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Abstract. Let H be a fixed graph without loops. We prove that if H is a
co-circular arc bigraph then the minimum cost homomorphism problem
to H admits a polynomial time constant ratio approximation algorithm;
otherwise the minimum cost homomorphism problem to H is known to
be not approximable. This solves a problem posed in an earlier paper. For
the purposes of the approximation, we provide a new characterization of
co-circular arc bigraphs by the existence of min ordering. Our algorithm
is then obtained by derandomizing a two-phase randomized procedure.
We show a similar result for graphs H in which all vertices have loops: if
H is an interval graph, then the minimum cost homomorphism problem
to H admits a polynomial time constant ratio approximation algorithm,
and otherwise the minimum cost homomorphism problem to H is not
approximable.

1 Introduction

We study the approximability of the minimum cost homomorphism problem,
introduced below. A c-approximation algorithm produces a solution of cost at
most c times the minimum cost. A constant ratio approximation algorithm is a
c-approximation algorithm for some constant c. When we say a problem has a
c-approximation algorithm, we mean a polynomial time algorithm. We say that
a problem is not approximable if it there is no polynomial time approximation
algorithm with a multiplicative guarantee unless P = NP .

The minimum cost homomorphism problem was introduced in [8]. It con-
sists of minimizing a certain cost function over all homomorphisms of an input
graph G to a fixed graph H. This offers a natural and practical way to model
many optimization problems. For instance, in [8] it was used to model a problem
of minimizing the cost of a repair and maintenance schedule for large machin-
ery. It generalizes many other problems such as list homomorphism problems
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(see below), retraction problems [6], and various optimum cost chromatic parti-
tion problems [10, 15–17]. (A different kind of the minimum cost homomorphism
problem was introduced in [1].) Certain minimum cost homomorphism problems
have polynomial time algorithms [7–9, 14], but most are NP-hard. Therefore we
investigate the approximability of these problems. Note that we approximate the
cost over real homomophisms, rather than approximating the maximum weight
of satisfied constraints, as in, say, MAXSAT.

We call a graph reflexive if every vertex has a loop, and irreflexive if no
vertex has a loop. An interval graph is a graph that is the intersection graph of a
family of real intervals, and a circular arc graph is a graph that is the intersection
graph of a family of arcs on a circle. We interpret the concept of an intersection
graph literally, thus any intersection graph is automatically reflexive, since a set
always intersects itself. A bipartite graph whose complement is a circular arc
graph, will be called a co-circular arc bigraph. When forming the complement,
we take all edges that were not in the graph, including loops and edges between
vertices in the same colour. In general, the word bigraph will be reserved for
a bipartite graph with a fixed bipartition of vertices; we shall refer to white
and black vertices to reflect this fixed bipartition. Bigraphs can be conveniently
viewed as directed bipartite graphs with all edges oriented from the white to the
black vertices. Thus, by definition, interval graphs are reflexive, and co-circular
arc bigraphs are irreflexive. Despite the apparent differences in their definition,
these two graph classes exhibit certain natural similarities [2, 3]. There is also
a concept of an interval bigraph H, which is defined for two families of real
intervals, one family for the white vertices and one family for the black vertices:
a white vertex is adjacent to a black vertex if and only if their corresponding
intervals intersect.

A reflexive graph is a proper interval graph if it is an interval graph in which
the defining family of real intervals can be chosen to be inclusion-free. A bigraph
is a proper interval bigraph if it is an interval bigraph in which the defining two
families of real intervals can be chosen to be inclusion-free. It turns out [11] that
proper interval bigraphs are a subclass of co-circular arc bigraphs.

A homomorphism of a graph G to a graph H is a mapping f : V (G)→ V (H)
such that for any edge xy of G the pair f(x)f(y) is an edge of H.

