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Abstract5

We investigate the approximability of the minimum-cost homomorphism problem6

to a fixed target graph H, denoted MinHOM(H). For bipartite targets, we show7

that if H is a co-circular-arc bigraph, then MinHOM(H) admits a polynomial-time8

constant-factor approximation; otherwise, the problem is known to be inapproximable.9

For this positive side, we give a new characterization of co-circular-arc bigraphs via the10

existence of a min-ordering, and obtain our algorithm by derandomizing a two-phase11

randomized scheme.12

For general graphs (loops allowed), we provide a forbidden-subgraph characteriza-13

tion of those admitting a min-ordering: precisely the bi-arc graphs that avoid H1 and H214

as induced subgraphs, where V (H1) = V (H2) = {a, b, d} and E(H1) = {ab, ad, bd, dd},15

E(H2) = {ab, ad, dd}. We relate Odd Cycle Transversal (vertex deletion to bi-16

partite) to MinHOM(H1) and bipartite edge contraction to MinHOM(H2). Under17

the inapproximability assumptions for MinHOM(H1) and MinHOM(H2), any graph18

H that does not admit a min-ordering yields no constant-factor approximation for19

MinHOM(H).20

Finally, we complement our positive results with hardness of approximation results21

for graphs. We show that MinHOM(H) is 1.128-approx-hard and 1.242-UGC-hard.22

1 Introduction23

We study the approximability of the minimum cost homomorphism problem, introduced24

below. A c-approximation algorithm produces a solution of cost at most c times the minimum25
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cost. A constant ratio approximation algorithm is a c-approximation algorithm for some26

constant c. When we say a problem has a c-approximation algorithm, we mean a polynomial-27

time algorithm. We say that a problem is not approximable if there is no polynomial-time28

approximation algorithm with a multiplicative guarantee unless P = NP .29

The minimum cost homomorphism problem, MinHOM, was introduced in [18]. It consists30

of minimizing a certain cost function over all homomorphisms from an input graph G to a31

fixed graph H. This offers a natural and practical way to model many optimization problems.32

For instance, in [18] it was used to model a problem of minimizing the cost of a repair and33

maintenance schedule for large machinery.34

Certain MinHOM problems have polynomial-time algorithms [16, 17, 18], but most are35

NP-hard. Therefore we investigate the approximability of these problems. Note that we36

approximate the cost over real homomophisms, rather than approximating the maximum37

weight of satisfied constraints, as in, say, MAXSAT.38

We call a graph reflexive if every vertex has a loop, and irreflexive if no vertex has a39

loop. An interval graph is a graph that is the intersection graph of a family of real intervals,40

and a circular arc graph is a graph that is the intersection graph of a family of arcs on41

a circle. We interpret the concept of an intersection graph literally, thus any intersection42

graph is automatically reflexive, since a set always intersects itself. A bipartite graph whose43

complement is a circular arc graph, will be called a co-circular arc bigraph. When forming the44

complement, we take all edges that were not in the graph, including loops and edges between45

vertices in the same color. In general, the word bigraph will be reserved for a bipartite graph46

with a fixed bipartition of vertices; we shall refer to white and black vertices to reflect this47

fixed bipartition. Bigraphs can be conveniently viewed as directed bipartite graphs with all48

edges oriented from the white to the black vertices. Thus, by definition, interval graphs are49

reflexive, and co-circular arc bigraphs are irreflexive. Despite the apparent differences in50

their definition, these two graph classes exhibit certain natural similarities [7, 9]. There is51

also a concept of an interval bigraph H, which is defined for two families of real intervals, one52

family for the white vertices and one family for the black vertices: a white vertex is adjacent53

to a black vertex if and only if their corresponding intervals intersect. Interval bigraphs,54

have been studied in [21, 40, 41].55

A reflexive graph is a proper interval graph if it is an interval graph in which the defining56

family of real intervals can be chosen to be inclusion-free. A bigraph is a proper interval57

bigraph if it is an interval bigraph in which the defining two families of real intervals can be58

chosen to be inclusion-free. It turns out [21] that proper interval bigraphs are a subclass of59

co-circular arc bigraphs.60

A homomorphism of a graph G to a graph H is a mapping f : V (G)→ V (H) such that61

for any edge xy of G the pair f(x)f(y) is an edge of H.62

Let H be a fixed graph. The list homomorphism problem to H, denoted LHOM(H), seeks,63

for a given input graph G and lists L(x) ⊆ V (H), x ∈ V (G), a homomorphism f of G to H64

such that f(x) ∈ L(x) for all x ∈ V (G). It was proved in [9] that for irreflexive graphs, the65

problem LHOM(H) is polynomial-time solvable if H is a co-circular arc bigraph, and is NP-66

complete otherwise. It was shown in [7] that for reflexive graphs H, the problem LHOM(H)67
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is polynomial-time solvable if H is an interval graph, and is NP-complete otherwise.68

The minimum cost homomorphism problem to H, denoted MinHOM(H), seeks, for a69

given input graph G and vertex-mapping costs c(x, u), x ∈ V (G), u ∈ V (H), a homomor-70

phism f of G to H that minimizes total cost
∑

x∈V (G)

c(x, f(x)).71

As mentioned above the MinHOM problem offers a natural and practical way to model72

and generalizes many optimization problems.73

Example 1.1 (Vertex Cover). This problem can be seen as MinHOM(H) where V (H) =74

{a, b}, E(H) = {aa, ab}, and c(u, a) = 1, c(u, b) = 0 for every vertex u ∈ G.75

Example 1.2 (Chromatic Sum). In this problem, we are given a graph G, and the objective76

is to find a proper coloring of G with colors {1, . . . , k} with minimum color sum. This can be77

seen as MinHOM where H is a clique of size k with V (H) = {1, . . . , k} and the cost function78

is defined as c(u, i) = i. The Chromatic Sum problem appears in many applications such79

as resource allocation problems [3].80

Example 1.3. List homomorphism LHOM(H), seeks, for a given input digraph D and lists81

L(x) ⊆ V (H), x ∈ D, a homomorphism f from D to H such that f(x) ∈ L(x) for all82

x ∈ D. This is equivalent to MinHOM(H) (with total cost zero) with c(u, i) = 0 if i ∈ L(u),83

otherwise, c(u, i) = 1.84

Example 1.4 (Multiway Cut). Let G be a graph where each edge e has a non-negative85

weight w(e). There are also k specific (terminal) vertices, s1, s2, . . . , sk of G. The goal is86

to partition the vertices of G into k parts so that each part i ∈ {1, 2, . . . , k}, contains si87

and the sum of the weights of the edges between different parts is minimized. Let H be88

a graph with vertex set {a1, a2, . . . , ak} ∪ {bi,j | 1 ≤ i < j ≤ k}. The edge set of H is89

{aiai, aibi,j, bi,jaj, ajaj | 1 ≤ i < j ≤ k}. Now obtain the graph G′ from G by replacing every90

edge e = uv of G with the edges uxe, xev where xe is a new vertex. The cost function c is as91

follows. c(si, ai) = 0, else c(si, d) = |G| for d ̸= ai. For every u ∈ G \ {s1, s2, . . . , sk}, set92

c(u, si) = 0. Set c(xe, bi,j) = w(e). Now, finding a minimum multiway cut in G is equivalent93

to finding a minimum-cost homomorphism from graph G′ to H.94

Example 1.5 (Odd Cycle Transversal (OCT)). Given a graph G, the goal is to delete the95

minimum number of vertices so that the remaining graph becomes bipartite. Let H be a96

graph with vertex set {a, b, d} and edge set {ab, ad, bd, dd}. Then the OCT problem on G97

can be expressed as finding a homomorphism from G to H that minimizes the total cost,98

where the cost function is defined as c(u, a) = c(u, b) = 0 and c(u, d) = 1 for every vertex99

u ∈ V (G). Intuitively, vertices of G mapped to d correspond exactly to those that must be100

removed to make G bipartite.101

Example 1.6 (Min-Ones for 3LIN). We are given a set of equations of type xi1 ⊕ xi2 ⊕ xi3 =102

0/1. The goal is solve this system of equations so that the number of variables assigned to 1 is103

minimized. This is an instance of MinHOM(H) whereH = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}104

and with the cost function c(xi, 0) = 0, and c(xi, 1) = 1. See [1, 5, 32] for more details.105
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The MinHOM problem generalizes many other problems such as (Weighted) Min106

Sol [31, 43], a large class of bounded integer linear programs, retraction problems [13],107

Minimum Sum Coloring [3, 15, 38], and various optimum cost chromatic partition prob-108

lems [19, 29, 30, 37].109

The complexity of MinHOM(H) for graphs and digraphs have been well-understood110

[17, 27]. It was proved in [17] that for irreflexive graphs, the problem MinHOM(H) is111

polynomial-time solvable if H is a proper interval bigraph, and it is NP-complete otherwise.112

It was also shown there that for reflexive graphs H, the problem MinHOM(H) is polynomial113

time solvable if H is a proper interval graph, and it is NP-complete otherwise.114

In [39], the authors have shown that MinHOM(H) is not approximable if H is a graph115

that is not bipartite or not a co-circular arc graph, and gave a randomized 2-approximation116

algorithms for MinHOM(H) for a certain subclass of co-circular arc bigraphs H. The au-117

thors have asked for the exact complexity classification for these problems. We answer the118

question by showing that the problem MinHOM(H) in fact has a |V (H)|-approximation119

algorithm for all co-circular arc bigraphs H. Thus for an irreflexive graph H the problem120

