
Approximation of Hypergraph Coloring

Arash Rafiey∗

Abstract

We study the approximability of Hypergraph Coloring, HC. We are given two hypergraphs G
and H (assume the hyperedges are ordered) together with a cost function c, specifying the cost
of coloring a given vertex of G with a given vertex of H. The goal is to find a homomorphism,
a.k.a. coloring, from V (G) to V (H) so that it preserves adjacency (the image of every hyperedge
in G is a hyperedge in H) and its cost (sum over individual cost) is minimized. When H is a
fixed target hypergraph, we denote this problem by MHC(H). Some prominent problems that
this framework captures are (Hypergraph) Vertex Cover, Min Sum k-Coloring, Multiway Cut, Min
Ones, and others.

We show that if H is a r-uniform hypergraph with bounded width, then MHC(H) admits a
constant approximation algorithm. We reduce the MHC(H) problem to a binary version that
preserves the optimal cost. In the binary case, i.e., H = H is a digraph, we have a dichotomy:
if H has a bounded width, then MHC(H) admits a constant factor approximation; otherwise,
MHC(H) does not admit any approximation.

Leveraging known inapproximability results for problems like the system of linear equations
over GF (2), such as 3LIN, we conjecture that if r-uniform hypergraph H does not have bounded
width, then MHC(H) cannot be approximated within a constant factor unless P=NP.

Our work extends well beyond the scope of previous works, such as the Boolean case discussed
by Khanna, Sudan, Trevisan, and Williamson [SICOMP 2001].

1 Introduction

Let G be a hypergraph. The vertex set of G is denoted by V (G), and the hyperedges are denoted by
E(G). We assume that each hyperedge of G is an ordered tuple, meaning that (x, y, z) and (z, x, y)
are distinct hyperedges. A hypergraph G is called r-uniform if all hyperedges have size r. A digraph
is a 2-uniform hypergraph. A graph H is a 2-uniform hypergraph when (a, b) is a hyperedge of
H, and (b, a) is also a hyperedge of H, which is known as a symmetric digraph. This definition
of graphs suits the purposes of this paper. However, it should be noted that symmetric digraphs
differ from undirected graphs. For instance, all symmetric digraphs are Eulerian, whereas only some
undirected graphs are.

To align with the standard terminology, we refer to the edges of a digraph as arcs, the edges of
a graph as edges, and the edges of hypergraphs as hyperedges. When no ambiguity arises, we use
the shorthand u ∈ H instead of u ∈ V (H). When H is a digraph H, its arc set is denoted by A(H),
and we use the shorthand uv ∈ A(H) instead of (u, v) ∈ A(H). For a graph H, when two vertices x
and y are adjacent, we denote the edge as xy or yx.

∗Computer Science, Indiana State University, Indiana, USA. Email: arash.rafiey@indstate.edu. Research
supported in part by NSF grant 1751765.

1

A homomorphism of hypergraph G to a hypergraph H, also known as an H-Coloring of G, is a map-
ping f : V (G)→ V (H), such that for each hyperedge (x1, x2, . . . , xk) ∈ G, (f(x1), f(x2), . . . , f(xk))
is a hyperedge of H. We say a mapping f does not satisfy hyperedge (x1, x2, . . . , xk), if (f(x1), f(x2),
. . . , f(xk)) is not a hyperedge of H. The homomorphism problem parameterized by target hyper-
graphs, denoted HC(H), takes a hypergraph G as input and asks whether there is a homomorphism
from G to H. Therefore, by fixing the hypergraph H we obtain a class of problems, one for each
hypergraph H.

For instance, HC(H) when H is an edge, is equivalent to the problem of determining whether
the input graph G is bipartite, known as the 2-Coloring problem. Similarly, if H is a clique on k
vertices, then HC(H) is the classical k-Coloring problem.

There are several optimization versions of HC(H) problem, two of which have attracted a lot of
attention. One is to find a mapping f : V (G)→ V (H) that maximizes (minimizes) the number of
satisfied (unsatisfied) hyperedges in G. This problem is known under the name of Max CSP (Min
CSP); an example is the Max Cut problem where the target graph H is an edge. This line of research
has received a lot of attention in the literature and there are very strong results concerning various
aspects of approximability of Max CSP and Min CSP [2, 11, 15, 24, 28]. Note that the CSP’s where
all the hyperedges must be satisfied such as Vertex Cover and 3-Coloring problems are known as
strict CSPs [27].

The focus of this paper is on an optimization version of the HC problem where we can express
problems such as Vertex Cover and 3-Coloring. In this optimization version of HC(H) problem, we
are not only interested in the existence of a homomorphism (i.e. satisfying all the hyperedges), but
want to find the “best homomorphism”. The Minimum Hypergraph Coloring problem to H, denoted
by MHC(H), for a given input hypergraph G, and a cost function c(x, i), x ∈ V (G), i ∈ V (H), seeks
a homomorphism f of G to H that minimizes the total cost

∑
x∈V (G) c(x, f(x)). The cost function c

can take non-negative rational values.

MHC(H):
Input: Hypergraph G, and a cost function c : V (G)× V (H)→ Q≥0.
Objective: Find a homomorphism f : V (G)→ V (H) that minimizes

∑
x∈V (G) c(x, f(x)).

The MHC problem offers a natural way to model and generalizes many optimization problems.
One practical application of MHC (for bipartite graphs) in defense logistics is discussed in [13].

Example 1.1 (Vertex Cover). This problem can be seen as MHC(H) where V (H) = {0, 1}, E(H) =
{11, 01}, and c(u, 0) = 0, c(u, 1) = 1 for every u ∈ V (G) where G is the input graph.

For k-Hypergraph Vertex Cover, when the input is a hypergraph G, the target hypergraph H
consists of all the hyperedges {{0, 1}t − (0, . . . , 0), t ≤ k}, and c(u, 0) = 0, c(u, 1) = 1 for every
u ∈ V (G) where G is the input hypergraph.

Example 1.2 (Chromatic Sum). In this problem, we are given a graph G, and the objective is to
find a proper coloring of G with colors {1, . . . , k} with minimum color sum. This can be seen as
MHC(H) where H is a clique of size k with V (H) = {1, . . . , k} and the cost function is defined as
c(u, i) = i. The problem Chromatic Sum appears in many applications, such as resource allocation
problems [3].

Example 1.3 (Multiway Cut). Let G be a graph where each edge e has a non-negative weight
w(e). There are also k specific (terminal) vertices, s1, s2, . . . , sk of G. The goal is to partition
the vertices of G into k parts so that each part i ∈ {1, 2, . . . , k}, contains si and the sum of

2

the weights of the edges between different parts is minimized. Let H be a graph with vertex set
{a1, a2, . . . , ak}∪{bi,j | 1 ≤ i < j ≤ k}. The edge set of H is {aiai, aibi,j , bi,jaj , ajaj | 1 ≤ i < j ≤ k}.
Now obtain the graph G′ from G by replacing every edge e = uv of G with the edges uxe, xev where
xe is a new vertex. The cost function c is as follows. c(si, ai) = 0, else c(si, d) = |G| for d ≠ ai.
For every u ∈ G \ {s1, s2, . . . , sk}, set c(u, si) = 0. Set c(xe, bi,j) = w(e). Now, finding a minimum
multiway cut in G is equivalent to solving MHC(H) for G′ and c.

Example 1.4 (Min-Ones for 3LIN). We are given a set of equations of type xi1 ⊕ xi2 ⊕ xi3 = 0/1.
The goal is solve this system of equations so that the number of variables assigned to 1 is minimized.
This is an instance of MHC(H) where H = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and with the cost
function c(xi, 0) = 0, and c(xi, 1) = 1.

Example 1.5 (List Hypergraph Coloring (LHC)). LHC(H), seeks, for a given input hypergraph G and
lists L(x) ⊆ V (H), x ∈ G, a homomorphism f from G to H such that f(x) ∈ L(x) for all x ∈ G. This
is equivalent to MHC(H) (with total cost zero) with c(u, i) = 0 if i ∈ L(u), otherwise, c(u, i) = 1.
This problem is also known as List H-Coloring.

The MHC problem generalizes many other problems such as (Weighted) Min Ones [1, 9, 23], Min
Sol [22], a large class of linear programs of bounded integers, Minimum Sum Coloring [3, 10, 26], and
various optimum cost chromatic partition problems [14, 21, 25].

It is important to distinguish between MHC and Max CSPs. Unlike Max CSPs, where the
objective is to maximize a payoff function associated with whether a constraint is satisfied or not,
MHC require that all the hyperedges of the input to be mapped to hyperedges of the target. In
other words, feasible solutions must satisfy all constraints, and solutions that satisfy only part of the
constraints are not valid. One example of a Max CSP problem is Max Cut. The field of approximation
for Max CSPs has been an active area of research for several decades, which was initiated in [15].
More recently, there has been a growing interest in approximating Max CSPs instances that are
promised to be satisfiable [4, 5, 6, 7]. The approaches taken in these results have primarily relied on
analytic methods, rather than leveraging the algebraic structure of the predicates.

In terms of graphs and digraphs, the complexity of exact minimization of MHC(H) is well-
understood. A complete complexity classifications were given in [12] for undirected graphs and
in [20] for digraphs. More precisely, the result in [20] states that if H has so-called k-min-max
ordering, then MHC(H) is polynomial time solvable and otherwise it is NP-complete.

There are only a few results on the approximability MHC parameterized by a target graph or
digraph. The authors of [16] initiated the study of (constant factor) approximation algorithms of
MHC(H). They proved a dichotomy in the case of bipartite graphs. That is, for any fixed bipartite
graph H, MHC(H) is approximable within (constant) factor |V (H)| if H is a co-circular arc graph,
otherwise MHC(H) is not approximable unless P ̸= NP. Interestingly, they showed such bipartite
graphs can be characterized by the existence of a special type of vertex orderings. A bipartite
graph is co-circular arc if and only if it admits a vertex ordering called min ordering [16]. This
dichotomy result was extended to graphs in [29]. It was shown that for any fixed graph H, MHC(H)
is approximable within (constant) factor |V (H)| if H is a bi-arc graph, otherwise MHC(H) is not
approximable unless P ̸= NP.

1.1 Our results and proof techniques:

For r-uniform hypergraph H, we prove the following theorem.

3

Theorem 1.6 (Main theorem 1:). Let H be a r-uniform hypergraph. If H has a bounded width,
i.e., width (2, 3), then MHC(H) admits a constant factor approximation.

In terms of inapproximability, using Example 1.5 we observe the following.

Observation 1.7. Let H be a hypergraph. If LHC(H) is NP-complete then MHC(H) is not
approximable within any factor, unless P = NP.

The dichotomy for the LHC problem [19] states that for digraph H, LHC(H) is polynomial-time
solvable if and only if H does not contain a digraph asteroidal triple (DAT). The DAT-free digraphs
are also known as bounded width, i.e. width (2, 3), digraphs (see [19]).

Remark 1.8. The concept of bounded width for hypergraphs differs from that for graphs and is
unrelated to the size of the hyperedges or the number of hyperedges covering all the vertices of H.
Instead, it pertains to a hypergraph H for which LHC(H) can be solved using the (2,3)-consistency
check, which involves arc consistency and pair consistency (see Subsection 1.1.1 and Section 2 for
further details).

Therefore, by Observation 1 and above discussion we have a stronger version of Theorem 1.6.