Let H be a fixed graph.
The list homomorphism problem to H, denoted ListHOM(H), seeks, for a

given input graph G and lists L(x) ⊆ V (H), x ∈ V (G), a homomorphism f of
G to H such that f(x) ∈ L(x) for all x ∈ V (G). It was proved in [3] that for
irreflexive graphs, the problem ListHOM(H) is polynomial time solvable if H is
a co-circular arc bigraph, and is NP-complete otherwise. It was shown in [2] that
for reflexive graphs H, the problem ListHOM(H) is polynomial time solvable if
H is an interval graph, and is NP-complete otherwise.

The minimum cost homomorphism problem to H, denoted MinHOM(H),
seeks, for a given input graph G and vertex-mapping costs c(x, u), x ∈ V (G), u ∈
V (H), a homomorphism f of G to H that minimizes total cost

∑
x∈V (G)

c(x, f(x)).

It was proved in [9] that for irreflexive graphs, the problem MinHOM(H) is



polynomial time solvable if H is a proper interval bigraph, and it is NP-complete
otherwise. It was also shown there that for reflexive graphs H, the problem
MinHOM(H) is polynomial time solvable if H is a proper interval graph, and it
is NP-complete otherwise.

In [20], the authors have shown that MinHOM(H) is not approximable if
H is a graph that is not bipartite or not a co-circular arc graph, and gave
randomized 2-approximation algorithms for MinHOM(H) for a certain subclass
of co-circular arc bigraphs H. The authors have asked for the exact complex-
ity classification for these problems. We answer the question by showing that
the problem MinHOM(H) in fact has a |V (H)|-approximation algorithm for
all co-circular arc bigraphs H. Thus for an irreflexive graph H the problem
MinHOM(H) has a constant ratio approximation algorithm if H is a co-circular
arc bigraph, and is not approximable otherwise. We also prove that for a re-
flexive graph H the problem MinHOM(H) has a constant ratio approximation
algorithm if H is an interval graph, and is not approximable otherwise. We use
the method of randomized rounding, a novel technique of randomized shifting,
and then a simple derandomization.

A min ordering of a graph H is an ordering of its vertices a1, a2, . . . , an,
so that the existence of the edges aiaj , ai′aj′ with i < i′, j′ < j implies the
existence of the edge aiaj′ . A min-max ordering of a graph H is an ordering
of its vertices a1, a2, . . . , an, so that the existence of the edges aiaj , ai′aj′ with
i < i′, j′ < j implies the existence of the edges aiaj′ , ai′aj . For bigraphs, it is
more convenient to speak of two orderings, and we define a min ordering of a
bigraph H to be an ordering a1, a2, . . . , ap of the white vertices and an ordering
b1, b2, . . . , bq of the black vertices, so that the existence of the edges aibj , ai′bj′

with i < i′, j′ < j implies the existence of the edge aibj′ ; and a min-max ordering
of a bigraph H to be an ordering of a1, a2, . . . , ap of the white vertices and an
ordering b1, b2, . . . , bq of the black vertices, so that the existence of the edges
aibj , ai′bj′ with i < i′, j′ < j implies the existence of the edges aibj′ , ai′bj . (Both
are instances of a general definition of min ordering for directed graphs [13].)

In Section 2 we prove that co-circular arc bigraphs are precisely the bigraphs
that admit a min ordering. In the realm of reflexive graphs, such a result is
known about the class of interval graphs (they are precisely the reflexive graphs
that admit a min ordering) [12]. In Section 3 we discuss a linear program that
computes a solution to MinHOM(H) when H has a min-max ordering. In [9],
the authors used a network flow problem equivalent to this linear program, to
solve to MinHOM(H) when H admits a min-max ordering. In Section 4 we recall
that MinHOM(H) is not approximable when H does not have min ordering, and
describe a |V (H)|-approximation algorithm when H is a bigraph that admits a
min ordering. Finally, in Section 5 we extend our results to reflexive graphs and
suggest some future work.



2 Co-circular Bigraphs and Min Ordering

A reflexive graph has a min ordering if and only if it is an interval graph [12].
In this section we prove a similar result about bigraphs. Two auxiliary concepts
from [3, 5] are introduced first.

An edge asteroid of a bigraph H consists of 2k + 1 disjoint edges a0b0, a1b1,
. . . , a2kb2k such that each pair ai, ai+1 is joined by a path disjoint from all
neighbours of ai+k+1bi+k+1 (subscripts modulo 2k + 1).