MinHOM(H) has a constant ratio approximation algorithm if H is a co-circular arc bigraph,121

and is not approximable otherwise. We also prove that for a reflexive graph H the problem122

MinHOM(H) has a constant ratio approximation algorithm if H is an interval graph, and is123

not approximable otherwise. We use the method of randomized rounding, a novel technique124

of randomized shifting, and then a simple derandomization.125

A min ordering of a graph H is an ordering of its vertices a1, a2, . . . , an, so that the126

existence of the edges aiaj, ai′aj′ with i < i′ and j′ < j implies the existence of the edge127

aiaj′ . A min-max ordering of a graph H is an ordering of its vertices a1, a2, . . . , an, so that128

the existence of the edges aiaj, ai′aj′ with i < i′ and j′ < j implies the existence of the edges129

aiaj′ , ai′aj. For bigraphs, it is more convenient to speak of two orderings, and we define a130

min ordering of a bigraph H to be an ordering a1, a2, . . . , ap of the white vertices and an131

ordering b1, b2, . . . , bq of the black vertices, so that the existence of the edges aibj, ai′bj′ with132

i < i′, j′ < j implies the existence of the edge aibj′ ; and a min-max ordering of a bigraph H133

to be an ordering of a1, a2, . . . , ap of the white vertices and an ordering b1, b2, . . . , bq of the134

black vertices, so that the existence of the edges aibj, ai′bj′ with i < i′, j′ < j implies the135

existence of the edges aibj′ , ai′bj. (Both are instances of a general definition of min ordering136

for directed graphs [26].)137

In Section 2 we prove that co-circular arc bigraphs are precisely the bigraphs that admit138

a min ordering. In the realm of reflexive graphs, such a result is known about the class of139

interval graphs (they are precisely the reflexive graphs that admit a min ordering) [25].140

Approximability results. In Section 3 we recall that when a bigraph H does not admit141

a min-ordering, the problem MinHOM(H) is inapproximable, whereas if H admits a min-142

ordering there is a |V (H)|-approximation algorithm. In Section 4 we extend the discussion143

to graphs (where loops are allowed). For graphs, MinHOM(H) is inapproximable whenever144

H is not a bi-arc graph. We show that if a bi-arc graph H admits a min-ordering, then145

MinHOM(H) again has a |V (H)|-approximation algorithm. This follows by proving that146
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forbidding two specific induced subgraphs H1 and H2 ensures the existence of a min-ordering,147

where V (H1) = V (H2) = {a, b, d} and E(H1) = {ab, ad, bd, dd} and E(H2) = {ab, ad, dd}.148

On the hardness side, Example 1.5 together with the inapproximability of OCT implies149

that MinHOM(H1) admits no constant-factor approximation. Moreover, we argue that150

MinHOM(H2) is closely related to Bipartite Edge Contraction, which itself does not151

admit a constant-factor approximation. Assuming the Unique Games Conjecture and the152

conjecture that MinHOM(H2) has no constant-factor approximation, we obtain a dichotomy153

for graphs H: MinHOM(H) admits a constant-factor approximation if and only if H admits154

a min-ordering.155

Inapproximability results. As pointed out, the MinHOM(H) is not approximable if156

LHOM(H) is not polynomial-time solvable. This rules out the possibility of having an157

approximation algorithm for graphs that are not bi-arc. However, there are no known in-158

approximability results for the cases where MinHOM(H) is NP-complete. We, therefore,159

complete the picture by considering a much bigger class of graphs than bi-arc graphs and160

present inapproximability results for them. That is the class of graphs for which MinHOM161

is NP-complete. This class of graphs has been characterized in [17] and are known as graphs162

that do not admit a min-max ordering. The obstructions for min-max ordering for graphs163

and digraphs have been provided in [28]. This characterization was used to show the NP-164

completeness of MinHOM together with the NP-completeness of the maximum independent165

set problem [27]. However, in this paper, we must develop an array of approximation-166

preserving reductions to obtain our inapproximability results.167

2 Co-circular bigraphs and min ordering168

A reflexive graph has a min ordering if and only if it is an interval graph [25]. In this section169

we prove a similar result about bigraphs. Two auxiliary concepts from [9, 11] are introduced170

first.171

An edge asteroid of a bigraph H consists of 2k + 1 disjoint edges a0b0, a1b1, . . . , a2kb2k172

such that each pair ai, ai+1 is joined by a path disjoint from all neighbours of ai+k+1bi+k+1173

(subscripts modulo 2k + 1).174

An invertible pair in a bigraph H is a pair of white vertices a, a′ and two pairs of walks a =175

v1, v2, . . . , vk = a′, a′ = v′1, v
′
2, . . . , v

′
k = a, and a′ = w1, w2, . . . , wm = a, a = w′

1, w
′
2, . . . , w

′
m =176

a′ such that vi is not adjacent to v′i+1 for all i = 1, 2, . . . , k and wj is not adjacent to w′
j+1177

for all j = 1, 2, . . . ,m.178

Theorem 2.1. A bigraph H is a co-circular arc graph if and only if it admits a min ordering.179

Proof. Consider the following statements for a bigraph H:180

1. H has no induced cycles of length greater than three and no edge asteroids181

2. H is a co-circular-arc graph182

3. H has a min ordering183

5



4. H has no invertible pairs184

1⇒ 2 is proved in [9].185

2⇒ 3 is seen as follows: Suppose H is a co-circular arc bigraph; thus the complement H186

is a circular arc graph that can be covered by two cliques. It is known for such graphs that187

there exist two points, the north pole and the south pole, on the circle, so that the white188

vertices u of H correspond to arcs Au containing the north pole but not the south pole, and189

the black vertices v of H correspond to arcs Av containing the south pole but not the north190

pole. We now define a min ordering of H as follows. The white vertices are ordered according191

to the clockwise order of the corresponding clockwise extremes, i.e., u comes before u′ if the192

clockwise end of Au precedes the clockwise end of Au′ . The same definition, applied to the193

black vertices v and arcs Av, gives an ordering of the black vertices of H. It is now easy to194

see from the definitions that if uv, u′v′ are edges of H with u < u′ and v > v′, then Au and195

Av′ must be disjoint, and so uv′ is an edge of H.196

3⇒ 4 is easy to see from the definitions (see, for instance [11]).197

4⇒ 1 is checked as follows: If C is an induced cycle in H, then C must be even, and any198

two of its opposite vertices together with the walks around the cycle form an invertible pair199

of H. In an edge-asteroid a0b0, . . . , a2kb2k as defined above, it is easy to see that, say, a0, ak200

is an invertible pair. Indeed, there is, for any i, a walk from ai to ai+1 that has no edges to201

the walk ai+k, bi+k, ai+k, bi+k, . . . , ai+k of the same length. Similarly, a walk ai+1, bi+1, ai+1,202

bi+1, . . . , ai+1 has no edges to a walk from ai+k to ai+k+1 implied by the definition of an203

edge-asteroid. By composing such walks we see that a0, ak is an invertible pair.204

We note that it can be decided in time polynomial in the size of H, whether a graph H205

is a (co-)circular arc bigraph [22].206

3 Approximation of MinHOM for bipartite graphs207

In this section we describe our approximation algorithm for MinHOM(H) in the case the208

fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph, cf. Theorem 2.1.209

We recall that if H is not a co-circular arc bigraph, then the list homomorphism problem210

ListHOM(H) is NP-complete [9], and this implies that MinHOM(H) is not approximable211

for such graphs H [39]. By Theorem 2.1 we conclude the following.212

Theorem 3.1. If a bigraph H has no min ordering, then MinHOM(H) is not approximable.213

Our main result is the following converse: if H has a min ordering (is a co-circular214

arc bigraph), then there exists a constant ratio approximation algorithm (since H is fixed,215

|V (H)| is a constant.).216

Theorem 3.2. If H is a bigraph that admits a min ordering, then MinHOM(H) has a217

|V (H)|-approximation algorithm.218

To prove the above theorem we first design an approximation algorithm.219
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Fixing a min ordering for H. Suppose H has a min ordering with the white vertices220

ordered a1, a2, · · · , ap, and the black vertices ordered b1, b2, · · · , bq. For every 1 ≤ i ≤ p, let221

r(i) be the first subscript that aibr(i) is an edge of H. For every 1 ≤ i ≤ q, let ℓ(i) be the222

first subscript that aℓ(i)bi is an edge of H.223

Definition 3.3 (H ′ and E ′ construction). Let E ′ denote the set of all pairs aibj such that224

aibj is not an edge of H, but there is an edge aibj′ of H with j′ < j and an edge ai′bj of H225

with i′ < i. Define H ′ to be the graph with vertex set V (H) and edge set E(H) ∪ E ′. (Note226

that E(H) and E ′ are disjoint sets.)227

Observation 3.4. The ordering a1, a2, · · · , ap, and b1, b2, · · · , bq is a min-max ordering of228

H ′.229

Proof. We show that for every pair of edges e = aibj′ and e′ = ai′bj in E(H) ∪ E ′, with230

i′ < i and j′ < j, both f = aibj and f ′ = ai′bj′ are in E(H) ∪ E ′. If both e and e′ are in231

