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THE DICHOTOMY OF MINIMUM COST HOMOMORPHISM
PROBLEMS FOR DIGRAPHS∗
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Abstract. The minimum cost homomorphism problem has arisen as a natural and useful
optimization problem in the study of graph (and digraph) coloring and homomorphisms: it unifies a
number of other well studied optimization problems. It was shown by Gutin, Rafiey, and Yeo that
the minimum cost problem for homomorphisms to a digraph H that admits a so-called extended Min-
Max ordering is polynomial time solvable, and these authors conjectured that for all other digraphs H
the problem is NP-complete. In a companion paper, we gave a forbidden structure characterization
of digraphs that admit extended Min-Max orderings. In this paper, we apply this characterization
to prove Gutin’s conjecture.
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1. Introduction. A homomorphism of a digraph G to a digraph H is a mapping
f : V (G) → V (H) such that xy ∈ A(G) implies f(x)f(y) ∈ A(H). The minimum
cost homomorphism problem for H , denoted MinHOM(H), asks whether or not an
input digraph G, with integer costs ci(u), u ∈ V (G), i ∈ V (H), and an integer k,
admits a homomorphism to H of total cost

∑
u∈V (G) cf(u)(u) not exceeding k. The

problem MinHOM(H) was first formulated in [19]; it unifies and generalizes several
other problems [21, 28, 30, 31, 33], including two other well studied homomorphism
problems, the problem HOM(H) asking for just the existence of homomorphisms [22],
and the problem ListHOM(H) asking for the existence of homomorphisms in which
vertices of G map to vertices of H from given allowed lists [10].

For undirected graphs H , the complexity of HOM(H), ListHOM(H), and
MinHOM(H) was classified in [22, 10, 15]. Namely, HOM(H) is polynomial time
solvable if H is bipartite or has a loop, ListHOM(H) is polynomial time solvable if
H is a bi-arc graph, and MinHOM(H) is polynomial time solvable if each component
of H is a reflexive proper interval graph or an irreflexive proper interval bigraph. In
all other cases the problems are NP-complete. Thus in all three cases, the classifi-
cation is a dichotomy, in the sense that each problem HOM(H), ListHOM(H), or
MinHOM(H) is polynomial time solvable or NP-complete. Moreover, given a graph
H , deciding whether H is bipartite or has a loop, whether H is a bi-arc graph, and
whether each component of H is a reflexive proper interval graph or an irreflexive
proper interval bigraph is polynomial in terms of the size of the graph H [22, 10, 15].
Thus these dichotomies are polynomial time classifications, in terms of H .
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1598 PAVOL HELL AND ARASH RAFIEY

For digraphs, the dichotomy of HOM(H) is an important unproved conjecture,
equivalent to the so-called dichotomy conjecture [13, 5]. Recent progress specifically
on classifying the complexity of HOM(H) for classes of digraphs H was reported in
[2, 3]; cf. [1].

A dichotomy of ListHOM(H) for general structures is given in [4]. It implies
dichotomy for digraphs; however, this general dichotomy is not a polynomial classifi-
cation. A polynomial dichotomy classification of ListHOM(H) for digraphs is reported
in [27]; cf. also [11, 12].

A dichotomy of MinHOM(H) for general structures (cf. [9]) is given in [34]. It
again implies dichotomy for digraphs but is not a polynomial classification. A poly-
nomial dichotomy classification of MinHOM(H) for reflexive digraphs was proved in
[14]. Other special cases were treated in [25]. In this paper we provide a polynomial
dichotomy classification of MinHOM(H) for general digraphs. (A preliminary version
was posted in [24].)

At the heart of our minimum cost homomorphism algorithms is the following
concept.

Let H be any digraph. A linear ordering < of V (H) is a Min-Max ordering of H
if it satisfies the following Min-Max property:

if u < w and z < v and uv, wz ∈ A(H), then uz ∈ A(H) and wv ∈ A(H).
An undirected graph (viewed as a symmetric digraph) admits a Min-Max ordering

if and only if each component is either a reflexive proper interval graph or an irreflexive
proper interval bigraph [15]. Thus digraphs with Min-Max orderings can be viewed
as digraph analogues of proper interval graphs and bigraphs. It turns out that this
is not a coincidence—we have shown in a companion paper that the digraphs that
admit a Min-Max ordering also have an equivalent characterization using an interval
representation akin to that for proper interval graphs and bigraphs [26].

Proper interval graphs (and bigraphs) are characterized by simple forbidden struc-
tures and recognized in polynomial time [32]; cf. [15]. In our companion paper, we
have given a forbidden structure characterization of digraphs admitting a Min-Max
ordering.