An invertible pair in a bigraph H is a pair of white vertices a, a′ and two
pairs of walks a = v1, v2, . . . , vk = a′, a′ = v′1, v

′
2, . . . , v

′
k = a, and a′ =

w1, w2, . . . , wm = a, a = w′1, w
′
2, . . . , w

′
m = a′ such that vi is not adjacent to

v′i+1 for all i = 1, 2, . . . , k and wj is not adjacent to w′j+1 for all j = 1, 2, . . . ,m.

Theorem 1. A bigraph H is a co-circular arc graph if and only if it admits a
min ordering.

Proof. Consider the following statements for a bigraph H:

1. H has no induced cycles of length greater than three and no edge asteroids
2. H is a co-circular-arc graph
3. H has a min ordering
4. H has no invertible pairs

1⇒ 2 is proved in [3].
2 ⇒ 3 is seen as follows: Suppose H is a co-circular arc bigraph; thus the

complement H is a circular arc graph that can be covered by two cliques. It
is known for such graphs that there exist two points, the north pole and the
south pole, on the circle, so that the white vertices u of H correspond to arcs
Au containing the north pole but not the south pole, and the black vertices v
of H correspond to arcs Av containing the south pole but not the north pole.
We now define a min ordering of H as follows. The white vertices are ordered
according to the clockwise order of the corresponding clockwise extremes, i.e., u
comes before u′ if the clockwise end of Au precedes the clockwise end of Au′ . The
same definition, applied to the black vertices v and arcs Av, gives an ordering of
the black vertices of H. It is now easy to see from the definitions that if uv, u′v′

are edges of H with u < u′ and v > v′, then Au and Av′ must be disjoint, and
so uv′ is an edge of H.

3⇒ 4 is easy to see from the definitions (see, for instance [5]).
4 ⇒ 1 is checked as follows: If C is an induced cycle in H, then C must

be even, and any two of its opposite vertices together with the walks around
the cycle form an invertible pair of H. In an edge-asteroid a0b0, . . . , a2kb2k as
defined above, it is easy to see that, say, a0, ak is an invertible pair. Indeed,
there is, for any i, a walk from ai to ai+1 that has no edges to the walk
ai+k, bi+k, ai+k, bi+k, . . . , ai+k of the same length. Similarly, a walk ai+1, bi+1,
ai+1, bi+1, . . . , ai+1 has no edges to a walk from ai+k to ai+k+1 implied by the
definition of an edge-asteroid. By composing such walks we see that a0, ak is an
invertible pair. ut



We note that it can be decided in time polynomial in the size of H, whether
a graph H is a (co-)circular arc bigraph [19].

3 An Exact Algorithm

If H is a fixed bigraph with a min-max ordering, there is an exact algorithm for
the problem MinHOM(H). Suppose H has the white vertices ordered a1, a2, · · · ,
ap, and the black vertices ordered b1, b2, · · · , bq. Define `(i) to be the smallest
subscript j such that bj is a neighbour of ai (and `′(i) to be the smallest subscript
j such that aj is a neighbour of bi) with respect to the ordering. Suppose G is
a bigraph with white vertices u and black vertices v. We seek a minimum cost
homomorphism of G to H that preserves colours, i.e., maps white vertices of G
to white vertices of H and similarly for black vertices.

We define a set of variables xu,i, xv,j for all vertices u and v of G and all
i = 1, 2, . . . , p + 1, j = 1, 2, . . . , q + 1, and the following linear system S.

For all vertices u (respectively v) in G and i = 1, . . . , p (respectively j = 1, . . . , q)

– xu,i ≥ 0 (respectively xv,j ≥ 0)
– xu,1 = 1 (respectively xv,1 = 1)
– xu,p+1 = 0 (respectively xv,q+1 = 0)
– xu,i+1 ≤ xu,i (respectively xv,j+1 ≤ xv,j).

