

1 Approximability and Inapproximability of Minimum
2 Cost Homomorphism ^{*}

3 Pavol Hell [†] Monaldo Mastrolilli [‡] Mayssam Nevisi [§] Akbar Rafiey [¶]
4 Arash Rafiey ^{||}

5 **Abstract**

6 We investigate the approximability of the minimum-cost homomorphism problem
7 to a fixed target graph H , denoted $\text{MINHOM}(H)$. For bipartite targets, we show
8 that if H is a co-circular-arc bigraph, then $\text{MINHOM}(H)$ admits a polynomial-time
9 constant-factor approximation; otherwise, the problem is known to be inapproximable.
10 For this positive side, we give a new characterization of co-circular-arc bigraphs via the
11 existence of a min-ordering, and obtain our algorithm by derandomizing a two-phase
12 randomized scheme.

13 For general graphs (loops allowed), we provide a forbidden-subgraph characterization
14 of those admitting a min-ordering: precisely the bi-arc graphs that avoid H_1 and H_2
15 as induced subgraphs, where $V(H_1) = V(H_2) = \{a, b, d\}$ and $E(H_1) = \{ab, ad, bd, dd\}$,
16 $E(H_2) = \{ab, ad, dd\}$. We relate ODD CYCLE TRANSVERSAL (vertex deletion to bi-
17 partite) to $\text{MINHOM}(H_1)$ and bipartite edge contraction to $\text{MINHOM}(H_2)$. Under
18 the inapproximability assumptions for $\text{MINHOM}(H_1)$ and $\text{MINHOM}(H_2)$, any graph
19 H that does not admit a min-ordering yields no constant-factor approximation for
20 $\text{MINHOM}(H)$.

21 Finally, we complement our positive results with hardness of approximation results
22 for graphs. We show that $\text{MinHOM}(H)$ is 1.128-approx-hard and 1.242-UGC-hard.

23 **1 Introduction**

24 We study the approximability of the minimum cost homomorphism problem, introduced
25 below. A *c*-approximation algorithm produces a solution of cost at most c times the minimum

^{*}An extended abstract of the approximation part has appeared in [23, 42]

[†]Simon Fraser University, Burnaby, BC, Canada, pavol@sfsu.ca

[‡]IDSIA, Manno-Lugano, Switzerland, monaldo@idsia.ch supported by the Swiss National Science Foundation project 200020-122110/1, "Approximation Algorithms for Machine Scheduling II"

[§]Microsoft, Vancouver, Canada, mayssam@gmail.com

[¶]University of California San Diego, San Diego, CA, USA, arafiey@ucsd.edu

^{||}Indiana State University, IN, USA, arash.rafiey@indstate.edu supported by NSF 1751765, and by the Swiss National Science Foundation project 200020-122110/1, "Approximation Algorithms for Machine Scheduling II"

26 cost. A *constant ratio* approximation algorithm is a c -approximation algorithm for some
27 constant c . When we say a problem has a c -approximation algorithm, we mean a polynomial-
28 time algorithm. We say that a problem is *not approximable* if there is no polynomial-time
29 approximation algorithm with a multiplicative guarantee unless $P = NP$.

30 The minimum cost homomorphism problem, MinHOM, was introduced in [18]. It consists
31 of minimizing a certain cost function over all homomorphisms from an input graph G to a
32 fixed graph H . This offers a natural and practical way to model many optimization problems.
33 For instance, in [18] it was used to model a problem of minimizing the cost of a repair and
34 maintenance schedule for large machinery.

35 Certain MinHOM problems have polynomial-time algorithms [16, 17, 18], but most are
36 NP-hard. Therefore we investigate the approximability of these problems. Note that we
37 approximate the cost over real homomorphisms, rather than approximating the maximum
38 weight of satisfied constraints, as in, say, MAXSAT.

39 We call a graph *reflexive* if every vertex has a loop, and *irreflexive* if no vertex has a
40 loop. An *interval graph* is a graph that is the intersection graph of a family of real intervals,
41 and a *circular arc graph* is a graph that is the intersection graph of a family of arcs on
42 a circle. We interpret the concept of an intersection graph literally, thus any intersection
43 graph is automatically reflexive, since a set always intersects itself. A bipartite graph whose
44 complement is a circular arc graph, will be called a *co-circular arc bigraph*. When forming the
45 complement, we take all edges that were not in the graph, including loops and edges between
46 vertices in the same color. In general, the word *bigraph* will be reserved for a bipartite graph
47 with a fixed bipartition of vertices; we shall refer to *white* and *black* vertices to reflect this
48 fixed bipartition. Bigraphs can be conveniently viewed as directed bipartite graphs with all
49 edges oriented from the white to the black vertices. Thus, by definition, interval graphs are
50 reflexive, and co-circular arc bigraphs are irreflexive. Despite the apparent differences in
51 their definition, these two graph classes exhibit certain natural similarities [7, 9]. There is
52 also a concept of an *interval bigraph* H , which is defined for two families of real intervals, one
53 family for the white vertices and one family for the black vertices: a white vertex is adjacent
54 to a black vertex if and only if their corresponding intervals intersect. Interval bigraphs,
55 have been studied in [21, 40, 41].

56 A reflexive graph is a *proper interval graph* if it is an interval graph in which the defining
57 family of real intervals can be chosen to be inclusion-free. A bigraph is a *proper interval*
58 *bigraph* if it is an interval bigraph in which the defining two families of real intervals can be
59 chosen to be inclusion-free. It turns out [21] that proper interval bigraphs are a subclass of
60 co-circular arc bigraphs.

61 A *homomorphism* of a graph G to a graph H is a mapping $f : V(G) \rightarrow V(H)$ such that
62 for any edge xy of G the pair $f(x)f(y)$ is an edge of H .

63 Let H be a fixed graph. The *list homomorphism problem* to H , denoted LHOM(H), seeks,
64 for a given input graph G and lists $L(x) \subseteq V(H)$, $x \in V(G)$, a homomorphism f of G to H
65 such that $f(x) \in L(x)$ for all $x \in V(G)$. It was proved in [9] that for irreflexive graphs, the
66 problem LHOM(H) is polynomial-time solvable if H is a co-circular arc bigraph, and is NP-
67 complete otherwise. It was shown in [7] that for reflexive graphs H , the problem LHOM(H)

68 is polynomial-time solvable if H is an interval graph, and is NP-complete otherwise.