E(H), f ∈ E(H) ∪ E ′ and f ′ ∈ E(H). If one of the edges, say e, is in E ′, there is a vertex232

bj′′ with aibj′′ ∈ E(H) and j′′ < j′, and a vertex ai′′ with ai′′bj′ ∈ E(H) and i′′ < i. Now,233

ai′bj and aibj′′ are both in E(H), so f ∈ E(H) ∪E ′. We may assume that i′′ ̸= i′, otherwise234

f ′ = ai′′bj′ ∈ E(H). If i′′ < i′, then f ′ ∈ E(H) ∪ E ′ because ai′bj′′ ∈ E(H); and if i′′ > i′,235

then f ′ ∈ E(H) because ai′bj ∈ E(H).236

If both edges e, e′ are in E ′, then the earlier neighbours of ai and bj in E(H) imply237

that f ∈ E(H) ∪ E ′, and the earlier neighbours of ai′ and bj′ in E(H) imply that f ′ ∈238

E(H) ∪ E ′.239

Observation 3.5. Let e = aibj ∈ E ′. Then ai is not adjacent in E(H) to any vertex after240

bj, or bj is not adjacent in E(H) to any vertex after ai.241

Proof. This easily follows from the fact that a1, a2, . . . , ap, b1, b2, . . . , bq is a min ordering.242

Assumption about the input and introducing the variables. First we assume input243

bipartite graph G = (U, V ) is connected, as otherwise, we solve the problem for each con-244

nected component of G. Here U represent the left vertices of G and V represent the right245

vertices of G. We further look for a homomorphism f that maps vertices U to {a1, a2, . . . , ap}246

and vertices V to {b1, b2, . . . , bp}.247

For every vertex u ∈ U , and every ai, define the variable xu,ai , and for every v ∈ V and248

bj, define the variable xv,bj .249

System of linear equations S. Having defined the variables xu,ai , xv,bj , we introduce250

the linear program S shown in table 1 that formulates MinHOM(H). The intuition is if251

variable xu,ai = 1 and xu,ai+1
= 0, then we map u to ai. Thus, we add constraint (C3) that252

has inequalities xu,ai+1
≤ xu,ai and xv,aj+1

≤ xv,aj . Now, from constraint (C3) and the min253

ordering, we add constraint (C4). Constraints (C5,C6) are the most important constraints254

capturing the min ordering property. Using Observation 3.5, constraint (C7,C8) are added255

to make sure that if we map u ∈ U (v ∈ V ) to ai (bj) then the neighbor of u (v), say v (u)256

is mapped to a neighbor of ai (bj).257
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Minimize
∑

u∈U,i∈[p]
c(u, ai)(xu,ai − xu,ai+1

) +
∑

v∈V,j∈[q]
c(v, bj)(xv,bi − xv,bj+1

)

Subject to:
0 ≤ xu,ai , vv,bj ≤ 1 ∀u, v ∈ V (G), ai, bj ∈ V (H) (C1)
xu,a1 = xv,b1 = 1 and xu,ap+1 = xv,bq+1 = 0 (C2)
xv,bi+1

≤ xv,bi and xu,ai+1
≤ xu,ai ∀v ∈ V, u ∈ U, ai, bi ∈ V (H) (C3)

xu,ai ≤ xv,br(i) and xv,bi ≤ xu,aℓ(i) ∀uv ∈ E(G) (C4)
xv,bj ≤ xu,as +

∑
atbj∈E(H),t<i

(xu,at − xu,at+1) ∀uv ∈ E(G), aibj ∈ E ′, as is the
first neighbor of bj after ai

(C5)

xu,ai ≤ xv,bs +
∑

aibt∈E(H),t<j

(xv,bt − xv,bt+1) ∀uv ∈ E(G), aibj ∈ E ′ bs is the
first neighbor of ai after bj

(C6)

xu,ai − xu,ai+1
≤

∑
aibt∈E(H),t<j

(xv,bt − xv,bt+1) ∀uv ∈ E(G), aibj ∈ E ′, and ai
has no neighbor after bj

(C7)

xv,bj − xv,bj+1
≤

∑
atbj∈E(H),t<i

(xu,at − xu,at+1) ∀uv ∈ E(G), aibj ∈ E ′, and bj
has no neighbor after ai

(C8)

Table 1: Linear program S

Lemma 3.6. If H admits a min-ordering then there is a one to one correspondence between258

homomorphisms of G to H and the integer solutions of S.259

Proof. Suppose f is a homomorphism from G to H. If f(u) = ai then set xu,aj = 1, for260

all j ≤ i and xu,aj = 0 for all j > i. Similar treatment for v and bj. Clearly, constraints261

C1, C2, C3, and C4 are satisfied. Now for all u and v in G with f(u) = ai and f(v) = bj262

we have that xu,ai − xu,ai+1
= xv,bj − xv,bj+1

= 1. Moreover, since f is a homomorphism263

constraint (C7,C8) are also satisfied.264

We show that constraint (C5) holds. For, contradiction, assume that the inequality in265

(C5) fails. This means that for some edge uv of G and some arc aibj ∈ E ′, we have xv,bj = 1266

, xu,as = 0, and the sum of (xu,at − xu,at+1), over all t < i such that at is a neighbor of aj,267

is zero. The latter two facts easily imply that f(u) = ai. Since bj has a neighbor after ai,268

Observation 3.5 tells us that ai has no neighbor after bj and xv,bj+1
= 0, whence f(v) = bj269

and thus aibj ∈ E(H), a contradiction the assumption aibj ∈ E ′. By a similar argument270

(C6) is also satisfied.271

Conversely, from an integer solution for S, we define a mapping f from G to H as follows.272

For every u ∈ U , set f(u) = ai when i is the largest subscript with xu,ai = 1. Similarly, for273

every v ∈ V set f(v) = bj when j is the largest subscript with xv,bj = 1.274

Let uv be an edge of G and assume f(u) = ai, f(v) = bj. Note that xu,ai − xu,ai+1
=275

xv,bj −xv,bj+1
= 1 and for all other t we have xv,bt −xv,bt+1 = 0. If aibj is an edge of H we are276

done. Suppose this is not the case. Since constraints C4 is satisfied, ai has a neighbor before277

bj and bj has a neighbor before ai Thus, aibj ∈ E ′. First suppose ai has no neighbor after278

bj. Now, 0 =
∑

aibt∈E(H),t<j

(xv,bt − xv,bt+1), violating constraint (C7). Thus, assume ai has a279

neighbor after bj. Now xu,ai = 1, while xv,bs = 0, and for every t < j, xv,bt − xv,bt+1 = 0, and280
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hence, constraint (C6) is not satisfied, a contradiction.281

Overview of the rounding procedure. Our algorithm will minimize the cost function282

over S in polynomial time using a linear programming algorithm. This will generally result283

in a fractional solution. We will obtain an integer solution by a randomized procedure called284

rounding. We choose a random variable X ∈ [0, 1], and define the rounded values χu,ai = 1285

when xu,ai ≥ X, and χu,ai = 0 otherwise; and similarly define the rounded value χv,bj from286

xv,bj . Now set f(u) = ai where χu,ai = 1, χu,ai+1
= 0 and set f(v) = bj where χv,bj = 1,287

χv,bj+1
= 0. In Lemma 3.7 we show that the mapping f is a homomorphism from G to H ′.288

However, f may not be a homomorphism from G to H. Now the algorithm will once more289

modify the solution f to become a homomorphism of G to H, i.e., to avoid mapping edges290

of G to the edges in E ′. This will be accomplished by another randomized procedure, which291

we call shifting. We choose another random variable Y ∈ [0, 1], which will guide the shifting.292

Let F denote the set of all edges in E ′ to which some edge of G is mapped by f . We also293

let F (G) = {(u, v, f(u), f(v))|uv ∈ E(G), f(u)f(v) ∈ E ′}.294

If F is empty, we need no shifting. Otherwise, let aibj be an edge of F with maximum295

sum i + j (among all edges of F ). By the maximality of i + j, we know that aibj is the296

last edge of F from both ai and bj. Now we consider, one by one, (u, v, ai, bj) ∈ F (G) (i.e.297

uv ∈ E(G)) where f(u) = ai and f(v) = bj. Since F ⊆ E ′, by Observation 3.5 either ai has298

no neighbor after bj or bj has no neighbor after ai.299

Suppose f(u) = ai and ai have no neighbor after bj (the other case is where f(v) = bj
and bj has no neighbor after ai). For such a vertex u, consider the set of all vertices at with
t < i such that atbj ∈ E(H). This set is not empty, since e is in E ′ because of two edges
of E(H). Suppose the set consists of at with subscripts t ordered as t1 < t2 < . . . tk. The
algorithm now selects one vertex from this set as follows. Let Pu,t =

xu,at−xu,at+1

Pu
, where

Pu =
∑

atbj∈E(H), t<i

(xu,at − xu,at+1).