For all edges uv of G and i = 1, 2, . . . , p, j = 1, 2, . . . , q

– xu,i ≤ xv,`(i)

– xv,j ≤ xu,`′(j)

Theorem 2. There is a one-to-one correspondence between homomorphisms of
G to H and integer solutions of S. Furthermore, the cost of the homomorphism
is equal to

∑
u,i

c(u, i)(xu,i − xu,i+1) +
∑
v,j

c(v, j)(xv,j − xv,j+1).

Proof. If f : G→ H is a homomorphism, we set the value xu,i = 1 if f(u) = at
for some t ≥ i, otherwise we set xu,i = 0; and similarly for xv,j . Now all the
variables are non-negative, we have all xu,1 = 1, xu,p+1 = 0, and xu,i+1 ≤ xu,i;
and similarly for xv,j . It remains to show that xu,i ≤ xv,`(i) for any edge uv
of G and any subscript i. (The proof of xv,j ≤ xu,`′(j) is analogous.) Suppose
for a contradiction that xu,i = 1 and xv,`(i) = 0, and let f(u) = ar, f(v) = bs.
This implies that xu,r = 1, xu,r+1 = 0, whence i ≤ r; and that xv,s = 1,
whence s < `(i). Since both aib`(i), arbs are edges of H, the fact that we have
a min ordering implies that aibs must also be an edge of H, contradicting the
definition of `(i).

Conversely, if there is an integer solution for S, we define a homomorphism
f as follows: we let f(u) = ai when i is the largest subscript with xu,i = 1 (and
similarly, f(v) = bj when j is the largest subscript with xv,j = 1). Clearly, every
vertex of G is mapped to some vertex of H, of the same colour. We prove that
this is indeed a homomorphism by showing that every edge of G is mapped to
an edge of H. Let e = uv be an edge of G, and assume f(u) = ar, f(v) = bs.



We will show that arbs is an edge of H. Observe that 1 = xu,r ≤ xv,`(r) ≤ 1 and
1 = xv,s ≤ xu,`′(s) ≤ 1, so we must have xu,`′(s) = xv,`(r) = 1. Also observe that
xu,i = 0 for all i > r, and xv,j = 0 for all j > s. Thus, `(r) ≤ s and `′(s) ≤ r.
Since arb`(r) and a`′(s)bs are edges in H, we must have the edge arbs, as we have
a min-max ordering.

Furthermore, f(u) = ai if and only if xu,i = 1 and xu,i+1 = 0, so, c(u, i)
contributes to the sum if and only if f(u) = ai (and similarly, if f(v) = bj). ut

We have translated the minimum cost homomorphism problem to an integer
linear program: minimize the objective function in Theorem 2 over the linear
system S. In fact, this linear program corresponds to a minimum cut problem
in an auxiliary network, and can be solved by network flow algorithms [9, 20].
We shall enhance the above system S to obtain an approximation algorithm for
the case H is only assumed to have a min ordering.

4 An Approximation Algorithm

In this section we describe our approximation algorithm for MinHOM(H) in the
case the fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph,
cf. Theorem 1. We recall that if H is not a co-circular arc bigraph, then the
list homomorphism problem ListHOM(H) is NP-complete [3], and this implies
that MinHOM(H) is not approximable for such graphs H [20]. By Theorem 1
we conclude the following.

Theorem 3. If a bigraph H has no min ordering, then MinHOM(H) is not
approximable.

Our main result is the following converse: if H has a min ordering (is a co-
circular arc bigraph), then there exists a constant ratio approximation algorithm.
(Since H is fixed, |V (H)| is a constant.)

Theorem 4. If H is a bigraph that admits a min ordering, then MinHOM(H)
has a |V (H)|-approximation algorithm.

Proof. Suppose H has a min ordering with the white vertices ordered a1, a2, · · ·
, ap, and the black vertices ordered b1, b2, · · · , bq. Let E′ denote the set of all
pairs aibj such that aibj is not an edge of H, but there is an edge aibj′ of H
with j′ < j and an edge ai′bj of H with i′ < i. Let E = E(H) and define H ′ to
be the graph with vertex set V (H) and edge set E ∪ E′. (Note that E and E′

are disjoint sets.)
Observation 1. The ordering a1, a2, · · · , ap, and b1, b2, · · · , bq is a min-max
ordering of H ′.