69 The *minimum cost homomorphism problem* to H , denoted $\text{MinHOM}(H)$, seeks, for a
70 given input graph G and vertex-mapping costs $c(x, u), x \in V(G), u \in V(H)$, a homomor-
71 phism f of G to H that minimizes total cost $\sum_{x \in V(G)} c(x, f(x))$.

72 As mentioned above the MinHOM problem offers a natural and practical way to model
73 and generalizes many optimization problems.

74 **Example 1.1** (VERTEX COVER). *This problem can be seen as $\text{MinHOM}(H)$ where $V(H) =$
75 $\{a, b\}$, $E(H) = \{aa, ab\}$, and $c(u, a) = 1$, $c(u, b) = 0$ for every vertex $u \in G$.*

76 **Example 1.2** (CHROMATIC SUM). *In this problem, we are given a graph G , and the objective
77 is to find a proper coloring of G with colors $\{1, \dots, k\}$ with minimum color sum. This can be
78 seen as MinHOM where H is a clique of size k with $V(H) = \{1, \dots, k\}$ and the cost function
79 is defined as $c(u, i) = i$. The CHROMATIC SUM problem appears in many applications such
80 as resource allocation problems [3].*

81 **Example 1.3.** *List homomorphism $\text{LHOM}(H)$, seeks, for a given input digraph D and lists
82 $L(x) \subseteq V(H), x \in D$, a homomorphism f from D to H such that $f(x) \in L(x)$ for all
83 $x \in D$. This is equivalent to $\text{MinHOM}(H)$ (with total cost zero) with $c(u, i) = 0$ if $i \in L(u)$,
84 otherwise, $c(u, i) = 1$.*

85 **Example 1.4** (MULTIWAY CUT). *Let G be a graph where each edge e has a non-negative
86 weight $w(e)$. There are also k specific (terminal) vertices, s_1, s_2, \dots, s_k of G . The goal is
87 to partition the vertices of G into k parts so that each part $i \in \{1, 2, \dots, k\}$, contains s_i
88 and the sum of the weights of the edges between different parts is minimized. Let H be
89 a graph with vertex set $\{a_1, a_2, \dots, a_k\} \cup \{b_{i,j} \mid 1 \leq i < j \leq k\}$. The edge set of H is
90 $\{a_i a_i, a_i b_{i,j}, b_{i,j} a_j, a_j a_j \mid 1 \leq i < j \leq k\}$. Now obtain the graph G' from G by replacing every
91 edge $e = uv$ of G with the edges $ux_e, x_e v$ where x_e is a new vertex. The cost function c is as
92 follows. $c(s_i, a_i) = 0$, else $c(s_i, d) = |G|$ for $d \neq a_i$. For every $u \in G \setminus \{s_1, s_2, \dots, s_k\}$, set
93 $c(u, s_i) = 0$. Set $c(x_e, b_{i,j}) = w(e)$. Now, finding a minimum multiway cut in G is equivalent
94 to finding a minimum-cost homomorphism from graph G' to H .*

95 **Example 1.5** (Odd Cycle Transversal (OCT)). *Given a graph G , the goal is to delete the
96 minimum number of vertices so that the remaining graph becomes bipartite. Let H be a
97 graph with vertex set $\{a, b, d\}$ and edge set $\{ab, ad, bd, dd\}$. Then the OCT problem on G
98 can be expressed as finding a homomorphism from G to H that minimizes the total cost,
99 where the cost function is defined as $c(u, a) = c(u, b) = 0$ and $c(u, d) = 1$ for every vertex
100 $u \in V(G)$. Intuitively, vertices of G mapped to d correspond exactly to those that must be
101 removed to make G bipartite.*

102 **Example 1.6** (Min-Ones for 3LIN). *We are given a set of equations of type $x_{i_1} \oplus x_{i_2} \oplus x_{i_3} =$
103 $0/1$. The goal is solve this system of equations so that the number of variables assigned to 1 is
104 minimized. This is an instance of $\text{MinHOM}(\mathcal{H})$ where $\mathcal{H} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)\}$
105 and with the cost function $c(x_i, 0) = 0$, and $c(x_i, 1) = 1$. See [1, 5, 32] for more details.*

106 The MinHOM problem generalizes many other problems such as (WEIGHTED) MIN
107 SOL [31, 43], a large class of bounded integer linear programs, retraction problems [13],
108 MINIMUM SUM COLORING [3, 15, 38], and various optimum cost chromatic partition prob-
109 lems [19, 29, 30, 37].

110 The complexity of $\text{MinHOM}(H)$ for graphs and digraphs have been well-understood
111 [17, 27]. It was proved in [17] that for irreflexive graphs, the problem $\text{MinHOM}(H)$ is
112 polynomial-time solvable if H is a proper interval bigraph, and it is NP-complete otherwise.
113 It was also shown there that for reflexive graphs H , the problem $\text{MinHOM}(H)$ is polynomial
114 time solvable if H is a proper interval graph, and it is NP-complete otherwise.

115 In [39], the authors have shown that $\text{MinHOM}(H)$ is not approximable if H is a graph
116 that is not bipartite or not a co-circular arc graph, and gave a randomized 2-approximation
117 algorithms for $\text{MinHOM}(H)$ for a certain subclass of co-circular arc bigraphs H . The au-
118 thors have asked for the exact complexity classification for these problems. We answer the
119 question by showing that the problem $\text{MinHOM}(H)$ in fact has a $|V(H)|$ -approximation
120 algorithm for **all** co-circular arc bigraphs H . Thus for an irreflexive graph H the problem
121 $\text{MinHOM}(H)$ has a constant ratio approximation algorithm if H is a co-circular arc bigraph,
122 and is not approximable otherwise. We also prove that for a reflexive graph H the problem
123 $\text{MinHOM}(H)$ has a constant ratio approximation algorithm if H is an interval graph, and is
124 not approximable otherwise. We use the method of randomized rounding, a novel technique
125 of randomized shifting, and then a simple derandomization.