It follows from [15, 14] that both for symmetric digraphs (undirected graphs)
and for reflexive digraphs, MinHOM(H) is polynomial time solvable if H admits a
Min-Max ordering, and is NP-complete otherwise. This is not the case for general
digraphs, as certain extended Min-Max orderings (defined in a later section) also imply
a polynomial time algorithm [17]. However, it was conjectured by Gutin, Rafiey, and
Yeo [17] that MinHOM(H) is NP-complete unless H admits an extended Min-Max
ordering. Several special cases of the conjecture have been verified [14, 15, 16, 17, 18].
We apply our characterization of digraphs with extended Min-Max ordering to prove
this conjecture, obtaining a polynomial dichotomy classification of the minimum cost
homomorphism problems in digraphs. The problem MinHOM(H) is polynomial time
solvable if H has an extended Min-Max ordering, and is NP-complete otherwise. We
have shown in [26] that there is a polynomial time algorithm to test whether H has
an extended Min-Max ordering.

2. Background. If uv ∈ A(H), we say that uv is an arc of H , or that uv is a
forward arc of H ; we also say that vu is a backward arc of H . In any event, we say
that u, v are adjacent in H if uv is a forward or a backward arc of H . A walk in H is a
sequence P = x0, x1, . . . , xn of consecutively adjacent vertices of H ; note that a walk
has a designated first and last vertex. A path is a walk in which all xi are distinct.
A walk is closed if x0 = xn and is a cycle if all other xi are distinct. A walk is directed
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DICHOTOMY OF MINIMUM COST HOMOMORPHISMS 1599

if all arcs are forward. The net length of a walk is the number of forward arcs minus
the number of backward arcs. A closed walk is balanced if it has net length zero; oth-
erwise it is unbalanced. Note that in an unbalanced closed walk we may always choose
a direction in which the net length is positive (or negative). A digraph is balanced if
it does not contain an unbalanced closed walk (or equivalently an unbalanced cycle);
otherwise it is unbalanced. It is easy to see that a digraph is balanced if and only
if it admits a labeling of vertices by nonnegative integers so that each arc goes from
some level i to the level i+ 1. The height of H is the maximum net length of a walk
in H . Note that an unbalanced digraph has infinite height, and the height of a bal-
anced digraph is the greatest label in a nonnegative labeling in which some vertex has
label zero.

For any walk P = x0, x1, . . . , xn in H , we consider the minimum height of P to be
the smallest net length of an initial subwalk x0, x1, . . . , xi, and the maximum height
of P to be the greatest net length of an initial subwalk x0, x1, . . . , xi. Note that when
i = 0, we obtain the trivial subwalk x0 of net length zero, and when i = n, we obtain
the entire walk P . We shall say that P is constricted from below if the minimum
height of P is zero (no initial subwalk x0, x1, . . . , xi has negative net length), and
constricted if moreover the maximum height is the net length of P (no initial subwalk
x0, x1, . . . , xi has greater net length than x0, x1, . . . , xn). It is easy to see that a walk
which is constricted from below can be partitioned into two constricted pieces by
dividing it at any vertex achieving the maximum height.

For walks P from a to b, and Q from b to c, we denote by PQ the walk from a
to c which is the concatenation of P and Q, and by P−1 the walk P traversed in the
opposite direction, from b to a. We call P−1 the reverse of P . For a closed walk C,
we denote by Ca the concatenation of C with itself a times.

The following lemma is well known. (For a proof, see [20, 35] or Lemma 2.36
in [23].)

Lemma 2.1. Let P1 and P2 be two constricted walks of net length r. Then there
is a constricted path P of net length r that admits a homomorphism f1 to P1 and
a homomorphism f2 to P2, such that each fi takes the starting vertex of P to the
starting vertex of Pi and the ending vertex of P to the ending vertex of Pi.

We shall call P a common preimage of P1 and P2. In [26] we have proved the
following corollary of Lemma 2.1.

Corollary 2.2. Let P1 and P2 be two walks of infinite height, constricted from
below. Assume that Pi starts in pi, i = 1, 2, and let qi be a vertex on Pi, such that the
infinite portion of Pi starting from qi is also constricted from below, and the portions
of Pi from pi to qi have the same net length for i = 1, 2.

Then there is a path P that admits homomorphisms fi to Pi taking the starting
vertex of P to pi and the ending vertex of P to qi for i = 1, 2.

We define two walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to be con-
gruent if they follow the same pattern of forward and backward arcs; i.e., xixi+1 is a
forward (backward) arc if and only if yiyi+1 is a forward (backward) arc (respectively).
Suppose the walks P,Q as above are congruent. We say an arc xiyi+1 is a faithful arc
from P to Q if it is a forward (backward) arc when xixi+1 is a forward (backward)
arc (respectively), and we say an arc yixi+1 is a faithful arc from Q to P if it is a
forward (backward) arc when xixi+1 is a forward (backward) arc (respectively). We
say that P,Q avoid each other if there is no pair of faithful arcs xiyi+1 from P to Q,
and yixi+1 from Q to P , for some i = 0, 1, . . . , n.