Theorem 1.9 (Main theorem 2: dichotomy for digraphs). Let H be a digraph. If H has a
bounded width, i.e. width (2, 3), then MHC(H) admits a constant factor approximation. Otherwise,
MHC(H) is not approximable unless P=NP.

1.1.1 Algorithm and proof overview of Theorem 1.6

Let G together with cost function c : V (G)×V (H)→ Q≥0∪{+∞} be an instance of MHC(H) where
H has bounded width. The goal is to find an assignment f : V (G)→ V (H) that is a homomorphism
from G to H, has cost less than +∞, and minimizes

∑
x∈V (G) c(x, f(x)). We break down the proof

of Theorem 1.6 into steps, and in each step, we highlight our techniques and their novelties.

Step 1: Converting the instance into a binary case: This is done by creating a digraph,
denoted as H = Bin(H), from H, and another digraph, denoted as D = Bin(G), from G. The
vertices of H encompass those of H, and for each hyperedge α of H, a corresponding vertex α is
added in H. Subsequently, we add oriented paths, denoted as Pa,α, between any a ∈ H ∩H and any
α ∈ H where hyperedge α ∈ G contains a. Initially, the first arc of Pa,α is set as forward (∗ → ∗).
Beginning with the first coordinate in α, at each step j, if a appears in coordinate j of α, a forward
arc is added to the end of the current vertex of Pa,α; otherwise, a zig-zag sequence of arcs (forward,
backward, and then forward : ∗ → ∗ ← ∗ → ∗) is added . Finally a forward arc is added from the
current last vertex to α. So, the first and the last arcs in Pa,α are forward arcs. Analogously, D is
constructed from G. For every vertex x ∈ D which is also a vertex of G, and every vertex a of H
which is also a vertex of H, the cost is defined the same as c(x, a). For every other vertex y ∈ D
and a′ ∈ H, c(y, a′) is set to zero. This transformation is noteworthy because it does not change
the value of the optimal homomorphism. More precisely, if there is a homomorphism f from G to
H with cost W then there is a homomorphism h from D to H with cost W . Conversely, if h is a
homomorphism from D to H, then restriction of h on vertices of D corresponding the vertices of G
is a homomorphism from G to H with the same cost.

4

Step 2. Preprocessing and setting up the lists: Recall that we are interested in finding
a mapping from the vertices of D to the vertices of H that is a homomorphism, meaning that
each arc of D is mapped to an arc of H; thus, we prune the set of possible solutions by running a
preprocessing procedure on the input instance. The main appeal of the preprocessing step is to
prune the space of all possible mappings from D to H. It starts by associating a list of possible
images to each vertex x of D, L(x), initially V (H)− {a ∈ V (H) : c(x, a) = +∞}, and to each pair
of vertices (x, y) of V (D) × V (D), a list L2(x, y), initially L(x) × L(y). Then the preprocessing
gradually polishes and makes these lists smaller until no more changes are possible. Two powerful
and well-studied preprocessing procedures are the so-called arc consistency and pair consistency,
also known as (2, 3)-consistency. It is known that (2, 3)-consistency solves LHC(H) when H has
bounded width [19]. If after the (2, 3)-consistency procedure we end up with some empty lists, then
there is no homomorphism from D to H; otherwise, there is a homomorphism from D to H. We
assume the (2, 3)-consistency procedure is successfully executed on our instance.

Step 3. LP formulation: We formulate MHC(H) as an integer linear program. We introduce a
simple yet powerful LP to facilitate our task regarding its rounding. We first discuss the issues of a
simple LP that one might propose.

One simple LP formulation is the following. Define variables xu,i ∈ [0, 1] for every u ∈ D
and i ∈ L(u). Now for every u ∈ D, we add the constraint

∑
i∈L(u) xu,i = 1, and for every

u, v ∈ D we add the constraint xu,i ≤
∑

(i,j)∈L2(u,v) xv,j . The objective function is minimizing∑
u∈D xu,ic(u, i). However, we do not believe there is an easy way to round this LP and obtain a

constant approximation factor.
We change the LP above by looking at the MHC(H) as a minimum cut problem and writing

the LP constraints to address this issue. That is, we assume some ordering of the vertices of H,
say a1, a2, . . . , ap, ap+1, (where ap+1 is just a new dummy vertex) and define variables xu,ai ∈ [0, 1],
u ∈ D and ai ∈ H. We add constraints xu,ai ≥ xu,ai+1 with xu,a1 = 1, and xu,ap+1 = 0 for all u ∈ D.
Moreover, for every u, v ∈ D, we add constraint xu,ai − xu,ai+1 ≤

∑
(i,j)∈L2(u,v) xv,aj − xv,aj+1 . The

objective function is minimizing
∑

u∈D(xu,ai − xu,ai+1)c(u, ai).
Since this ordering is arbitrary, this is still not clear how to find a reasonably simple rounding

algorithm. Thus, our next technique is to find a special ordering to capture the structural properties
of bounded width digraphs. In this regard, we turn MHC(H) to its bipartite version, namely
MHC(B(H)). Here B(H) is a bipartite graph with vertex set I (where I is the vertex set of
H) and I ′ = {a′ | a ∈ I}; a copy of I. The edge set of B(H) consists of ab′ (a ∈ I, b′ ∈ I ′)
if and only if ab is an arc of H. Likewise, we construct B(D), and extend the lists by setting
L(u′) = {a′ | a ∈ L(u)}. For every u′, v′ ∈ B(D), let L2(u′, v′) = {(a′, b′) | (a, b) ∈ L2(u, v)},
and similarly for every u, v′ ∈ B(D), let L2(u, v′) = {(a, b′) | (a, b) ∈ L2(u, v)}. Finally, let
L2(v′, u) = {(b′, a) | (a, b′) ∈ L2(u, v′)}. The cost function c : V (D) × V (H) → Q≥0 ∪ {+∞} is
extended to MHC(B(H)) by setting c(u′, a′) = c(u, a).

Let a1, a2, . . . , ap be an ordering of the vertices in I, and b1, b2, . . . , bp be an ordering of the
vertices in I ′ (bi is not necessarily the copy of ai), so that a1, a2, . . . , ap, b1, b2, . . . , bp is a min-max
ordering. This means if aibj and ai′bj′ are edges of B(H) with i < i′ and j′ < j then aibj′ , ai′bj are
also edges of B(H). It is relatively straightforward to see that such an ordering exists.

The importance of the bipartization technique is to use the min-max ordering (sub-modular)
property of B(H) and guarantee a constant factor approximation for MHC(H).

We formulate a linear program S and show that its integral solutions correspond to the optimal

5

solutions of the MHC(H). Let π be a permutation on {1, 2, . . . , p} where bπ(i) is the copy of ai.
The variables in S are denoted as xu,ai and xu′,bπ(i)

, where u, u′ ∈ B(D) and ai, bπ(i) ∈ B(H).
The constraints include xu,ai ≥ xu,ai+1 and xu′,bj ≥ xu′,bj+1

, initialized with xu,a1 = xu′,b1 = 1.
Additionally, xu,ap+1 = xu′,bp+1 = 0, where ap+1 and bp+1 represent two extra nodes introduced into
B(H). Furthermore, pair consistency constraints are imposed; for every u, v ∈ D, the constraint
xu,ai − xu,ai+1 ≤

∑
aj :(ai,aj)∈L2(u,v)

(xv,aj − xv,aj+1) is added. The objective function is to minimize

2
∑

u∈D c(u, ai)(xu,ai − xu,ai+1).
Linear system S provides an integral solution due to min-max ordering, a1, a2, . . . , ap, b1, b2, . . . , bp,

yielding a minimum homomorphism from B(D) to B(H). However, our interest lies in homomor-
phisms from D to H. To accommodate this, we add additional constraints xu,ai − xu,ai+1 =
xu′,bπ(i)

− xu′,bπ(i)+1
for every u, u′ ∈ B(D) and ai, bπ(i) ∈ B(H). These constraints enable us (in the

integral solution for S) to obtain a homomorphisms f : V (B(D))→ V (B(H)) such that if f(u) = ai,
then f(u′) = bπ(i). The objective function remains 2

∑
u∈D c(u, ai)(xu,ai −xu,ai+1). (Refer to Table 1

for the LP formulation and additional details.) Incorporating the additional constraints cause LP S
to loose its intergral solution in general.

Step 3: Rounding techniques for the LP: After solving system S and getting fractional
values, we use a random variable 0 ≤ X ≤ 1, sampled uniformly at random, to round the values of S
and obtain a homomorphism f : B(D)→ B(H). If X ≤ xu,ai then set χu,ai = 1, else set χu,ai = 0.
Likewise, if X ≤ xv′,bj then set χv′,bj = 1, else set χv′,bj = 0. Now for every u ∈ B(D) set f(u) to be
ai if χu,ai+1 = 0 and χu,ai = 1. Also for every u′ ∈ B(D) set f(u′) = bj if χu′,bj = 1 and χv′,bj+1

= 0.

Step 3.2. Making f a homomprhism from D to H: A significant challenge here is to adjust
the homomorphism f to ensure consistency on both sides. Developing an algorithm that achieves
this goal constitutes a crucial contribution to our work in this section, which will find and inspire
further applications. The algorithm is simple yet built on the structural properties of bounded
width digraphs, which shows the beauty of our methods.

We apply the Shift procedure to ensure that f is consistent on both sides of B(D). Specifically,
we adjust f so that for every u, u′ ∈ B(D), if f(u) = ai, then f(u′) = bπ(i). We start with a vertex
z where f(z) = ar and f(z′) = bl with l ̸= π(r). Note that z is chosen when (ar, aπ−(l)) is a special
pair (discussed later). We set f(z′) = bπ(r) (or f(z) = aπ−1(l)).

The algorithm then initiates a special breadth-first search (SBFS) in D × H to update the
images of all in-neighbors u of z due to the change in f(z′). A vertex at with (at, ar) ∈ L2(u, z) is
selected if

t∑
l=1

Pu,al < Y0 ≤
t+1∑
l=1

Pu,al (1.1)

where Pu,al = (xu,al − xu,al+1
)/Pu and Pu =

∑
(al,ar)∈L2(u,z)

(xu,al − xu,al+1
).

We set f(u) = at and also set f(u′) = bπ(t). The Shift procedure continues modifying the images
of other vertices, such as v, which is adjacent to u (either as an in-neighbor or out-neighbor) due to
the change in f(u) (or f(u′) respectively). A neighbor of at, say as ∈ L(v), where (as, at) ∈ L2(v, u),
is chosen with probability proportional to xv,as − xv,as+1 (according to Y1 similar to the above
equation). Essentially, we proceed with an SBFS in D ×H, adjusting f as needed. When we next

6

need to adjust the image of w, a neighbor of v, we follow the same procedure, using the random
variable Y0. If further changes are required, we use Y1, and so forth.

We leverage the fact that the random variables X, Y0, and Y1 are independent. Moreover, we
show that the probability of shifting the image of u to at is bounded by xu,at −xu,at+1 . Thus, we can
use the random variable Y0 to shift the image of w (a neighbor of v) to some al with a probability
bounded by xw,al − xw,al+1

. This enables us to use the random variables Y0 and Y1 periodically.

Techniques for the correctness proof: The correctness proof is given in Lemma 3.3 and
Lemma 3.5. The approximation ratio is shown in Lemma 3.14.

