 ∈ A(H), a contradiction that
(x′1, d1, e1)(x2, a2, b2) is an arc of TRL′(x, a, b).

Thus we may assume that (x2, a2, b2) 6∈ C for any a2, b2 ∈ L′(x2). This means we should
have set ψ(x2) = a2 (according to line 23 of Algorithm 5) which is a neighbor of a1. Note
that for every other vertex a′2 ∈ L′(x2) we have a1a

′
2 ∈ A(H). Moreover, because of the

property of C, for every vertex x′1 if (x′1, d1, e1) ∈ C and x′1x2 ∈ A(G) we have d1a2 ∈ A(H).
Since the list L′ are going to prune so that they are consistent with a2 ∈ L(x2), we can
extend ψ to other vertices of G for which ψ has not been defined yet.

Running time The instance (G′, L′1) constructed from Symmetric-Difference(G,L, x, a, b)
and instance (G′, L′2) constructed from Symmetric-Difference(G,L, x, b, a) are disjoint
(L′1 ∩ L′2 = ∅). Moreover, we handle each connected component of G ×L H independently.
Therefore the overall running time all the small instances (Symmetric-Difference) would
be O(|G||H||A(G)||H2|) = O(|G|3|H|3). This is because we have |G||H2| instances and each
of them takes |A(G)|A(H)| to construct. The running time for finding ψ using the answers
of the small instances is |A(G)|A(H)| this is because we need to consider strong component

33

of TRL(x, a, b). Therefore the overall running time is O(|G|3|H|3). �

Acknowledgements : We would like to thank Ross Willard and Pavol Hell for so many
helpful discussions and their useful comment as well as their enormous support. We would
like to thank Vı́ctor Dalmau for so many useful questions and helpful comments. We would
also like to thank Geoffrey Exoo, László Egri, for their comments.

References

[ABISV09] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The complex-
ity of satisfiability problems: refining schaefer’s theorem. Journal of Computer and
System Sciences, 75(4): 245–254 (2009).

[BHM88] J. Bang-Jensen, P. Hell, G. MacGillivray. The complexity of colouring by semicomplete
digraphs. SIAM J. Discrete Math., 1 : 281–298 (1988).

[BH90] J. Bang-Jensen, P. Hell. The effect of two cyles on the complexity of colourings by
directed graphs. Discrete Appl. Math., 26 : 1–23 (1990).

[BKN09] L. Barto, Marcin Kozik, and Todd Niven. The CSP Dichotomy Holds for Digraphs
with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen
and Hell). SIAM J. Comput, 38(5) : 1782–1802 (2009).

[B02b] A.A. Bulatov. A dichotomy constraint on a three-element set. In Proceedings of STOC
649–658 (2002).

[B05] A.Bulatov. H-Coloring dichotomy revisited. Theoret. Comp. Sci., 349 (1) : 31-39
(2005).

[B06] A. Bulatov. A dichotomy theorem for constraints on a three-element set. Journal of
the ACM, 53(1): 66–120 (2006).

[B11] A.Bulatov. Complexity of conservative constraint satisfaction problems. Journal of
ACM Trans. Comput. Logic, 12(4) : 24–66 (2011).

[B17] A dichotomy theorem for nonuniform CSPs. CoRR abs/1703.03021 (2017).

[BD06] A. Bulatov and V. Dalmau. A Simple Algorithm for Mal’tsev Constraints. SIAM J.
Comput., 36(1): 16–27 (2006).

[BJK05] A.A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints
using finite algebras. SIAM journal on computing, 34(3): 720-742 (2005).

[JB17] J. Bulin. Private communication.

[CCL13] J.Y. Cai, X. Chen, P. Lu. Graph Homomorphisms with Complex Values: A Dichotomy
Theorem. SIAM J. Comput., 42(3): 924–1029 (2013).

34

[CVK10] C. Carvalho, V.Dalmau, and A.A. Krokhin. CSP duality and trees of bounded path-
width. Theor. Comput. Sci., 411(34–36): 3188–3208 (2010).

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Math. and Applications,
vol. 7 (2001).

[CL14] P. Csikvári and Z. Lin. Graph homomorphisms between trees. Elec. J. Combin., 21 :
4–9 (2014).

[D92] R. Dechter. Containt networks. Encyclopedia of Artificial Intelligence 276–285 (1992).

[D00] V. Dalmau. A new tractable class of constraint satisfaction problems. In Proceedings
6th International Symposium on Artificial Intelligence and Mathematics, 2000.