We show that for every pair of edges e = aibj′ and e′ = ai′bj in E ∪E′, with
i′ < i and j′ < j, both f = aibj and f ′ = ai′bj′ are in E ∪ E′.

If both e and e′ are in E, f ∈ E ∪ E′ and f ′ ∈ E.
If one of the edges, say e, is in E′, there is a vertex bj′′ with aibj′′ ∈ E and

j′′ < j′, and a vertex ai′′ with ai′′bj′ ∈ E and i′′ < i. Now, ai′bj and aibj′′ are



both in E, so f ∈ E∪E′. We may assume that i′′ 6= i′, otherwise f ′ = ai′′bj′ ∈ E.
If i′′ < i′, then f ′ ∈ E ∪ E′ because ai′bj′′ ∈ E; and if i′′ > i′, then f ′ ∈ E
because ai′bj ∈ E.

If both edges e, e′ are in E′, then the earlier neighbours of ai and bj in E
imply that f ∈ E ∪E′, and the earlier neighbours of ai′ and bj′ in E imply that
f ′ ∈ E ∪ E′.
Observation 2. Let e = aibj ∈ E′. Then ai is not adjacent in E to any vertex
after bj , or bj is not adjacent in E to any vertex after ai.

This easily follows from the fact that we have a min ordering.
Our algorithm first constructs the graph H ′ and then proceeds as follows.

Consider an input bigraph G. Since H ′ has a min-max ordering, we can form
the system S of linear inequalities for H ′. By Theorem 2, homomorphisms of G
to H ′ are in a one-to-one correspondence with integer solutions of S. However,
we are interested in homomorphisms of G to H, not H ′. Therefore we shall add
further inequalities to S to ensure that we only admit homomorphisms of G to
H, i.e., avoid mapping edges of G to the edges in E′.

For every edge e = aibj ∈ E′ and every edge uv ∈ E(G), two of the following
inequalities will be added to S.

– if as is the first neighbour of bj after ai, we add the inequality

xv,j ≤ xu,s +
∑

atbj∈E, t<i

(xu,t − xu,t+1)

– else if bj has no neighbours after ai, we add the inequality

xv,j ≤ xv,j+1 +
∑

atbj∈E, t<i

(xu,t − xu,t+1)

– if bs is the first neighbour of ai after bj , we add the inequality

xu,i ≤ xv,s +
∑

aibt∈E, t<j

(xv,t − xv,t+1)

– else if ai has no neighbour after bj , we add the inequality

xu,i ≤ xu,i+1 +
∑

aibt∈E, t<j

(xv,t − xv,t+1).

Claim: There is a one-to-one correspondence between homomorphisms of G
to H and integer solutions of the expanded system S.

The correspondence between the integer solutions and the homomorphisms
is defined as before. Thus we have a homomorphism of G to H ′ if and only if
the old inequalities are satisfied. We shall show that the additional inequalities
are also satisfied if and only if each edge of G is mapped to an edge in E, i.e.,
we have a homomorphism to H.

Suppose f is a homomorphism of G to H ′, obtained from an integer solution
for S, and, for some edge uv of G, let f(u) = ai, f(v) = bj . We have xu,i = 1,
xu,i+1 = 0, xv,j = 1, xv,j+1 = 0, and for all atbj ∈ E with t < i we have
xu,t − xu,t+1 = 0. If as is the first neighbour of bj after ai, then we will also
have xu,s = 0, and so the first inequality fails. Else if bj is not adjacent to any
vertex after ai, and the second inequality fails. The remaining two other cases
are similar.