The novelty of our approach is the careful exploiting of property of bounded width hypergraph
H by introducing an auxilary digraph H+2 (which has bounded width) and analyzing its strong
components. Again here is another place that we show structural analysis matters when it comes to
designing approximation algorithm for MHC.

The vertex set of H+2 is {(a, b) | a, b ∈ H and a ̸= b}, and the arc set of H+2 consists of
(a, b)(a′, b′) where there is an oriented path P from a to a′ going through exactly one vertex α ∈ H
(corresponding to a hyperedge of H) and an oriented path Q from b to b′ (going through exactly one
β ∈ H corresponding to a hyperedge of H) so that P and Q are congruent (with the same length
and follow the same patterns of forward and backward arcs) but there is no walk R from a to b′

and congruent with P,Q.
The vertices of H+2 can be partitioned into two sets A1 and A2 where there exists a conservative

polymorphism ϕ of H where its restriction on the vertices in A1 is semilattice, and a conservative
polymorphism ψ of H where its restriction on the vertices in A2 is majority [19]. A2 would be the
set of vertices containing both (a, b) and (b, a). There are several interesting properties for the
strong components of H+2; helping us in the correctness of the algorithm.

The procedure Shift goes through some vertices of G ×H+2 (the product digraph of G and
H+2) which are essentially based on the strong components of H+2. When Shift reaches a sink
component, it stays on that component until no further changes of images are necessary. This
requires showing that Shift does not encounter a circuit. A circuit is formed if the procedure Shift
changes the image of some vertex x from b0 to b1, and then from b1 to b2, and eventually from
some bk to b0 again. It turns out that all the pairs (b1, b0), (b2, b1), . . . , (bk, bk−1), (b0, bk) must be
in the same strong component S of H+2. Note that since bi ∈ L(x), there is a path from bi to bi
in the list of the vertices of any oriented cycle containing x. We show that the Shift would leave
the component S and move to another component. When we reach a sink component, then no
circuit can occur, and the procedure of shifting the images stops. This means at some point image
of vertex x ∈ D, no longer changes to some vertex b ∈ L(x). Therefore, Shift stops and returns a
homomorphism from D to H.

Remark 1.10. It is worth noting that the class of DAT-free digraphs (bounded width) is more
general than the classes of digraphs that admit min ordering (known as bi-arc digraphs) and
those that admit majority operations. Our LP formulation is simpler compared to those used in
previous works such as [16, 29]. Proving the correctness of our approach for bounded width digraphs
necessitates several new concepts and leverages the structural properties of these digraphs.

7

1.2 Future directions

On the side of the upper bound. We have shown MHC is approximable within a constant
factor when H has bounded width. The constant factor of our approximation algorithm depends on
the size of H which is assumed to be fixed. One natural question is for which r-uniform hypergraph
H, the approximation factor for MHC(H) is independent of the size of H.

On the inapproximability and lower bound One apparent direction is to settle down the
following conjecture:

Conjecture 1.11. Let H be a r-uniform hypergraph. If H has not bounded width, then MHC(H)
is not constant factor approximable unless P=NP.

The appeal for the above conjecture is the following: MHC(H) might admit an approximation
algorithm only if LHC(H) is polynomial-time solvable. LHC(H) can be solved in polynomial time if
H can be partitioned into a “bounded width” part and an “affine” part. Otherwise, this LHC is
NP-complete [8]. For the affine case, it was observed in [23] that, based on the hardness result for
Nearest Codeword problem [1], Min-Ones for 3LIN is not possible to approximate within a factor of

Ω(2log
1−ε n), unless NP ⊆ QP.

Assuming Conjecture 1.11 holds, we can derive the following statement using Theorem 1.6:

Statement 1.12. Let H be a r-uniform hypergraph. If H has bounded width then MHC(H) admits
a constant factor approximation. Otherwise, MHC(H) is not constant factor approximable unless
P=NP.

Another important questions is the following. Let H be a hypergraph and not necessarily a
r-uniform ones. What is a dichotomy classification for MHC(H)?

To answer this question one class of hypergraphs to consider is the class of bounded width
hypergraphs. For the bounded width case, Lemma 8.14 of [23] shows that Min Ones for Horn SAT

cannot be approximated to within a factor of Ω(2log
1−ε n), unless NP ⊆ QP. From these two

hardness results, it was also noted by authors in [23] that Min Horn Deletion problem does not
admit a constant approximation algorithm. Using their example, we give an example of hypergraph
H consisting of three uniform hypergraphs (different sizes) for which MHC(H) does not admit a
constant approximation.

The Min Horn Deletion problem consists of clauses in which at most one literal appears
to be positive. The goal is to find an assignment to minimize the number of variables as-
signed to true. This is equivalent to consider clauses of form (x ∨ ¬y ∨ ¬z) ∧ (¬u ∨ ¬v) ∧
(w ∨ ¬p) ∧ (¬p). If we translate this to a homomorphism problem, then we will have rela-
tions G1,G2,G3 of arity 3, 2, 2 respectively from the set {x1, x2, . . . , xn} and target relations
H1 = {((0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, H2 = {(0, 1), (1, 0), (1, 1)}, and
H3 = {(0, 0), (0, 1), (1, 1)}. The goal is to find an assignment for the variable so that every tuple in
Gi is mapped to its corresponding Hi, i = 1, 2, 3.

Now, define hypergraphH consists of hypergraphsH1 = {(0, 0, 0, a), (0, 0, 1, a), (0, 1, 0, a), (0, 1, 1, a),
(1, 0, 1, a), (1, 1, 0, a), (1, 1, 1, a)}, H2 = {(0, 1), (1, 0), (1, 1)}, and H3 = {(0, 0, a), (0, 1, a), (1, 1, a)}.
Moreover, define input hypergraph G as follows. For each tuple (x, y, z) ∈ G1 add (x, y, z, ω) into G,
for every (x, y) ∈ G2 add (x, y, ω) to G, and for every (x, y) ∈ G3 add (x, y, ω) to G3. Define the cost
function c(ω, a) = 0, and c(x, 0) = 0 and c(x, 1) = 1 for every x ̸= ω. Then MHC(H) is equivalent
to Min Horn Deletion problem, and hence, it does not admit a constant approximation algorithm.

8

The above discussion suggest, the constant factor approximable cases of MHC(H) should be
bounded width and have at most two uniform sub-hypergraphs.

2 Definitions and preliminaries

Polymorphisms and vertex orderings. Let R be a k-uniform hypergraph on a set A and
ψ an n-ary operation on the same set. Operation ψ is said to be a polymorphism of R if for any
a1, . . . , an ∈ R the hyperedge ψ(a1, . . . , an) belongs to R. Here by ψ(a1, . . . , an) we understand the
component-wise action of ψ, that is, if ai = (ai1, . . . , a

i
k) then

ψ(a1, . . . ,an) = (ψ(a11, . . . , a
n
1), . . . , ψ(a1k, . . . , a

n
k)).

Specifically a polymorphism of digraph H of arity k is a mapping ϕ from the set of k-tuples over
V (H) to V (H) such that if xiyi ∈ A(H) for i = 1, 2, . . . , k, then ϕ(x1, x2, . . . , xk)ϕ(y1, y2, . . . , yk) ∈
A(H). If ϕ is a polymorphism of H we also say that H admits the polymorphism ϕ. A poly-
morphism ϕ is idempotent if it satisfies ϕ(x, x, . . . , x) = x for all x ∈ V (H), and is conserva-
tive if ϕ(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk}. A binary polymorphism ϕ is called commutative if
ϕ(a, b) = ϕ(b, a) for all a, b, and is called associative if ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)) for all a, b, c. A
commutative and associative polymorphism is called a semilattice. A ternary polymorphism ψ is
called majority if ψ(x, x, y) = ψ(x, y, x) = ψ(y, x, x) = x for all x, y. In this paper, conservative
semilattice polymorphisms (which are binary by definition) and conservative majority polymorphisms
(which are ternary by definition) are of special interest.

A conservative semilattice polymorphism ϕ of H naturally defines a binary relation x ≤ y on the
vertices of H by x ≤ y if and only if ϕ(x, y) = x; by associativity, the relation ≤ is a linear order on
V (H), which we call the min ordering of H associated with ϕ.

Definition 2.1. An ordering v1 < v2 < · · · < vn of V (H) is a

– min ordering if and only if uv, u′v′ ∈ A(H) with u < u′ and v′ < v imply that uv′ ∈ A(H);

– min-max ordering if and only if uv, u′v′ ∈ A(H) with u < u′ and v′ < v imply that uv′, u′v ∈
A(H).

For a given bipartite graph H = (B,W), let
−→
H be the digraph obtained by orienting all the

edges of H from B to W . One can easily see that if
−→
H admits a min ordering then there is an

ordering a1 < a2 < · · · < ap of the vertices in B and an ordering b1 < b2 < · · · < bq of the vertices in

W so that a1 < a2 < · · · < ap < b1 < b2 < · · · < bq is a min ordering of
−→
H , in other words,

−→
H has a

min ordering where vertices in B precede vertices in W . We call such an ordering a min ordering
for the bipartite graph H. Alternatively, we say bipartite graph H = (B,W) admits a min ordering,
if there is an ordering a1 < a2 < · · · < ap of the vertices in B and an ordering b1 < b2 < · · · < bq of
the vertices in W so that if aibj and ai′bj′ with i < i′ and j′ < j are edges of H, then aibj′ is also
an edge of H. Similar treatment is applied for defining min-max ordering for bipartite graph H.

Assumption 2.2. In what follows when we mention walk, path, and cycle we mean oriented walk,
oriented path, and oriented cycle, respectively, unless specified otherwise.

9

0 1

(0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1)

Figure 1: Conversion of H = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} to a digraph

(Oriented) path, cycle and avoidance definition. Let H be a digraph. We say that uv ∈ A(H)
is an arc from u to v. Sometimes, we emphasize this by saying that uv is a forward arc of H, and
also say vu is a backward arc of H. For a walk P = x0, x1, . . . , xn and any i ≤ j, we denote by
P [xi, xj] the walk xi, xi+1, . . . , xj . We call P [xi, xj] a prefix of P if i = 0. For two walks, P and Q
where the end vertex of P is the same as the beginning of Q, let PQ be the walk obtained from
concatenation of P and Q. We define two walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to
be congruent if they follow the same pattern of forward and backward arcs, i.e., xixi+1 is a forward
arc if and only if yiyi+1 is a forward arc, and xixi+1 is a backward arc if and only if yiyi+1 is a
backward arc. Suppose that the walks P,Q as above are congruent. We say an arc xiyi+1 is a
faithful arc from P to Q if it is a forward (backward) arc when xixi+1 is a forward (backward) arc
(respectively). A faithful arc from Q to P is defined symmetrically. We say P avoids Q if there is no
faithful arc from P to Q. We say P and Q avoid each other if P avoids Q and Q avoids P . Notice
that if P avoids Q then Q−1 avoids P−1 (P−1 is the reverse of P).