We observe that if < is a Min-Max ordering of H and P = x0, x1, . . . , xn and
Q = y0, y1, . . . , yn are two congruent walks in H that avoid each other, then x0 < y0
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1600 PAVOL HELL AND ARASH RAFIEY

if and only if xn < yn. Indeed, if xi < yi and yi+1 < xi+1 then the Min-Max
property is not satisfied for xi, yi, xi+1, yi+1; a similar contradiction arises if yi < xi
and xi+1 < yi+1.

A symmetrically invertible pair in H is a pair of distinct vertices u, v such that
there exist congruent walks P from u to v and Q from v to u that avoid each other.
It follows from the above observation that if H has a symmetrically invertible pair,
then it cannot have a Min-Max ordering. It can also be shown that a digraph H
that contains an induced cycle of net length greater than one cannot have a Min-Max
ordering [26]. In fact, we have proved the following theorem.

Theorem 2.3 (see [26]). A digraph H admits a Min-Max ordering if and only
if H has no induced cycle of net length greater than one and no symmetrically invert-
ible pair.

A cycle of H is induced if H contains no other arcs on the vertices of the cycle.
In particular, an induced cycle with more than one vertex does not contain a loop.

We denote by �Ck the directed cycle on vertices 0, 1, . . . , k−1. We shall assume in
this section that H is weakly connected. Indeed, the minimum cost homomorphism
problem to H can be easily separated into subproblems corresponding to the weak
components of H ; moreover, any version of the Min-Max property also applies to each
individual weak component of H separately. This assumption allows us to conclude
that any two homomorphisms �, �′ of H to �Ck define the same partition of V (H)
into the sets Vi = �−1(i), and we will refer to these sets without explicitly defining a
homomorphism �.

A k-Min-Max ordering of a digraph H homomorphic to �Ck is a linear ordering
< of each set Vi, so that the Min-Max property (u < w, z < v and uv, wz ∈ A(H)
imply that uz ∈ A(H), wv ∈ A(H)) is satisfied for u,w and v, z in any two circularly
consecutive sets Vi and Vi+1, respectively (subscript addition modulo k). Any digraph

H is homomorphic to the one-vertex digraph with a loop �Ck, and a 1-Min-Max or-
dering of H is just the usual Min-Max ordering. A Min-Max ordering of a digraph H
becomes a k-Min-Max ordering of H for any �Ck to which H is homomorphic. There
are digraphs H with a k-Min-Max ordering that do not have a Min-Max ordering, say
H = �Ck (with k > 1). An extended Min-Max ordering of H is a k-Min-Max ordering
of H for some positive integer k.

We observe for future reference that an unbalanced digraph H has only a limited
range of possible values of k for which it could have a homomorphism to �Ck, and
hence a limited range of possible values of k for which it could have a k-Min-Max
ordering. It is easy to see that a cycle C admits a homomorphism to �Ck only if the
net length of C is divisible by k [23]. Thus any cycle of net length q > 0 in H limits
the possible values of k to the divisors of q. If H is balanced, it is easy to see that H
has a k-Min-Max ordering for some k if and only if it has a Min-Max ordering.

In [26] we have also proved the following theorem.
Theorem 2.4 (see [26]). Let H be a weakly connected digraph homomorphic to

�Ck for some positive integer k.
Then H admits a k-Min-Max ordering if and only if it contains no induced cycle

of positive net length other than k, and no symmetrically invertible pair such that u
and v belong to the same set Vi.

We have also proved in [26] that the conditions in each of the two theorems can
be tested in polynomial time. This implies that we can decide if H has a Min-Max
ordering or an extended Min-Max ordering in polynomial time. Suppose we want to
test whether or not a digraph H has an extended Min-Max ordering. As noted above,
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it suffices to check for each component of H separately, so we may assume that H is
weakly connected. If H is balanced, it is easy to see that H has an extended Min-Max
ordering if and only if it has a Min-Max ordering. Otherwise H has an unbalanced
cycle, say, of net length q. Then H has an extended Min-Max ordering if and only if
it has a k-Min-Max ordering for some k that divides q.

We apply Theorem 2.4 to prove the following result. The first statement (that
the existence of a k-Min-Max ordering implies a polynomial time algorithm) is proved
in [17]. The second statement (the NP-completeness claim) was a conjecture of Gutin;
cf. [17]. The third statement is justified above. (Note that the third statement refers
to polynomiality in terms of the size of H .)

Theorem 2.5. Let H be any digraph.
If H has an extended Min-Max ordering, then MinHOM(H) is polynomial time

solvable.
Otherwise, MinHOM(H) is NP-complete.
There is a polynomial time algorithm for deciding whether H has an extended

Min-Max ordering.
We prove Theorem 2.5 using our characterization in Theorem 2.4 by showing that

MinHOM(H) is NP-complete if H contains an induced unbalanced cycle of net length
other than k, or a symmetrically invertible pair u, v with u, v in the same set Vi; this
will be done in the next section.