Conversely, suppose f is a homomorphism of G to H (i.e., f maps the edges
of G to the edges in E). For a contradiction, assume that the first inequalities
fails (the other inequalities are similar). This means that for some edge uv ∈
E(G) and some edge aibj ∈ E′, we have xv,j = 1, xu,s = 0, and the sum of
(xu,t− xu,t+1) = 0, summed over all t < i such that at is a neighbour of bj . The
latter two facts easily imply that f(u) = ai. Since bj has a neighbour after ai,
Observation 2 tells us that ai has no neighbours after bj , whence f(v) = bj and
thus aibj ∈ E, contradicting the fact that aibj ∈ E′. This proves the Claim.

At this point, our algorithm will minimize the cost function over S in poly-
nomial time using a linear programming algorithm. This will generally result in
a fractional solution. (Even though the original system S is known to be totally
unimodular [20] and hence have integral optima, we have added inequalities, and
hence lost this advantage.) We will obtain an integer solution by a randomized
procedure called rounding. We choose a random variable X ∈ [0, 1], and define
the rounded values x′u,i = 1 when xu,i ≥ X, and x′u,i = 0 otherwise; and sim-
ilarly for x′v,j . It is easy to check that the rounded values satisfy the original
inequalities, i.e., correspond to a homomorphism f of G to H ′.

Now the algorithm will once more modify the solution f to become a homo-
morphism of G to H, i.e., to avoid mapping edges of G to the edges in E′. This
will be accomplished by another randomized procedure, which we call shifting.
We choose another random variable Y ∈ [0, 1], which will guide the shifting. Let
F denote the set of all edges in E′ to which some edge of G is mapped by f . If F
is empty, we need no shifting. Otherwise, let aibj be an edge of F with maximum
sum i+ j (among all edges of F ). By the maximality of i+ j, we know that aibj
is the last edge of F from both ai and bj . Since F ⊆ E′, Observation 2 implies
that e = aibj is also the last edge of E from ai or from bj . Suppose e is the last
edge of E from ai. (The shifting process is similar in the other case.) So ai does
not have any edges of F or of E after aibj . (There could be edges of E′ − F ,
but since no edge of G is mapped to such edges, they don’t matter.) We now
consider, one by one, vertices u in G such that f(u) = ai and u has a neighbour
v in G with f(v) = bj . (Such vertices u exist by the definition of F .) For such a
vertex u, consider the set of all vertices at with t < i such that atbj ∈ E. This
set is not empty, since e is in E′ because of two edges of E. Suppose the set
consists of at with subscripts t ordered as t1 < t2 < . . . tk. The algorithm now
selects one vertex from this set as follows. Let Pu,t =

xu,t−xu,t+1

Pu
, where

Pu =
∑

atbj∈E, t<i

(xu,t − xu,t+1).

Then atq is selected if
q∑

p=1
Pu,tp < Y ≤

q+1∑
p=1

Pu,tp . Thus a concrete at is selected

with probability Pu,t, which proportional to the difference of the fractional values
xu,t − xu,t+1.

When the selected vertex is at, we shift the image of the vertex u from ai to
at. This modifies the homomorphism f , and hence the corresponding values of
the variables. Namely, x′u,t+1, . . . , x

′
u,i are reset to 0, keeping all other values the



same. Note that these modified values still satisfy the original constraints, i.e.,
the modified mapping is still a homomorphism.

We repeat the same process for the next u with these properties, until aibj
is no longer in F (because no edge of G maps to it). This ends the iteration on
aibj , and we proceed to the next edge ai′bj′ with the maximum i′ + j′ for the
next iteration. Each iteration involves at most |V (G)| shifts. After at most |E′|
iterations, the set F is empty and we no longer need to shift.

We now claim that because of the randomization, the cost of this homomor-
phism is at most |V (H)| times the minimum cost of a homomorphism. We denote
by w the value of the objective function with the fractional optimum xu,i, xv,j ,
and by w′ the value of the objective function with the final values x′u,i, x

′
v,j , after

the rounding and all the shifting. We also denote by w∗ the minimum cost of a
homomorphism of G to H. Obviously we have w ≤ w∗ ≤ w′.

We now show that the expected value of w′ is at most a constant times w. We
focus on the contribution of one summand, say x′u,t − x′u,t+1, to the calculation
of the cost. (The other case, x′v,s − x′v,s+1, is similar.)