126 A *min ordering* of a graph H is an ordering of its vertices a_1, a_2, \dots, a_n , so that the
127 existence of the edges $a_i a_j, a_{i'} a_{j'}$ with $i < i'$ and $j' < j$ implies the existence of the edge
128 $a_i a_{j'}$. A *min-max ordering* of a graph H is an ordering of its vertices a_1, a_2, \dots, a_n , so that
129 the existence of the edges $a_i a_j, a_{i'} a_{j'}$ with $i < i'$ and $j' < j$ implies the existence of the edges
130 $a_i a_{j'}, a_{i'} a_j$. For bigraphs, it is more convenient to speak of two orderings, and we define a
131 *min ordering* of a bigraph H to be an ordering a_1, a_2, \dots, a_p of the white vertices and an
132 ordering b_1, b_2, \dots, b_q of the black vertices, so that the existence of the edges $a_i b_j, a_{i'} b_{j'}$ with
133 $i < i', j' < j$ implies the existence of the edge $a_i b_{j'}$; and a *min-max ordering* of a bigraph H
134 to be an ordering of a_1, a_2, \dots, a_p of the white vertices and an ordering b_1, b_2, \dots, b_q of the
135 black vertices, so that the existence of the edges $a_i b_j, a_{i'} b_{j'}$ with $i < i', j' < j$ implies the
136 existence of the edges $a_i b_{j'}, a_{i'} b_j$. (Both are instances of a general definition of min ordering
137 for directed graphs [26].)

138 In Section 2 we prove that co-circular arc bigraphs are precisely the bigraphs that admit
139 a min ordering. In the realm of reflexive graphs, such a result is known about the class of
140 interval graphs (they are precisely the reflexive graphs that admit a min ordering) [25].

141 **Approximability results.** In Section 3 we recall that when a bigraph H does not admit
142 a min-ordering, the problem $\text{MINHOM}(H)$ is inapproximable, whereas if H admits a min-
143 ordering there is a $|V(H)|$ -approximation algorithm. In Section 4 we extend the discussion
144 to graphs (where loops are allowed). For graphs, $\text{MINHOM}(H)$ is inapproximable whenever
145 H is not a bi-arc graph. We show that if a bi-arc graph H admits a min-ordering, then
146 $\text{MINHOM}(H)$ again has a $|V(H)|$ -approximation algorithm. This follows by proving that

147 forbidding two specific induced subgraphs H_1 and H_2 ensures the existence of a min-ordering,
 148 where $V(H_1) = V(H_2) = \{a, b, d\}$ and $E(H_1) = \{ab, ad, bd, dd\}$ and $E(H_2) = \{ab, ad, dd\}$.
 149 On the hardness side, Example 1.5 together with the inapproximability of OCT implies
 150 that $\text{MINHOM}(H_1)$ admits no constant-factor approximation. Moreover, we argue that
 151 $\text{MINHOM}(H_2)$ is closely related to BIPARTITE EDGE CONTRACTION, which itself does not
 152 admit a constant-factor approximation. Assuming the Unique Games Conjecture and the
 153 conjecture that $\text{MINHOM}(H_2)$ has no constant-factor approximation, we obtain a dichotomy
 154 for graphs H : $\text{MINHOM}(H)$ admits a constant-factor approximation if and only if H admits
 155 a min-ordering.

156 **Inapproximability results.** As pointed out, the $\text{MinHOM}(H)$ is not approximable if
 157 $\text{LHOM}(H)$ is not polynomial-time solvable. This rules out the possibility of having an
 158 approximation algorithm for graphs that are not bi-arc. However, there are no known in-
 159 approximability results for the cases where $\text{MinHOM}(H)$ is NP-complete. We, therefore,
 160 complete the picture by considering a much bigger class of graphs than bi-arc graphs and
 161 present inapproximability results for them. That is the class of graphs for which MinHOM
 162 is NP-complete. This class of graphs has been characterized in [17] and are known as graphs
 163 that do not admit a *min-max ordering*. The obstructions for min-max ordering for graphs
 164 and digraphs have been provided in [28]. This characterization was used to show the NP-
 165 completeness of MinHOM together with the NP-completeness of the maximum independent
 166 set problem [27]. However, in this paper, we must develop an array of approximation-
 167 preserving reductions to obtain our inapproximability results.

168 2 Co-circular bigraphs and min ordering

169 A reflexive graph has a min ordering if and only if it is an interval graph [25]. In this section
 170 we prove a similar result about bigraphs. Two auxiliary concepts from [9, 11] are introduced
 171 first.

172 An *edge asteroid* of a bigraph H consists of $2k + 1$ disjoint edges $a_0b_0, a_1b_1, \dots, a_{2k}b_{2k}$
 173 such that each pair a_i, a_{i+1} is joined by a path disjoint from all neighbours of $a_{i+k+1}b_{i+k+1}$
 174 (subscripts modulo $2k + 1$).

175 An *invertible pair* in a bigraph H is a pair of white vertices a, a' and two pairs of walks $a =$
 176 $v_1, v_2, \dots, v_k = a'$, $a' = v'_1, v'_2, \dots, v'_k = a$, and $a' = w_1, w_2, \dots, w_m = a$, $a = w'_1, w'_2, \dots, w'_m =$
 177 a' such that v_i is not adjacent to v'_{i+1} for all $i = 1, 2, \dots, k$ and w_j is not adjacent to w'_{j+1}
 178 for all $j = 1, 2, \dots, m$.

179 **Theorem 2.1.** *A bigraph H is a co-circular arc graph if and only if it admits a min ordering.*

180 *Proof.* Consider the following statements for a bigraph H :

1. H has no induced cycles of length greater than three and no edge asteroids
2. H is a co-circular-arc graph
3. H has a min ordering

184 4. H has no invertible pairs

185 $1 \Rightarrow 2$ is proved in [9].

186 $2 \Rightarrow 3$ is seen as follows: Suppose H is a co-circular arc bigraph; thus the complement \overline{H}
187 is a circular arc graph that can be covered by two cliques. It is known for such graphs that
188 there exist two points, the *north pole* and the *south pole*, on the circle, so that the white
189 vertices u of H correspond to arcs A_u containing the north pole but not the south pole, and
190 the black vertices v of H correspond to arcs A_v containing the south pole but not the north
191 pole. We now define a min ordering of H as follows. The white vertices are ordered according
192 to the clockwise order of the corresponding clockwise extremes, i.e., u comes before u' if the
193 clockwise end of A_u precedes the clockwise end of $A_{u'}$. The same definition, applied to the
194 black vertices v and arcs A_v , gives an ordering of the black vertices of H . It is now easy to
195 see from the definitions that if $uv, u'v'$ are edges of H with $u < u'$ and $v > v'$, then A_u and
196 $A_{v'}$ must be disjoint, and so uv' is an edge of H .