Definition 2.3 (Construction of digraph from a hypergraph Bin(H)). Let H be a hypergraph.
Let Bin(H) be a digraph H whose vertex set contains of a copy of V (H) together with set
{α | α = (d1, d2, . . . , dk) ∈ E(H)}. Moreover, for each d ∈ H and each hyperedge α we add a new
(oriented) path Pd,α between d ∈ V (H) and α into H if d appears in α = (d1, d2, . . . , dr) as follows.
The first arc of Pd,α is a forward arc dd1. At each step 1 ≤ i ≤ k, if d appears in the coordinate
i of (d1, d2, . . . , dr), then add arc didi+1, otherwise, add arcs diei+1, liei+1, lidi+1 (we call ei+1, li

internal vertices). Finally add arc dkα (see figure 1). For every vertex τ ∈ H, let Base(τ) = d when
τ ∈ Pd,α. Notice that Base(τ) is unique vertex of H which is a copy of a vertex in V (H). We say
path P in H from a ∈ H ∩H to b ∈ H ∩H is minimal if it goes through exactly one vertex α ∈ H
corresponding to a hyperedge of H.

Recall the definition of H+2 in the previous section constructed from H. In general we will also
define H+k constructed from H. We only need this definition for k = 3, to explain the obstruction
for majority/semilattice polymorphism for H.

Definition 2.4 (H+k = Bin(H)+k). Let H be a hypegraph. Let H = Bin(H). Define H+k =
Bin(H)+k to be the digraph with the vertex set {(a1, a2, . . . , ak)|ai ∈ V (H), 1 ≤ i ≤ k} and
consisting of arcs (a1, a2, . . . , ak)(b1, b2, . . . , bk) so that :

10

• for 1 ≤ i ≤ k, there is minimal path Pai,bi from ai to bi in H (see definition 2.3).

• All the Pai,bi ’s are congruent.

• For every 2 ≤ j ≤ k, there is no path P from a1 to bj and congruent with Pa1,b1 .

When k = 2, we say (x, y), with x ̸= y, is an invertible pair of hypergraph H if (x, y) and (y, x)
belong to the same strong component of H+2.

Remark 2.5. Let ϕ be a polymorphism on H. Then, it is easy to extend ϕ on H so that the
properties of ϕ on the vertices of H that are copies of the vertices in H are preserved.

Definition 2.6 (u⇝ v). For two vertices u, v of digraph G, let u⇝ v denote that v is reachable
from u via a directed path in G. We write x ̸⇝ y, if there is no directed path from x to y in G.
When we write P : u⇝ v, we mean P is a directed path from u to v in G.

Definition 2.7 (DAT). A digraph asteroidal triple (DAT) of H is an induced sub-hypergraph of
H that yields three directed paths in P1, P2, P3 in H+3 = Bin(H)+3 where P1 : (a, b, c)⇝ (p, q, q),
P2 : (b, a, c)⇝ (p, q, q), and P3 : (c, a, b)⇝ (p, q, q) where (p, q) is an invertible pair. (see [19]).

If H contains a DAT (as described above), then it is not difficult to see that all three pairs
(a, b), (b, c), (c, a) are invertible. Note that an invertible pair obstructs the existence of a conservative
semilattice polymorphism. To see this, if (a, b) is invertible in H, then every pair (a′, b′) in the
same strong component as (a, b) is also invertible. We show there is no conservative semilattice
polymorphism ϕ on H. For contradiction, suppose f is such a polymorphism. By the definition of
H+2, when (a, b)(a′, b′) is an arc of H+2 then ϕ(a, b) = a implies that ϕ(a′, b′) = a′. Since (a, b) is
an invertible pair, there is a directed path P from (a, b) to (b, a) in H+2, and there exists a directed
path Q from (b, a) to (a, b) in H+2. Now ϕ(a, b) ̸= a, as otherwise, by following P , we conclude
that ϕ(b, a) = b which contradicts that f is commutative. Similarly, ϕ(b, a) ̸= b, as otherwise, by
following Q we get a contradiction, and hence, ϕ is not semilattice. This would imply that if (a, b)
is invertible then ϕ is not semilattice on a, b.

Moreover, H does not admit a conservative majority polymorphism ψ; because of P1, ψ(a, b, c) ̸=
a, because of P2 we have ψ(a, b, c) ̸= b, and finally, because of P3 we have ψ(a, b, c) ̸= c. Therefore,
the value of ψ(a, b, c) can not be any of the a, b, c. A permutable triple in hypergraph H consists
of three distinct vertices a, b, c, and three directed path P1, P2, P3 in H+3 where P1 is from (a, b, c)
to a triple (pa, qb, qb), P2 is from (b, c, a) to a triple (pb, qc, qc) and P3 is from (c, a, b) to a triple
(pc, qa, qa). Notice that the argument presented above implies that if H contains a permutable triple,
then it does not admit a conservative majority polymorphism. Indeed, the converse is also true.

Theorem 2.8 ([19]). Let H be a digraph. Then the following hold.

1. H has bounded width (DAT-free) if and only if there exists a conservative binary polymorphism
ϕ and a conservative ternary polymorphism ψ of H such that for every a, b ∈ V (H), either
ϕ|{a,b} is a semilattice polymorphism or ψ|{a,b} is a majority polymorphism. Furthermore, if
(a, b) is an invertible pair then ϕ(a, b) = a and ϕ(b, a) = b.

2. LHC(H) is polynomial-time if H has bounded width, otherwise, LHC(H) is NP-complete.

Note that ϕ|{a,b} is the restriction of ϕ over a, b and likewise, ψ|{a,b} is the restriction of ψ over
a, b. That is ψ on {a, b} is majority.

11

Definition 2.9. Let H be a r-uniform hypergraph. We say H has bounded width if there exists a
conservative binary polymorphism ϕ and a conservative ternary polymorphism ψ of H such that for
every a, b ∈ V (H), either ϕ|{a,b} is a semilattice polymorphism or ψ|{a,b} is a majority polymorphism.
Furthermore, if (a, b) is an invertible pair then ϕ(a, b) = a and ϕ(b, a) = b. Alternatively, LHC(H)
can be solved by applying (2,3)-consistency.

Definition 2.10 (G bipartization). Let G be a digraph with vertex set I. Let B(G) = (I, I ′, E) be
a bipartite graph with partite sets I and I ′ where I ′ is a copy of I and ij′ (i ∈ I, j′ ∈ I ′) is an edge
of B(G) if and only if ij is an arc of G.

3 The approximation algorithm

This section is dedicated to our approximation algorithm. The description of the algorithm is given
in Section 3.4. We prove that our approximation algorithm is correct in Section 3.5, and obtain an
upper bound on the approximation ratio in Section 3.6.

3.1 Transformation:

Let H be the target r-uniform hypergraph and G be the input hypergraph together with the cost
function c : V (G)× V (H)→ Q≥0 ∪ {+∞}.

Construction of digraphs H = Bin(H) and D = Bin(G). Let H = Bin(H) and D = Bin(G).
The cost function for vertices of H that appear in H is the same. For every other vertex y ∈ D

and a′ ∈ H, c(y, a′) = 0.

Lemma 3.1. Let f be a homomorphism from G to H with the minimum cost W . Then there is a
homomorphism h from D to H with cost W . Conversely, if h is a homomorphism from D to H,
then restriction of h on vertices of D corresponding the vertices of G is a homomorphism from G to
H with the same cost.

Proof. Let f : V (G) → V (H). For each vertex x ∈ D, where x = (x1, x2, . . . , xr) ∈ G, define
h(x) = a, where a = (f(x1), f(x2), . . . , f(xr)) ∈ H. Extending h is straightforward; it maps path
Py1,y in D to the path Pa,α in H, where f(y1) = a and f(y) = α. Since, Py1,y and Pa,α are
congruent, the intermediate vertices of Py1,y are mapped to their corresponding vertices in Pa,α.
Based on the construction of D and H from G and H, along with the provided cost function, the
cost of h is W .

Conversely, let f represents a homomorphism from D to H. Then, the restriction of f to vertices
of D that are copies of vertices of G forms a homomorphism from G to H.

3.2 Preprocessing and consistency checks

Before presenting the system of linear equations S formulating the MHC problem, we give a procedure
to associate lists to the vertices of D and, subsequently, modify them based on some consistency
conditions.

12

Introducing lists. To each vertex x ∈ D, we associate a list L(x) ⊆ V (H) that is initially set to
V (H)−{a ∈ V (H) : c(x, a) = +∞}— think of L(x) as the “current” set of possible images for x in a
homomorphism from D to H. We also consider a pair list L2(x, y) for every pair x ≠ y ∈ D — think
of L2(x, y) as the ordered pairs of “current” possible images of x, y in any of the homomorphisms
from D to H.

Preprocessing to update lists and pair lists [(2,3)-consistency]. This procedure begins
by performing arc consistency (2-consistency) and pair consistency (3-consistency) checks on lists
(L lists) and pair lists (L2 lists) for digraph D. Arc consistency and pair consistency checks are
standard procedures in graph/digraph homomorphism problems [17].

The arc consistency check is performed as follows. If xy is an arc of D and there exists a ∈ L(x)
such that a does not have any out-neighbor in L(y), then we remove a from L(x). Similarly, if there
exists b ∈ L(y) such that b does not have any in-neighbor in L(x), then we remove b from L(y). We
continue this process until no list can be modified.

After the arc consistency check, we perform the pair consistency check. After the arc consistency
process, the L2 lists are initialized by setting L2(x, y) = {(a, b) | a ∈ L(x), b ∈ L(y)} for every
x, y ∈ D. Now for every x, y ∈ D and every (a, b) ∈ L2(x, y), if there exists z such that for every
c ∈ L(z) either (a, c) ̸∈ L2(x, z) or (b, c) ̸∈ L2(y, z) then remove (a, b) from L2(x, y). We continue
this process until no list can be modified. If for some a ∈ L(x), there is some y ∈ D so that a does
not appear as the first coordinate of any pair in L2(x, y), then a is removed from L(x). In the end,
if any list is empty, then clearly, there is no homomorphism from D to H. Therefore, in the rest of
the paper, we assume that all lists are non-empty.

Fixing an ordering for H using B(H). Let a1, a2, . . . , ap be the vertices of H, where if
aibr, aibs, ajbr are edges of B(H) then aj < ai and br < bs. Notice that since there are no induced
paths of length 4 or more in B(H), we can easily find such an ordering and notice that this
ordering is a min-max ordering for B(H). Let π be a permutation on {1, 2, . . . , p} where bπ(i) is the
corresponding copy of ai, 1 ≤ i ≤ p.

Extending lists L and L2 to vertices of B(D) and B(D)×B(D) We introduce the lists L for
vertices in B(D). Recall that the vertices of B(D) are v and v′ where v′ is the copy of v ∈ D. For
every vertex v′ ∈ B(D) which is the copy of v ∈ D, set L(v′) = {bi | aπ−1(i) ∈ L(v)}, and the list for
the vertex v ∈ B(D) is the same as the list in D. For every u, v ∈ B(D), let L2(u, v) = {(ai, aj) |
(ai, aj) ∈ L2(u, v), u, v ∈ D}. For every u′, v′ ∈ B(D), let L2(u′, v′) = {(bi, bj) | (aπ−1(i), aπ−1(j)) ∈
L2(u, v)} and similarly for every u, v′ ∈ B(D), let L2(u, v′) = {(ai, bj) | (ai, aπ−1(j)) ∈ L2(u, v)}.
Finally, let L2(v′, u) = {(bj , ai) | (ai, bj) ∈ L2(u, v′)}.

