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Approximability and Inapproximability of Minimum
Cost Homomorphism *

Pavol Hell T Monaldo Mastrolilli ¥ Mayssam Nevisi 8 Akbar Rafiey 1
Arash Rafiey |

Abstract

We investigate the approximability of the minimum-cost homomorphism problem
to a fixed target graph H, denoted MINHOM(H). For bipartite targets, we show
that if H is a co-circular-arc bigraph, then MINHOM(H) admits a polynomial-time
constant-factor approximation; otherwise, the problem is known to be inapproximable.
For this positive side, we give a new characterization of co-circular-arc bigraphs via the
existence of a min-ordering, and obtain our algorithm by derandomizing a two-phase
randomized scheme.

For general graphs (loops allowed), we provide a forbidden-subgraph characteriza-
tion of those admitting a min-ordering: precisely the bi-arc graphs that avoid H; and Hs
as induced subgraphs, where V(H;) = V(Hz2) = {a,b,d} and E(H,) = {ab, ad, bd, dd},
E(Hy) = {ab,ad,dd}. We relate ODD CYCLE TRANSVERSAL (vertex deletion to bi-
partite) to MINHOM(H;) and bipartite edge contraction to MINHOM(Hz). Under
the inapproximability assumptions for MINHOM (H;) and MINHOM(Hs), any graph
H that does not admit a min-ordering yields no constant-factor approximation for
MINHOM(H).

Finally, we complement our positive results with hardness of approximation results
for graphs. We show that MinHOM(H) is 1.128-approx-hard and 1.242-UGC-hard.

1 Introduction

We study the approximability of the minimum cost homomorphism problem, introduced
below. A c-approximation algorithm produces a solution of cost at most ¢ times the minimum

*An extended abstract of the approximation part has appeared in [23] [42]
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cost. A constant ratio approximation algorithm is a c-approximation algorithm for some
constant c. When we say a problem has a c-approximation algorithm, we mean a polynomial-
time algorithm. We say that a problem is not approzimable if there is no polynomial-time
approximation algorithm with a multiplicative guarantee unless P = N P.

The minimum cost homomorphism problem, MinHOM, was introduced in [I8|. It consists
of minimizing a certain cost function over all homomorphisms from an input graph G to a
fixed graph H. This offers a natural and practical way to model many optimization problems.
For instance, in [18] it was used to model a problem of minimizing the cost of a repair and
maintenance schedule for large machinery.

Certain MinHOM problems have polynomial-time algorithms [16, 17, 18], but most are
NP-hard. Therefore we investigate the approximability of these problems. Note that we
approximate the cost over real homomophisms, rather than approximating the maximum
weight of satisfied constraints, as in, say, MAXSAT.

We call a graph reflexive if every vertex has a loop, and irreflexive if no vertex has a
loop. An interval graph is a graph that is the intersection graph of a family of real intervals,
and a circular arc graph is a graph that is the intersection graph of a family of arcs on
a circle. We interpret the concept of an intersection graph literally, thus any intersection
graph is automatically reflexive, since a set always intersects itself. A bipartite graph whose
complement is a circular arc graph, will be called a co-circular arc bigraph. When forming the
complement, we take all edges that were not in the graph, including loops and edges between
vertices in the same color. In general, the word bigraph will be reserved for a bipartite graph
with a fixed bipartition of vertices; we shall refer to white and black vertices to reflect this
fixed bipartition. Bigraphs can be conveniently viewed as directed bipartite graphs with all
edges oriented from the white to the black vertices. Thus, by definition, interval graphs are
reflexive, and co-circular arc bigraphs are irreflexive. Despite the apparent differences in
their definition, these two graph classes exhibit certain natural similarities [7, [9]. There is
also a concept of an interval bigraph H, which is defined for two families of real intervals, one
family for the white vertices and one family for the black vertices: a white vertex is adjacent
to a black vertex if and only if their corresponding intervals intersect. Interval bigraphs,
have been studied in [211, 40, [41].

A reflexive graph is a proper interval graph if it is an interval graph in which the defining
family of real intervals can be chosen to be inclusion-free. A bigraph is a proper interval
bigraph if it is an interval bigraph in which the defining two families of real intervals can be
chosen to be inclusion-free. It turns out [2I] that proper interval bigraphs are a subclass of
co-circular arc bigraphs.

A homomorphism of a graph G to a graph H is a mapping f : V(G) — V(H) such that
for any edge xy of G the pair f(z)f(y) is an edge of H.

Let H be a fixed graph. The list homomorphism problem to H, denoted LHOM(H), seeks,
for a given input graph G and lists L(z) C V(H),z € V(G), a homomorphism f of G to H
such that f(z) € L(z) for all z € V(G). It was proved in [9] that for irreflexive graphs, the
problem LHOM(H) is polynomial-time solvable if H is a co-circular arc bigraph, and is NP-
complete otherwise. It was shown in [7] that for reflexive graphs H, the problem LHOM(H)
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is polynomial-time solvable if H is an interval graph, and is NP-complete otherwise.
The minimum cost homomorphism problem to H, denoted MinHOM(H), seeks, for a
given input graph G and vertex-mapping costs c¢(z,u),z € V(G),u € V(H), a homomor-

phism f of G to H that minimizes total cost >  c(z, f(x)).
zeV(G)
As mentioned above the MinHOM problem offers a natural and practical way to model
and generalizes many optimization problems.

Example 1.1 (VERTEX COVER). This problem can be seen as MinHOM(H ) where V(H) =
{a,b}, E(H) = {aa,ab}, and c(u,a) =1, c(u,b) =0 for every vertex u € G.

Example 1.2 (CHROMATIC SUM). In this problem, we are given a graph G, and the objective
is to find a proper coloring of G with colors {1, ..., k} with minimum color sum. This can be
seen as MinHOM where H is a clique of size k with V(H) = {1,...,k} and the cost function
is defined as c(u,i) =i. The CHROMATIC SUM problem appears in many applications such
as resource allocation problems [3].

Example 1.3. List homomorphism LHOM(H ), seeks, for a given input digraph D and lists
L(z) C V(H),x € D, a homomorphism f from D to H such that f(x) € L(z) for all
x € D. This is equivalent to MinHOM(H ) (with total cost zero) with c¢(u,i) =0 if i € L(u),
otherwise, c(u,i) = 1.

Example 1.4 (MULTIWAY CUT). Let G be a graph where each edge e has a non-negative
weight w(e). There are also k specific (terminal) vertices, s1,Ss,...,Sx of G. The goal is
to partition the vertices of G into k parts so that each part i € {1,2,... k}, contains s;
and the sum of the weights of the edges between different parts is minimized. Let H be
a graph with vertexr set {ai,as,...,ap} U{bi; | 1 < i < j < k}. The edge set of H is
{aia;, a;b; j,b; ja;,aa; | 1 <i<j<k}. Now obtain the graph G' from G by replacing every
edge e = uv of G with the edges ux., x.v where x. is a new vertexr. The cost function c is as
follows. c(s;,a;) =0, else ¢(s;,d) = |G| for d # a;. For every u € G\ {s1, Sa2,...,Sk}, set
c(u,s;) = 0. Set c(x,,b; j) = w(e). Now, finding a minimum multiway cut in G is equivalent
to finding a minimum-cost homomorphism from graph G' to H.

Example 1.5 (Odd Cycle Transversal (OCT)). Given a graph G, the goal is to delete the
minimum number of vertices so that the remaining graph becomes bipartite. Let H be a
graph with vertex set {a,b,d} and edge set {ab,ad,bd,dd}. Then the OCT problem on G
can be expressed as finding a homomorphism from G to H that minimizes the total cost,
where the cost function is defined as c(u,a) = c(u,b) = 0 and c(u,d) = 1 for every vertex
u € V(G). Intuitively, vertices of G mapped to d correspond exactly to those that must be
removed to make G bipartite.

Example 1.6 (Min-Ones for 3LIN). We are given a set of equations of type x;, @ x;, ® x;y =
0/1. The goal is solve this system of equations so that the number of variables assigned to 1 is
minimized. This is an instance of MinHOM (H) where H = {(0,0, 1), (0,1,0), (1,0,0),(1,1,1)}
and with the cost function c¢(xz;,0) =0, and c(x;,1) = 1. See [1, (5, [32] for more details.
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The MinHOM problem generalizes many other problems such as (WEIGHTED) MIN
SoL |31, 43|, a large class of bounded integer linear programs, retraction problems [13],
MINIMUM SuM COLORING |[3] 15, [38], and various optimum cost chromatic partition prob-
lems [19] 29, 30, [37].