In any integer solution, x′u,t − x′u,t+1 is either 0 or 1. The probability that
x′u,t − x′u,t+1 contributes to w′ is the probability of the event that x′u,t = 1 and
x′u,t+1 = 0. This can happen in the following situations.

1. u is mapped to at by rounding, and is not shifted away. In other words, we
have x′u,t = 1 and x′u,t+1 = 0 after rounding, and these values don’t change
by shifting.

2. u is first mapped to some ai, i > t, by rounding, and then re-mapped to
at by shifting. This happens if there exist j and v such that uv is an edge
of G mapped to aibj ∈ F , and then the image of u is shifted to at, where
atbj ∈ E. In other words, we have x′u,i = x′v,j = 1 and x′u,i+1 = x′v,j+1 = 0
after rounding; and then u is shifted from ai to at.

For the situation in 1, we compute the expectation as follows. The values
x′u,t = 1, x′u,t+1 = 0 are obtained by rounding if xu,t+1 < X ≤ xu,t, i.e., with
probability xu,t − xu,t+1. The probability that they are not changed by shifting
is at most 1, whence this situation occurs with probability at most xu,t−xu,t+1,
and the expected contribution is at most c(u, t)(xu,t − xu,t+1).

For the situation in 2, we first compute the contribution for a fixed i (for
which there exist j and v as described above). The values x′u,i = x′v,j = 1 and
x′u,i+1 = x′v,j+1 = 0 are obtained by rounding if X satisfies max{xu,i+1, xv,j+1} <
X ≤ min{xu,i, xv,j}, i.e., with probability min{xu,i, xv,j}−max{xu,i+1, xv,j+1} ≤
xv,j − xu,i+1 ≤ xv,j − xu,s ≤ Pu. In the last two inequalities above we have as-
sumed that as is the first neighbour of bj after ai, and used the first inequality
added above the Claim. If bj has no neighbours after ai, the proof is analo-
gous, using the second added inequality. When uv maps to aibj , we shift u to

at with probability Pu,t =
(xu,t−xu,t+1)

Pu
, so the overall probability is also at most

xu,t − xu,t+1, and the expected contribution for a fixed i (with its j and v) is
also at most c(u, t)(xu,t − xu,t+1).



Let r denote the number of vertices of H, of the same colour as at, that
are incident with some edges of E′. Clearly the situation in 2 can occur at for
at most r different values of i. Therefore a fixed u in G contributes at most
(1 + r)c(u, t)(xu,t−xu,t+1) to the expected value of w′. Thus the expected value
of w′ is at most

(1 + r) (
∑
u,i

c(u, i)(xu,i − xu,i+1) +
∑
v,j

c(v, j)(xv,j − xv,j+1)) ≤ (1 + r)w.

Since we have w ≤ w∗, this means that the expected value of w′ is at most
(1 + r)w∗. Note that 1 + r ≤ 1 + |E′|, and also 1 + r < |V (H)| because a1 (and
b1) are not incident with any edges of E′ by definition.

At this point we have proved that our two-phase randomized procedure pro-
duces a homomorphism whose expected cost is at most (1+r) times the minimum
cost. It can be transformed to a deterministic algorithm as follows. There are
only polynomially many values xu,t (at most |V (G)||̇V (H)|). When X lies any-
where between two such consecutive values, all computations will remain the
same. Thus we can derandomize the first phase by trying all these values of
X and choosing the best solution. Similarly, there are only polynomially many

values of the partial sums
q∑

p=1
Pu,tp (again at most |V (G)||̇V (H)|), and when

Y lies between two such consecutive values, all computations remain the same.
Thus we can also derandomize the second phase by trying all possible values and
choosing the best. Since the expected value is at most (1+r) times the minimum
cost, this bound also applies to this best solution. ut

Corollary 1. Let H be a co-circular arc bigraph in which at most r vertices of
either colour are incident to edges of E′, and let c ≥ 1 + r be any constant.

Then the problem MinHOM(H) has a c-approximation algorithm.