[DF03] V. Dalmau, D. Ford. Generalized satisfiability with k occurrences per variable: A
study through delta-matroid parity. In Proceedings of MFCS 2003, Lecture Notes in
Computer Science, 2747 : 358–367 (2003).

[EHLR14] L.Egri, P.Hell, B.Larose, and A.Rafiey. Space complexity of List H-coloring : a di-
chotomy. In Proceedings of SODA, (2014).

[F01] T. Feder. Homomorphisms to oriented cycles and k-partite satisfiability. SIAM J.
Discrete Math., 14 : 471–480 (2001).

[F06] T. Feder A dichotomy theorem on fixed points of several nonexpansive mappings.
SIAM J. Discrete Math., 20 : 291–301 (2006).

[FHH99] T.Feder, P.Hell, J.Huang. Bi-arc graphs and the complexity of list homomorphisms.
J. Graph Theory, 42 : 61–80 (1999).

[FH98] T. Feder, P. Hell. List homomorphisms to reflexive graphs. J. Comb. Theory Ser., B
72 : 236–250 (1998).

[FHH99] T. Feder, P. Hell, J. Huang. List homomorphisms and circular arc graphs. Combina-
torica, 19 : 487–505 (1999).

[FHH03] T. Feder, P. Hell, J. Huang. Bi-arc graphs and the complexity of list homomorphisms.
J. Graph Theory, 42 : 61–80 (2003).

[FHH07] T. Feder, P. Hell, J. Huang. List homomorphisms of graphs with bounded degrees.
Discrete Math., 307 : 386–392 (2007).

[FMS04] T. Feder, F. Madelaine, I.A. Stewart. Dichotomies for classes of homomorphism prob-
lems involving unary functions. Theoret. Comput. Sci., 314 : 1–43 (2004).

[FV93] T.Feder and M.Vardi. Monotone monadic SNP and constraint satisfaction. In Pro-
ceedings of STOC, 612–622 (1993).

35

[FV98] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1): 57–104 (1998).

[HN90] P. Hell and J. Nešetřil. On the complexity of H-colouring. J. Combin. Theory B, 48 :
92–110 (1990).

[HN04] P. Hell, J. Nešetřil. Graphs and Homomorphisms, Oxford University Press, 2004.

[HN08] P.Hell, J.Nešetřil. Colouring, Constraint Satisfaction, and Complexity. Computer Sci-
ence Review , 2(3): 143–163 (2008).

[HR11] P.Hell and A.Rafiey. The Dichotomy of List Homomorphisms for Digraphs. In Pro-
ceedings of SODA 1703–1713 (2011).

[HR12] P. Hell and A. Rafiey. The Dichotomy of Minimum Cost Homomorphism Problems
for Digraphs. SIAM J. Discrete Math., 26(4): 1597–1608 (2012).

[KSDR96] L.G. Kroon, A. Sen, H. Deng, A. Roy. The optimal cost chromatic partition prob-
lem for trees and interval graphs. In Graph-Theoretic Concepts in Computer Science
(Cadenabbia, 1996), Lecture Notes in Computer Science, 1197 : 279–292 (1997).

[K92] V. Kumar. Algorithms for constraint-satisfaction problems. AI Magazine, 13 :32–44
(1992).

[J98] P. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theor. Comput.
Sci., 200(1-2): 185-204 (1998).

[L75] R. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the ACM
(JACM), 22(1): 155–171 (1975).

[LZ03] B. Larose, L. Zádori. The complexity of the extendibility problem for finite posets.
SIAM J. Discrete Math., 17 : 114–121 (2003).

[MM08] M. Maroti, and R. McKenzie. Existence theorems for weakly symmetric operations.
Algebra Universalis, 59 : 463–489 (2008).

[S78] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC, 216–
226 (1978).

[S10] M.Sigge. A new proof of the H-coloring dichotomy. SIAM J. Discrete Math., 23 (4) :
2204–2210 (2010).

[V00] M.Y. Vardi. Constraint satisfaction and database theory: a tutorial. Proceedings of
the 19th Symposium on Principles of Database Systems (PODS), 76–85 (2000).

[Z17] D.Zhuk. The Proof of CSP Dichotomy Conjecture. CoRR abs/1704.01914 (2017).

36

	Introduction
	Issue with the previous manuscript
	Algorithm
	Main Procedure
	Minority Algorithm (RemoveMinority)

	Proofs
	PreProcessing and List Update
	RemoveNotMinority Correctness Proof
	Proof of Theorem 1.1

	New Minority Algorithm