Then atq is selected if
q∑

p=1

Pu,tp < Y ≤
q+1∑
p=1

Pu,tp . Thus, a concrete at is selected with proba-300

bility Pu,t, which is proportional to the difference of the fractional values xu,at − xu,at+1 .301

When the selected vertex is at, we shift the image of the vertex u from ai to at. This302

modifies the homomorphism f , and hence the corresponding values of the variables. Namely,303

χu,at+1 , . . . , χu,ai are reset to 0, keeping all other values the same. Note that the modified304

mapping is still a homomorphism from G to H ′.305

We repeat the same process for the next u with these properties, until aibj is no longer306

in F (because no edge of G maps to it). This ends the iteration on aibj, and we proceed to307

the next edge ai′bj′ with maximum i′ + j′ for the next iteration. Each iteration involves at308

most |V (G)| shifts. After at most |E ′| iterations, the set F is empty and no shift is needed.309

It is easy to see, due to min ordering, if the image of vertex u changes because of edge uv310

with f(u)f(v) ̸∈ E(H), while f(u)f(w) ∈ E(H) for some other neighbor w of u, by changing311

the image of u there is no need to change the image of w. We also show that the image of312
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every vertex w in G changes at most once. More details are provided at the beginning of313

Lemma 3.8.314

Algorithm 1 Rounding the fractional values of S
1: procedure Rounding-Shifting(S)
2: Let {xu,ai} and {xv,bj} be the (fractional) values returned by solving S
3: Sample X ∈ [0, 1] uniformly at random
4: For all xu,ai : if X ≤ xu,ai set χu,ai = 1, else set χu,ai = 0
5: For all xv,bj : if X ≤ xv,bj set χv,bj = 1, else set χv,bj = 0
6: Set f(u) = ai where χu,ai = 1, χu,ai+1

= 0
7: Set f(v) = bj where χv,bj = 1, χv,bj+1

= 0
▷ At this point f is a homomorphism from G to H ′.

8: Let F (G) = {(u, v, f(u), f(v))|uv ∈ E(G), f(u)f(v) ∈ E ′}.
9: Let F ⊂ E ′ be the set of edges aibj with some (u, v, ai, bj) ∈ F (G)

10: Choose a random variable Y with values in [0, 1]
11: while ∃ edge aibj ∈ F with i+ j is maximum do
12: while ∃(u, v, ai, bj) ∈ F (G) do
13: if ai does not have a neighbor after bj and f(u) = ai then

Shift-Left(f, u, v, ai, bj, Y )
14: else if bj does not have a neighbor after ai and f(v) = bj then

Shift-Right(f, v, u, ai, bj, Y )

15: Remove (u, v, ai, bj) from F (G)

16: Remove aibj from F
▷ At this point f is a homomorphism from G to H.

17: return f ▷ f is a homomorphism from G to H.

Algorithm 2 Procedures Shift-Left and Shift-Right

1: procedure Shift-Left(f, u, v, ai, bj, Y )
2: Let at1 , at2 , . . . , atk be the neighbors of bj in H before ai

3: Let Pu ←
k∑

l=1

(xu,atl
− xu,atl+1) , and let Pu,atq ←

q∑
l=1

(xu,atl
− xu,atl+1)/Pu

4: if Pu,atq < Y ≤ Pu,atq+1
then

5: f(u)← atq
6: Set χu,aι = 1 for 1 ≤ ι ≤ tq, and set χu,aι = 0 for tq < ι ≤ p+ 1

7: procedure Shift-Right(f, v, u, ai, bj, Y )
8: Let bt1 , bt2 , . . . , btk be the neighbors of ai in H before bj

9: Let Pv ←
k∑

l=1

(xv,btl
− xv,btl+1) , and let Pv,btq ←

q∑
l=1

(xv,btl
− xv,btl+1)/Pv

10: if Pv,btq < Y ≤ Pv,btq+1
then

11: f(v)← btq
12: Set χv,bι = 1 for 1 ≤ ι ≤ tq, and set χv,bι = 0 for tq < ι ≤ p+ 1

10



Lemma 3.7. The mapping f returned at line 7 of Algorithm 1 is a homomorphism from G315

to H ′.316

Proof. Consider the edge uv ∈ E(G) and suppose f(u) = ai and f(v) = bj. Thus, we have317

xu,ai+1
< X ≤ xu,ai , and xv,bj+1

< X ≤ xv,bj . Now, by constraint (C5), we have xu,ai ≤ xv,br(i) ,318

and hence X ≤ xv,br(i) . Since xv,bj+1
< X, by constraint (C3), we have r(i) ≤ j. Similarly,319

using the same argument for ℓ(j), we conclude that ℓ(j) ≤ i. Therefore, ai has a neighbor320

not after bj, and bj has a neighbor not after ai. Now, either aiaj ∈ E(H), or by the definition321

of E ′, aibj ∈ E ′.322

Let W denote the value of the objective function with the fractional optimum xu,ai , xv,bj ,323

and W ′ denote the value of the objective function with the final values χu,ai , χv,bj , after the324

rounding and all the shifting. Also, let W ∗ be the minimum cost of a homomorphism from325

G to H. Obviously, W ≤ W ∗ ≤ W ′. We now show that the expected value of W ′ is at most326

a constant times W .327

Lemma 3.8. Algorithm 1 runs in polynomial-time and it returns the homormorphism f328

from G to H such that for u, v ∈ G and at, bj ∈ H we have329

P
[
χu,at = 1, χu,at+1 = 0 i.e. f(u) = at

]
≤ xu,at − xu,at+1 (1)

P
[
χv,bj = 1, χv,bj+1

= 0 i.e. f(v) = bj
]
≤ xv,bj − xv,bj+1

(2)

Moreover, the expected contribution of each summand, say c(u, at)(χu,at − χu,at+1), to the330

expected cost of W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1).331

Proof. Recall that after the rounding step using the random variable X, we have a partial332

homomorphism f : V (G) → V (H), where f(u) = ai if xu,ai+1
< X ≤ xu,ai , and f(v) = bj333

if xv,bj+1
< X ≤ xv,bj . By Lemma 3.7, f is a homomorphism from G to H ′. We show the334

following claims, which help us through the rest of the proof.335

Claim 3.9. Let uv, uw ∈ E(G). Suppose f(u)f(v) ∈ E ′, and f(u)f(w) ∈ E(H). After336

shifting the image of u to at, we have atf(w) ∈ E(H).337

Proof. Let f(u) = ai and f(v) = bj and aibj ̸∈ E(H), and aial ∈ E(H) where bl = f(w).338

Since we have shifted the image of u in Algorithm 1, according to Observation 3.5, ai has no339

neighbor after bj. Now because aibl ∈ E(H), we have bl < bj. Since a1, a2, . . . , ap, b1, b2, . . . , bq340

is a min ordering, and aibl, atbj ∈ E(H) with t < i, l < j, we conclude that atbl ∈ E(H).341

Claim 3.10. Let uv, uw ∈ E(G). Suppose f(u)f(v) ∈ E ′. Suppose that the image of u342

is shifted to at, and atf(w) ̸∈ E(H), then the Shift-Right shifts the image of f(w) to a343

neighbor of at.344

Proof. Let ai = f(u), bj = f(v). Let bs = f(w). If aibs ∈ E(H), as we argued in the Claim345

3.9, atbs ∈ E(H) and we don’t need to change the image of w because of u. Thus, we may346

assume atbs ∈ E ′. Now since i + j is maximum, bs < bj. This would imply that aibs ∈ E ′,347

and hence, we shift the image of w according to the rules of the Algorithm 1 to a neighbor348

of ai, say bl and before bs. Now by the min ordering property atbl ∈ E(H).349
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From the proof of Claims 3.9 and 3.10 the image of each vertex u is shifted at most one.350

We observe that the image of vertex u is always changed to a smaller element. Moreover,351

at each step one element is removed from F (G). Suppose uv, uw ∈ E(G). By Claim 3.9,352

if f(u)f(w) is in E(H), then by shifting the image of f(u) because of uv being mapped to353

E ′, there is no need to change the image of w. Furthermore, by claim 3.10 if by shifting the354

image of f(u) from ai to at, there is no edge between f(w)at then w is shifted to a neighbor355

of ai that is also a neighbor of at. These conclusions guarantee that at each step the number356

of elements in F (G) is decreased. It is clear that for each aibj in F , at most |V (G)| shifts357

are needed. Therefore, Algorithm 1 runs in polynomial-time and f is a homomorphism from358

G to H.359

According to the rules of the Algorithm 1, vertex u is mapped to at in two cases. The360

first case is where u is mapped to at by rounding, and is not shifted away. In other words, we361

have χu,at = 1 and χu,at+1 = 0 after rounding, and these values do not change by procedures362

Shift-Left. Hence, for this case we have:363

P[f(u) = at] ≤ P[xu,at+1 < X ≤ xu,at ] = xu,at − xu,at+1

where the first inequality follows from the fact that the probability that the image of u is364

not changed by either of shifting procedures is at most 1. Whence, this situation occurs365

with probability at most xu,at − xu,at+1 , and the expected contribution of the corresponding366

summand is at most c(u, at)(xu,at − xu,at+1).367

Second case is where f(u) is set to at during Shift-Left. We first calculate the contribu-368

tion for a fixed i, that is, the contribution of shifting u from a fixed ai to at in Shift-Left.369

Note that u is first mapped to ai, i > t, by rounding, and then re-mapped to at during370

procedure Shift-Left. This happens if there exists j and v such that uv is an edge of371

G, and aibj ∈ F ⊆ E ′ (with i + j being maximum) and then the image of u is shifted to at372