3. The NP-completeness claims. Our basic NP-completeness tool is summa-
rized in the next lemma.

Lemma 3.1. Let H be a digraph with two vertices x, y, and let S be a digraph with
two vertices s, t. Suppose we have costs cj(i) of mapping vertices i of S to vertices j
of H where cx(s) = cx(t) = 1, cy(s) = cy(t) = 0, and such that there exists

• a homomorphism f : S → H mapping s to x and t to y of total cost 1 (i.e.,
in which all other vertices of S, different from s, t, map to vertices of H with
cost 0);

• a homomorphism g : S → H mapping s to x and t to x of total cost 2 (other
vertices map with cost 0);

• a homomorphism h : S → H mapping s to y and t to x of total cost 1 (other
vertices map with cost 0);

• no homomorphism S → H mapping s to y and t to y of total cost smaller
than 2.

Then MinHOM(H) is NP-complete.
Proof. Let G be an arbitrary graph, an instance of the maximum independent

set problem. We construct a corresponding instance D of MinHOM(H) by replacing
every edge of G by a copy of S. Note thatD contains all old vertices ofG, as well as the
new vertices, each lying in a separate copy of S. The costs ci(j), i ∈ V (H), j ∈ V (D),
are defined as follows:

• If v is an old vertex of G, then cx(v) = 1, cy(v) = 0, and cz(v) = |V (G)| for
all other z ∈ V (H);

• if v is a new vertex of D lying in a copy of S and corresponding to the vertex
v′ in S, then its costs are determined by the costs in S, namely ci(v) = ci(v

′)
for all i ∈ V (H).

Note that since we have cx(s) = cx(t) = 1, cy(s) = cy(t) = 0, the two parts of
the definition do not conflict. We now claim that G has an independent set of size k
if and only if there exists a homomorphism of D to H of cost |V (G)| − k. Indeed,
if I is an independent set in G, we define a homomorphism φ : D → H by setting
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φ(j) = y if j ∈ I, setting φ(j) = x if j ∈ V (G) \ I, and extending this mapping to a
homomorphism of D to H , using the mappings f, g, h. It is clear that the cost of φ
is exactly |V (G)| − |I|. Conversely, let f be any homomorphism of D to H of total
cost less than |V (G)|. Thus the old vertices of G must map to either x or y. If two
adjacent vertices of G are mapped to y, we incur a cost of at least 2. By mapping
one of the two vertices instead to x we decrease the cost of the mapping by at least 2
and increase it by 1, giving a net decrease of at least 1. Thus we may assume that
those vertices that map to y are independent. Since the old vertices of G that map
to x contribute a cost of 1 each, we conclude that if there is a homomorphism of cost
|V (G)| − k, then there is an independent set of size k in G.

One example in which we can easily use this lemma deals with a special case of
symmetrically invertible pairs.

Corollary 3.2. Suppose u, v is a symmetrically invertible pair in H with corre-
sponding walks P,Q, such that there exists at least one faithful arc from P to Q, but
there exist no faithful arcs from Q to P .

Then the problem MinHOM(H) is NP-complete.
Proof. We assume P = u = a1 . . . an = v and Q = v = b1 . . . bn = u, and let S =

s1 . . . sn be a path (all vertices are distinct) congruent to P (and Q). Define the cost of
mapping vertices of S to H as follows. Set cu(s1) = cu(sn) = 1, cv(s1) = cv(sn) = 0,
and cai(si) = cbi(si) = 0 for 1 < i < n. In any other case the cost is n.

Clearly there are obvious homomorphisms φ : S → P and ψ : S → Q. Let atbt+1

be a faithful arc from P to Q. Define also ζ : S → H to be the homomorphism defined
by ζ(si) = ai for 1 ≤ i ≤ t and by ζ(si) = bi for t + 1 ≤ i ≤ n. Suppose there is
homomorphism g : V (S) → V (P )∪V (Q) such that g(s1) = g(sn) = v. Then the cost
of g is at least n unless g(ri) is ai or bi. Since g(s1) = g(sn) = v, there has to be
a faithful arc from Q to P in H , which is a contradiction. Now by Lemma 3.1 the
problem MinHOM(H) is NP-complete.

We next consider the case where some symmetrically invertible pair has faithful
arcs both from P to Q and from Q to P .

It was noted in [15] that the following problem Π3 is NP-complete. Given a
three-colored graph G and an integer k, decide if there exists an independent set of
k vertices. It is easy to see that this fact can be generalized to the following problem
Π2m+1: Given a graph G with a homomorphism f : G→ C2m+1, decide if there exists
an independent set of k vertices.