197 $3 \Rightarrow 4$ is easy to see from the definitions (see, for instance [11]).

198 $4 \Rightarrow 1$ is checked as follows: If C is an induced cycle in H , then C must be even, and any
199 two of its opposite vertices together with the walks around the cycle form an invertible pair
200 of H . In an edge-asteroid $a_0b_0, \dots, a_{2k}b_{2k}$ as defined above, it is easy to see that, say, a_0, a_k
201 is an invertible pair. Indeed, there is, for any i , a walk from a_i to a_{i+1} that has no edges to
202 the walk $a_{i+k}, b_{i+k}, a_{i+k}, b_{i+k}, \dots, a_{i+k}$ of the same length. Similarly, a walk $a_{i+1}, b_{i+1}, a_{i+1},$
203 b_{i+1}, \dots, a_{i+1} has no edges to a walk from a_{i+k} to a_{i+k+1} implied by the definition of an
204 edge-asteroid. By composing such walks we see that a_0, a_k is an invertible pair. \square

205 We note that it can be decided in time polynomial in the size of H , whether a graph H
206 is a (co-)circular arc bigraph [22].

207 3 Approximation of MinHOM for bipartite graphs

208 In this section we describe our approximation algorithm for $\text{MinHOM}(H)$ in the case the
209 fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph, cf. Theorem 2.1.
210 We recall that if H is not a co-circular arc bigraph, then the list homomorphism problem
211 $\text{ListHOM}(H)$ is NP-complete [9], and this implies that $\text{MinHOM}(H)$ is not approximable
212 for such graphs H [39]. By Theorem 2.1 we conclude the following.

213 **Theorem 3.1.** *If a bigraph H has no min ordering, then $\text{MinHOM}(H)$ is not approximable.*

214 Our main result is the following converse: if H has a min ordering (is a co-circular
215 arc bigraph), then there exists a constant ratio approximation algorithm (since H is fixed,
216 $|V(H)|$ is a constant.).

217 **Theorem 3.2.** *If H is a bigraph that admits a min ordering, then $\text{MinHOM}(H)$ has a
218 $|V(H)|$ -approximation algorithm.*

219 To prove the above theorem we first design an approximation algorithm.

220 **Fixing a min ordering for H .** Suppose H has a min ordering with the white vertices
 221 ordered a_1, a_2, \dots, a_p , and the black vertices ordered b_1, b_2, \dots, b_q . For every $1 \leq i \leq p$, let
 222 $r(i)$ be the first subscript that $a_i b_{r(i)}$ is an edge of H . For every $1 \leq i \leq q$, let $\ell(i)$ be the
 223 first subscript that $a_{\ell(i)} b_i$ is an edge of H .

224 **Definition 3.3** (H' and E' construction). *Let E' denote the set of all pairs $a_i b_j$ such that
 225 $a_i b_j$ is not an edge of H , but there is an edge $a_i b_{j'}$ of H with $j' < j$ and an edge $a_{i'} b_j$ of H
 226 with $i' < i$. Define H' to be the graph with vertex set $V(H)$ and edge set $E(H) \cup E'$. (Note
 227 that $E(H)$ and E' are disjoint sets.)*

228 **Observation 3.4.** *The ordering a_1, a_2, \dots, a_p , and b_1, b_2, \dots, b_q is a min-max ordering of
 229 H' .*

230 *Proof.* We show that for every pair of edges $e = a_i b_{j'}$ and $e' = a_{i'} b_j$ in $E(H) \cup E'$, with
 231 $i' < i$ and $j' < j$, both $f = a_i b_j$ and $f' = a_{i'} b_{j'}$ are in $E(H) \cup E'$. If both e and e' are in
 232 $E(H)$, $f \in E(H) \cup E'$ and $f' \in E(H)$. If one of the edges, say e , is in E' , there is a vertex
 233 $b_{j''}$ with $a_i b_{j''} \in E(H)$ and $j'' < j'$, and a vertex $a_{i''}$ with $a_{i''} b_{j'} \in E(H)$ and $i'' < i$. Now,
 234 $a_i b_j$ and $a_{i''} b_{j'}$ are both in $E(H)$, so $f \in E(H) \cup E'$. We may assume that $i'' \neq i'$, otherwise
 235 $f' = a_{i''} b_{j'} \in E(H)$. If $i'' < i'$, then $f' \in E(H) \cup E'$ because $a_{i''} b_{j''} \in E(H)$; and if $i'' > i'$,
 236 then $f' \in E(H)$ because $a_{i'} b_j \in E(H)$.

237 If both edges e, e' are in E' , then the earlier neighbours of a_i and b_j in $E(H)$ imply
 238 that $f \in E(H) \cup E'$, and the earlier neighbours of $a_{i'}$ and $b_{j'}$ in $E(H)$ imply that $f' \in
 239 E(H) \cup E'$. \square

240 **Observation 3.5.** *Let $e = a_i b_j \in E'$. Then a_i is not adjacent in $E(H)$ to any vertex after
 241 b_j , or b_j is not adjacent in $E(H)$ to any vertex after a_i .*

242 *Proof.* This easily follows from the fact that $a_1, a_2, \dots, a_p, b_1, b_2, \dots, b_q$ is a min ordering. \square

243 **Assumption about the input and introducing the variables.** First we assume input
 244 bipartite graph $G = (U, V)$ is connected, as otherwise, we solve the problem for each con-
 245 nected component of G . Here U represent the left vertices of G and V represent the right
 246 vertices of G . We further look for a homomorphism f that maps vertices U to $\{a_1, a_2, \dots, a_p\}$
 247 and vertices V to $\{b_1, b_2, \dots, b_q\}$.

248 For every vertex $u \in U$, and every a_i , define the variable x_{u,a_i} , and for every $v \in V$ and
 249 b_j , define the variable x_{v,b_j} .