(at < ai in the min ordering), where atbj ∈ E(H). In other words, we have χu,ai = χv,bj = 1373

and χu,ai+1
= χv,bj+1

= 0 after rounding; and then u is shifted from ai to at.374

Recall that this shift occurs when ai does not have any neighbors after bj and Algorithm 1375

calls Shift-Left. Furthermore, aibj ∈ F is chosen so that i+ j is maximized. We show the376

following claim which enables us to assume we only need to consider only one neighbor of u,377

namely, v in our calculation.378

Claim 3.11. , For every neighbor w of u where X ≤ xw,bj , we must have xw,bj+1
< X.379

Proof. By Observation 3.4, the ordering a1 < a2 < · · · < ap < b1 < b2 < · · · < bp is a min-380

max ordering with respect to E(H) ∪ E ′, and by Lemma 3.7 every edge of G is mapped to381

an edge in E(H)∪E ′, after the rounding step by variable X. Suppose for some uw ∈ E(G)382

we have xw,bj+1
≥ X which implies that uw is mapped to aibj′ ∈ E(H)∪E ′ with j < j′, this383

in turn contradicts our assumptions that ai does not have any neighbor after bj and i+ j is384

maximum.385

386
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By the above claim no neighbor of u is mapped to a vertex after bj in the rounding step. By387

Claim 3.11 we must have xw,bj+1
< X for all w with uw ∈ E(G). That is,388

α = max
w:uw∈E(G)

xw,bj+1
< X (3)

Define events A and B as follows:389

Event A: there exists v such that uv is an edge of G, and u is mapped to ai and v is390

mapped to bj during rounding step. That is the event χu,ai = χv,bj = 1, χu,ai+1
=391

χv,bj+1
= 0.392

Event B: the image of u is shifted to at from ai (t < i). That is the event Pu,atj
< Y ≤393

Pu,atj+1
.394

Consider event A and two cases where bj has some neighbor after ai and the case where395

bj does not have a neighbor after ai. Let C be the non-empty set of indices C = {t | t <396

i, atbj ∈ E(H)}. In the first case, we have:397

P [event A happens] = P
[
∃uw ∈ E(G) : χu,ai = χw,bj = 1, χu,ai+1

= χw,bj+1
= 0

]
(4)

= P
[
∃uw ∈ E(G) : max{xu,ai+1

, α} < X ≤ min{xu,ai , xw,bj}
]

(5)

≤ min

{
xu,ai , max

w:uw∈E(G)
xw,bj

}
−max

{
xu,ai+1

, α
}

(6)

≤ xv,bj − xu,ai+1
( v = argmax

w:uw∈E(G)

xw,bj)

≤ xv,bj − xu,as ( as is the first neighbor of bj after ai, and we have xu,as ≤ xu,ai+1
)

≤
∑
t∈C

(xu,at − xu,at+1) = Pu (7)

The last inequality is because ai has no neighbor after bj and it follows from constraint398

(C5). Second for the case where bj has no neighbor after ai. By constraint (C8), for every399

v that is a neighbor of u we have:400

xv,bj − xv,bj+1
≤

∑
t∈C

xu,at − xu,at+1 = Pu (8)

We therefore obtain:401
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P [event A happens] = P
[
∃uw ∈ E(G) : χu,ai = χw,bj = 1, χu,ai+1

= χw,bj+1
= 0

]
(9)

= P
[
∃uw ∈ E(G) : max{xu,ai+1

, α} < X ≤ min{xu,ai , xw,bj}
]

(10)

≤ min

{
xu,ai , max

w:uw∈E(G)
xw,bj

}
−max

{
xu,ai+1

, α
}

(11)

≤ xv,bj − α ( v = argmax
w:uw∈E(G)

xw,bj)

≤ xv,bj+1
+ Pu − α (by (8))

≤ xv,bj+1
+ Pu − xv,bj+1

(by (3))
= Pu (12)

Having uv mapped to aibj in the rounding step, we shift u to at with probability Pu,t =402

(xu,at − xu,at+1)/Pu. That is P[B | A] = Pu,t. Note that the upper bound P[A] ≤ Pu is403

independent from the choice of v and bj. Moreover, recall that random variables X and Y404

are independent. Therefore, for a fixed ai, the probability that u is shifted from ai to at is405

at most406

P[B | A] · P[A] ≤ ((xu,at − xu,at+1)/Pu) · Pu = xu,at − xu,at+1

Thus, the expected contribution for a fixed ai (with its bj and v) is also at most c(u, at)(xu,at−407

xu,at+1). Notice that there are at most |V (H)|−1 of such ai’s, thus the expected contribution408

of c(u, at) to the expected value of W ′ is at most |V (H)|c(u, at)(xu,at − xu,at+1).409

410

Theorem 3.12. Algorithm 1 returns a homomorphism with expected cost at most |V (H)|411

times optimal solution. The algorithm can be derandomized to obtain a deterministic |V (H)|-412

approximation algorithm.413

Proof. By Lemma 3.8 and linearity of expectation, for the expected value of W ′ we have414

E[W ′] = E

[∑
u,i

c(u, ai)(χu,ai − χu,ai+1
) +

∑
v,j

c(v, bj)(χv,bj − χv,bj+1
)

]
=

∑
u,i

c(u, ai)E[χu,ai − χu,ai+1
] +

∑
v,j

c(v, bj)E[χv,bj − χv,bj+1
]

≤ |V (H)|(
∑
u,i

c(u, ai)(xu,ai − xu,ai+1
) +

∑
v,j

c(v, bj)(χv,bj − χv,bj+1
))

≤ |V (H)|W ≤ |V (H)|W ∗.

Thus Algorithm 1 outputs a homomorphism whose expected cost is at most |V (H)| times415

the minimum cost. It can be transformed to a deterministic algorithm as follows. There are416

only polynomially many values xu,ai , xv,bj (at most |V (G)| · |V (H)|). When X lies anywhere417
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between two such consecutive values, all computations will remain the same. Similarly, there418

are only polynomially many values of the partial sums
q∑

p=1

Pu,tp , and when Y lies anywhere419

between two consecutive values, all the computations remain the same. Moreover, for any420

given X and Y , the rounding and shifting algorithms can be performed in polynomial time.421

Thus, we can derandomize the algorithm by trying all the possible values for X and Y and422

simply choose the pair that gives us the minimum homomorphism cost. Since the expected423

value is at most |V (H)| times the minimum cost, this bound also applies to this best solution.424

425

4 A dichotomy for approximating MinHOM on graphs426

(under a conjecture)427

Feder et al. [10] proved that LHOM(H) is solvable in polynomial time iff H is a bi-arc graph.428

We recall the definition.429

Let C be a circle with two distinguished points p and q. A bi-arc is an ordered pair of arcs430

(N,S) on C such that p ∈ N ̸∋ q and q ∈ S ̸∋ p. A graph H is a bi-arc graph if there exists431

a family {(Nx, Sx) : x ∈ V (H)} such that, for any (not necessarily distinct) x, y ∈ V (H):432

• if xy ∈ E(H), then neither Nx intersects Sy nor Ny intersects Sx;433

• if xy /∈ E(H), then both Nx intersects Sy and Ny intersects Sx.434

We call such a family a bi-arc representation of H. Note that a bi-arc representation cannot435

contain (N,S), (N ′, S ′) with N ∩ S ′ ̸= ∅ and S ∩ N ′ = ∅ (and vice versa). Vertices with436

self-loops are allowed.437

Theorem 4.1 ([4, 10]). A graph admits a conservative majority polymorphism if and only438

if it is a bi-arc graph.439

We will use two known facts about reflexive graphs: (i) a reflexive graph admits a min-440

ordering iff it is an interval graph [12]; and (ii) if a reflexive graph H is not an interval graph,441

then LHOM(H) is NP-complete [8]. The latter immediately implies that MinHOM(H) is442

inapproximable for any non-interval reflexive H. Combining with the standard algorithm443

for the bipartite case (Section 3) yields:444

Theorem 4.2. Let H be reflexive. Then MinHOM(H) admits a |V (H)|-approximation if445

H is an interval graph, and is not approximable otherwise.446

As an easy consequence:447

Corollary 4.3. If a graph H admits a min-ordering, then MinHOM(H) admits a |V (H)|-448

approximation algorithm.449
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Figure 1: Forbidden induced subgraphs for admitting a min-ordering.