The complexity of MinHOM(H) for graphs and digraphs have been well-understood
[17, 27]. It was proved in [I7] that for irreflexive graphs, the problem MinHOM(H) is
polynomial-time solvable if H is a proper interval bigraph, and it is NP-complete otherwise.
It was also shown there that for reflexive graphs H, the problem MinHOM(H) is polynomial
time solvable if H is a proper interval graph, and it is NP-complete otherwise.

In [39], the authors have shown that MinHOM(H) is not approximable if H is a graph
that is not bipartite or not a co-circular arc graph, and gave a randomized 2-approximation
algorithms for MinHOM(H) for a certain subclass of co-circular arc bigraphs H. The au-
thors have asked for the exact complexity classification for these problems. We answer the
question by showing that the problem MinHOM(H) in fact has a |V(H)|-approximation
algorithm for all co-circular arc bigraphs H. Thus for an irreflexive graph H the problem
MinHOM(H) has a constant ratio approximation algorithm if H is a co-circular arc bigraph,
and is not approximable otherwise. We also prove that for a reflexive graph H the problem
MinHOM(H) has a constant ratio approximation algorithm if H is an interval graph, and is
not approximable otherwise. We use the method of randomized rounding, a novel technique
of randomized shifting, and then a simple derandomization.

A min ordering of a graph H is an ordering of its vertices ai,as,...,a,, so that the
existence of the edges a;a;,aya; with i < ¢ and j° < j implies the existence of the edge
a;aj. A min-mazx ordering of a graph H is an ordering of its vertices a1, aq, ..., a,, so that
the existence of the edges a;a;, aya; with ¢ < ¢ and j' < j implies the existence of the edges
a;a;,aya;. For bigraphs, it is more convenient to speak of two orderings, and we define a
min ordering of a bigraph H to be an ordering a;,as,...,a, of the white vertices and an
ordering by, bs, ..., b, of the black vertices, so that the existence of the edges a;b;, a;b; with
i <1i',7" < j implies the existence of the edge a;b;; and a min-maz ordering of a bigraph H
to be an ordering of a1, aq, ..., a, of the white vertices and an ordering by, s, ..., b, of the
black vertices, so that the existence of the edges a;b;,ayb; with ¢ < 4',j" < j implies the
existence of the edges a;b;/, ayb;. (Both are instances of a general definition of min ordering
for directed graphs [26].)

In Section 2 we prove that co-circular arc bigraphs are precisely the bigraphs that admit
a min ordering. In the realm of reflexive graphs, such a result is known about the class of
interval graphs (they are precisely the reflexive graphs that admit a min ordering) [25].

Approximability results. In Section 3 we recall that when a bigraph H does not admit
a min-ordering, the problem MINHOM(H) is inapproximable, whereas if H admits a min-
ordering there is a |V (H)|-approximation algorithm. In Section 4 we extend the discussion
to graphs (where loops are allowed). For graphs, MINHOM (H) is inapproximable whenever
H is not a bi-arc graph. We show that if a bi-arc graph H admits a min-ordering, then
MINHOM(H) again has a |V (H)|-approximation algorithm. This follows by proving that
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forbidding two specific induced subgraphs H; and H; ensures the existence of a min-ordering,
where V(H,) = V(Hy) = {a,b,d} and E(H;) = {ab,ad, bd,dd} and E(Hy) = {ab,ad,dd}.
On the hardness side, Example together with the inapproximability of OCT implies
that MINHOM(H;) admits no constant-factor approximation. Moreover, we argue that
MINHOM(H,) is closely related to BIPARTITE EDGE CONTRACTION, which itself does not
admit a constant-factor approximation. Assuming the Unique Games Conjecture and the
conjecture that MINHOM(H>) has no constant-factor approximation, we obtain a dichotomy
for graphs H: MINHOM(H ) admits a constant-factor approximation if and only if H admits
a min-ordering.

Inapproximability results. As pointed out, the MinHOM(H) is not approximable if
LHOM(H) is not polynomial-time solvable. This rules out the possibility of having an
approximation algorithm for graphs that are not bi-arc. However, there are no known in-
approximability results for the cases where MinHOM(H) is NP-complete. We, therefore,
complete the picture by considering a much bigger class of graphs than bi-arc graphs and
present inapproximability results for them. That is the class of graphs for which MinHOM
is NP-complete. This class of graphs has been characterized in [17] and are known as graphs
that do not admit a min-max ordering. The obstructions for min-max ordering for graphs
and digraphs have been provided in [28]. This characterization was used to show the NP-
completeness of MinHOM together with the NP-completeness of the maximum independent
set problem [27]. However, in this paper, we must develop an array of approximation-
preserving reductions to obtain our inapproximability results.

2 Co-circular bigraphs and min ordering

A reflexive graph has a min ordering if and only if it is an interval graph [25]. In this section
we prove a similar result about bigraphs. Two auxiliary concepts from [9, [I1] are introduced
first.

An edge asteroid of a bigraph H consists of 2k + 1 disjoint edges agbg, aiby, . .., aspbos
such that each pair a;, a;11 is joined by a path disjoint from all neighbours of a; sy 1b;4 k11
(subscripts modulo 2k + 1).

An invertible pairin a bigraph H is a pair of white vertices a, a’ and two pairs of walks a =
U1, V2 ..U =a, @ = 01,05, ., 0 = a,and @ = wy, W, ..., Wy, = a, 4 = WL, WY, ... W, =

a’ such that v; is not adjacent to vj,, for all i = 1,2,... &k and w; is not adjacent to w’,
forall j =1,2,...,m.

Theorem 2.1. A bigraph H is a co-circular arc graph if and only if it admits a min ordering.

Proof. Consider the following statements for a bigraph H:

1. H has no induced cycles of length greater than three and no edge asteroids
2. H is a co-circular-arc graph
3. H has a min ordering
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4. H has no invertible pairs

1 = 2 is proved in [9].

2 = 3 is seen as follows: Suppose H is a co-circular arc bigraph; thus the complement H
is a circular arc graph that can be covered by two cliques. It is known for such graphs that
there exist two points, the north pole and the south pole, on the circle, so that the white
vertices u of H correspond to arcs A, containing the north pole but not the south pole, and
the black vertices v of H correspond to arcs A, containing the south pole but not the north
pole. We now define a min ordering of H as follows. The white vertices are ordered according
to the clockwise order of the corresponding clockwise extremes, i.e., u comes before v’ if the
clockwise end of A, precedes the clockwise end of A,,. The same definition, applied to the
black vertices v and arcs A,, gives an ordering of the black vertices of H. It is now easy to
see from the definitions that if uv,u'v’ are edges of H with u < v/ and v > v/, then A, and
A, must be disjoint, and so uv’ is an edge of H.

3 = 4 is easy to see from the definitions (see, for instance [11]).

4 = 1 is checked as follows: If C'is an induced cycle in H, then C' must be even, and any
two of its opposite vertices together with the walks around the cycle form an invertible pair
of H. In an edge-asteroid agby, . . ., asrbor as defined above, it is easy to see that, say, ag, ax
is an invertible pair. Indeed, there is, for any ¢, a walk from a; to a;,; that has no edges to
the walk a;yx, birk, Givk, bivk, - - -, @ of the same length. Similarly, a walk a;y1, b1, @it1,
bit1,...,a;41 has no edges to a walk from a;; to a;; 41 implied by the definition of an
edge-asteroid. By composing such walks we see that ag, a; is an invertible pair. O]

We note that it can be decided in time polynomial in the size of H, whether a graph H
is a (co-)circular arc bigraph [22].

3 Approximation of MinHOM for bipartite graphs

In this section we describe our approximation algorithm for MinHOM(H) in the case the
fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph, cf. Theorem [2.1]
We recall that if H is not a co-circular arc bigraph, then the list homomorphism problem
ListHOM(H) is NP-complete [9], and this implies that MinHOM(H) is not approximable
for such graphs H [39]. By Theorem we conclude the following.

Theorem 3.1. If a bigraph H has no min ordering, then MinHOM(H) is not approzimable.

Our main result is the following converse: if H has a min ordering (is a co-circular
arc bigraph), then there exists a constant ratio approximation algorithm (since H is fixed,
|V(H)| is a constant.).

Theorem 3.2. If H is a bigraph that admits a min ordering, then MinHOM(H) has a
|V (H)|-approximation algorithm.

To prove the above theorem we first design an approximation algorithm.
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Fixing a min ordering for H. Suppose H has a min ordering with the white vertices
ordered a;,as,- - ,a,, and the black vertices ordered by, bs,--- ,b,. For every 1 <i < p, let
(i) be the first subscript that a;b.(;) is an edge of H. For every 1 < i < g, let £(i) be the
first subscript that a,;)b; is an edge of H.