250 **System of linear equations S .** Having defined the variables x_{u,a_i}, x_{v,b_j} , we introduce
 251 the linear program \mathcal{S} shown in table 1 that formulates $\text{MinHOM}(H)$. The intuition is if
 252 variable $x_{u,a_i} = 1$ and $x_{u,a_{i+1}} = 0$, then we map u to a_i . Thus, we add constraint (C3) that
 253 has inequalities $x_{u,a_{i+1}} \leq x_{u,a_i}$ and $x_{v,a_{j+1}} \leq x_{v,a_j}$. Now, from constraint (C3) and the min
 254 ordering, we add constraint (C4). Constraints (C5,C6) are the most important constraints
 255 capturing the min ordering property. Using Observation 3.5, constraint (C7,C8) are added
 256 to make sure that if we map $u \in U$ ($v \in V$) to a_i (b_j) then the neighbor of u (v), say v (u)
 257 is mapped to a neighbor of a_i (b_j).

Minimize	$\sum_{u \in U, i \in [p]} c(u, a_i)(x_{u, a_i} - x_{u, a_{i+1}}) + \sum_{v \in V, j \in [q]} c(v, b_j)(x_{v, b_j} - x_{v, b_{j+1}})$	
Subject to:		
$0 \leq x_{u, a_i}, x_{v, b_j} \leq 1$	$\forall u, v \in V(G), a_i, b_j \in V(H)$	(C1)
$x_{u, a_1} = x_{v, b_1} = 1$ and $x_{u, a_{p+1}} = x_{v, b_{q+1}} = 0$		(C2)
$x_{v, b_{i+1}} \leq x_{v, b_i}$ and $x_{u, a_{i+1}} \leq x_{u, a_i}$	$\forall v \in V, u \in U, a_i, b_i \in V(H)$	(C3)
$x_{u, a_i} \leq x_{v, b_{r(i)}}$ and $x_{v, b_i} \leq x_{u, a_{\ell(i)}}$	$\forall uv \in E(G)$	(C4)
$x_{v, b_j} \leq x_{u, a_s} + \sum_{a_t b_t \in E(H), t < i} (x_{u, a_t} - x_{u, a_{t+1}})$	$\forall uv \in E(G), a_i b_j \in E', a_s$ is the first neighbor of b_j after a_i	(C5)
$x_{u, a_i} \leq x_{v, b_s} + \sum_{a_t b_t \in E(H), t < j} (x_{v, b_t} - x_{v, b_{t+1}})$	$\forall uv \in E(G), a_i b_j \in E'$ b_s is the first neighbor of a_i after b_j	(C6)
$x_{u, a_i} - x_{u, a_{i+1}} \leq \sum_{a_t b_t \in E(H), t < j} (x_{v, b_t} - x_{v, b_{t+1}})$	$\forall uv \in E(G), a_i b_j \in E'$, and a_i has no neighbor after b_j	(C7)
$x_{v, b_j} - x_{v, b_{j+1}} \leq \sum_{a_t b_t \in E(H), t < i} (x_{u, a_t} - x_{u, a_{t+1}})$	$\forall uv \in E(G), a_i b_j \in E'$, and b_j has no neighbor after a_i	(C8)

Table 1: Linear program \mathcal{S}

258 **Lemma 3.6.** *If H admits a min-ordering then there is a one to one correspondence between
259 homomorphisms of G to H and the integer solutions of \mathcal{S} .*

260 *Proof.* Suppose f is a homomorphism from G to H . If $f(u) = a_i$ then set $x_{u, a_j} = 1$, for
261 all $j \leq i$ and $x_{u, a_j} = 0$ for all $j > i$. Similar treatment for v and b_j . Clearly, constraints
262 C1, C2, C3, and C4 are satisfied. Now for all u and v in G with $f(u) = a_i$ and $f(v) = b_j$
263 we have that $x_{u, a_i} - x_{u, a_{i+1}} = x_{v, b_j} - x_{v, b_{j+1}} = 1$. Moreover, since f is a homomorphism
264 constraint (C7,C8) are also satisfied.

265 We show that constraint (C5) holds. For, contradiction, assume that the inequality in
266 (C5) fails. This means that for some edge uv of G and some arc $a_i b_j \in E'$, we have $x_{v, b_j} = 1$
267 , $x_{u, a_s} = 0$, and the sum of $(x_{u, a_t} - x_{u, a_{t+1}})$, over all $t < i$ such that a_t is a neighbor of a_j ,
268 is zero. The latter two facts easily imply that $f(u) = a_i$. Since b_j has a neighbor after a_i ,
269 Observation 3.5 tells us that a_i has no neighbor after b_j and $x_{v, b_{j+1}} = 0$, whence $f(v) = b_j$
270 and thus $a_i b_j \in E(H)$, a contradiction the assumption $a_i b_j \in E'$. By a similar argument
271 (C6) is also satisfied.

272 Conversely, from an integer solution for \mathcal{S} , we define a mapping f from G to H as follows.
273 For every $u \in U$, set $f(u) = a_i$ when i is the largest subscript with $x_{u, a_i} = 1$. Similarly, for
274 every $v \in V$ set $f(v) = b_j$ when j is the largest subscript with $x_{v, b_j} = 1$.

275 Let uv be an edge of G and assume $f(u) = a_i, f(v) = b_j$. Note that $x_{u, a_i} - x_{u, a_{i+1}} =$
276 $x_{v, b_j} - x_{v, b_{j+1}} = 1$ and for all other t we have $x_{v, b_t} - x_{v, b_{t+1}} = 0$. If $a_i b_j$ is an edge of H we are
277 done. Suppose this is not the case. Since constraints C4 is satisfied, a_i has a neighbor before
278 b_j and b_j has a neighbor before a_i . Thus, $a_i b_j \in E'$. First suppose a_i has no neighbor after
279 b_j . Now, $0 = \sum_{a_t b_t \in E(H), t < j} (x_{v, b_t} - x_{v, b_{t+1}})$, violating constraint (C7). Thus, assume a_i has a
280 neighbor after b_j . Now $x_{u, a_i} = 1$, while $x_{v, b_s} = 0$, and for every $t < j$, $x_{v, b_t} - x_{v, b_{t+1}} = 0$, and

281 hence, constraint (C6) is not satisfied, a contradiction. \square

282 **Overview of the rounding procedure.** Our algorithm will minimize the cost function
283 over \mathcal{S} in polynomial time using a linear programming algorithm. This will generally result
284 in a fractional solution. We will obtain an integer solution by a randomized procedure called
285 *rounding*. We choose a random variable $X \in [0, 1]$, and define the rounded values $\chi_{u,a_i} = 1$
286 when $x_{u,a_i} \geq X$, and $\chi_{u,a_i} = 0$ otherwise; and similarly define the rounded value χ_{v,b_j} from
287 x_{v,b_j} . Now set $f(u) = a_i$ where $\chi_{u,a_i} = 1$, $\chi_{u,a_{i+1}} = 0$ and set $f(v) = b_j$ where $\chi_{v,b_j} = 1$,
288 $\chi_{v,b_{j+1}} = 0$. In Lemma 3.7 we show that the mapping f is a homomorphism from G to H' .
289 However, f may not be a homomorphism from G to H . Now the algorithm will once more
290 modify the solution f to become a homomorphism of G to H , i.e., to avoid mapping edges
291 of G to the edges in E' . This will be accomplished by another randomized procedure, which
292 we call *shifting*. We choose another random variable $Y \in [0, 1]$, which will guide the shifting.
293 Let F denote the set of all edges in E' to which some edge of G is mapped by f . We also
294 let $F(G) = \{(u, v, f(u), f(v)) | uv \in E(G), f(u)f(v) \in E'\}$.