Note that c can be taken to be |V (H)|, or 1 + |E′|, as noted above. For
c = 1 + |E′|, we have an approximation with best bound when E′ is small, in
particular, an exact algorithm when E′ is empty.

Finally, we conclude the following classification for the complexity of approx-
imation of minimum cost homomorphism problems.

Corollary 2. Let H be an irreflexive graph.
Then the problem MinHOM(H) has a constant ratio approximation algorithm

if H is a co-circular arc bigraph, and is not approximable otherwise.

5 Extensions and Future Work

Interestingly, all our steps can be repeated verbatim for the case of reflexive
graphs. If H is a reflexive graph with min-max ordering a1, a2, . . . , an, we again
define `(i) as the smallest subscript j, with respect to this ordering, such that
aj is a neighbour of ai. For an input graph G, we again define variables xu,i,
for u ∈ V (G), i = 1, 2, . . . , n, and a the same system of linear inequalities S



(restricted to the u’s), and obtain an analogue of Theorem 2. Provided H has
a min ordering, we can again add edges E′ as above to produce a reflexive
graph H ′ with a min-max ordering, with the analogous properties expressed in
Observations 1 and 2. We can add the corresponding inequalities to S as above,
and there will again be a one-to-one correspondence between homomorphisms
of G to H and the integer solutions to the system. Finally, we can define the
approximation by the same sequence of rounding and shifting. Everything works
exactly as before because it only depends on the definition of min (and min-max)
ordering, which are the same. We leave the details to the reader. Finally, we use
the fact that a reflexive graph has a min ordering if and only if it is an interval
graph [2, 12], and the fact that the list homomorphism problem ListHOM(H) is
NP-complete if the reflexive graph H is not an interval graph [2]. The last facts
implies, as in [20], that the problem MinHOM(H) is not approximable if H is a
reflexive graph that is not an interval graph.

Theorem 5. Let H be a reflexive graph.
The problem MinHOM(H) has a |V (H)|-approximation algorithm if H is an

interval graph, and is not approximable otherwise.

We leave open the problem of approximability of MinHOM problems for
general graphs, i.e., graphs with loops allowed (some vertices have loops while
other don’t). It should be noted that the complexity of both ListHOM and
MinHOM problems for general graphs has been classified in [4, 9] respectively.

We also leave open the problem of approximability of MinHOM problems
for directed graphs. The complexity of ListHOM and MinHOM problems for
directed graphs has been classified in [13, 14] respectively.

It would be particularly interesting to see (in both of the open cases) whether
the complexity classification for constant ratio approximability again coincides
with the complexity classification for list homomorphisms.

The most interesting open question is whether the approximation ratio can
be bounded by a constant independent of H. Our algorithm is both a |V (H)|-
approximation and a 1 + |E′|-approximation algorithm. These are constants in-
dependent of the input G, but very much dependent on the fixed graph H. For
many bipartite graphs H (including the bipartite tent, net, or claw), one can
choose |E′| = 1, thus obtaining a 2-approximation algorithm. With a bit more
effort it can be shown that a 2-approximation algorithm exists for the so-called
doubly convex bigraphs. We have not excluded the possibility that there exist
polynomial time 2-approximation algorithms (or k-approximation algorithms,
for some absolute constant k) for all co-circular arc bigraphs H. Until such
a possibility is excluded, there is not much interest in making slight improve-
ments to the approximation ratio. However, we do have a more complicated
d-approximation algorithm for co-circular arc bigraphs (and reflexive interval
graphs) H with maximum degree d. We have not included it here but will be
happy to communicate it to interested readers upon request.

We have recently learned that Benoit Larose and Adrian Lemaitre have also
characterized bipartite graphs with a min ordering [18].
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10. M.M. Halldórsson, G. Kortsarz, H. Shachnai, Minimizing average completion of
dedicated tasks and interval graphs, in M.X. Goemans, K. Jansen, J.D.P. Rolim,
and L. Trevisan (eds.), LNCS 2129 (2001) 114 – 126.

11. P. Hell and J. Huang, Interval bigraphs and circular arc graphs, J. Graph Theory
46 (2004) 313 – 327.
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