Definition 3.3 (H' and E’ construction). Let E' denote the set of all pairs a;b; such that
a;b; is not an edge of H, but there is an edge a;b; of H with j' < j and an edge ayb; of H
with ' < 1. Define H' to be the graph with vertex set V(H) and edge set E(H) U E’. (Note
that E(H) and E' are disjoint sets.)

Observation 3.4. The ordering ai,as, -+ ,a,, and by, by, -+ ,b, is a min-max ordering of
H'.

Proof. We show that for every pair of edges e = ;b5 and € = ayb; in E(H) U E', with
i" <iand j° < j, both f = a;b; and f' = ayb; are in E(H) U E'. If both e and ¢’ are in
E(H), f € E(H)UE" and f" € E(H). If one of the edges, say e, is in E’, there is a vertex
bjn with a;b;» € E(H) and j” < j/, and a vertex a;» with a;»b; € E(H) and " < i. Now,
ayb; and a;b;» are both in E(H), so f € E(H)U E’. We may assume that i"” # i, otherwise
[ =awby € E(H). Ifi" < i, then ' € E(H) U E' because ayb;» € E(H); and if ¢ > 7,
then f' € E(H) because ayb; € E(H).

If both edges e, €’ are in E', then the earlier neighbours of a; and b; in E(H) imply
that f € E(H) U E’, and the earlier neighbours of a; and b in E(H) imply that f’ €
E(H)UE' O

Observation 3.5. Let e = a;b; € E'. Then a; is not adjacent in E(H) to any vertex after
b;, or b; is not adjacent in E(H) to any vertex after a;.

Proof. This easily follows from the fact that ai, as, ..., ap,b1,b2,..., b, is a min ordering. [

Assumption about the input and introducing the variables. First we assume input
bipartite graph G = (U, V) is connected, as otherwise, we solve the problem for each con-
nected component of G. Here U represent the left vertices of G and V' represent the right
vertices of G. We further look for a homomorphism f that maps vertices U to {ay,as, ..., a,}
and vertices V to {by,ba,...,b,}.

For every vertex u € U, and every a;, define the variable z, ,,, and for every v € V and
bj, define the variable x,, .

System of linear equations S. Having defined the variables Tya;s Toby, We introduce
the linear program S shown in table [If that formulates MinHOM(H). The intuition is if
variable x4, = 1 and 2,,,,, = 0, then we map u to a;. Thus, we add constraint (C3) that
has inequalities T4, < Tya, a0d Ty q;,, < Tyq;- Now, from constraint (C3) and the min
ordering, we add constraint (C4). Constraints (C5,C6) are the most important constraints
capturing the min ordering property. Using Observation 3.5 constraint (C7,C8) are added
to make sure that if we map v € U (v € V) to a; (b;) then the neighbor of u (v), say v (u)

is mapped to a neighbor of a; (b;).
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Minimize c(u, @i)(Tua; = Tuaiy) T 2o (U, 05)(op, — Tupyy,)

uel,i€(p| veV,j€lq]
Subject to:
0 < @y, Vop, <1 Vu,v € V(G),a;,b; € V(H) (C1)
LTu,ar = Topy = 1 and Tu,app1 — Lobgr — 0 <C2)
Topyyy < Tppy AN Tyg,,, < Ty, YveViueUua;,b € V(H) (C3)
Tua; < Tob,y a0 Ty, < Tuay, Yuv € E(QG) (C4)
Ty, < Ty, + > (Tya, — Tuar,) Vuv € E(G),a;b; € E', a, is the (C5)
atb; €E(H),t<i first neighbor of b; after a;
Tya; < Top, + > (Tob, — Topyyy) Vuv € E(G),a;b; € E' b, is the (C6)
aibr€E(H) t<j first neighbor of a; after b,
Tua; — Tujag, < > A(xv,bt — Typ,,) Yuv € E(G), a;b; € E', and a; (C7)
aib€E(H),t<j has no neighbor after b,
Top; = Top, < > '(:Euﬂt — Tya,) Yuv € E(G), a;b; € E', and b; (C8)
atb €E(H),t<i has no neighbor after a;

Table 1: Linear program S

Lemma 3.6. If H admits a min-ordering then there is a one to one correspondence between
homomorphisms of G to H and the integer solutions of S.

Proof. Suppose f is a homomorphism from G to H. If f(u) = a; then set z,,, = 1, for
all j <4 and w4, = 0 for all j > . Similar treatment for v and b;. Clearly, constraints
C1,02,C3, and C4 are satisfied. Now for all v and v in G with f(u) = a; and f(v) = b;
we have that z,. — Tuay,, = Top; — Tup,,, = 1. Moreover, since f is a homomorphism
constraint (C7,C8) are also satisfied.

We show that constraint (C5) holds. For, contradiction, assume that the inequality in
(C5) fails. This means that for some edge uv of G' and some arc a;b; € E’, we have z,;, =1
, Tya, = 0, and the sum of (24,4, — Tua,,,), Over all ¢ < i such that g, is a neighbor of a;,
is zero. The latter two facts easily imply that f(u) = @;. Since b; has a neighbor after a;,
Observation tells us that a; has no neighbor after b; and w,4,,, = 0, whence f(v) = b;
and thus a;b; € E(H), a contradiction the assumption a;b; € E’. By a similar argument
(C6) is also satisfied.

Conversely, from an integer solution for S, we define a mapping f from G to H as follows.
For every u € U, set f(u) = a; when ¢ is the largest subscript with x,,, = 1. Similarly, for
every v € V set f(v) = b; when j is the largest subscript with z,;, = 1.

Let uv be an edge of G and assume f(u) = a;, f(v) = b;. Note that y. — Tuq,,, =
Typ, — Tup;,, = 1 and for all other ¢ we have x,p, — Typ,,, = 0. If a;b; is an edge of H we are
done. Suppose this is not the case. Since constraints C4 is satisfied, a; has a neighbor before
b; and b; has a neighbor before a; Thus, a;b; € E'. First suppose a; has no neighbor after

b;. Now, 0 = > (@yp, — Top,,, ), violating constraint (C7). Thus, assume a; has a
aibt€ E(H),1<j
neighbor after b;. Now x4, = 1, while z,;,, = 0, and for every t < j, Ty, — Typ,, = 0, and
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hence, constraint (C6) is not satisfied, a contradiction. ]

Overview of the rounding procedure. Our algorithm will minimize the cost function
over § in polynomial time using a linear programming algorithm. This will generally result
in a fractional solution. We will obtain an integer solution by a randomized procedure called
rounding. We choose a random variable X € [0, 1], and define the rounded values xyq, = 1
when x4, > X, and X, = 0 otherwise; and similarly define the rounded value x,, from
Typ,. Now set f(u) = a; where Xuqo, = 1, Xua,, = 0 and set f(v) = b; where x,;, = 1,
Xuvp;1 = 0. In Lemma we show that the mapping f is a homomorphism from G to H'.
However, f may not be a homomorphism from G to H. Now the algorithm will once more
modify the solution f to become a homomorphism of G to H, i.e., to avoid mapping edges
of G to the edges in E’. This will be accomplished by another randomized procedure, which
we call shifting. We choose another random variable Y € [0, 1], which will guide the shifting.
Let F' denote the set of all edges in E’ to which some edge of GG is mapped by f. We also
let F(G) = {(u, v, f(u), f(v))|uww € E(G), f(u)f(v) € E'}.

If F'is empty, we need no shifting. Otherwise, let a;b; be an edge of F' with maximum
sum ¢ + j (among all edges of F'). By the maximality of ¢ 4+ j, we know that a;b; is the
last edge of F' from both a; and b;. Now we consider, one by one, (u,v,a;,b;) € F(G) (i.e.
wv € E(G)) where f(u) = a; and f(v) = b;. Since F' C E’, by Observation [3.5| either a; has
no neighbor after b; or b; has no neighbor after a;.

Suppose f(u) = a; and a; have no neighbor after b; (the other case is where f(v) = b;
and b; has no neighbor after @;). For such a vertex u, consider the set of all vertices a; with
t < i such that a;b; € E(H). This set is not empty, since e is in £’ because of two edges
of E(H). Suppose the set consists of a; with subscripts ¢ ordered as t; < t5 < ...t;. The

algorithm now selects one vertex from this set as follows. Let P, ; = %’GFP&, where
PU = Z (xU,at - ‘ru7at+1)'
atbjEE(H), t<1i
q q+1
Then ay, is selected if > Py, <Y < > P, ,- Thus, a concrete a; is selected with proba-

p=1 p=1
bility P,;, which is proportional to the difference of the fractional values x4, — Ty, -

When the selected vertex is a;, we shift the image of the vertex u from a; to a;. This
modifies the homomorphism f, and hence the corresponding values of the variables. Namely,
Xu,ars1s - - -» Xua; are reset to 0, keeping all other values the same. Note that the modified
mapping is still a homomorphism from G to H'.