Lemma 3.3. Each problem Π2m+1 is NP-complete.
Proof. Modify every instance G of Π2m−1 to an instance G′ of Π2m+1 by replacing

each edge of G between classes f−1(1) and f−1(2) by a path of length three.
We apply this result as follows.
Lemma 3.4. Suppose u, v is a symmetrically invertible pair in H with correspond-

ing walks P,Q, such that there exists at least one faithful arc from P to Q as well as
at least one faithful arc from Q to P .

Then MinHOM(H) is NP-complete.
Proof. The walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn can be organized

into segments P1, . . . Pk, Q1, . . . , Qk, where for each i all faithful arcs between P and
Q go from P to Q or from Q to P . Assume Pi = xri−1 , xri−1+1, . . . , xri and Qi =
yri−1 , yri−1+1, . . . , yri with r0 = 0, rk = n, and assume, without loss of generality, that
there are faithful arcs from P1 to Q1 but no faithful arcs from Q1 to P1, there are
faithful arcs from Q2 to P2 but no faithful arcs from P2 to Q2, etc. Note that if k is
odd, the faithful arcs of the last segment go from Q to P , and if k is even, they go
from P to Q. Let Ri be a path congruent to Pi (and Qi), and for simplicity assume
that Ri = ri−1, . . . , ri.
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Case 1. Assume k is odd.
We reduce Πk to MinHOM(H) as follows. Consider an instance of Πk, namely,

a graph G with a homomorphism f to Ck. Suppose the vertices of Ck are 1, 2, . . . , k
(consecutively, and viewed modulo k). Replace each edge uv of G having u ∈ f−1(i)
and v ∈ f−1(i + 1) (modulo k) by a copy Ri(u, v) of Ri, identifying ri−1 with u and
ri with v, obtaining a digraph D. The costs of mapping an old vertex (from G) u in
f−1(i) with i odd will be cxri

(u) = 1, cyri
(u) = 0, while the costs of mapping an old

vertex u in f−1(i) with i even will be cxri
(u) = 0, cyri

(u) = 1. For vertices inside the
substituted copies of R, we proceed as above, defining their costs to be zero only for
the corresponding vertices in R(u, v). All other costs are |V (G)|.

Suppose i is odd. Each homomorphism of Ri to D taking ri−1 to xri−1 and ri to
yri has a very high cost, but all other possibilities (ri−1 to xri−1 and ri to xri ; ri−1

to yri−1 and ri to yri ; and ri−1 to yri−1 and ri to xri) have cost 1. A similar analysis
applies to i even. A special consideration is needed for the last segment Rk, where
we use the fact that xrk = xn = y0 and yrk = yn = x0.

As in the proof of Corollary 3.2, these facts imply that G has an independent set
of size � if and only if D has a homomorphism to H of cost |V (G)| − �.

Case 2. Assume k is even.
In this case instead of the symmetrically invertible pair u, v with walks P,Q

we consider the symmetrically invertible pair yr1 , xr1 with walks P ′, Q′ where P ′ =
yr1 , . . . , yr2 , . . . , yrk−1

, . . . , yrk = yn = x0, . . . , xr1 , and Q′ = xr1 , . . . , xr2 , . . . ,
xrk−1

, . . . , xrk = xn = y0, . . . , yr1 . Note that there are no faithful arcs from xrk−1
, . . . ,

xrk = xn = y0, . . . , yr1 to yrk−1
, . . . , yrk = yn = x0, . . . , xr1 . Thus we obtain an odd

number of segments and can proceed as above, unless k = 2, in which case we have
only one segment and Corollary 3.2 applies.

We can now handle the case when H is balanced. Recall that this means that the
vertices of H have levels 0, 1, . . . , h so that each arc goes from some level i to level
i+ 1. It is easy to see that in a balanced digraph a symmetrically invertible pair u, v
must have u and v on the same level. Thus all symmetrically invertible pairs u, v must
have �(u) = �(v) in any homomorphism � : H → �Ck. Therefore, the NP-completeness
part of Theorem 2.5 in the balanced case reduces to the following statement.

Theorem 3.5. If a balanced digraph H contains a symmetrically invertible pair,
then MinHOM(H) is NP-complete.

Proof. By Corollary 3.2 and Lemma 3.4, we may assume that we have a symmet-
rically invertible pair u, v and corresponding walks P,Q with no faithful arcs between
P and Q. Consider the walk W in H∗ from (u, v) to (v, u) corresponding to P and Q.
If some (a, b) lies on W , then there is a walk in H∗ from (a, b) to (b, a) (because H∗