295 If F is empty, we need no shifting. Otherwise, let $a_i b_j$ be an edge of F with maximum
296 sum $i + j$ (among all edges of F). By the maximality of $i + j$, we know that $a_i b_j$ is the
297 last edge of F from both a_i and b_j . Now we consider, one by one, $(u, v, a_i, b_j) \in F(G)$ (i.e.
298 $uv \in E(G)$) where $f(u) = a_i$ and $f(v) = b_j$. Since $F \subseteq E'$, by Observation 3.5 either a_i has
299 no neighbor after b_j or b_j has no neighbor after a_i .

Suppose $f(u) = a_i$ and a_i have no neighbor after b_j (the other case is where $f(v) = b_j$
and b_j has no neighbor after a_i). For such a vertex u , consider the set of all vertices a_t with
 $t < i$ such that $a_t b_j \in E(H)$. This set is not empty, since e is in E' because of two edges
of $E(H)$. Suppose the set consists of a_t with subscripts t ordered as $t_1 < t_2 < \dots < t_k$. The
algorithm now selects one vertex from this set as follows. Let $P_{u,t} = \frac{x_{u,a_t} - x_{u,a_{t+1}}}{P_u}$, where

$$P_u = \sum_{a_t b_j \in E(H), t < i} (x_{u,a_t} - x_{u,a_{t+1}}).$$

300 Then a_{t_q} is selected if $\sum_{p=1}^q P_{u,t_p} < Y \leq \sum_{p=1}^{q+1} P_{u,t_p}$. Thus, a concrete a_t is selected with proba-
301 bility $P_{u,t}$, which is proportional to the difference of the fractional values $x_{u,a_t} - x_{u,a_{t+1}}$.

302 When the selected vertex is a_t , we shift the image of the vertex u from a_i to a_t . This
303 modifies the homomorphism f , and hence the corresponding values of the variables. Namely,
304 $\chi_{u,a_{t+1}}, \dots, \chi_{u,a_i}$ are reset to 0, keeping all other values the same. Note that the modified
305 mapping is still a homomorphism from G to H' .

306 We repeat the same process for the next u with these properties, until $a_i b_j$ is no longer
307 in F (because no edge of G maps to it). This ends the iteration on $a_i b_j$, and we proceed to
308 the next edge $a_{i'} b_{j'}$ with maximum $i' + j'$ for the next iteration. Each iteration involves at
309 most $|V(G)|$ shifts. After at most $|E'|$ iterations, the set F is empty and no shift is needed.

310 It is easy to see, due to min ordering, if the image of vertex u changes because of edge uv
311 with $f(u)f(v) \notin E(H)$, while $f(u)f(w) \in E(H)$ for some other neighbor w of u , by changing
312 the image of u there is no need to change the image of w . We also show that the image of

₃₁₃ every vertex w in G changes at most once. More details are provided at the beginning of
₃₁₄ Lemma 3.8.

Algorithm 1 Rounding the fractional values of \mathcal{S}

```

1: procedure ROUNDING-SHIFTING( $\mathcal{S}$ )
2:   Let  $\{x_{u,a_i}\}$  and  $\{x_{v,b_j}\}$  be the (fractional) values returned by solving  $\mathcal{S}$ 
3:   Sample  $X \in [0, 1]$  uniformly at random
4:   For all  $x_{u,a_i}$  : if  $X \leq x_{u,a_i}$  set  $\chi_{u,a_i} = 1$ , else set  $\chi_{u,a_i} = 0$ 
5:   For all  $x_{v,b_j}$  : if  $X \leq x_{v,b_j}$  set  $\chi_{v,b_j} = 1$ , else set  $\chi_{v,b_j} = 0$ 
6:   Set  $f(u) = a_i$  where  $\chi_{u,a_i} = 1$ ,  $\chi_{u,a_{i+1}} = 0$ 
7:   Set  $f(v) = b_j$  where  $\chi_{v,b_j} = 1$ ,  $\chi_{v,b_{j+1}} = 0$ 
            $\triangleright$  At this point  $f$  is a homomorphism from  $G$  to  $H'$ .
8:   Let  $F(G) = \{(u, v, f(u), f(v)) | uv \in E(G), f(u)f(v) \in E'\}$ .
9:   Let  $F \subset E'$  be the set of edges  $a_i b_j$  with some  $(u, v, a_i, b_j) \in F(G)$ 
10:  Choose a random variable  $Y$  with values in  $[0, 1]$ 
11:  while  $\exists$  edge  $a_i b_j \in F$  with  $i + j$  is maximum do
12:    while  $\exists (u, v, a_i, b_j) \in F(G)$  do
13:      if  $a_i$  does not have a neighbor after  $b_j$  and  $f(u) = a_i$  then
14:        SHIFT-LEFT( $f, u, v, a_i, b_j, Y$ )
15:      else if  $b_j$  does not have a neighbor after  $a_i$  and  $f(v) = b_j$  then
16:        SHIFT-RIGHT( $f, v, u, a_i, b_j, Y$ )
17:      Remove  $(u, v, a_i, b_j)$  from  $F(G)$ 
18:      Remove  $a_i b_j$  from  $F$ 
            $\triangleright$  At this point  $f$  is a homomorphism from  $G$  to  $H$ .
19:  return  $f$ 
            $\triangleright$   $f$  is a homomorphism from  $G$  to  $H$ .