We repeat the same process for the next « with these properties, until a;b; is no longer
in F' (because no edge of G maps to it). This ends the iteration on a;b;, and we proceed to
the next edge a;b; with maximum ¢’ 4 j' for the next iteration. Each iteration involves at
most |V (G)| shifts. After at most |E’| iterations, the set F' is empty and no shift is needed.

It is easy to see, due to min ordering, if the image of vertex u changes because of edge uv
with f(u)f(v) € E(H), while f(u)f(w) € E(H) for some other neighbor w of u, by changing
the image of u there is no need to change the image of w. We also show that the image of



a3 every vertex w in G changes at most once. More details are provided at the beginning of
se Lemma 3.8

Algorithm 1 Rounding the fractional values of &

1: procedure ROUNDING-SHIFTING(S)
2 Let {7y} and {z,,} be the (fractional) values returned by solving S
3: Sample X € [0, 1] uniformly at random
4: For all z, 4, : if X < %y, set Xua, =1, else set xyq, =0
5 For all w,p, @ if X < @p, set xop, = 1, else set xpp, =0
6 Set f(u) = a; where Xua, = 1, Xua, =0
7 Set f(v) = b; where xup, =1, Xv ;0 =0
> At this point f is a homomorphism from G to H'.

8 Let F(G) = {(u, v, f(u), f(v))|uv € E(G), f(u)f(v) € E'}.

9: Let F' C E' be the set of edges a;b; with some (u, v, a;,b;) € F(G)

10: Choose a random variable Y with values in [0, 1]

11: while 3 edge a;b; € F' with ¢ 4 j is maximum do

12: while 3(u,v,q;,b;) € F(G) do

13: if a; does not have a neighbor after b; and f(u) = a; then
SHIFT-LEFT(f,u, v, a;,b;,Y)

14: else if b; does not have a neighbor after a; and f(v) =b; then
SHIFT-RIGHT(f, v, u, a;, b;,Y)

15: Remove (u,v,a;,b;) from F(G)

16: Remove a;b; from F

> At this point f is a homomorphism from G to H.
17: return f > f is a homomorphism from G to H.

Algorithm 2 Procedures SHIFT-LEFT and SHIFT-RIGHT

1: procedure SHIFT-LEFT(f, u,v,a;,b;,Y)
2: Let ay,, as,, ..., as be the neighbors of b; in H before a;

k q

3: Let P, + 1—231(%’% — Tuay i) » and let P, < l;(xu,atl — Tuap 1)/ Pu
4 if Pya, <Y < P, then B

5: f(u) = ay,

6: Set Xy, =1for 1 <. <t,, and set x,q =0fort, <:<p+1

7. procedure SHIFT-RIGHT(f, v, u,a;, b;,Y)

8: Let b, by,, ..., by, be the neighbors of a; in H before b;

k q

9: Let Py <= > (Tup, — Topyia) s and let Py, < > (2o, — Top, )/ P
1=1 1=1

10: if Pv,btq <Y < vabt,ﬁ_l then

11: f(v) < by,

12: Set xpp, = 1 for 1 < <1, and set x,p, =0 fort, < <p+1

10
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Lemma 3.7. The mapping f returned at line 7 of Algorithm[1] is a homomorphism from G
to H'.

Proof. Consider the edge uv € E(G) and suppose f(u) = a; and f(v) = b;. Thus, we have
Tyary <X < Tya, and 25, < X < 245, Now, by constraint (C5), we have 7,4, < T by oy
and hence X < x,p . Since z,,,,, < X, by constraint (C3), we have r(i) < j. Similarly,
using the same argument for ¢(j), we conclude that ¢(j) < i. Therefore, a; has a neighbor
not after b;, and b; has a neighbor not after a;. Now, either a,a; € E(H), or by the definition
of E,, aibj S ]

Let W denote the value of the objective function with the fractional optimum ., q,, T,
and W’ denote the value of the objective function with the final values ., q,, Xo,pb;, after the
rounding and all the shifting. Also, let W* be the minimum cost of a homomorphism from
G to H. Obviously, W < W* < W'. We now show that the expected value of W’ is at most
a constant times W.

Lemma 3.8. Algorithm [1| runs in polynomial-time and it returns the homormorphism f
from G to H such that for u,v € G and a;,b; € H we have

P [Xu,at = 1a Xu,at_H =0 z.e. f(U) = at] § Loyar — xu,at_H (1)
P [Xop, = 1, Xopyey = 0 dce. f(0) = bj] <@y, — Ty, (2)

Moreover, the expected contribution of each summand, say c(u,ar)(Xua, — Xu,ars,)s to the
expected cost of W' is at most |V (H)|c(u, ar)(@ua, — Tuap,s)-

Proof. Recall that after the rounding step using the random variable X, we have a partial
homomorphism f : V(G) — V(H), where f(u) = a; if 244, < X < @yq,, and f(v) = b,
if Typy < X < Tyyp,. By Lemma , f is a homomorphism from G to H'. We show the
following claims, which help us through the rest of the proof.

Claim 3.9. Let uwv,uw € E(G). Suppose f(u)f(v) € E', and f(u)f(w) € E(H). After
shifting the image of u to a;, we have a;f(w) € E(H).

Proof. Let f(u) = a; and f(v) = b; and a;b; € E(H), and a,q; € E(H) where b, = f(w).
Since we have shifted the image of v in Algorithm [I}, according to Observation [3.5], a; has no
neighbor after b;. Now because a;b; € E(H), we have b < b;. Since ay,as, ..., a,,b1, b2, ..., b,
is a min ordering, and a;b;, a;b; € E(H) with t < i, [ < j, we conclude that a;b, € E(H). O

Claim 3.10. Let uwv,uw € E(G). Suppose f(u)f(v) € E'. Suppose that the image of u
is shifted to a;, and a;f(w) ¢ E(H), then the SHIFT-RIGHT shifts the image of f(w) to a
netghbor of a;.

Proof. Let a; = f(u), b; = f(v). Let by = f(w). If a;b, € E(H), as we argued in the Claim
, a;bs € E(H) and we don’t need to change the image of w because of u. Thus, we may
assume a;bs € E'. Now since ¢ + j is maximum, by < b;. This would imply that a;bs € E’,
and hence, we shift the image of w according to the rules of the Algorithm [I| to a neighbor
of a;, say b; and before bs. Now by the min ordering property a;b, € E(H). O

11
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From the proof of Claims and the image of each vertex u is shifted at most one.
We observe that the image of vertex w is always changed to a smaller element. Moreover,
at each step one element is removed from F(G). Suppose wv,uw € E(G). By Claim ,
if f(u)f(w) is in E(H), then by shifting the image of f(u) because of uv being mapped to
E’, there is no need to change the image of w. Furthermore, by claim if by shifting the
image of f(u) from a; to a;, there is no edge between f(w)a, then w is shifted to a neighbor
of a; that is also a neighbor of a;. These conclusions guarantee that at each step the number
of elements in F(G) is decreased. It is clear that for each a;b; in F, at most |V (G)| shifts
are needed. Therefore, Algorithm [I|runs in polynomial-time and f is a homomorphism from
G to H.

According to the rules of the Algorithm [I] vertex u is mapped to a; in two cases. The
first case is where v is mapped to a; by rounding, and is not shifted away. In other words, we
have X4, = 1 and Xu,q,., = 0 after rounding, and these values do not change by procedures
SHIFT-LEFT. Hence, for this case we have:

]P)[f(U) = at] S P[xu,at+1 <X S xu,at} = Tu,as — xu,at_,_l

where the first inequality follows from the fact that the probability that the image of u is
not changed by either of shifting procedures is at most 1. Whence, this situation occurs
with probability at most x4, — Tyq,.,, and the expected contribution of the corresponding
summand is at most c(u, a;)(Ty,a, — Tu,arp.)-

Second case is where f(u) is set to a; during SHIFT-LEFT. We first calculate the contribu-
tion for a fixed ¢, that is, the contribution of shifting u from a fixed a; to a; in SHIFT-LEFT.
Note that u is first mapped to a;, ¢ > t, by rounding, and then re-mapped to a; during
procedure SHIFT-LEFT. This happens if there exists j and v such that uv is an edge of
G, and a;b; € F C E' (with 7 + j being maximum) and then the image of w is shifted to a;
(a; < a; in the min ordering), where a;b; € E(H). In other words, we have Xy, = Xovp; = 1
and Xu,a;,, = Xvp;, = 0 after rounding; and then wu is shifted from a; to a;.