has an arc from (x, y) to (x′, y′) if and only it has an arc from (y, x) to (y′, x′)). Thus
we may assume that u, v are on the lowest level of P and Q. Let z be a vertex on the
highest level of P , and let w be the corresponding vertex on Q. Let R be the walk
obtained by following Q from v to w and then following Q−1 back from w to v. Let
the path S be the common preimage of P,Q, and R, obtained by applying Lemma
2.1 twice, since P,Q,R consist of two constricted pieces. Let f be the corresponding
homomorphism of S to P , let g be the corresponding homomorphism of S to Q, and
let h be the corresponding homomorphism of S to R. We define the cost of mapping
an internal vertex j of S to a vertex i of H as 0 if i ∈ {f(j), g(j), h(j)}; the cost of
mapping the first and the last vertex of S to v is 1 and to u is 0. In all other cases the
cost is |V (S)|. Note that there is no homomorphism from S to H which maps both
the beginning and the end of S to u of total cost smaller than |V (S)|, as otherwise
there would be a faithful arc from P to Q. Now by applying Lemma 3.1 to S and
f, g, h we conclude that MinHOM(H) is NP-complete.
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Corollary 3.6. Theorem 2.5 holds for balanced digraphs H.
Specifically, for a balanced digraph H the problem MinHOM(H) is polynomial

time solvable if H has a Min-Max ordering, and is NP-complete otherwise.
We observe that the same proof also applies for an unbalanced digraph H as

long as P (and hence Q) has net length zero. Specifically, if any digraph H has
a symmetrically invertible pair u, v with corresponding walks P,Q which have net
length zero, then MinHOM(H) is NP-complete.

We now focus on unbalanced digraphs H .
Theorem 3.7. Suppose H is weakly connected and contains two induced cycles

C1, C2, with net lengths k, n > 0, k �= n.
Then MinHOM(H) is NP-complete.
Proof. Suppose k > n, so k does not divide n. We may assume that H is minimal,

in the sense that no weakly connected subgraph H ′ of H with fewer vertices contains
two induced cycles with different nonzero net lengths. Indeed, if H ′ were such a
subgraph, then MinHOM(H ′) would be polynomially reduced to MinHOM(H) by
setting the cost of mapping to vertices of H not in H ′ to be very high.

Each cycle Ci, i = 1, 2, contains a vertex ui such that the walk starting in ui and
following Ci (in the positive direction) is constricted from below. Let U be a walk in
H from u1 to u2, and let u be a vertex on U of minimum height. By minimality, we
may assume V (H) = V (C1) ∪ V (C2) ∪ U . Let Pi, i = 1, 2, be the walk from u to ui
following U (or U−1), then once around Ci (in the positive direction), and then back
from u following U−1 (or U). It follows that each Pi is constricted from below. The
net length of P1 is k and the net length of P2 is n. Let Qi, i = 1, 2, be the infinite
walk starting at u obtained by repeatedly concatenating Pi, and let Q′

i be the two-
way infinite walk obtained by expanding Qi in the opposite direction by repeatedly
concatenating P−1

i .
Let d be greatest common divisor of n and k, and let a = k/d− 2. Thus (a+2)n

is the smallest positive common multiple of n and k. We now define the following
three walks W1,W2,W3 in H of net length (a+ 1)n:

1. The walkW1 starts at u and follows Q1 going around P1 until the last vertex
v such that the net length of the resulting walk is (a+ 1)n.

2. W2 also starts at u and follows Q2 going around P2 fully (a+1) times, ending
at u.

3. W3 starts at v and follows P1 until the first occurrence of u, and then continues
a times around P2, ending again at u.

Now we define, in analogy with Q1, Q2, also the infinite walk Q3, obtained from
W3 by continuing to go around P2. Because we chose v to be the last vertex on Q1

with the right net length, the walk W3 is constricted from below; of course W1,W2

are also constricted from below. Hence Q1, Q2, Q3 are also constricted from below;
they have infinite heights because C1, C2 have positive net length. Thus we can apply
Corollary 2.2 to Q1, Q2, Q3, obtaining a common preimage which is a path S, say,
s = s0, s1, . . . , sq = t, with homomorphisms f, g, h of S to Q1, Q2, Q3, respectively,
such that

1. f(s) = u, f(t) = v,
2. g(s) = g(t) = u,
3. h(s) = v, h(t) = u.

Note that the walk W ′
1 equal to u = f(s0), f(s1), . . . , f(sq) = v, the walk W ′

2

equal to v = g(s0), g(s1), . . . , g(sq) = u, and the walk W ′
3 equal to v = h(s0),

h(s1), . . . , h(sq) = u are congruent.
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Assume first thatW ′
1,W

′
3 do not avoid each other; i.e., for some i we have both the

faithful arcs (forward or backward) f(si)h(si+1), h(si)f(si+1). Note thatW
′
1∪W ′

2∪W ′
3

contains all the vertices of H , so the minimality of H easily implies that all four
vertices f(si), h(si), f(si+1), h(si+1) must belong to C1 ∪ C2. Since the cycles are
induced, we must have two vertices in each cycle. Up to symmetry, we may assume
we have forward arcs ab ∈ C1 and cd ∈ C2, as well as forward arcs ad, cb in H . Then,
say, a = f(si), b = f(si+1), c = h(si), d = h(si+1).