Forbidden obstructions for min-ordering within bi-arc graphs. We next character-450

ize when a bi-arc graph admits a min-ordering by forbidding a small set of induced subgraphs451

(Figure 1).452

Theorem 4.4. Let H be a bi-arc graph. Then H admits a min-ordering if and only if H453

contains none of the graphs in Figure 1 as an induced subgraph.454

Proof. First, observe that none of the graphs in Figure 1 admits a min-ordering. Indeed:455

(i) if H has a looped vertex a adjacent to an unlooped vertex b, then in any min-ordering456

a must precede b; and (ii) if bd is an edge with both b and d unlooped, then bd cannot be457

accommodated by a min-ordering. This means neither of the graphs in (A) and (B) admit a458

min-ordering and hence H does not admit a min-ordering. For the configuration (C), suppose459

for contradiction that a min-ordering < exists. Then b must come after both a and d; say460

a < d < b. Since ab and dd are edges, the min-rule forces ad to be an edge, contradicting461

(C). Thus every obstruction in Figure 1 forbids a min-ordering.462

Now assume H is a bi-arc graph that does not contain any of the forbidden induced463

subgraphs in Figure 1. Let C denote the (unique) reflexive component of H (since H is464

connected). Because LHOM(H) is polynomial-time solvable, the result of Feder and Hell465

[8] implies that a reflexive component of H must be an interval graph. Moreover, reflexive466

interval graphs admit a min-ordering [12]. Fix such a min-ordering on C, as u1 < u2 < · · · <467

um.468

Every other vertex of H (necessarily unlooped) is connected to C by some path. Because469

H does not contain obstruction (A), any unlooped vertex u has at least one neighbor in C;470

let ui be the last neighbor of u in the order on C. Place u immediately after ui and before471

ui+1. If two unlooped vertices u, v have the same last neighbor uj, then we order them472

by the position of their first neighbors on C (earlier first neighbor comes earlier), breaking473

remaining ties arbitrarily. This yields a linear order < on V (H).474

We claim that this < is a min-ordering. Consider two edges uv and xy with u < x475

and v < y. We need to show that min{u, x} min{v, y} ∈ E(H). Without loss of generality,476

assume u < x. Since there are no edges between two unlooped vertices, at least one endpoint477

of each edge is looped; and because u < v in our placement rule, u must be looped. Similarly,478

x is looped. If both v and y are looped, the claim follows from the fact that C already has479

a min-ordering. Thus assume at least one of v, y is unlooped.480
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If v < x, there is nothing to prove. So assume x < v and y < v. By construction, v is481

placed immediately after its last neighbor in C, hence vx ∈ E(H). Moreover, because y < v,482

the placement rule ensures that y is adjacent to every looped vertex up to (and including)483

the last neighbor that justifies v’s position; in particular, yu ∈ E(H). Therefore,484

min{u, x} = u and min{v, y} = y,

and we have uy ∈ E(H) as required. This verifies the min-rule in all cases, so < is a485

min-ordering of H.486

4.1 UGC-hard instances of MinHOM(H)487

OCT and a three-vertex gadget. Let H have vertices {a, b, d} and edges {ab, ad, bd, dd}.488

Assume costs c(u, d) = 1 and c(u, a) = c(u, b) = 0 for all u ∈ V (G). If S ⊆ V (G) with489

|S| = k makes G\S bipartite with bipartition (A,B), define f(u) = d if u ∈ S, f(u) = a if490

u ∈ A, and f(u) = b if u ∈ B; this yields a homomorphism of total cost k. Conversely, any491

homomorphism of cost k maps exactly k vertices to d and the remainder to {a, b} so that492

each odd cycle contains an edge mapped to dd, hence the set S = {u : f(u) = d} is an odd-493

cycle transversal of size k. Since OCT admits no constant-factor approximation under UGC494

(e.g., [14]), MinHOM(H) for this H has no constant-factor approximation under UGC.495

Bipartite contraction and a loop-edge gadget. Now let H have vertices {a, b, d} and496

edges {ab, ad, dd}. This case is tightly related to Bipartite Edge Contraction (known497

NP-complete [20]). The following corollary is standard reduction from Edge Bipartization498

(edge deletion to bipartite graphs) to Bipartite Contraction problem.499

Corollary 4.5. Assume the Unique Games Conjecture (UGC). Then the optimization ver-500

sion of Bipartite Contraction admits no constant-factor approximation.501

Proof. We reduce Bipartite Edge Deletion (a.k.a. edge-deletion to bipartite graphs) which is502

UGC-hard to approximate within any constant factor (see [36]), to Bipartite Contrac-503

tion via the standard gadget: replace each edge e = uv of G by an internally vertex-disjoint504

u–v path Pe of odd length L := 2k + 1, where k is the parameter/target budget.505

Let OPTdel(G) be the minimum number of edge deletions that make G bipartite, and506

let OPTctr(G
′) be the minimum number of edge contractions that make the constructed507

G′ bipartite. The coloring-based analysis shows a tight correspondence: OPTctr(G
′) =508

OPTdel(G). Indeed, from any optimal deletion set F in G we obtain a contraction set of509

the same size in G′ by contracting one internal edge on each Pe for e ∈ F , yielding a proper510

2-coloring of the contracted graph. Conversely, given any contraction set S in G′, reading511

off the 2-coloring on the original vertices identifies a deletion set F in G with |F | ≤ |S|; the512

choice L = 2k + 1 prevents identifying original endpoints within budget.513

Therefore, a ρ-approximation for Bipartite Edge Contraction would immediately514

give a ρ-approximation for Bipartite Edge Deletion. Since the latter admits no constant-515

factor approximation under UGC, neither does Bipartite Contraction.516
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Let G be an input graph G. Let f : V (G) → V (H) be a homomorphism. Then for517

every odd induced cycle (an odd cycle without chord) C, f maps an edge of C to edge dd of518

G. Suppose this is not the case. Let C : v1, v2, . . . , v2k+1, v1. Now between two consecutive519

appearances of f(vi) and f(vj) where j > i + 1 there are even number of edges of C, and520

hence, the length of C is even, a contradiction. If we have homomorphism f : V (G)→ V (H)521

with minimum cost, then we obtain a set F of minimum size of edges in G to contract and522

obtain a bipartite graph, particularly those edges whose both edge point are mapped to d523

under f . However, the converse is not true. We can not get a solution for MinHOM(H)524

when we contract a few edges in G From this discussion we believe the following conjecture525

hold.526

Conjecture 4.6. Let H be the three-vertex graph with edges {ab, ad, dd}. Then MinHOM(H)527

is UGC-hard.528

Assuming Conjecture 4.6, we obtain the promised dichotomy.529

Theorem 4.7 (Dichotomy under Conjecture 4.6). For every graph H, MinHOM(H) admits530

a constant-factor approximation if and only if H admits a min-ordering.531

Proof. Note that the graph (C) depicted in Figure 1 does not admit a majority operation.532

Observe that by definition g(a, b, d)g(b, d, d) and g(a, b, d)g(a, a, b) must be edges (C), hence,533

g(a, b, d) = b. By similar argument, g(b, a, d) = b. Now g(a, b, d)g(b, a, d) must be an edge of534

(C) a contradiction. Therefore, LHOM(C) is NP-complete and hence MinHOM(H) does not535

admit any approximation. Furthermore, MinHOM(B) where (B) is the (B) graph depicted536

in Figure 1 does not admit a constant approximation algorithm under UGC. By Conjecture537

4.6, the graph (A) depicted in Figure 1 does not admit a constant approximation algorithm.538

Thus, we forbid the graphs depicted in Figure 1. Now by Theorem 4.4 H admit a mi-ordering.539

By Corollary 4.3, MinHOM(H) admits a |V (H)|-approximation algorithm.540

5 Inapproximability of H-coloring for graphs541

We say an optimization problem P is α-approx-hard, α > 0, if it is NP-hard to find an542

α-approximation for P . Note that if P is a maximization problem then α ≤ 1, and if it a543

minimization problem then α ≥ 1.544

We also use another notion of inapproximability under the Unique Game Conjecture545

[33], UGC for short. We say an optimization problem P is α-UG-hard if it is UG-hard to546

approximate P within factor α. See [2] for further details.547

A nice property of the MinHOM problem is that the hardness results for approximation548

are “carried over” by induced sub-graphs. This means if MinHOM(H) is α-approx-hard or549

it is α-UG-hard, then the same holds for any graph which has H as its induced sub-graph.550

Informally speaking, such a property holds since the cost functions in the MinHOM problem551

are part of inputs, hence, modifying cost functions gives rise to hardness results for every552

graph H ′ which has H as its induced graph. This is proved formally as follows.553
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Bipartite netBipartite tentBipartite clawEven induced cycle (C6)

Figure 2: Obstruction to min-max ordering in bipartite graphs, and making MinHOM(H) NP-
complete.

Lemma 5.1. [Hardness of approximation for sub-graph] Let H be an induced sub-graph of554

graph H ′. If MinHOM(H) is α-approx-hard [α-UG-hard], then MinHOM(H ′) is α-approx-555

hard [α-UG-hard].556

Proof. Let G,H together with cost function c : G×H → Q≥0 be an instance of MinHOM(H).557

Construct an instance of MinHOM(H ′) with graphs G,H ′ and cost function c′ : G ×H ′ →558

Q≥0 where c′(u, i) = c(u, i) for every u ∈ G and i ∈ H, otherwise, for every u ∈ G and559

i ∈ H ′ \ H , c′(u, i) = W where W is a number greater than (1 + max{c(u, i) | u ∈ G, i ∈560

H})|G|). Notice that the cost of any homomorphism from G to H is strictly less than W .561

Notice that f ′∗ : V (G)→ V (H ′), the minimum cost homomorphism from G to H ′, does562

not map any of the vertices of G to any vertex in H ′ \H due to the way we have defined c′.563

Therefore, f ′∗ is also the minimum cost homomorphism for H. Now it is straightforward to564

see that if an algorithm approximates f ∗ : V (G)→ V (H), the minimum cost homomorphism565

from G to H within a factor α, it is, in fact, computing an α-approximation of f ′∗.566

5.1 Hardness of approximation for graphs567

In this subsection we prove that MinHOM for graphs does not admit any PTAS and in568

a sense a cosntant factor approximation is the best one can achieve. We start with the569

following theorems about the complexity of MinHOM(H) for graph H.570

Theorem 5.2. [17] Let H be a bipartite graph. Then MinHOM(H) is polynomial-time571

solvable if and only if H admits a min-max ordering (i.e., does not contain an induced cycle572

of length at least six, or a bipartite claw, or a bipartite net, or a bipartite tent, see Figure 2).573