Recall that this shift occurs when a; does not have any neighbors after b; and Algorithm
calls SHIFT-LEFT. Furthermore, a;b; € F'is chosen so that 7 + j is maximized. We show the
following claim which enables us to assume we only need to consider only one neighbor of u,
namely, v in our calculation.

Claim 3.11. , For every neighbor w of u where X < xyp,, we must have Typ, , < X.

Proof. By Observation 7 the ordering a1 < as < --- < a, < by < by <--- < by is a min-
max ordering with respect to F(H) U E’, and by Lemma every edge of GG is mapped to
an edge in F(H)U E’', after the rounding step by variable X. Suppose for some ww € E(G)
we have ,,,, > X which implies that uw is mapped to a;b; € E(H)U E" with j < j’, this
in turn contradicts our assumptions that a; does not have any neighbor after b; and ¢ + j is
maximum.

]

12
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By the above claim no neighbor of u is mapped to a vertex after b; in the rounding step. By

Claim we must have x,,,, < X for all w with uw € E(G). That is,

= max Typ., <X 3
wuweE(G) wbj+1 ( )

Define events A and B as follows:

Event A: there exists v such that uv is an edge of GG, and u is mapped to a; and v is
mapped to b; during rounding step. That is the event Xua, = Xop;, = 1, Xwaipr =

XU,bj+1 = O

Event B: the image of u is shifted to a; from a; (t < i). That is the event Pwtj <Y <
Pia, . -

J+1

Consider event 4 and two cases where b; has some neighbor after a; and the case where
b; does not have a neighbor after a;. Let C' be the non-empty set of indices C' = {t | t <
i,a;b; € E(H)}. In the first case, we have:

P [event A happens| = P [Eluw € E(G) : Xua = Xwp; = 1s Xusaips = Xwbjp1 = 0} (4)

=P [Eluw € B(G) : max{Tyq,,,,a} < X <min{yq,, Twp, }} (5)
< min {mu,ai; w:ulz)lgz?((G) :L“w,bj} — max {wumﬂ, a} (6)
< Tup; — Tuaiss (v= argmax w,y,)
wuweE(Q)
< Typ, — Tua, (‘a5 is the first neighbor of b; after a;, and we have 2,4, < Tyq,,,)
< Z(xu,at — Tuap) = Pu (7)
teC

The last inequality is because a; has no neighbor after b; and it follows from constraint
(C5). Second for the case where b; has no neighbor after a;. By constraint (C8), for every
v that is a neighbor of u we have:

Lob; — Lubjyr < E :xu,at — Tuappr — P, (8)
teC

We therefore obtain:

13
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P [event A happens| = P [Eluw € E(G) : Xua; = Xwp; = L, Xuaisr = Xwbjar = 0} (9)

=P [Quw € E(G) : max{z,q,,,,a} < X < min{z,q,, Tup, }] (10)
< min {xu?ai,w:urgee%((@ xw’b]} — max {xuﬁaiﬂ, a} (11)
< Ty, — @ (v = argmax
wuweE(Q)
va,bj_,_l"i_Pu_a (by )
S xv,b]url + Pu - xv,bj+1 (by )
=P, (12)

Having uv mapped to a;b; in the rounding step, we shift « to a; with probability P,; =
(Tya, — Tuary,)/Pu- That is P[B | A] = P,;. Note that the upper bound P[A4] < P, is
independent from the choice of v and b;. Moreover, recall that random variables X and Y
are independent. Therefore, for a fixed a;, the probability that u is shifted from a; to a; is
at most

]P)[B | A] : ]P)[-A] < ((mu,az - xu,at+1)/PU> Py = Zuay — Tuargs

Thus, the expected contribution for a fixed a; (with its b; and v) is also at most ¢(u, a;)(@y,q, —
Tya...)- Notice that there are at most |V (H)|—1 of such a;’s, thus the expected contribution
of c(u, a;) to the expected value of W’ is at most |V (H)|c(u, at)(Tua, — Tuars)-

[

Theorem 3.12. Algorithm (1] returns a homomorphism with expected cost at most |V (H)|
times optimal solution. The algorithm can be derandomized to obtain a deterministic |V (H)|-
approximation algorithm.

Proof. By Lemma [3.8 and linearity of expectation, for the expected value of W’ we have

E[W/] =E Z c(u, ai)(X%ai - Xu,az‘+1) + Z C(’U, bj)(X'U7bj - XU7bj+1)

v7j

= Z C(u7 ai)E[Xu,ai - Xu,awrl] + Z C(Uv bj)E[Xv,bj - XU,bj+1]

U7j

S |V(H)|(Z C(u’ ai)(xu,ai - xuﬂlwl) + Z C(Ua bj)(xv,bj - Xv,bj+1))

U,b v,J

< |VH)W < [V(H) W™

Thus Algorithm |1] outputs a homomorphism whose expected cost is at most |V(H)| times

a6 the minimum cost. It can be transformed to a deterministic algorithm as follows. There are
a7 only polynomially many values yq,, Zvp, (at most [V(G)|- |V (H)[). When X lies anywhere

14
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between two such consecutive values, all computations will remain the same. Similarly, there

are only polynomially many values of the partial sums Zq: Py4,, and when Y lies anywhere
=1

between two consecutive values, all the computations ri:main the same. Moreover, for any
given X and Y, the rounding and shifting algorithms can be performed in polynomial time.
Thus, we can derandomize the algorithm by trying all the possible values for X and Y and
simply choose the pair that gives us the minimum homomorphism cost. Since the expected
value is at most |V (H)| times the minimum cost, this bound also applies to this best solution.

O

4 A dichotomy for approximating MINHOM on graphs
(under a conjecture)

Feder et al. [10] proved that LHOM(H) is solvable in polynomial time iff H is a bi-arc graph.
We recall the definition.

Let C be a circle with two distinguished points p and q. A bi-arc is an ordered pair of arcs
(N, S) on C such that p € N Zqand ¢ € S Z p. A graph H is a bi-arc graph if there exists
a family {(N,,S,) : © € V(H)} such that, for any (not necessarily distinct) z,y € V(H):

e if vy € E(H), then neither N, intersects S, nor N, intersects Sy;
o if vy ¢ E(H), then both IV, intersects S, and N, intersects S,.

We call such a family a bi-arc representation of H. Note that a bi-arc representation cannot
contain (N, S),(N’,S") with NN S # () and SN N = 0 (and vice versa). Vertices with
self-loops are allowed.

Theorem 4.1 ([4, 10]). A graph admits a conservative majority polymorphism if and only
iof it is a bi-arc graph.

We will use two known facts about reflexive graphs: (i) a reflexive graph admits a min-
ordering iff it is an interval graph [12]; and (ii) if a reflexive graph H is not an interval graph,
then LHOM(H) is NP-complete [§]. The latter immediately implies that MINHOM(H) is
inapproximable for any non-interval reflexive H. Combining with the standard algorithm
for the bipartite case (Section 3) yields:

Theorem 4.2. Let H be reflexzive. Then MINHOM(H) admits a |V (H)|-approzimation if
H s an interval graph, and is not approximable otherwise.

As an €asy consequence:

Corollary 4.3. If a graph H admits a min-ordering, then MINHOM(H) admits a |V (H)|-
approximation algorithm.
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Figure 1: Forbidden induced subgraphs for admitting a min-ordering.

Forbidden obstructions for min-ordering within bi-arc graphs. We next character-
ize when a bi-arc graph admits a min-ordering by forbidding a small set of induced subgraphs

(Figure [1)).

Theorem 4.4. Let H be a bi-arc graph. Then H admits a min-ordering if and only if H
contains none of the graphs in Figure |1 as an induced subgraph.

Proof. First, observe that none of the graphs in Figure [I| admits a min-ordering. Indeed:
(i) if H has a looped vertex a adjacent to an unlooped vertex b, then in any min-ordering
a must precede b; and (ii) if bd is an edge with both b and d unlooped, then bd cannot be
accommodated by a min-ordering. This means neither of the graphs in (A) and (B) admit a
min-ordering and hence H does not admit a min-ordering. For the configuration (C), suppose
for contradiction that a min-ordering < exists. Then b must come after both a and d; say
a < d < b. Since ab and dd are edges, the min-rule forces ad to be an edge, contradicting
(C). Thus every obstruction in Figure |1] forbids a min-ordering.