We first claim that C1, C2 do not have common vertices, or arcs joining them
other than ad, cb. Otherwise, let x on C1 be the first vertex following b in the direction
opposite to a, equal to or adjacent with some y on C2, and assume that y is the first
vertex of C2 following d, in the direction opposite to c, adjacent to x. Consider the
cycle D1 with arcs ab, ad, xy; the portion of C1 between b and x not containing a; and
the portion of C2 between d and y not containing c. Also consider the cycle D2 with
arcs cb, cd, xy, and the same portions of C1, C2. The cycles D1, D2 have the same
net length m. If m is not zero and not k, we could delete c and obtain a smaller
weakly connected H ′ with two different nonzero net lengths. If m is not zero and
not n, we could likewise delete a. Thus m = 0. If x has no neighbors on C2 other
than y, then consider instead of D2 the cycle D′

2 obtained from D2 by replacing the
portion of C2 between c and y containing d by the portion of C2 between c and y not
containing d. Since m = 0, the net length of D′

2 is n, so we can delete d and obtain
a smaller weakly connected H ′ with two different nonzero net lengths. Otherwise, let
y1, y2, . . . , yp be all the neighbors of x on C2 after y = y0, numbered consecutively in
the direction from y to c, away from d. Consider the cycles Yi containing x, yi, yi+1

and the segment of C2 between yi and yi+1 not containing d. Each Yi is an induced
cycle in H , and the sum of their net lengths is n. Hence at least one Yi has a nonzero
net length and we similarly obtain a contradiction with the minimality of H .

Thus H consists of C1, C2, and the two extra arcs (forward or backward) ad, cb;
in particular u ∈ C1 ∪ C2, and the path U uses ad or bc. Without loss of generality,
we may assume that it uses bc, since we can replace ad by ab, bc, cd. Suppose first
that u ∈ C1, whence we also have v ∈ C1. Consider the initial portion of W ′

1 from
v to b = f(si+1): it has net length equal to a multiple of k (corresponding to going
full rounds around the cycle C1) plus the net length of the portion X1 of C1 (in the
positive direction) from u to b. Consider next the initial portion of W ′

3 from v to c
followed by the arc joining c and b: it has net length equal to n (corresponding to
going from v to u, which must precede c ∈ C2) plus a multiple of n (correspond-
ing to going full rounds around the closed walk P2 from u to u) plus the net length
of the portion X2 of P2 (in the positive direction) from u to c concatenated with
the arc joining c and b. However, from u to c we must use the arc joining b and c.
Thus X2 uses the arc joining b and c first in one direction and then in the opposite
direction, whence the net lengths of X1, X2 are the same. This means that a mul-
tiple of n, smaller than (a + 2)n is also a multiple of k, which is impossible, by our
choice of a.

It remains to consider the case when W ′
1,W

′
3 avoid each other. We now assume

that of all homomorphisms f, g, h of S to Q1, Q2, Q3 satisfying properties (1, 2, 3)
and such that the resulting walks W ′

1,W
′
3 avoid each other, we have chosen ones that

maximize the number of vertices with f(si) = g(si) or g(si) = h(si).
If W ′

1,W
′
3 have at least some faithful arcs, then Corollary 3.2 and Lemma 3.4

imply MinHOM(H) is NP-complete. Thus we may assume that there are no faithful
arcs between W ′

1 and W ′
3.
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We now define the costs of mapping vertices x of S to vertices j of H as follows:
cj(x) = 2 except for cu(s) = cu(t) = 1, cv(s) = cv(t) = 0, and cj(si) = 0 when
j ∈ {f(si), g(si), h(si)}, j �= u.

By properties 1, 2, 3, we see that to apply Lemma 3.1 it remains to show that
there is no homomorphism of S to H of cost less than 2, taking both s and t to v.
Suppose, for a contradiction, that there is such a homomorphism φ. Then we must
have φ(s0) = h(s0), φ(sq) = f(sq), and each φ(si) ∈ {f(si), g(si), h(si)}. Since there
are no faithful arcs between W ′

1 and W ′
3, we cannot have h(si) and f(si+1) adjacent.

Thus, because of the costs, some h(si) and g(si+1) must be adjacent, and also some
g(sj) and f(sj+1) must be adjacent, with i < j. We now claim that this contradicts
the maximality of f, g, h. Indeed, we could redefine f to equal g up to sj (and then,
continuing as before, taking advantage of the arc joining g(sj) and f(sj+1)), obtaining
a newW ′

1 with at least one more vertex (namely si+1) having equality of f and g. (We
need to observe that the new W ′

1 still avoids W ′
3, which also follows by maximality of

f, g, h: there cannot be an arc between g(sp) �= h(sp) and h(sp+1).)
From the theorem we also derive the following corollary that will complete the

proof of Theorem 2.5.
Theorem 3.8. Suppose H is a digraph containing an induced cycle of net length

k > 0. If H is homomorphic to �Ck and contains a symmetrically invertible pair u, v
with u, v in the same set Vi, then MinHOM(H) is NP-complete.