3.3 Linear Program (LP) formulation

Now, we start to formulate a linear system S that will be shown to be equivalent to the MHC(H)
and MHC(H) problem (Lemma 3.3). For all vertices v, v′ of B(D) and ai, bπ(i) of B(H) introduce
the variables xv,ai and xv′,bπ(i)

. We also set c(v′, bπ(i)) = c(v, ai).
Constraint (C6) is added because we need a special type of homomorphism f from B(D) to

B(H); the ones satisfying f(u) = ai and f(u′) = bπ(i) for all u, u′ ∈ B(D) and ai ∈ B(H). Notice
that, by the definition of L(v′), v′ ∈ B(D), and constraint (C7) we have :

13

Minimize:
∑

v∈B(D),ai∈B(H)

c(v, ai)(xv,ai − xv,ai+1) +
∑

v′∈B(D),bj∈B(H)

c(v′, bj)(xv′,bj − xv′,bj+1
)

Subject to:

(C1) xv,ai , xv′,bπ(i)
≥ 0 ∀v ∈ B(D), ai ∈ B(H)

(C2) xv,a1 = xv′,b1 = 1 ∀v ∈ B(D)
(C3) xv,ap+1 = xv′,bp+1 = 0 ∀v, v′ ∈ B(D) here ap+1, bp+1 are dummy vertices
(C4) xv,ai+1 ≤ xv,ai and xv′,bπ(i)+1

≤ xv′,bπ(i)
∀v ∈ B(D), ai ∈ B(H)

(C5) xv,ai+1 = xv,ai and xv′,bπ(i)+1
= xv′,bπ(i)

∀v ∈ B(D), ai ∈ B(H) if ai ̸∈ L(v)

(C6) xu,ai − xu,ai+1 = xu′,bπ(i)
− xu′,bπ(i)+1

∀u ∈ B(D), ai ∈ B(H)

(C7) xu,ai − xu,ai+1 ≤
∑

aj :(ai,aj)∈L2(u,v)

(xv,aj − xv,aj+1) ∀u, v in B(D), ai ∈ B(H)

Table 1: LP relaxation S

(C7-1) xu,ai − xu,ai+1 ≤
∑

bj :(ai,bj)∈L2(u,v′)

(xv′,bj − xv′,bj+1
) ∀u, v′ in B(D), ai ∈ B(H) .

(C7-2) xv′,bj − xv′,bj+1
≤

∑
ai:(ai,bj)∈L2(u,v′)

(xu,ai − xu,ai+1) ∀u, v′ in B(D), bj ∈ B(H) .

(C7-3) xu′,bi − xu′,bi+1
≤

∑
bj :(bi,bj)∈L2(u′,v′)

(xv′,bj − xv′,bj+1
) ∀u′, v′ in B(D), bi ∈ B(H).

The following lemma follows immediately from the construction of B(H) and B(D).

Lemma 3.2. There exists a homomorphism g : V (D)→ V (H) with cost W if and only if there exists
a homomorphism f : V (B(D))→ V (B(H)) with cost 2W such that if f(v) = ai then f(v′) = bπ(i).

3.4 LP rounding and finding a homomorphism from D to H

We start with an overview of our algorithm. The correctness and approximation bound proofs are
postponed for the later subsections.

By Lemma 3.3, the integral solutions of S are in one-to-one correspondence to the homomorphisms
from D to H, and by by Lemma 3.1, they correspond to a homomorphism from G to H with the
minimum total cost. Our algorithm will minimize the cost function over S in polynomial time using
a linear programming algorithm. This will generally result in a solution with fractional values. We
will obtain an integral solution by a randomized procedure called Roundingd-Shifting.

Using random variable X to get a partial homomorphism. We select a random variable
X from the interval [0, 1] uniformly, and then define the rounded values χu,ai = 1 if X ≤ xu,ai ;
otherwise, we set χu,ai = 0. Similarly, for χv′,bj , we set it to 1 if X ≤ xv′,bj , otherwise, it is set to 0.

We establish the partial homomorphism f : V (B(D))→ V (B(H)) by assigning f(u) = ai when
χu,ai = 1, and χu,ai+1 = 0 (notably, ai is unique for each u ∈ B(D)). Likewise, for f(v′) = bj , we
set it to bj if χv′,bj = 1 and χv′,bj+1

= 0. It is easy to see that f indeed is a homorphism from B(D)
to B(H) but it may not be a consistent homomorphism; meaning that for some u, f(u) = ai and
f(u′) ̸= bπ(i). Let U = V (D), and U ′ be the copy of the vertices of U in B(D).

14

Shifting to make f consistent on both U and U ′ and obtaining a homomorphism from
D to H.

We say a vertex z of B(D) is unstable if f(z) = ar and f(z′) ̸= bπ(r), i.e., if χz,ar = 1, χz,bπ(r)
= 0,

in which case one has χz′,bl = 1, χz′,bl+1
= 0 for some l ̸= π(r). The goal of this step is to modify f

so that it remains a homomorphsim from B(D) to B(H) and also becomes consistent on both U
and U ′, in the sense that there will be no unstable vertex z ∈ U . Note that ar ∈ L(z) if and only if
bπ(r) ∈ L(z′). The algorithm starts with a special breadth first search (SBFS) in B(D)×B(H) and
continues as long as there exists some unstable vertex in B(D). Let ϕ be a semilattice on some
pairs of H according to definition 2.9. The SBFS uses the following rules.

1. The SBFS starts with some ar ∈ V (H) (say with maximum index) for which there is vertex z,
where f(z) = ar and z is unstable. Suppose f(z′) = bj where j ̸= r. Let ar′ = Base(ar) and
aj′ = Base(aj) (see definition 3.1 for constructing H and D).

If ϕ(ar′ , aj′) = ar′ then SBFS sets f(z′) = bπ(r) otherwise it sets f(z) = aj .

2. In general, when SBFS visits a pair (u, ai) then it shifts the image of u to ai and sets f(u) to
ai and it sets f(u′) = bπ(i).

3. SBFS moves from (u, ai) with u ∈ D to pair (v, aj) with uv ∈ A(D) (vu ∈ A(D)) and
aif(v) ̸∈ A(H), where (ai, aj) ∈ L2(u, v). Notice that the set of such aj is not empty due
to arc consistency check. Among all candidates, aj is chosen at random with probability
proportional to xv′,bj − xv′,bj+1

= xv,aπ−1(j)
− xv,aπ−1(j+1)

, guided by random variable Y0 or Y1
depending on the parity (see lines 14,15 of Shift procedure). If the image of u was shifted
according to random variable Yl, l = 0, 1 then the image of v is shifted according to random
variable Yl+1 (sum is module 2)

4. When (u, ai) is visited, then it is added to the queue to start from (u, ai) at some later point.

Algorithm 1 Rounding the fractional values of S
1: procedure Rounding-Shifting(S)
2: Let {xu,ai} and {xu′,bπ(i)

} be the (fractional) values returned by solving S
3: Sample X ∈ [0, 1] uniformly at random
4: For all xu,ai : if X ≤ xu,ai set χu,ai = 1, else set χu,ai = 0
5: For all xv′,bi : if X ≤ xv′,bi set χv,bi = 1, otherwise set χv,bi = 0
6: Set f(u) = ai where χu,ai = 1, χu,ai+1 = 0
7: Set f(v′) = bj where χv′,bj = 1, χv′,bj+1

= 0
▷ At this point f is a homomorphism from B(D) to B(H).

8: Shift(f)
9: return f ▷ f is a homomorphism from D to H.

15

Algorithm 2 Procedure Shift

1: procedure Shift(f)
2: Let Q be an empty Queue, and let Y0, Y1 be two independent random variable from [0, 1].
3: Let ϕ be the semilattice on H, defined in Theorem 2.8
4: while ∃ar ∈ H so that for some z ∈ D, f(z) = ar and z is unstable do

▷ Maximum index r
5: Let ar = f(z), and bπ(j) = f(z′) where j ̸= r
6: Let ar′ = Base(ar), and aj′ = Base(aj).
7: if ϕ(ar′ , aj′) = ar′ then set f(z′) = bπ(r) and Q.enqueue(z, ar, Y0)
8: else set f(z) = aj and Q.enqueue(z, aj , Y0)

9: while Q is not empty do
10: (u, ai, Yλ)← Q.dequeue()
11: for uv ∈ A(D) with aif(v′) ̸∈ E(B(H)) or
12: vu ∈ A(D) with f(v)bπ(i) ̸∈ E(B(H)) do
13: Let (ai, at1), (ai, at2), . . . , (ai, atk) ∈ L2(u, v)

14: Let Pv ←
k∑

l=1

(xv,atl − xv,atl+1) and Pv,atj
←

j∑
l=1

(xv,atl − xv,atl+1) / Pv

15: if Pv,atj
< Y ≤ Pv,atj+1

then f(v)← atj and f(v′)← bπ(tj)
16: Q.enqueue(v, atj , Yλ+1) ▷ Y2 = Y0

17: for u ∈ B(D) do if f(u) = at then χu,aι = 1, 1 ≤ ι ≤ t, and χu,aι = 0, t < ι ≤ p+ 1

18: for u′ ∈ B(D) do if f(u′) = bt then χu′,bι = 1, 1 ≤ ι ≤ t, and χu′,bι = 0, t < ι ≤ p+ 1

19: return f

3.5 Correctness and analysis

We first show the correspondence between homomorphisms of D to H and integer solutions of S.

Lemma 3.3. There is a one-to-one correspondence between homomorphisms of D to H and integer
solutions of S.

Proof. First, suppose there is a homomorphism f : V (D) → V (H). For every v ∈ V (D) when
f(v) = at then set xv,ai = 1 for all i ≤ t, and set xv′,bj = 1 for all j ≤ π(t), furthermore, set xv,ai = 0
for all i > t and set xv′,bj = 0, for all jπ(t). Set xv′,bp+1 = xv,ap+1 = 0 for all v, v′ ∈ B(D).

Notice that all the variables are non-negative, and we have xv,ai+1 ≤ xv,ai , and xv′,bj+1
≤ xv′,bj .

Observe that by this assignment constrains (C1), (C2), (C3), (C4), (C5), and (C6) are satisfied.
Now for all u and v in D with f(u) = ai and f(v) = aj we have that xu,ai − xu,ai+1 =

xv,aj − xv,aj+1 = 1. Moreover, since f is a homomorphism, we have (ai, aj) ∈ L2(u, v), and hence,
constraint (C7) is also satisfied.

Conversely, from an integer solution for S, we define a homomorphism f from D to H as follows.
For every u ∈ D, set f(u) = ai when i is the largest subscript with xu,ai = 1. Let uv be an arc of D
and assume f(u) = ai, f(v) = aj . Note that xu,ai − xu,ai+1 = xv,aj − xv,aj+1 = 1 and for all other s
we have xv,as − xv,as+1 = 0. Since constraint (C7) is satisfied,

1 ≤
∑

(ai,as)∈L2(u,v)

(xv,as − xv,as+1),

16

where j is the only index with xv,aj − xv,aj+1 ≠ 0 in
∑

(ai,as)∈L2(u,v)

(xv,as − xv,as+1). Therefore,

(ai, aj) ∈ L2(u, v) and aiaj ∈ A(H).

It is easy to see that after the execution of Line 7 of Algorithm 1, f is a homomorphism from
B(D) to B(H). It is easy to observe the following lemma.

Lemma 3.4. If there is no unstable vertex then the mapping f returned after line 7 of Algorithm 1
is a homomorphism from D to H.

Lemma 3.5. Procedure Shift runs in polynomial-time and returns a homomorphism from D to H.

3.5.1 Proof of Lemma 3.5

This subsection is devoted to the correctness of procedure Shift. Some definitions are in order.