Now assume H is a bi-arc graph that does not contain any of the forbidden induced
subgraphs in Figure [Il Let C' denote the (unique) reflexive component of H (since H is
connected). Because LHOM(H) is polynomial-time solvable, the result of Feder and Hell
[8] implies that a reflexive component of H must be an interval graph. Moreover, reflexive
interval graphs admit a min-ordering [12]. Fix such a min-ordering on C, as vy < ug < --- <
Uy -

Every other vertex of H (necessarily unlooped) is connected to C' by some path. Because
H does not contain obstruction (A), any unlooped vertex u has at least one neighbor in C;
let u; be the last neighbor of u in the order on C'. Place u immediately after u; and before
u;+1. If two unlooped vertices u,v have the same last neighbor wu;, then we order them
by the position of their first neighbors on C' (earlier first neighbor comes earlier), breaking
remaining ties arbitrarily. This yields a linear order < on V(H).

We claim that this < is a min-ordering. Consider two edges wv and xy with v < =z
and v < y. We need to show that min{u,z} min{v,y} € E(H). Without loss of generality,
assume u < z. Since there are no edges between two unlooped vertices, at least one endpoint
of each edge is looped; and because u < v in our placement rule, v must be looped. Similarly,
x is looped. If both v and y are looped, the claim follows from the fact that C already has
a min-ordering. Thus assume at least one of v,y is unlooped.
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If v < x, there is nothing to prove. So assume z < v and y < v. By construction, v is
placed immediately after its last neighbor in C, hence ve € E(H). Moreover, because y < v,
the placement rule ensures that y is adjacent to every looped vertex up to (and including)
the last neighbor that justifies v’s position; in particular, yu € E(H). Therefore,

min{u,z} =u and min{v,y} =y,

and we have uy € F(H) as required. This verifies the min-rule in all cases, so < is a
min-ordering of H. O]

4.1 UGC-hard instances of MINHOM(H)

OCT and a three-vertex gadget. Let H have vertices {a, b, d} and edges {ab, ad, bd, dd}.
Assume costs c¢(u,d) = 1 and ¢(u,a) = c(u,b) = 0 for all w € V(G). If S C V(G) with
|S| = k makes G'\ S bipartite with bipartition (A, B), define f(u) =d if u € S, f(u) = a if
u € A, and f(u) = b if u € B; this yields a homomorphism of total cost k. Conversely, any
homomorphism of cost k maps exactly k vertices to d and the remainder to {a, b} so that
each odd cycle contains an edge mapped to dd, hence the set S = {u : f(u) = d} is an odd-
cycle transversal of size k. Since OC'T admits no constant-factor approximation under UGC
(e.g., [14]), MINHOM(H) for this H has no constant-factor approximation under UGC.

Bipartite contraction and a loop-edge gadget. Now let H have vertices {a,b,d} and
edges {ab, ad,dd}. This case is tightly related to BIPARTITE EDGE CONTRACTION (known
NP-complete [20]). The following corollary is standard reduction from EDGE BIPARTIZATION
(edge deletion to bipartite graphs) to Bipartite Contraction problem.

Corollary 4.5. Assume the Unique Games Conjecture (UGC). Then the optimization ver-
sion of Bipartite Contraction admits no constant-factor approximation.

Proof. We reduce Bipartite Edge Deletion (a.k.a. edge-deletion to bipartite graphs) which is
UGC-hard to approximate within any constant factor (see [36]), to BIPARTITE CONTRAC-
TION via the standard gadget: replace each edge e = uv of G by an internally vertex-disjoint
u—v path P, of odd length L := 2k + 1, where k is the parameter/target budget.

Let OPTge(G) be the minimum number of edge deletions that make G bipartite, and
let OPT.,(G’) be the minimum number of edge contractions that make the constructed
G’ bipartite. The coloring-based analysis shows a tight correspondence: OPT,(G') =
OPTya(G). Indeed, from any optimal deletion set F' in G we obtain a contraction set of
the same size in G’ by contracting one internal edge on each P, for e € F', yielding a proper
2-coloring of the contracted graph. Conversely, given any contraction set S in G’ reading
off the 2-coloring on the original vertices identifies a deletion set F' in G with |F| < |S]; the
choice L = 2k + 1 prevents identifying original endpoints within budget.

Therefore, a p-approximation for BIPARTITE EDGE CONTRACTION would immediately
give a p-approximation for BIPARTITE EDGE DELETION. Since the latter admits no constant-
factor approximation under UGC, neither does BIPARTITE CONTRACTION. m
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Let G be an input graph G. Let f : V(G) — V(H) be a homomorphism. Then for
every odd induced cycle (an odd cycle without chord) C, f maps an edge of C' to edge dd of
G. Suppose this is not the case. Let C : vy, vy, ..., Vo1, v1. Now between two consecutive
appearances of f(v;) and f(v;) where j > i+ 1 there are even number of edges of C, and
hence, the length of C'is even, a contradiction. If we have homomorphism f : V(G) — V(H)
with minimum cost, then we obtain a set F' of minimum size of edges in GG to contract and
obtain a bipartite graph, particularly those edges whose both edge point are mapped to d
under f. However, the converse is not true. We can not get a solution for MinHOM(H)

when we contract a few edges in G From this discussion we believe the following conjecture
hold.

Conjecture 4.6. Let H be the three-vertex graph with edges {ab, ad,dd}. Then MINHOM(H)
1s UGC-hard.

Assuming Conjecture 4.6, we obtain the promised dichotomy.

Theorem 4.7 (Dichotomy under Conjecture[d.6)). For every graph H, MINHOM(H) admits
a constant-factor approrimation if and only of H admits a min-ordering.

Proof. Note that the graph (C) depicted in Figure [I| does not admit a majority operation.
Observe that by definition g(a,b,d)g(b, d, d) and g(a,b, d)g(a, a,b) must be edges (C), hence,
g(a,b,d) = b. By similar argument, ¢(b,a,d) = b. Now g(a,b,d)g(b, a,d) must be an edge of
(C) a contradiction. Therefore, LHOM(C') is NP-complete and hence MinHOM (H) does not
admit any approximation. Furthermore, MinHOM(B) where (B) is the (B) graph depicted
in Figure [I| does not admit a constant approximation algorithm under UGC. By Conjecture
, the graph (A) depicted in Figure [I| does not admit a constant approximation algorithm.
Thus, we forbid the graphs depicted in Figure[l, Now by Theorem [4.4] H admit a mi-ordering,.
By Corollary [4.3] MinHOM(H) admits a |V (H)|-approximation algorithm. O

5 Inapproximability of H-coloring for graphs

We say an optimization problem P is a-approz-hard, o« > 0, if it is NP-hard to find an
a-approximation for P. Note that if P is a maximization problem then o < 1, and if it a
minimization problem then o > 1.

We also use another notion of inapproximability under the UNIQUE GAME CONJECTURE
[33], UGC for short. We say an optimization problem P is a-UG-hard if it is UG-hard to
approximate P within factor a. See [2] for further details.

A nice property of the MinHOM problem is that the hardness results for approximation
are “carried over” by induced sub-graphs. This means if MinHOM(H) is a-approx-hard or
it is a-UG-hard, then the same holds for any graph which has H as its induced sub-graph.
Informally speaking, such a property holds since the cost functions in the MinHOM problem
are part of inputs, hence, modifying cost functions gives rise to hardness results for every
graph H’ which has H as its induced graph. This is proved formally as follows.
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Figure 2: Obstruction to min-max ordering in bipartite graphs, and making MinHOM(H) NP-
complete.

Lemma 5.1. [Hardness of approzimation for sub-graph| Let H be an induced sub-graph of
graph H'. If MinHOM(H ) is a-approz-hard [o-UG-hard], then MinHOM(H') is a-approx-
hard [o-UG-hard).

Proof. Let G, H together with cost function ¢ : Gx H — Qx( be an instance of MinHOM(H).
Construct an instance of MinHOM(H’) with graphs G, H' and cost function ¢ : G x H" —
Q>0 where (u,i) = c¢(u,i) for every u € G and ¢ € H, otherwise, for every u € G and
i€ H\ H, d(ui) =W where W is a number greater than (1 + max{c(u,i) | u € G,i €
H})|G]). Notice that the cost of any homomorphism from G to H is strictly less than W.
Notice that f™*: V(G) — V(H'), the minimum cost homomorphism from G to H’', does
not map any of the vertices of G to any vertex in H' \ H due to the way we have defined ¢'.
Therefore, f* is also the minimum cost homomorphism for H. Now it is straightforward to
see that if an algorithm approximates f* : V/(G) — V(H), the minimum cost homomorphism
from G to H within a factor «, it is, in fact, computing an a-approximation of f*. O

5.1 Hardness of approximation for graphs

In this subsection we prove that MinHOM for graphs does not admit any PTAS and in
a sense a cosntant factor approximation is the best one can achieve. We start with the
following theorems about the complexity of MinHOM(H) for graph H.