Theorem 5.3. [17] Let H be graph with at least one self-loop vertex. Then MinHOM(H)574

is polynomial-time solvable if and only if H is reflexive (every vertex has a self-loop) and575

admits a min-max ordering (i.e., does not contain an induced cycle of length at least four,576

or a claw, or a net, or a tent, see Figure 3).577

The obstruction to min-max ordering for graphs are invertible pairs [27]. We say two578

vertices a and b of graph( bipartite graph) H is an invertible pair if there exist two walks579

P from a to b and Q from b to a of the same length such that when aiai+1, bibi+1 are the580
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NetTentClawInduced C4

Figure 3: Obstruction to min-max ordering in reflexive graphs, and making MinHOM(H) NP-
complete.

i-th edge of P and Q then at least one of the aibi+1, biai+1 is not an edge of H. We use the581

existence of these obstruction in our gap preserving approximation reduction.582

Before going to the main result, recall the following lemma that establishes the relation-583

ship between non-polynomial cases of the LHOM and the approximation of MinHOM.584

Lemma 5.4. [23] If LHOM(H) is not polynomial-time solvable then MinHOM(H) does not585

have any approximation.586

Now, we are ready to obtain hardness of approximation for MinHOM(H) when H is a587

graph.588

Theorem 5.5. Let H be a graph where MinHOM(H) is NP-complete. Then MinHOM(H)589

is at least 1.128-approx-hard (under P ̸= NP assumption), and 1.242-UG-hard.590

Proof. We consider two cases, where H is irreflexive (no vertex has a self-loop) and the case591

where H has a vertex with self-loop.592

H is irreflexive: Without loss of generality, we can assume H is bipartite, as otherwise,593

HOM(H) is NP-complete (due to [24]). Hence, LHOM(H) is NP-complete, and by Lemma594

5.4, MinHOM(H) does not have any approximation. By this argument and by Lemma595

5.1 (hardness of approximation for sub-graph), if a sub-graph of H is not bipartite, again596

MinHOM(H) does not admit any approximation. Therefore, we continue by assuming that597

H is bipartite. Moreover, when bipartite graph H contains an induced even cycle of length598

at least 6, LHOM(H) is NP-complete due to [9], and hence, by Lemma 5.4 MinHOM(H)599

admits no approximation. By Theorem 5.2 and Lemma 5.1, it remains to consider the cases600

where H is either bipartite claw, bipartite tent, or bipartite net.601

We start with bipartite claw first. Let H be a bipartite claw with the vertex set602

{a, b, d, e, i, j, k} and the edge set with edge set {bi, ai, aj, ak, ke, dj} (as depicted in Fig-603

ure 4). It was shown in [34] that it is NP-hard to approximate the Vertex Cover within604

factor better than
√
2− ϵ. Vertex Cover is also (2− ϵ)-UG-hard by [35]. Let G be any of the605

graphs described in [6, 34], with V (G) = {x1, x2, . . . , xn}. This graph has a relatively large606

vertex cover.607

608

Construction of the bipartite graph G′: We construct the bipartite graph G′ as follows. The609

vertex set of G′ consists of three disjoint copies V1, V2, V3 of V (G) together with set U . Let610
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Figure 4: Invertible pair for bipartite claw, tent, and net.

V1 = {u1, u2, . . . , un}, V2 = {v1, v2, . . . , vn}, and V3 = {w1, w2, . . . , wn}. Here, for each r611

(1 ≤ r ≤ n), ur, vr, and wr are the vertices corresponding to xr. As for U , we initially set612

U = ∅. For all 1 ≤ r, s ≤ n such that xrxs is an edge of G, we introduce into U a new613

vertex αr,s (corresponding to the pair (r, s) and add the two edges urαr,s and αr,svs to G′
614

(the 2-path ur, αr,s, vs corresponds to the paths a, j, d and b, i, a in H). Note that when xrxs615

is an edge of G, xsxr is also an edge; hence, for pair (s, r) we add a new vertex αs,r.616

For each pair vr and wr we add a new corresponding vertex βr to U and add the edges617

vrβr and βrwr (corresponding to the paths d, j, a and a, k, e in H). Finally, for each pair ur618

and wr, we add a new vertex λr to U and then, add the two edges urλr and λrwr to G′.619

620

Defining the cost function: Define the cost function c : V (G′)×V (H)→ Q≥0 as follows. For621

each vertex ur ∈ V1 set c(ur, a) = 1, c(ur, b) = 0, and c(ur, l) = |G| for each l ̸∈ {a, b}. For622

each vertex vr ∈ V2, set c(vr, a) = 1, c(vr, d) = 0, and c(vr, l) = |G| for each l ̸∈ {a, d}. For623

each vertex wr ∈ V3, set c(wr, a) = 1, c(wr, e) = 0, and c(wr, l) = |G| for each l ̸∈ {a, e}.624

Finally, for every u ∈ U , put c(u, i) = c(u, j) = c(u, k) = 0, and for every other case, set the625

cost to be |G|.626

627

From a vertex cover in G to a homomorphism from G′ to H: Let V C be a vertex cover628

in the original graph G. Define the mapping f : V (G′) → V (H) as follows. For every629

vertex ur ∈ V1 set f(ur) = a if xr ∈ V C; otherwise, set f(ur) = b. For every vr ∈ V2630

set f(vr) = a if xr ∈ V C; otherwise, set f(vr) = d. For every wr ∈ V3 set f(wr) = a if631

xr ̸∈ V C; otherwise, set f(wr) = e. For every vertex αr,s corresponding to pair (xr, xs) such632

that xrxs ∈ E(G), set f(αr,s) = i if f(ur) = b; otherwise, set f(αr,s) = j. For every λr ∈ G′
633

where urλr, λrwr ∈ E(G′), set f(λr) = i if f(ur) = b; otherwise, set f(λr) = k. Finally, for634

every βr ∈ G′ with vrβr, βrwr ∈ E(G′), set f(βr) = j if f(vr) = d; otherwise, set f(βr) = k.635

We show that f is a homomorphism from G′ to H with cost c(f) = |V C| + |G|. Let636

urαr,s be an edge of G′. Then, by the construction of G′, αr,svs is also an edge of G′, where637
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αr,s corresponds to a pair (xr, xs) with xrxs ∈ E(G). Since V C is a vertex cover for G,638

at least one of xr and xs is in V C. Without loss of generality, assume that xr ∈ V C,639

and assume xr corresponds to vertex ur in V1. Now, by definition, f(ur) = a, and hence,640

f(αr,s) = j, where aj ∈ E(H); thereby, f(ur)f(αr,s) ∈ E(H). Moreover, f(vs) ∈ {a, d}, and641

hence, f(αr,s)f(vs) ∈ E(H). Now, consider the edge vrβr in G′. Notice that there is also642

an edge βrwr of G′ (vr ∈ V2, wr ∈ V3). First, consider the case where xr ̸∈ V C. Then, by643

definition, f(wr) = a and f(vr) = d and, consequently, f(βr) = j; thus, f(wr)f(βr) ∈ E(H),644

since aj is an edge of H. In this case, we additionally have βrvr ∈ E(G′), and, hence,645

f(βr)f(vr) ∈ E(H). Now, consider the case where xr ∈ V C. By definition, f(vr) = a646

and f(wr) = e. In this case, we have f(βr) = k where βr is the corresponding vertex in647

U to vr and wr. Since ak, ek ∈ E(H), we have f(vr)f(βr), f(βr)f(wr) ∈ E(H). A sim-648

ilar argument is applied when we consider a vertex λr ∈ U corresponding to ur and wr.649

Therefore, f is a homomorphism from G′ to H. It is easy to see that the cost of f is650

|V C|+ |V C|+ |G| − |V C| = |G|+ |V C|.651

652

From a homomorphism from G′ to H to a vertex cover in G: Let f be a homomorphism from653

G′ to H. To obtain a vertex cover in G, we modify f into a homomorphism so that it agrees654

on every ur ∈ V1 and vr ∈ V2. Suppose f(ur) = a and f(vr) = d for some ur ∈ V1 and vr ∈ V2.655

Consider the vertex βr ∈ U corresponding to vr and wr. Since vr, βr, wr is a path in G′, and656

there is no path of length two in H from d to e, we must have f(wr) = a and f(βr) = j.657

Then, we define a homomorphism f ′ from G′ to H as follows. We set f ′(vr) = a, f ′(wr) = e,658

and f ′(βr) = k. Moreover, for the vertex λr ∈ U corresponding to vertices ur and vr, we set659

f ′(λr) = k. Note that for every vertex αs,r corresponding to a pair (xs, xr) with xrxs ∈ E(G),660

we have f(αs,r) = j and f(us) = a— notice that αs,rvr, usαs,r ∈ E(G′). As such, we set661

f ′(αs,r) = i, thereby, get f(us)f
′(αs,r) ∈ E(H). Finally, for every other vertex z, we set662

f ′(z) = f(z). It is easy to see that f ′ is a homomorphism from G′ to H with c(f) = c(f ′).663