Definition 3.6 (L(X)). Consider an instance of the list homomorphism problem for digraph D,
lists L and fixed digraph H. For the path X in D, let L(X) be the sub-digraph of H with the
vertex set

⋃
x∈X L(x) and the arc set {ab ∈ A(H) | ∃xy ∈ A(X) s.t. a ∈ L(x), b ∈ L(y)}.

For path X in D we often refer to walk P ∈ L(X); we mean P is congruent to X, and the l-th
element of P is in the list of the l-th element of X.

Definition 3.7 (D⋊H+). Let D⋊H+ be the digraph with vertex set {(x, a, b) | x ∈ G, and a, b ∈
L(x)} and arcs (x, a, b)(y, c, d) so that (a, c) ∈ L2(x, y)

Definition 3.8 (G⋊H+2). Let G⋊H+ be the digraph with vertex set {(x, a, b) | x ∈ G, and a, b ∈
L(x)} and arcs (x, a, b)(y, c, d) such that :

• There is a minimal path Y from x to y in D. Furthermore, (a, c) ∈ L2(x, y) (the lists of D
with respect to H).

• There is a minimal path P in H from a to c and minimal path Q from b to d in L(Y) (both
congruent with Y). There is no path R from a to d in L(Y), i.e. (a, b)(c, d) ∈ H+2.

Remark 3.9. Let’s summarize the construction thus far. We begin with the input hypergraph
G and the target r-uniform hypergraph H. From these, we derive the digraphs D and H. The
system of linear equations S is then formulated based on D and H for further analysis, particularly
concerning the approximation bound. We also have digraph H+2, which we use its properties
together with semilattice and majority polymorphisms defined on H. We also have construction
D ⋊H+, which is to show the movement of the Shift algorithm and allow us to talk about D and
H instead of B(D) and B(H). Finally digraph G ⋊H+2 is used to show that the Shift procedure
stops after polynomial many times.

We begin by illustrating the properties of digraph H+2 together with conservative semilattice
polymorphism ϕ and conservative majority polymorphism ψ defined in Theorem 2.8. To avoid
repeating the word conservative, in the rest of the proof, when we mention polymorphism, we mean
a conservative one unless we specify otherwise.

Recall that (a, b) ∈ H+2 is called an invertible pair if (a, b) and (b, a) both belong to the same
strong component of H+2.

17

Observation 3.10. The following observations for H+2 follow from [19]. Here all directed paths
such as (a, b)⇝ (c, d) are in H+2.

1. Suppose (a, b) ⇝ (c, d). Then by skew-symmetry property, (d, c) ⇝ (b, a). Moreover, if
ϕ(a, b) = a then ϕ(c, d) = c and if ψ(a, a, b) = a then ψ(c, c, d) = c.

2. (a, b) is invertible if and only if ψ|a,b is majority. If (a, b) is invertible ϕ(a, b) = a and ϕ(b, a) = b.

3. Suppose (a, b) is not invertible pair. Then ϕ|a,b is semilattice, and ϕ(a, b) = ϕ(b, a) = a when
(b, a)⇝ (a, b).

4. Suppose (a, b) ⇝ (c, d), and (c, d) is invertible. It follows that if ϕ|a,b is semilattice then
ϕ(a, b) = b. To see that observe that by skew-symmetry we have (d, c)⇝ (b, a), and hence, we
have (a, b)⇝ (c, d)⇝ (d, c)⇝ (b, a).

5. If (a, b) and (c, d) are both invertible pairs, and (a, b) ⇝ (c, d) then both (a, b) and (c, d)
belong to the same strong component of H+2.

6. If ψ|a,b is the majority, then ψ is the majority on every pair in the same strong component of
H+2 containing (a, b). Similarly, if ϕ|c,d is semilattice then ϕ is semilattice on every pair in
the same strong component of H+2 containing (c, d).

We may assume that Shift moves inside D⋊H+ starting at (z, ar, aj) (or starting at (z, aj , ar)).
This means we change the image of z′ from bπ(j) to bπ(r). This change potentially affects some
in-neighbor u of z. Thus, the image of u; f(u) where f(u)aj ∈ A(H) is changed to some in-neighbor
at ∈ L(u) of ar. Therefore, we move from (z, ar, aj) to (u, at, f(u)). Likewise, if we change the
image of z to aj , then this change potentially affects some out-neighbor v of z. Thus, the image
of v; f(v), with arf(v) ∈ A(H) is changed to some out-neighbor as ∈ L(v) of aj . Therefore, we
move from (z, aj , ar) to (v, as, af(v)). The above observation allows us to envision the changes of
the images of f only for vertices in D, and hence, getting rid of Bipartization. We use triple (y, c, d)
to keep track of the previous image of the current vertex y. This means that when the SBFS visits
(y, c, d) in D ⋊H+ it changes the image of y from d = f(y) to a new value c.

Overview of the proof. Shift goes through strong components of D ⋊H+. However, a closer
look at the paths Px,x in D and Pa,α in H essentially means an image change of a vertex in Px,x

means an image change for a vertex of x in D which is a copy of some vertex in G. Therefore, the
important changes are in G ⋊H+2, which means moving from a vertex (x, a, b) to some (y, c, d) in
G ⋊H+2. These movements are essentially governed by moving inside strong components of H+2.
When Shift reaches a sink strong component (a component that does not have any arc to another
component), then it stays on that component until no further changes to the images are necessary.

Let G be a digraph obtained from the projection of the vertices of G⋊H+2 on the first coordinate.
Note that G has the same vertices as G, and xy is an arc of G whenever (x, a, b)(y, c, d) is an arc of
G ⋊H+2.

To show that procedure Shift stops, we need to show that it does not encounter a circuit.
A circuit is formed if procedure Shift changes the image of some vertex x ∈ D ∩ G from a0 to
a1, and then from a1 to a2, and eventually from some an to a0 again. It turns out that all the
pairs (a1, a0), (a2, a1), . . . , (an, an−1), (a0, an) must be in the same strong component of H+2 (for
simplicity we use only single subscripts for ai’s). Notice that this circuit occurs in L(X) where X is

18

x y u x

a0

a1

a2

a1

a2

a0

x y u x

a0

a1

a2

a1

a2

a0

In G

Lists

Figure 2: A circuit of length three in list of a cycle of length three in D.

a cycle containing vertex x in G. Since ai ∈ L(x), there is a closed walk Qi, from ai to ai in L(X).
A technical theorem, Theorem 5.4 in [18], gives a structural property of the paths that are obtained
from directed paths in H+2 from (ai+1, ai)⇝ (ai−1, ai), which eventually allows us to argue that
the Shift does not get into a circuit.

We use induction on the total number of elements in lists L. Notice that when ϕ(ar, aj) = ar
then for every (y, at, aq) ∈ G ⋊H+2 reachable from (z, ar, aj), we have ϕ(at, aq) = at. This follows
from Observation 3.10 (1). Therefore, we have the following observation.

Observation 3.11. Shift visits vertices (y, c, d) where ϕ(c, d) = c.

We show that procedure Shift, starting from z (z′) stops after polynomial many steps, and we
obtained a partial homomorphism f from D to H under which the weakly connected component of
D containing z (z′) is homomorphic to H. We first show that the procedure Shift does not enter a
circuit. One might imagine that at the beginning the image of x is shifted from a0 to a1 and then
following X, and walks P0 and P1 in L(X), the image of x is shifted from a1 to a2, and then finally,
by following the walks X and Pn, P0 in L(X), the image of x is shifted from an to a0 (see Figure
2 (left)). It follows that Pi+1 avoids Pi (Pn+1 = P0). This means that Pi (from ai to ai+1) avoids
Pi−1 (from ai−1 to ai) where both Pi−1 and Pi are in L(X). Therefore, we get pairs

C : (a1, a0), (a2, a1), . . . , (an, an−1), (a0, an)

in H+2 so that (ai, ai−1)⇝ (ai+1, ai) by walks Pi and Pi−1.
Notice that by definition, all the (ai+1, ai)’s are in the same strong component S1 of H+2. We

assume that among all the circuits in Ŝ1 (a set of pairs that are reachable from S1), C has the
shortest length at least three in Ŝ1. The length two circuit is treated separately. This allows us
to use Theorem 5.4 (1,2,3) in [18], showing that for every i ̸= j, Pi and Pj avoid each other. Let
Qi+1 be a walk in L(X), from ai+1 to ai+1 (such a walk exists since ai+1 remained in L(x) after the
(2,3)-consistency check). Notice that Qi+1 is congruent with all of Pi’s. We may assume that Qi+1

and Pi have a maximum intersection. This means that if Qi+1 has a faithful arc at its l-th vertex to
Pi then Qi+1 follows Pi from the (l + 1)-th vertex. Let Pi−1 = b1, b2, . . . , br, Pi = c1, c2, . . . , cr and
Qi+1 = d1, d2, . . . , dl, cl+1, . . . , cr where cr = ai+1, br = ai, d1 = ai+1, c1 = ai, and b1 = ai−1.

19

Claim 3.12. For each Qi+1, there is a vertex dj ∈ Qi+1 so that each Pℓ has a faithful arc to dj.
Moreover, there is a vertex dt ∈ Qi+1, j ≤ t, such that dt has faithful arcs to every Pℓ.

Proof. We consider two cases depending on whether the pairs in S1 are semilattice pairs or majority
pairs.

Case 1. First assume that S1 contains semilattice pairs (by Observation 3.10(6), all the pairs in S1
are semilattice). Moreover, by Observation 3.11 for every pair (a, b) ∈ S1 we have ϕ(a, b) = a.

If there is no faithful arc from Q−1
i+1 to P−1

i then (ai+1, ai) ⇝ (ai+1, ai−1) (using Q−1
i+1 and

P−1
i−1). Now we have (ai, ai−1) ⇝ (ai+1, ai) ⇝ (ai+1, ai−1) ⇝ (ai+2, ai), which implies a shorter

circuit, a contradiction. Thus, let djbj−1, j ≤ l, be a faithful arc from Q−1
i+1 to P−1

i−1. Now

djcj−1 must be a faithful arc from Q−1
i+1 to P−1

i . Otherwise, (ai+1, ai) ⇝ (ai−1, ai) (using walks

Qi+1[d1, dj]P
−1
i [bj−1, b1] and Pi[c1, cj]P

−1
i [cj−1, c1]). On the other hand, we have (ai, ai−1) ⇝

(ai+1, ai). Thus, we have (ai, ai−1)⇝ (ai+1, ai)⇝ (ai−1, ai), a shorter circuit (also implying that
(ai, ai−1) is not semilattice), and a contradiction.

Similarly, if djcj−1 is a faithful arc from Q−1
i+1 to P−1

i , then djbj−1 must be a faithful arc. Now,
by applying this argument, for Pi−2, we conclude that djei−1 is a faithful arc where ei−1 is the
corresponding vertex to bj−1 on Pi−1 (the (j − 1)-th vertex on Pi−1). However, by extending this
argument to other Pℓ, one can show that for 0 ≤ ℓ ≤ n, djeℓ is a faithful arc where eℓ is the (j−1)-th
vertex on Pℓ (see Figure 2(right)).