```

Algorithm 2 Procedures SHIFT-LEFT and SHIFT-RIGHT

```

1: procedure SHIFT-LEFT( $f, u, v, a_i, b_j, Y$ )
2:   Let  $a_{t_1}, a_{t_2}, \dots, a_{t_k}$  be the neighbors of  $b_j$  in  $H$  before  $a_i$ 
3:   Let  $P_u \leftarrow \sum_{l=1}^k (x_{u,a_{t_l}} - x_{u,a_{t_l+1}})$ , and let  $P_{u,a_{t_q}} \leftarrow \sum_{l=1}^q (x_{u,a_{t_l}} - x_{u,a_{t_l+1}})/P_u$ 
4:   if  $P_{u,a_{t_q}} < Y \leq P_{u,a_{t_{q+1}}}$  then
5:      $f(u) \leftarrow a_{t_q}$ 
6:     Set  $\chi_{u,a_\iota} = 1$  for  $1 \leq \iota \leq t_q$ , and set  $\chi_{u,a_\iota} = 0$  for  $t_q < \iota \leq p+1$ 
7: procedure SHIFT-RIGHT( $f, v, u, a_i, b_j, Y$ )
8:   Let  $b_{t_1}, b_{t_2}, \dots, b_{t_k}$  be the neighbors of  $a_i$  in  $H$  before  $b_j$ 
9:   Let  $P_v \leftarrow \sum_{l=1}^k (x_{v,b_{t_l}} - x_{v,b_{t_l+1}})$ , and let  $P_{v,b_{t_q}} \leftarrow \sum_{l=1}^q (x_{v,b_{t_l}} - x_{v,b_{t_l+1}})/P_v$ 
10:  if  $P_{v,b_{t_q}} < Y \leq P_{v,b_{t_{q+1}}}$  then
11:     $f(v) \leftarrow b_{t_q}$ 
12:    Set  $\chi_{v,b_\iota} = 1$  for  $1 \leq \iota \leq t_q$ , and set  $\chi_{v,b_\iota} = 0$  for  $t_q < \iota \leq p+1$ 

```

315 **Lemma 3.7.** *The mapping f returned at line 7 of Algorithm 1 is a homomorphism from G
316 to H' .*

317 *Proof.* Consider the edge $uv \in E(G)$ and suppose $f(u) = a_i$ and $f(v) = b_j$. Thus, we have
318 $x_{u,a_{i+1}} < X \leq x_{u,a_i}$, and $x_{v,b_{j+1}} < X \leq x_{v,b_j}$. Now, by constraint (C5), we have $x_{u,a_i} \leq x_{v,b_{r(i)}}$,
319 and hence $X \leq x_{v,b_{r(i)}}$. Since $x_{v,b_{j+1}} < X$, by constraint (C3), we have $r(i) \leq j$. Similarly,
320 using the same argument for $\ell(j)$, we conclude that $\ell(j) \leq i$. Therefore, a_i has a neighbor
321 not after b_j , and b_j has a neighbor not after a_i . Now, either $a_i a_j \in E(H)$, or by the definition
322 of E' , $a_i b_j \in E'$. \square

323 Let W denote the value of the objective function with the fractional optimum x_{u,a_i}, x_{v,b_j} ,
324 and W' denote the value of the objective function with the final values $\chi_{u,a_i}, \chi_{v,b_j}$, after the
325 rounding and all the shifting. Also, let W^* be the minimum cost of a homomorphism from
326 G to H . Obviously, $W \leq W^* \leq W'$. We now show that the expected value of W' is at most
327 a constant times W .

328 **Lemma 3.8.** *Algorithm 1 runs in polynomial-time and it returns the homomorphism f
329 from G to H such that for $u, v \in G$ and $a_t, b_j \in H$ we have*

$$\mathbb{P} [\chi_{u,a_t} = 1, \chi_{u,a_{t+1}} = 0 \text{ i.e. } f(u) = a_t] \leq x_{u,a_t} - x_{u,a_{t+1}} \quad (1)$$

$$\mathbb{P} [\chi_{v,b_j} = 1, \chi_{v,b_{j+1}} = 0 \text{ i.e. } f(v) = b_j] \leq x_{v,b_j} - x_{v,b_{j+1}} \quad (2)$$

330 Moreover, the expected contribution of each summand, say $c(u, a_t)(\chi_{u,a_t} - \chi_{u,a_{t+1}})$, to the
331 expected cost of W' is at most $|V(H)|c(u, a_t)(x_{u,a_t} - x_{u,a_{t+1}})$.

332 *Proof.* Recall that after the rounding step using the random variable X , we have a partial
333 homomorphism $f : V(G) \rightarrow V(H)$, where $f(u) = a_i$ if $x_{u,a_{i+1}} < X \leq x_{u,a_i}$, and $f(v) = b_j$
334 if $x_{v,b_{j+1}} < X \leq x_{v,b_j}$. By Lemma 3.7, f is a homomorphism from G to H' . We show the
335 following claims, which help us through the rest of the proof.

336 **Claim 3.9.** *Let $uv, uw \in E(G)$. Suppose $f(u)f(v) \in E'$, and $f(u)f(w) \in E(H)$. After
337 shifting the image of u to a_t , we have $a_t f(w) \in E(H)$.*

338 *Proof.* Let $f(u) = a_i$ and $f(v) = b_j$ and $a_i b_j \notin E(H)$, and $a_i a_l \in E(H)$ where $b_l = f(w)$.
339 Since we have shifted the image of u in Algorithm 1, according to Observation 3.5, a_i has no
340 neighbor after b_j . Now because $a_i b_l \in E(H)$, we have $b_l < b_j$. Since $a_1, a_2, \dots, a_p, b_1, b_2, \dots, b_q$
341 is a min ordering, and $a_i b_l, a_t b_j \in E(H)$ with $t < i, l < j$, we conclude that $a_t b_l \in E(H)$. \square

342 **Claim 3.10.** *Let $uv, uw \in E(G)$. Suppose $f(u)f(v) \in E'$. Suppose that the image of u
343 is shifted to a_t , and $a_t f(w) \notin E(H)$, then the SHIFT-RIGHT shifts the image of $f(w)$ to a
344 neighbor of a_t .*