Proof. Recall that P is a walk from u to v and that Q is a congruent walk with
P from v to u. Choose a homomorphism � : H → �Ck, and note that �(u) = �(v).
It follows that the net length of P (and of Q) is divisible by k. If there are faithful
arcs from P to Q or from Q to P , then by Corollary 3.2 or Lemma 3.4, MinHOM(H)
is NP-complete. So we may assume that there are no such faithful arcs. We may
also assume that the net length of P is greater than zero, as otherwise the remark
following Corollary 3.6 implies that MinHOM(H) is NP-complete. We now proceed to
find congruent walks from u to v and from v to u that avoid each other, and another
congruent walk from u to u, so that we can apply Lemma 3.1 in a fashion similar to
what was done in the proof of Theorem 3.7.

We may assume that P is constricted from below, as otherwise we replace u, v
by vertices u′ ∈ P , v′ ∈ Q, where u′ is a vertex of P with the minimum height,
and v′ is the corresponding vertex of v′ in Q. We have observed that u′, v′ is also a
symmetrically k-invertible pair; thus there are walks P ′ from u′ to v′ and Q′ from v′

to Q′ that avoid each other. It is easy to see that the minimality of u′ implies that
this new P ′ is constricted from below. Let C be a walk in H from u to a cycle of net
length k, followed by going around the cycle once in the positive direction and then
returning back on the same walk to u. Note that the net length of this walk is k.
We may again assume that C is constricted from below, as otherwise instead of P,Q
we could use P1, Q1, where P1 is obtained by concatenating P with (QP )a and Q1

is obtained by concatenating Q with (PQ)a for some positive a, such that the walk
from u (at the beginning of P1) to the (a− 1)th appearance of u in P1 followed by C
is a walk constricted from below.

Let the net length of P be �k, with � > 0. Let W be the infinite walk obtained
by repeatedly concatenating C; note that W is constricted from below. Let P ′ be
the infinite walk obtained by concatenating P with infinitely many repetitions of QP .
Let Q′ be the infinite walk congruent to P ′ obtained by similarly concatenating Q
with repetitions of PQ. Let C′ be the walk in W , from u to a vertex u′ that is the �th
occurrence of u in W . Now we apply Corollary 2.2 to obtain a path S = s0, s1, . . . , st
which is the common preimage of P,C′, Q. In this application, we use P ′,W,Q′ as the
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infinite walks and use the ends of P,C′, Q as the vertices qi. (Note that P,C′, Q all
have net length �k.) Corollary 2.2 also yields homomorphisms f, g, h of S to P ′,W,Q′

taking s0 to the beginnings of P ′,W,Q′ (also to the beginnings of P,C′, Q), and taking
st to the ends of P,C′, Q. Let P ′′ be the walk f(s0), f(s1), . . . , f(st), let Q

′′ be the
walk h(s0), h(s1), . . . , h(st), and let C′′ be the walk g(s0), g(s1), . . . , g(st). Observe
that P ′′, Q′′ avoid each other, and between the walks P ′′, Q′′ there are no faithful
arcs, because that was the case for P,Q.

Note that f(s0) = u and f(st) = v, g(s0) = g(st) = u, and h(s0) = v, h(st) = u.
We define the costs as follows: cu(s0) = cu(st) = 1, and cv(s0) = cv(st) = 0, and
ci(x) = 0 when i ∈ {f(x), g(x), h(y)}, x �= u. For any other case the cost is |V (S)|.

We now conclude the proof as in Theorem 3.7, assuming that the homomorphisms
f, g, h of S to V (P ′′) ∪ V (C′′) ∪ V (Q′′) satisfy properties 1, 2, 3, and maximize the
number of vertices with f(si) = g(si) or g(si) = h(si).

We are finally ready to conclude the Proof of Theorem 2.5, i.e., to prove Gutin’s
conjecture [17].

Recall that the polynomial case of the theorem has been established in [17]. For
the NP-completeness claim, the case when H is balanced is handled by Corollary 3.6.
Thus we may assume that H has an induced cycle of some positive net length k. It is
a well-known fact (e.g., Corollary 1.17 in [23]) that H has a homomorphism to �Ck if
and only if it does not contain a closed walk of net length not divisible by k. Suppose
first that H does not admit a homomorphism to �Ck. Then the above fact implies
that H contains an induced cycle of net length not divisible by k. Hence the problem
MinHOM(H) is NP-complete by Theorem 3.7. If, on the other hand, H does admit a

homomorphism to �Ck, with a symmetrically invertible pair u, v from the same set Vi,
then MinHOM(H) is NP-complete by Theorem 3.8. This completes the proof.
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