Theorem 5.2. [17] Let H be a bipartite graph. Then MinHOM(H ) is polynomial-time
solvable if and only if H admits a min-mazx ordering (i.e., does not contain an induced cycle
of length at least siz, or a bipartite claw, or a bipartite net, or a bipartite tent, see Figure @)

Theorem 5.3. [17] Let H be graph with at least one self-loop vertex. Then MinHOM(H )
is polynomial-time solvable if and only if H is reflexive (every vertex has a self-loop) and
admits a min-max ordering (i.e., does not contain an induced cycle of length at least four,
or a claw, or a net, or a tent, see Figure @

The obstruction to min-max ordering for graphs are invertible pairs [27]. We say two
vertices a and b of graph( bipartite graph) H is an invertible pair if there exist two walks
P from a to b and @) from b to a of the same length such that when a;a;.1, b;b; 1 are the
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Figure 3: Obstruction to min-max ordering in reflexive graphs, and making MinHOM(H) NP-
complete.

i-th edge of P and @) then at least one of the a;b;,1,b;a;,1 is not an edge of H. We use the
existence of these obstruction in our gap preserving approximation reduction.

Before going to the main result, recall the following lemma that establishes the relation-
ship between non-polynomial cases of the LHOM and the approximation of MinHOM.

Lemma 5.4. [253] If LHOM(H ) is not polynomial-time solvable then MinHOM(H ) does not
have any approrimation.

Now, we are ready to obtain hardness of approximation for MinHOM(H) when H is a
graph.

Theorem 5.5. Let H be a graph where MinHOM(H ) is NP-complete. Then MinHOM(H )
is at least 1.128-approz-hard (under P # NP assumption), and 1.242-UG-hard.

Proof. We consider two cases, where H is irreflexive (no vertex has a self-loop) and the case
where H has a vertex with self-loop.

H is irreflexive: Without loss of generality, we can assume H is bipartite, as otherwise,
HOM(H) is NP-complete (due to [24]). Hence, LHOM(H) is NP-complete, and by Lemma
5.4, MinHOM(H) does not have any approximation. By this argument and by Lemma
(hardness of approximation for sub-graph), if a sub-graph of H is not bipartite, again
MinHOM(H) does not admit any approximation. Therefore, we continue by assuming that
H is bipartite. Moreover, when bipartite graph H contains an induced even cycle of length
at least 6, LHOM(H) is NP-complete due to [9], and hence, by Lemma MinHOM(H)
admits no approximation. By Theorem [5.2|and Lemma [5.1} it remains to consider the cases
where H is either bipartite claw, bipartite tent, or bipartite net.

We start with bipartite claw first. Let H be a bipartite claw with the vertex set
{a,b,d,e,i,7,k} and the edge set with edge set {bi,ai,aj,ak, ke,dj} (as depicted in Fig-
ure [4). Tt was shown in [34] that it is NP-hard to approximate the Vertex Cover within
factor better than v/2 — e. Vertex Cover is also (2 — ¢)-UG-hard by [35]. Let G be any of the
graphs described in [0, 34], with V(G) = {x1, 22, ..., 2,}. This graph has a relatively large
vertex cover.

Construction of the bipartite graph G': We construct the bipartite graph G’ as follows. The
vertex set of G’ consists of three disjoint copies Vi, Vs, V3 of V(G) together with set U. Let
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Vi = {ug,ug, ... un}, Vo = {vy,v9,...,0,}, and V3 = {wy,ws,...,w,}. Here, for each r
(1 <r <n), u, v, and w, are the vertices corresponding to z,. As for U, we initially set
U= Forall 1l <r s < nsuch that z,x, is an edge of GG, we introduce into U a new
vertex ;s (corresponding to the pair (r,s) and add the two edges u,a, s and o, 505 to G’
(the 2-path u,, o, s, vs corresponds to the paths a, j,d and b,7,a in H). Note that when z,z
is an edge of G, x4z, is also an edge; hence, for pair (s,r) we add a new vertex as,.

For each pair v, and w, we add a new corresponding vertex S, to U and add the edges
v.fr and [,w, (corresponding to the paths d, j,a and a, k,e in H). Finally, for each pair u,
and w,, we add a new vertex A\, to U and then, add the two edges u,\, and \,w, to G'.

Defining the cost function: Define the cost function ¢ : V(G') x V(H) — Qs as follows. For
each vertex u, € V; set ¢(u,,a) =1, ¢(u,,b) =0, and ¢(u,,1) = |G| for each | & {a,b}. For
each vertex v, € Vo, set ¢(v,,a) =1, ¢(v,,d) = 0, and ¢(v,,1) = |G| for each | & {a,d}. For
each vertex w, € Vj, set c(w,,a) = 1, ¢(w,,e) = 0, and c(w,,l) = |G| for each | & {a,e}.
Finally, for every u € U, put c¢(u,i) = c(u,j) = c¢(u, k) = 0, and for every other case, set the
cost to be |G].

From a vertex cover in G to a homomorphism from G’ to H: Let VC be a vertex cover
in the original graph G. Define the mapping [ : V(G') — V(H) as follows. For every
vertex u, € V; set f(u,) = a if z, € VC; otherwise, set f(u,) = b. For every v, € V;
set f(v,) = a if x, € VC; otherwise, set f(v,) = d. For every w, € V5 set f(w,) = a if
x, € VO, otherwise, set f(w,) = e. For every vertex a5 corresponding to pair (x,,x,) such
that z,x, € E(G), set f(a,s) =i if f(u,) = b; otherwise, set f(a,s) = j. For every A, € G’
where u, A\, \w, € E(G), set f(A\.) = ¢ if f(u,) = b; otherwise, set f(A,) = k. Finally, for
every 3, € G’ with v,.56,, f,w, € E(G'), set f(B,) = j if f(v,) = d; otherwise, set f(5,) = k.

We show that f is a homomorphism from G’ to H with cost ¢(f) = |[VC| + |G|. Let
ura, s be an edge of G'. Then, by the construction of G', o, sv5 is also an edge of G', where

21



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

o, s corresponds to a pair (z,,zs) with x,z, € E(G). Since VC' is a vertex cover for G,
at least one of z, and z, is in VC. Without loss of generality, assume that x, € VC,
and assume z, corresponds to vertex w, in Vj. Now, by definition, f(u,) = a, and hence,
f(aws) = j, where aj € E(H); thereby, f(u,)f(a,s) € E(H). Moreover, f(vs) € {a,d}, and
hence, f(a.s)f(vs) € E(H). Now, consider the edge v, in G'. Notice that there is also
an edge f,w, of G’ (v, € Vo, w, € V3). First, consider the case where x, ¢ VC. Then, by
definition, f(w,) = a and f(v,) = d and, consequently, f(5,) = j; thus, f(w,)f(5,) € E(H),
since aj is an edge of H. In this case, we additionally have f,v, € E(G’), and, hence,
f(B.)f(v,) € E(H). Now, consider the case where z, € VC. By definition, f(v.) = a
and f(w,) = e. In this case, we have f(8,.) = k where f3,. is the corresponding vertex in
U to v, and w,. Since ak,ek € E(H), we have f(v.)f(B.), f(Br)f(w,) € E(H). A sim-
ilar argument is applied when we consider a vertex A, € U corresponding to u, and w,.
Therefore, f is a homomorphism from G’ to H. It is easy to see that the cost of f is

\VC|+ |VC|+ |G| — |VC| = |G|+ |[VC]|.

From a homomorphism from G’ to H to a vertex cover in G: Let f be a homomorphism from
G' to H. To obtain a vertex cover in G, we modify f into a homomorphism so that it agrees
on every u, € V; and v, € V. Suppose f(u,) = a and f(v,) = d for some u, € Vi and v, € V5.
Consider the vertex (3, € U corresponding to v, and w,. Since v,, 3., w, is a path in G', and
there is no path of length two in H from d to e, we must have f(w,) = a and f(5,) = j.
Then, we define a homomorphism f from G’ to H as follows. We set f'(v,) = a, f'(w,) = e,
and f'(5,) = k. Moreover, for the vertex A, € U corresponding to vertices u, and v,, we set
f'(Ar) = k. Note that for every vertex aj, corresponding to a pair (x,, z,) with z,z, € E(G),
we have f(as,) = j and f(us) = a— notice that as,v,, usas, € E(G'). As such, we set
f'(as,) = i, thereby, get f(us)f'(as,) € E(H). Finally, for every other vertex z, we set
f'(z) = f(2). It is easy to see that f’is a homomorphism from G’ to H with ¢(f) = ¢(f').
Next, suppose for some u, we have f'(us) = b and f'(vs) = a. By a similar modification, we
modify f’ further and obtain a homomorphism f” so that f”(us) = f”(vs) = a. We continue
this process until we obtain a homomorphism f* so that f*(u,) = a if and only if f*(v,) =a
for every 1 < r <n.