Next, suppose for some us we have f ′(us) = b and f ′(vs) = a. By a similar modification, we664

modify f ′ further and obtain a homomorphism f ′′ so that f ′′(us) = f ′′(vs) = a. We continue665

this process until we obtain a homomorphism f t so that f t(ur) = a if and only if f t(vr) = a666

for every 1 ≤ r ≤ n.667

Therefore, for the sake of simplicity, we may assume f t = f and f(ur) = a if and only668

if f(vr) = a for every ur ∈ V1. Notice that if f(ur) = f(vr) = a, then we may assume669

f(wr) = e. Otherwise, we change the image of wr to e, and still, f is a homomorphism from670

G′ to H, with a smaller cost.671

Let V C ′ = {ur, vr | f(ur) = f(vr) = a}. Notice that as we discussed just above672

V C ′ ∩ {us, vs | f(ws) = a}| = ∅. Therefore, c(f) = |V C ′| + |{ws | f(ws) = a}|, and673

hence, c(f) = |V C ′|+ |G| − |V C′|
2

. Let V C = {xr | f(ur) = a}, and notice that |V C| = |V C′|
2

.674

Thus, c(f) = |V C| + |G|. We show that V C is a vertex cover in G. Suppose xrxs ∈ E(G).675

Now there is a vertex αr,s ∈ U , and two edges urαr,s, αr,svs in G′. Since, there is no path676

of length two between b, d in H and f is a homomorphism from G′ to H, at least one of677

the f(ur), f(vs) is a, say f(ur) = a. Thus, by definition ur ∈ V C ′, and consequently xr ∈ V C.678

679

22



Showing the 1.128-approximation is NP-hard: We show that it is NP-hard to find a ho-680

momorphism f : V (G′) → V (H) with c(f) < (1 + λ)c(f ∗) (here λ = 0.128, and f ∗ is the681

optimal minimum cost homomorphism from G′ to H). For contradiction, suppose there is a682

polynomial-time algorithm that produces such a homomorphism f . Then, c(f) = |V C|+ |G|683

and c(f ∗) = |V C∗|+ |G| (here V C∗ is the optimal vertex cover in G). We have |V C|+ |G| <684

(1 + λ)(|V C∗|+ |G|).685

Thus, |V C| < (1+λ)|V C∗|+λ|G|, and hence, |V C|−λ|G| < (1+λ)|V C∗|. We may assume686

|V C| ≥ 0.639|G|, thanks to the construction in [6]. Therefore, we have |V C|(1 − λ
0.639

) ≤687

|V C| − λ|G| < (1 + λ)|V C∗|, and consequently, we have |V C| < 1+λ
1− λ

0.639

|V C∗|.688

By setting (1+λ)0.639
0.639−λ

=
√
2, we get a contradiction since, as shown in [34], the vertex cover689

cannot be approximated within any factor better than
√
2 − ϵ. Thus, 1 + λ = 1.128 and690

it is NP-hard to approximate MinHOM(H) within factor 1.128 when H is a bipartite claw.691

Moreover, by setting (1+λ)0.639
0.639−λ

= 2, (λ = 0.242) we get a contradiction with the (2 − ϵ)-692

UG-hardness for the Vertex Cover [35]. That is, for every ε ≥ 0, MinHOM(H) when H is a693

bipartite claw is 1.242-UG-hard.694

695

Reduction for bipartite tent: Let V1 = {u1, u2, . . . , un}, V2 = {v1, v2, . . . , vn} and V3 =696

{w1, w2, . . . , wn} be three disjoint copies of V (G) = {x1, x2, . . . , xn}. Let set U be initially697

empty. At the end of the construction, the vertex set of G′ is V1 ∪ V2 ∪ V3 ∪ U . For every698

edge xrxs of G, we add the edges urvs and vsur into G′. For every vr ∈ V2 and wr ∈ V3,699

corresponding to vertex xr ∈ G, add edge vrwr into G′. Finally, for every ur ∈ V1 and700

wr ∈ V3, corresponding to vertex xr ∈ G, add a new vertex λr to U , and add the edges urλr701

and λrwr into G′. We define the cost function c : V (G′) × V (H) → Q≥0 ∪ {∞} as follows.702

For every ur ∈ V1, set c(ur, a) = 1, c(ur, b) = 0, and c(ur, p) = |G| for every p ̸∈ {a, b}. For703

every vr ∈ V2, set c(vr, j) = 1, c(vr, l) = 0, and c(vr, p) = |G| for every p ̸∈ {l, j}. For every704

wr ∈ V3, set c(wr, a) = 1, c(wr, d) = 0, and c(wr, p) = |G| for every p ̸∈ {a, d}. Finally,705

for every λr corresponding to vertices ur ∈ V1 and wr ∈ V3, set c(λr, i) = c(λr, k) = 0,706

and c(λr, p) = |G| for every p ̸∈ {i, k}. Now, by a similar argument as the one for the bi-707

partite claw we get the inapproximability bound for MinHOM(H) when H is a bipartite tent.708

709

Reduction for bipartite net: Let V1 = {u1, u2, . . . , un}, V2 = {v1, v2, . . . , vn} and V3 =710

{w1, w2, . . . , wn} be three disjoint copies of V (G) = {x1, x2, . . . , xn}. Let sets U1, U2 be711

initially empty. At the end of the construction, the vertex set of G′ is V1 ∪V2 ∪V3 ∪U1 ∪U2.712

For every edge xrxs of G, we add a new vertex αr,s to U1 and the edges urαr,s, αr,svs into G′
713

(here ur ∈ V1 is the copy of xr ∈ G and vs ∈ V2 is the copy of xs ∈ G).714

For every vr ∈ V2 and wr ∈ V3, corresponding to vertex xr ∈ G, add edge vrwr into715

G′. Finally, for every ur ∈ V1 and wr ∈ V3, corresponding to vertex xr ∈ G, add two new716

vertices λr, βr to U2, and add the edges urλr, λrβr, βrwr into G′. We define the cost function717

c : V (G′)× V (H)→ Q≥0 ∪ {∞} as follows. For every ur ∈ V1, set c(ur, a) = 1, c(ur, b) = 0,718

and c(ur, p) = |G| for every p ̸∈ {a, b}. For every vr ∈ V2, set c(vr, d) = 1, c(vr, e) = 0,719

and c(vr, p) = |G| for every p ̸∈ {e, d}. For every wr ∈ V3, set c(wr, j) = 1, c(vr, k) = 0,720

and c(vr, p) = |G| for every p ̸∈ {j, k}. For every αr,s ∈ U1, set c(αr,s, i) = c(αr,s, j) = 0,721
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and c(αr,s, p) = |G| for every p ̸∈ {i, j}. Finally, every λr, βr ∈ U2, corresponding to vertices722

ur ∈ V1 and wr ∈ V3, set c(λr, a) = c(λr, d) = c(βr, i) = c(βr, j) = 0 and for every other case723

the cost is |G|. Now, by a similar argument as the one for the bipartite claw, we get the724

inapproximability bound for MinHOM(H) when H is a bipartite net.725

726

In conclusion, when H is a bipartite and MinHOM(H) is NP-complete, we get that727

MinHOM(H) is 1.128-approx-hard and 1.242-UG-hard.728

H has vertices with self-loops: We show that H must be reflexive; meaning every vertex729

has a loop. Otherwise, H must contain an induced sub-graph H1 = {aa, ab} where b does not730

have a self-loop (recall that we assume H is connected). As we mention in the introduction,731

Vertex Cover problem is an instance of MinHOM(H1). Vertex Cover is (
√
2− ϵ)-approx-hard732

and (2 − ϵ)-UG-hard for every ϵ > 0. Therefore, MinHOM(H1) is (
√
2 − ϵ)-approx-hard733

and (2 − ϵ)-UG-hard for every ϵ > 0. By the hardness of approximation for sub-graphs734

(Lemma 5.1), we obtain better hardness bounds for MinHOM than the claim of the theorem.735

Therefore, we may assume that H is reflexive henceforth.736

If H contains an induced cycle of length at least 4 (when removing the self-loops),737

LHOM(H) is NP-complete due to [7], and hence, by Lemma 5.4, MinHOM(H) does not738

admit any approximation. Thus, by Theorem 5.3 and Lemma 5.1, we need to consider the739

case where H is a claw, tent or net. When H is any of these three graphs, H contains740

an invertible pair (see Figure 5). In particular for the reflexive claw, we start with graph741

G as explained in the bipartite claw, and construct three partite graph G′ with V1, V2, V3,742

and we add an edge between ur ∈ V1 and vs ∈ V2 (corresponding to edges ae, aa, ba in the743

claw in Figure 5) if xrus ∈ E(G). Between vr ∈ V1 and wr ∈ V2 we place a path of length744

2 (corresponding to walks a, d, d and a, d, a and e, e, a) and finally between ur ∈ V1 and745

wr ∈ V3 we add an edge. The cost function is defined as follows, c(ur, a) = 1, c(ur, b) = 0,746

for every ur ∈ V1, and c(vr, a) = 1, c(vr, e) = 0 for every vr ∈ V2. Finally for every wr ∈ V3,747

set c(wr, a) = 1, c(wr, d) = 0. The rest of the costs are defined in a similar way as in the748

bipartite claw reduction.749

Now, by a similar argument for bipartite claw, we conclude that MinHOM(H) is 1.155-750

approx-hard and 1.389-UG-hard. Similar treatment is used for MinHOM(H) when H is a751

reflexive net or a reflexive tent.752

In conclusion, if H is reflexive and MinHOM(H) is NP-complete then MinHOM(H) is753

1.155-approx-hard and 1.389-UG-hard. This completes the proof of the theorem.754

755
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