Now consider R = Q−1
i+1[ai+1, dj]P

−1
i−1[bj−1, ai−1] and P−1

i+1. If there is no faithful arc from

P−1
i+1[ai+2, ei+1] to Q−1

i+1[ai+1, dj], then we have (ai+2, ai+1) ⇝ (ai+1, ai−1) (using R and P−1
i+1) im-

plying a shorter circuit when the length of the circuit is greater than three. However, when C has
length three, we have (a0, a2)⇝ (a2, a0), contradiction ϕ|a0,a2 being semilattice with ϕ(a0, a2) = a0.
Therefore, there is a faithful arc from P−1

i+1[ai+2, ei+2] to Q−1
i+1[ai+1, dj], and consequently there

is a faithful arc from Qi+1[dj , ai+1] to Pi+1. Now assume that dtfi+1 is a faithful arc from
Qi+1[dj , ai+1] to Pi+1 (note that t ≥ j). Consider the walks R = Q−1

i+1[ai+1, dt]Pi+1[fi+1, ai+2]

and T = P−1
i−1[ai, bt]Pi−1[bt+1, ai]. Notice that dtbt+1 (bt+1 ∈ Pi−1) is a faithful arc; otherwise, we

have (ai+1, ai) ⇝ (ai+2, ai) (using R and T), a shorter circuit in Ŝ1, a contradiction. Now by
continuing this argument for P−1

i−2 and P−1
i−1[ai, bt+1]dtPi+1[fi+1, ai+2], we conclude that dtfi−2 is a

faithful arc where fi−2 ∈ Pi−2. In general we would have dt has a faithful to every Pℓ, 0 ≤ ℓ ≤ n.

Case 2. All the pairs (ai+1, ai) are invertible pairs. Thus, by Observation 3.10 (6), ψ is majority
on all the pairs in S1. We assumed that the length of C is at least three. There must be a
faithful arc from Q−1

i+1 to P−1
i−1, otherwise, (ai+1, ai)⇝ (ai+1, ai−1)⇝ (ai+2, ai), and hence, we get a

shorter circuit (a1, a0), (a2, a1), . . . , (ai, ai−1), (ai+2, ai), (ai+3, ai+2), . . . , (a1, an) in Ŝ1. However, by
applying the same argument as in Case 1, the claim holds, as long as we assume the length of C is
greater than two and we don’t make the circuit shorter. So it remains to consider the case where
the length of C is three. By symmetry, we may assume ψ(a0, a1, a2) = a1. By applying ψ on walks
P0, P1, P2 (in L(X)) from a0, a1, a2 to a1, a2, a0 (respectively) and the fact that P0, P1, P2 pairwise
avoid each other, we conclude that ψ(a1, a2, a0) = a2.

Now by applying ψ on Q0, P1, and P2, we get from a0, a1, a2 to a0, a2, a0 (respectively). Since
ψ(a0, a1, a2) = a1 and ψ(a0, a1, a0) = a0, there must be a faithful arc from P1 to Q0, say arc cd.
Let us assume cd is the first such an arc. Now by starting from a0, a2, a1 and applying ψ on walk

20

R0 = Q0[a0, d], R2 = P2[a2, e], R1 = P1[a1, c]d, we get from a0, a2, a1 to d, e, d (respectively) where
e ∈ P2. We show that e′d is a faithful where e′e (ee′) is an arc of P2. Suppose this is not the case.
Then (a2, a1) and (e, d) are in S1 and hence ψ|d,e is majority (since R1 and R2 avoid each other).

Following R0, R1, and R2 and apply ψ on them, we get from a0, a2, a1 to d, e, d and since,
ψ(d, e, d) = d, and ψ(a0, a2, a1) = a2, there must be a faithful arc from R2 to R0. Let c′d′ be such
an arc and observe that d′ is before d. Now by applying ψ on walks Q0[a0, d

′], P1[a1, f
′], P2[a2, c

′]d′,
we get from a0, a1, a2 to d′, f ′, d′ (f ′ ∈ P1 is the corresponding to d′ ∈ Q0). Again similar to the
previous argument, since ψ(a0, a1, a2) = a1 and ψ(d′, f ′, d′) = d′ there must be a faithful arc from
P1[a1, f

′] to Q0, contradicting that cd is the first faithful arc from P1 to Q0. This shows that e′d is
a faithful arc.

By applying ψ on walks P−1
2 [a0, e

′]d and P−1
0 [a1, b

′]b (here b′b ∈ P0 is the corresponding arc to
cd) starting from a0, a1, a2 to d, b, d (respectively) we get from ψ(a0, a1, a2) = a1 to ψ(d, b, d) = d,
and hence, b′d must be a faithful arc. This establish the first part of the Claim, i.e. having faithful
arcs b′d, cd and e′d from P0, P1, P2 to Q0 respectively.

To show that second part of the claim, we start by applying ψ on walks P−1
0 [a0, b

′], P−1
1 [a2, c]

and Q−1
0 [a0, q]b

′ from a1, a2, a0 to b′, c, b′ respectively. Thus, we get from ψ(a1, a2, a0) = a2 to
ψ(b′, c, b′) = b′. Therefore, there must be a faithful arc from P−1[a2, c] to Q−1[a2, c]. Thus, there is
a faithful arc from Q0 to P1 after d, say, r ∈ Q0. Now analogously to what we have shown to obtain
faithful arcs b′d, cd and e′d, we conclude that there are faithful arcs from r to P0, P1 and P2. This
complete the proof of the claim.

From Claim 3.12, we conclude the following :

• There is a path in L(X) from each ai to each ak, that starts from ai follows Pi then switches
to Qi+1 at dj , and following Qi+1 and then switches to Pk−1 from dt and then gets to ak.

Now suppose the previous image of X, has been determined by some Pt. Since Shift chooses
the edges of the new image of X according to the pair consistency constraints, Shift starts from
at+1, and follows Pt+1 and then switches to Qi+1 and since there is a faithful arc from Qi+1 to Pt,
then Shift does not change all images of X, and hence, X is mapped to a closed cycle in L(X).

Observation 3.13. The Algorithms leaves the current component S1.

Proof. This is because the algorithm starts from (x, at, at+1) and then reaches some (y, dj , b) (here
dj ∈ Qi+1) and b ∈ Pt, and then to (y′, dt, b

′) where b′ ∈ Pt and dt ∈ Qi+1. Since Qt+1 has a faithful
arc to every Pℓ in dt, (dt, b

′) is not in the same strong component as S1.

Finally, consider the case where the length of C is two. Observe that all pairs in S1 are invertible
pairs. This is because we have (a1, a0)⇝ (a0, a1), contradiction to ϕ(a1, a0) = a1. However, when
the length of the circuit is two, Shift must take the walk Q0 (Q1) and therefore it does not enter a
circuit.

3.6 Analyzing the approximation ratio

We now claim that, the expected cost of homomorphism f is at most |V (H)| times the minimum
cost of a homomorphism from D to H. Let W denote the value of the objective function with the
fractional values xu,ai , xu′,bπ(i)

, and W ′ denote the cost of homomorphism returned by Algorithm 1,

21

i.e., value of the objective function with the final values χu,ai , χu′,bπ(i)
, after rounding and shifting.

Also, let W ∗ be twice the minimum cost of a homomorphism of D to H (see Lemma 3.2). Obviously,
W ≤W ∗ ≤W ′.

We show that the expected value of W ′ is at most |V (H)| times W . Let us focus on the
contribution of one summand, say χu,at − χu,at+1 , to the calculation of the cost.

In any integral solution, χu,at − χu,at+1 is either 0 or 1. The probability that χu,at − χu,at+1

contributes to W ′ is the probability of the event that χu,at = 1 and χu,at+1 = 0. This can happen in
the following situations:

1. u (u′) is mapped to at (bs) by rounding, and is not shifted away. In other words, we have
χu,at = 1 and χu,at+1 = 0 after rounding, and these values do not change by procedures Shift.

2. u (u′) is first mapped to some ai (bj), by rounding, and then re-mapped to at (bs) by procedures
Shift.

We next present the following lemma which facilitates the proof of the approximation factor by
looking at the contribution of every term of the objective function.

Lemma 3.14. Let f be the homomorphism returned by Algorithm 1. Then for u, u′ ∈ B(D) and
at, bπ(t) ∈ B(H) we have

P
[
χu,at = 1, χu,at+1 = 0 i.e. f(u) = at

]
≤ xu,at − xu,at+1 (3.1)

P
[
χu′,bπ(t)

= 1, χu′,bπ(t)+1
= 0 i.e. f(u′) = bπ(t)

]
≤ xu′,bπ(t)

− xu′,bπ(t)+1
(3.2)

Moreover, the expected contribution of each summand, say c(u, at)(χu,at − χu,at+1), to the expected
cost of W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1).

Proof. After the rounding step using the random variable X, we have a homomorphism f :
V (B(G))→ V (B(H)), where f(v) = ai if xu,ai+1 < X ≤ xu,ai , and f(u′) = bj if xu′,bj+1

< X ≤ xu′,bj .
Observe that due to constraints (C4) and (C7) each connected component of B(G) is mapped to a
connected component of B(H). Since, each connected component of B(D) and B(H) consists of
paths of length at most three and ordering is a min-max ordering each edge of B(D) is mapped to
an edge of B(H), and hence, f is a homomorphism from B(D) to B(H).

Vertex u is mapped to at in two cases. The first case is where u is mapped to at by rounding,
and is not shifted away. In other words, we have χu,at = 1 and χu,at+1 = 0 after rounding, and these
values do not change by procedure Shift. Hence, for this case we have:

P[f(u) = at] ≤ P[xu,at+1 < X ≤ xu,at] = xu,at − xu,at+1

where the first inequality follows from the fact that the probability that the image of u is not
changed by Shift procedure is at most 1. Whence, this situation occurs with probability at
most xu,at − xu,at+1 , and the expected contribution of the corresponding summand is at most
c(u, at)(xu,at − xu,at+1).

Second case is where f(u) is set to at during procedure Shift. Let f be the mapping from
V (B(D)) to V (B(H)) at the beginning of Shift. Recall that Shift is triggered by an unstable
vertex, say z, where f(z) = ar, f(z′) = bπ(j) , and r ̸= j.

22

We start off with the simplest case where u is unstable and Shift stabilizes u by mapping u
to at. This happens when χu,ai = χu′,bπ(t)

= 1, χu,ai+1 = χu′,bπ(t)+1
= 0 (f(u) = ai, f(u′) = bπ(t))

(depending on the value of ϕ on Base(ai) and Base(at)). Followed by the previous analyses, u′ is
mapped to bπ(t) with probability at most xu′,bπ(t)

− xu′,bπ(t)+1
. Moreover, constraint (C6) enforces

that xu,at − xu,at+1 = xu′,bπ(t)
− xu′,bπ(t)+1

. This therefore yields u is mapped to at with probability
at most xu,at − xu,at+1 . There are at most |V (H)| such vertices ai, making u unstable. Thus, we
conclude that the expected contribution of c(u, at) to W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1)
in this case.

In general the image of u is shifted to at during Shift if there exists an unstable vertex z, with
f(z) = ar, f(z′) = bπ(j), r ̸= j. Suppose Shift starts by setting f(z′) = bπ(r) and reaches to u
via a walk Q in D. The case where z = u was considered in the previous paragraph. Let Q be
z = u1, u2, . . . , uk, u and this is the last time image of u is shifted from a (fixed) ai and it lands on
at. We use induction on k.

For the base case, consider k = 1. Let r be the maximum index such that there exists an
unstable vertex z with f(z) = ar and uz ∈ A(D). Note that this means f(z′) = bπ(j) such that
aibπ(j) ∈ E(B(H)) and r ̸= j. Define events R and T as follows:

Event R: there exists an unstable vertex z such that uz is an arc of A(D), and u is mapped to
ai and z is mapped to ar before the call of Shift (in the rounding stage according to random
variable X).