Therefore, for the sake of simplicity, we may assume f* = f and f(u,) = a if and only
if f(v.) = a for every u, € Vi. Notice that if f(u,) = f(v,) = a, then we may assume
f(w,) = e. Otherwise, we change the image of w, to e, and still, f is a homomorphism from
G’ to H, with a smaller cost.

Let VC'" = {u,v. | f(u,) = f(v.) = a}. Notice that as we discussed just above
VC' N {us,vs | f(ws) = a}| = 0. Therefore, c(f) = |VC'| + {ws | f(ws) = a}|, and
hence, c¢(f) = |[VC'|+ |G| — @ Let VC = {z, | f(u,) = a}, and notice that |V C| = lVTCl‘
Thus, ¢(f) = |VC| + |G|. We show that V' C is a vertex cover in G. Suppose z,z; € E(G).
Now there is a vertex «, s € U, and two edges u,o, s, ;505 in G'. Since, there is no path
of length two between b,d in H and f is a homomorphism from G’ to H, at least one of
the f(u,), f(vs) is a, say f(u,) = a. Thus, by definition u, € V'C’, and consequently z,, € VC.
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Showing the 1.128-approximation is NP-hard: We show that it is NP-hard to find a ho-
momorphism f : V(G') — V(H) with ¢(f) < (1 + N)c(f*) (here A = 0.128, and f* is the
optimal minimum cost homomorphism from G’ to H). For contradiction, suppose there is a
polynomial-time algorithm that produces such a homomorphism f. Then, ¢(f) = |VC|+|G]
and ¢(f*) = |[VC*|+ |G| (here VC* is the optimal vertex cover in G). We have |VC|+ |G| <
L+ ) (VT +G)).

Thus, |VC| < (14X)|VC*|+A|G|, and hence, |VC|—A| G| < (14+X)|V C*|. We may assume
[VC| > 0.639]G|, thanks to the construction in [6]. Therefore, we have [VC|(1 — 525) <
[VC| = NG| < (1+ A)|[VC*|, and consequently, we have [V C| < - L |VC*\

By setting % = /2, we get a contradiction since, as shown in [34], the vertex cover

cannot be approximated within any factor better than v/2 —e. Thus, 1 + A = 1.128 and
it is NP-hard to approximate MinHOM (H) within factor 1.128 when H is a bipartite claw.
Moreover, by setting % = 2, (A = 0.242) we get a contradiction with the (2 — ¢)-
UG-hardness for the Vertex Cover [55]. That is, for every € > 0, MinHOM(H ) when H is a

bipartite claw is 1.242-UG-hard.

Reduction for bipartite tent: Let Vi = {uj,ug,...,u,}, Vo = {v1,09,...,0,} and V3 =
{wy,ws, ..., w,} be three disjoint copies of V(G) = {1, x9,...,2,}. Let set U be initially
empty. At the end of the construction, the vertex set of G’ is Vi UV, U V3 U U. For every
edge x,x, of G, we add the edges u,v, and vsu, into G'. For every v, € V5 and w, € V3,
corresponding to vertex x, € G, add edge v,w, into G'. Finally, for every u, € V; and
w, € V3, corresponding to vertex x, € GG, add a new vertex A, to U, and add the edges u,\,
and \w, into G'. We define the cost function ¢ : V(G') x V(H) — Q>0 U {00} as follows.
For every u, € Vi, set c(u,,a) = 1, ¢(u,,b) = 0, and ¢(u,,p) = |G| for every p & {a,b}. For
every v, € Vo, set c(v,,7) = 1, ¢(v,, 1) = 0, and ¢(v,.,p) = |G| for every p & {l,j}. For every
w, € Vi, set c(w,,a) = 1, ¢(w,,d) = 0, and c(w,,p) = |G| for every p & {a,d}. Finally,
for every A, correspondlng to vertices u, € Vi and w, € V3, set ¢(\,1) = c¢(\, k) = 0,
and ¢(\.,p) = |G| for every p & {i,k}. Now, by a similar argument as the one for the bi-
partite claw we get the inapproximability bound for MinHOM(H ) when H is a bipartite tent.

Reduction for bipartite net: Let Vi = {uy,ug,...,un}, Vo = {v1,v9,...,0,} and V3 =
{wy,ws, ..., w,} be three disjoint copies of V(G) = {x1,xs,...,2,}. Let sets Uy,Us be
initially empty. At the end of the construction, the vertex set of G’ is V; U Vo U V3 U Uy U Us.
For every edge z,x5 of G, we add a new vertex o, to Uy and the edges u, a5, o, 505 into G’
(here u, € V; is the copy of x, € G and vs € V; is the copy of =5 € G).

For every v, € V5 and w, € V3, corresponding to vertex z, € G, add edge v,w, into
G'. Finally, for every u, € V7 and w, € V3, corresponding to vertex z, € GG, add two new
vertices A, B, to Us, and add the edges u, A\, \.3,, B,w, into G'. We define the cost function
c:V(G") x V(H) = Q¢ U {oo} as follows. For every u, € V4, set c(u,,a) =1, c¢(u,,b) =0,
and c(u,,p) = |G| for every p & {a,b}. For every v, € Vj, set c(v,,d) = 1, ¢(v,,e) = 0,
and c(v,,p) = |G| for every p & {e,d}. For every w, € Vi, set c(w,,j) = 1, ¢(v,, k) = 0,
and c(v,,p) = |G| for every p & {j,k}. For every a,, € Uy, set c(a,s,1) = c(ays,7) = 0

Y
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and c(a.s,p) = |G| for every p & {7, j}. Finally, every \,, 8, € Us, corresponding to vertices
u, € Vi and w, € Vi, set ¢(A, a) = c(A,,d) = c(B,,1) = (B, ) = 0 and for every other case
the cost is |G|. Now, by a similar argument as the one for the bipartite claw, we get the
inapproximability bound for MinHOM(H) when H is a bipartite net.

In conclusion, when H is a bipartite and MinHOM(H) is NP-complete, we get that
MinHOM(H) is 1.128-approx-hard and 1.242-UG-hard.

H has vertices with self-loops: We show that H must be reflexive; meaning every vertex
has a loop. Otherwise, H must contain an induced sub-graph H; = {aa, ab} where b does not
have a self-loop (recall that we assume H is connected). As we mention in the introduction,
Vertex Cover problem is an instance of MinHOM(H,). Vertex Cover is (1/2 — €)-approx-hard
and (2 — ¢)-UG-hard for every ¢ > 0. Therefore, MinHOM(H,) is (v/2 — ¢)-approx-hard
and (2 — ¢€)-UG-hard for every ¢ > 0. By the hardness of approximation for sub-graphs
(Lemmal5.1]), we obtain better hardness bounds for MinHOM than the claim of the theorem.
Therefore, we may assume that H is reflexive henceforth.

If H contains an induced cycle of length at least 4 (when removing the self-loops),
LHOM(H) is NP-complete due to [7], and hence, by Lemma MinHOM(H) does not
admit any approximation. Thus, by Theorem and Lemma [5.1] we need to consider the
case where H is a claw, tent or net. When H is any of these three graphs, H contains
an invertible pair (see Figure [5]). In particular for the reflexive claw, we start with graph
G as explained in the bipartite claw, and construct three partite graph G’ with Vi, V5, V3,
and we add an edge between u, € V; and vy € V4 (corresponding to edges ae, aa, ba in the
claw in Figure ) if z,us € E(G). Between v, € V; and w, € V, we place a path of length
2 (corresponding to walks a,d,d and a,d,a and e,e,a) and finally between u, € V; and
w, € V3 we add an edge. The cost function is defined as follows, ¢(u,,a) = 1, ¢(u,,b) = 0,
for every u, € V4, and c(v,,a) =1, ¢(v,,e) = 0 for every v, € V5. Finally for every w, € V3,
set ¢(wy,a) = 1, ¢(w,,d) = 0. The rest of the costs are defined in a similar way as in the
bipartite claw reduction.

Now, by a similar argument for bipartite claw, we conclude that MinHOM(H) is 1.155-
approx-hard and 1.389-UG-hard. Similar treatment is used for MinHOM(H) when H is a
reflexive net or a reflexive tent.

In conclusion, if H is reflexive and MinHOM(H) is NP-complete then MinHOM(H) is
1.155-approx-hard and 1.389-UG-hard. This completes the proof of the theorem.

O
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