Event T : the image of u is shifted to at from ai.

We give an upper bound on the probability of event T given event R. That is, P[T | R]. Observe
that since random variables X and Y0 are independent, these two events are independent, and hence,
P[T | R] = P[T]P[R]. Define

β = max
w∈U

xw,ar+1 ; U = {w | uw ∈ A(D) and w is unstable}. (3.3)

Because of the choice of ar we have:

P [event R happens] ≤ min

{
xu,ai ,max

w∈U
xw,ar

}
−max

{
xu,ai+1 , β

}
(3.4)

≤ xz,ar − β (z = argmax
w∈U

xw,ar)

≤ xz,ar − xz,ar+1 (3.5)

Now, consider event T . Let C = {al | (al, bπ(r)) ∈ L2(u, z′)}. Then

P [event T happens] = (xu,at − xu,at+1)/
∑
al∈C

(xu,al − xu,al+1
) (3.6)

Constraint (C6) enforces that (xz,ar−xz,ar+1) = (xz′,bπ(r)
−xz′,bπ(r)+1

). Followed by constraint (C7-2)
we have (xz′,bπ(r)

− xz′,bπ(r)+1
) ≤

∑
al∈C

(xu,al − xu,al+1
). Therefore:

P[T | R] = P[T]P[R] (3.7)

≤ (xz′,bπ(r) − xz′,bπ(r)+1
)(xu,at − xu,at+1)/(

∑
al∈C

(xu,al − xu,al+1
)) (3.8)

≤ (xu,at − xu,at+1) (3.9)

23

Notice that there could exist other vertices v where uv ∈ A(D), and v was originally unstable,
with f(v) = aℓ. If ataℓ is not an arc, then the image of v also changes, and v becomes stable in this
round. Now suppose ataℓ ∈ A(H). Then in the next round when Shift stabilizes v, the image of u
will not change, when the image of v′ is changes to bπ(ℓ), and image of f(v) stays as aℓ. Moreover, if
the image of v changes to aπ−1(l) where f(v′) = bl, l ̸= π(ℓ), and ataπ−1(l) is not an edge of H then
the image of u is shifted away from at and the event of mapping u to at no longer occurs. These
show that only one unstable neighbor of u, say z, should be considered in computing the probability
of shifting the image of u to at, according to the rules of Shift.

Now, for k > 1 we should consider the situation where the vertex right before u, namely uk, has
been shifted, and as a consequence, the image of u should be shifted to at, which is an in-neighbor (out-
neighbor) of al = f(uk). By induction hypothesis on k, we have P[f(uk) = al] ≤ (xuk,al

− xuk,al+1
).

Let Pu =
∑

(ai,al)∈L2(u,uk)

(xu,ai − xu,ai+1). Suppose we have used random variable Y0 to shift

the image of uk to f(uk). Now, we shift the image of u from ai to at with probability Pu,at =
(xu,at − xu,at+1)/Pu, according to random variable Y1, provided that the event that shift the image
of uk to f(uk) occurs. By induction hypothesis this event is bounded by (xuk,al

− xuk,al+1
), and it

was solely according to random variable Y0. Since Y0 and Y1 are independent, the probability that
u is mapped to at is at most :

P[f(u) = at] = P
[
f(uk) = al

]
Pu,t

≤ (xuk,al
− xuk,al+1

)(xu,at − xu,at+1)/Pu

≤ (xu,at − xu,at+1).

The last inequality is due to constraint (C7), stating that (xuk,al
− xuk,al+1

) ≤ Pu. Now consider
a different vertex v where there exists an oriented path R from v to u and v is also unstable with
f(v) = ar and f(v′) = bπ(j) with j ≠ r before the process of making z stable. If SBFS goes from
(u, at, ai) to (v, as, aj), then it means v becomes stable. On the other hand, if there exists an oriented
walk P in L(R−1) from aj to at, during the process of changing the image of v and making it stable,
the image of u may changes meaning that the event of mapping u to at will not occur. Again, only
one unstable neighbor of u, say z, should be considered in computing the probability of shifting the
image of u to at, according to the rules of Shift.

Clearly, during the procedure Shift, the image of u can be shifted to at because this shift can
be initiated from any image bl for some y′ which is not stable. Observe that there are at most
|V (H)| − 1 of such situations. Therefore, the contribution of u and at to the expected value of W ′

(in the Shift stage) is at most (|V (H)| − 1)c(u, at)(xu,at − xu,at+1) where (xu,at − xu,at+1) is the
upper bound on the probability provided before.

Overall, considering the rounding and Shift, the contribution of u and at to the expected value
of W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1).

Theorem 3.15. Algorithm 1 returns a homomorphism with expected cost at most |V (H)| times
optimal solution. The algorithm can be derandomized to obtain a deterministic |V (H)|-approximation
algorithm.

24

Proof. By Lemma 3.14 and linearity of expectation, for the expected value of W ′ we heve

E[W ′] = E

∑
u,i

c(u, ai)(χu,ai − χu,ai+1) +
∑
v′,j

c(v′, bj)(χv′,bj − χv′,bj+1
)

=

∑
u,i

c(u, ai)E[χu,ai − χu,ai+1] +
∑
v′,j

c(v′, bj)E[χv′,bj − χv′,bj+1
]

≤ |V (H)|(
∑
u,i

c(u, ai)(xu,ai − xu,ai+1) +
∑
v′,j

c(v′, bj)(χv′,bj − χv′,bj+1
))

≤ |V (H)|W ≤ |V (H)|W ∗.

Thus Algorithm 1 outputs a homomorphism whose expected cost is at most |V (H)| times the
minimum cost. It can be transformed to a deterministic algorithm as follows. There are only
polynomially many values xu,at (at most |V (D)| · |V (H)|). When X lies anywhere between two such
consecutive values, all computations will remain the same. Similarly, when Y0 or Y1 lies anywhere
between two consecutive xu,ats, all the computations remain the same. Moreover, for any given
X and Y0, Y1, the rounding and shifting algorithms can be performed in polynomial time. Thus,
we can derandomize the algorithm by trying all the possible values for X and Y0, Y1 and simply
choose the pair that gives us the minimum homomorphism cost. Since the expected value is at most
|V (H)| times the minimum cost, this bound also applies to this best solution. The running time of
such proceudre is (|G||H|)3.

References

[1] Sanjeev Arora, László Babai, Jacques Stern, and Z Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. Journal of Computer and System
Sciences, 54(2):317–331, 1997.

[2] Per Austrin. Towards sharp inapproximability for any 2-csp. SIAM Journal on Computing,
39(6):2430–2463, 2010.

[3] Amotz Bar-Noy, Mihir Bellare, Magnús M Halldórsson, Hadas Shachnai, and Tami Tamir. On
chromatic sums and distributed resource allocation. Information and Computation, 140(2):183–
202, 1998.

[4] Amey Bhangale and Subhash Khot. Optimal inapproximability of satisfiable k-lin over non-
abelian groups. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1615–1628. ACM, 2021.

[5] Amey Bhangale, Subhash Khot, and Dor Minzer. On approximability of satisfiable k -csps: I.
In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 976–988. ACM, 2022.

[6] Amey Bhangale, Subhash Khot, and Dor Minzer. On approximability of satisfiable k -csps:
II. In STOC ’23: 55th Annual ACM SIGACT Symposium on Theory of Computing, Orlando,
Florida, USA, June 20 - 23, 2023. ACM, 2023.

25

[7] Amey Bhangale, Subhash Khot, and Dor Minzer. On approximability of satisfiable k -csps:
III. In STOC ’23: 55th Annual ACM SIGACT Symposium on Theory of Computing, Orlando,
Florida, USA, June 20 - 23, 2023. ACM, 2023.

[8] Andrei A Bulatov. Tractable conservative constraint satisfaction problems. In Logic in Computer
Science (LICS) , 2003. Proceedings. 18th Annual IEEE Symposium on, pages 321–330. IEEE,
2003.

[9] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean
constraint satisfaction problems, volume 7 of SIAM monographs on discrete mathematics and
applications. SIAM, 2001.

[10] Krzysztof Giaro, Robert Janczewski, Marek Kubale, and Micha l Ma lafiejski. A 27/26-
approximation algorithm for the chromatic sum coloring of bipartite graphs. In International
Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX), pages
135–145. Springer, 2002.

[11] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[12] Gregory Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for minimum cost
graph homomorphisms. European Journal of Combinatorics, 29(4):900–911, 2008.

[13] Gregory Gutin, Arash Rafiey, Anders Yeo, and Michael Tso. Level of repair analysis and
minimum cost homomorphisms of graphs. Discrete Applied Mathematics, 154(6):881–889, 2006.

[14] Magnús M Halldórsson, Guy Kortsarz, and Hadas Shachnai. Minimizing average completion of
dedicated tasks and interval graphs. In Approximation, Randomization, and Combinatorial
Optimization: Algorithms and Techniques, pages 114–126. Springer, 2001.

[15] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798–
859, 2001.

[16] Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. Approximation
of minimum cost homomorphisms. In European Symposium on Algorithms (ESA), pages 587–598.
Springer, 2012.

[17] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford University Press, 2004.

[18] Pavol Hell, Akbar Rafiey, and Arash Rafiey. Bi-arc digraphs and conservative polymorphisms.
arXiv preprint :1608.03368v5 (2020), 2020.

[19] Pavol Hell and Arash Rafiey. The dichotomy of list homomorphisms for digraphs. In Proceedings
of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms (SODA), pages
1703–1713. Society for Industrial and Applied Mathematics, 2011.

[20] Pavol Hell and Arash Rafiey. The dichotomy of minimum cost homomorphism problems for
digraphs. SIAM Journal on Discrete Mathematics, 26(4):1597–1608, 2012.

26

[21] Tao Jiang and Douglas B West. Coloring of trees with minimum sum of colors. Journal of
Graph Theory, 32(4):354–358, 1999.

[22] Peter Jonsson and Gustav Nordh. Introduction to the maximum solution problem. In Complexity
of Constraints, pages 255–282. Springer, 2008.

[23] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2001.

[24] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357,
2007.

[25] Leo G Kroon, Arunabha Sen, Haiyong Deng, and Asim Roy. The optimal cost chromatic
partition problem for trees and interval graphs. In International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), pages 279–292. Springer, 1996.

[26] Ewa Kubicka and Allen J Schwenk. An introduction to chromatic sums. In Proceedings of the
17th conference on ACM Annual Computer Science Conference, pages 39–45. ACM, 1989.

[27] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On lp-based
approximability for strict csps. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1560–1573. SIAM, 2011.

[28] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the max
2-sat and max di-cut problems. In International Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages 67–82. Springer, 2002.

[29] Akbar Rafiey, Arash Rafiey, and Thiago Santos. Toward a dichotomy for approximation of
h-coloring. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 91:1–91:16, 2019.

27

	Introduction
	Our results and proof techniques:
	Algorithm and proof overview of Theorem 1.6

	Future directions

	Definitions and preliminaries
	The approximation algorithm
	Transformation:
	Preprocessing and consistency checks
	Linear Program (LP) formulation
	LP rounding and finding a homomorphism from D to H
	Correctness and analysis
	Proof of Lemma 3.5

	Analyzing the approximation ratio