345 *Proof.* Let $a_i = f(u)$, $b_j = f(v)$. Let $b_s = f(w)$. If $a_i b_s \in E(H)$, as we argued in the Claim
346 3.9, $a_t b_s \in E(H)$ and we don't need to change the image of w because of u . Thus, we may
347 assume $a_t b_s \in E'$. Now since $i + j$ is maximum, $b_s < b_j$. This would imply that $a_i b_s \in E'$,
348 and hence, we shift the image of w according to the rules of the Algorithm 1 to a neighbor
349 of a_i , say b_l and before b_s . Now by the min ordering property $a_t b_l \in E(H)$. \square

350 From the proof of Claims 3.9 and 3.10 the image of each vertex u is shifted at most one.

351 We observe that the image of vertex u is always changed to a smaller element. Moreover,
 352 at each step one element is removed from $F(G)$. Suppose $uv, uw \in E(G)$. By Claim 3.9,
 353 if $f(u)f(w)$ is in $E(H)$, then by shifting the image of $f(u)$ because of uv being mapped to
 354 E' , there is no need to change the image of w . Furthermore, by claim 3.10 if by shifting the
 355 image of $f(u)$ from a_i to a_t , there is no edge between $f(w)a_t$ then w is shifted to a neighbor
 356 of a_i that is also a neighbor of a_t . These conclusions guarantee that at each step the number
 357 of elements in $F(G)$ is decreased. It is clear that for each a_ib_j in F , at most $|V(G)|$ shifts
 358 are needed. Therefore, Algorithm 1 runs in polynomial-time and f is a homomorphism from
 359 G to H .

360 According to the rules of the Algorithm 1, vertex u is mapped to a_t in two cases. The
 361 first case is where u is mapped to a_t by rounding, and is not shifted away. In other words, we
 362 have $\chi_{u,a_t} = 1$ and $\chi_{u,a_{t+1}} = 0$ after rounding, and these values do not change by procedures
 363 SHIFT-LEFT. Hence, for this case we have:

$$\mathbb{P}[f(u) = a_t] \leq \mathbb{P}[x_{u,a_{t+1}} < X \leq x_{u,a_t}] = x_{u,a_t} - x_{u,a_{t+1}}$$

364 where the first inequality follows from the fact that the probability that the image of u is
 365 not changed by either of shifting procedures is at most 1. Whence, this situation occurs
 366 with probability at most $x_{u,a_t} - x_{u,a_{t+1}}$, and the expected contribution of the corresponding
 367 summand is at most $c(u, a_t)(x_{u,a_t} - x_{u,a_{t+1}})$.

368 Second case is where $f(u)$ is set to a_t during SHIFT-LEFT. We first calculate the contribu-
 369 tion for a fixed i , that is, the contribution of shifting u from a fixed a_i to a_t in SHIFT-LEFT.
 370 Note that u is first mapped to a_i , $i > t$, by rounding, and then re-mapped to a_t during
 371 procedure SHIFT-LEFT. This happens if there exists j and v such that uv is an edge of
 372 G , and $a_ib_j \in F \subseteq E'$ (with $i + j$ being maximum) and then the image of u is shifted to a_t
 373 ($a_t < a_i$ in the min ordering), where $a_tb_j \in E(H)$. In other words, we have $\chi_{u,a_i} = \chi_{v,b_j} = 1$
 374 and $\chi_{u,a_{i+1}} = \chi_{v,b_{j+1}} = 0$ after rounding; and then u is shifted from a_i to a_t .

375 Recall that this shift occurs when a_i does not have any neighbors after b_j and Algorithm 1
 376 calls SHIFT-LEFT. Furthermore, $a_ib_j \in F$ is chosen so that $i + j$ is maximized. We show the
 377 following claim which enables us to assume we only need to consider only one neighbor of u ,
 378 namely, v in our calculation.

379 **Claim 3.11.** , For every neighbor w of u where $X \leq x_{w,b_j}$, we must have $x_{w,b_{j+1}} < X$.

380 *Proof.* By Observation 3.4, the ordering $a_1 < a_2 < \dots < a_p < b_1 < b_2 < \dots < b_p$ is a min-
 381 max ordering with respect to $E(H) \cup E'$, and by Lemma 3.7 every edge of G is mapped to
 382 an edge in $E(H) \cup E'$, after the rounding step by variable X . Suppose for some $uw \in E(G)$
 383 we have $x_{w,b_{j+1}} \geq X$ which implies that uw is mapped to $a_ib_{j'} \in E(H) \cup E'$ with $j < j'$, this
 384 in turn contradicts our assumptions that a_i does not have any neighbor after b_j and $i + j$ is
 385 maximum.

386 \square

³⁸⁷ By the above claim no neighbor of u is mapped to a vertex after b_j in the rounding step. By
³⁸⁸ Claim 3.11 we must have $x_{w,b_{j+1}} < X$ for all w with $uw \in E(G)$. That is,

$$\alpha = \max_{w:uw \in E(G)} x_{w,b_{j+1}} < X \quad (3)$$

³⁸⁹ Define events \mathcal{A} and \mathcal{B} as follows:

³⁹⁰ **Event \mathcal{A} :** there exists v such that uv is an edge of G , and u is mapped to a_i and v is
³⁹¹ mapped to b_j during rounding step. That is the event $\chi_{u,a_i} = \chi_{v,b_j} = 1, \chi_{u,a_{i+1}} =$
³⁹² $\chi_{v,b_{j+1}} = 0$.

³⁹³ **Event \mathcal{B} :** the image of u is shifted to a_t from a_i ($t < i$). That is the event $P_{u,a_{t_j}} < Y \leq$
³⁹⁴ $P_{u,a_{t_{j+1}}}$.

³⁹⁵ Consider event \mathcal{A} and two cases where b_j has some neighbor after a_i and the case where
³⁹⁶ b_j does not have a neighbor after a_i . Let C be the non-empty set of indices $C = \{t \mid t <$
³⁹⁷ $i, a_t b_j \in E(H)\}$. In the first case, we have:

$$\mathbb{P}[\text{event } \mathcal{A} \text{ happens}] = \mathbb{P}[\exists uw \in E(G) : \chi_{u,a_i} = \chi_{w,b_j} = 1, \chi_{u,a_{i+1}} = \chi_{w,b_{j+1}} = 0] \quad (4)$$

$$= \mathbb{P}[\exists uw \in E(G) : \max\{x_{u,a_{i+1}}, \alpha\} < X \leq \min\{x_{u,a_i}, x_{w,b_j}\}] \quad (5)$$

$$\leq \min \left\{ x_{u,a_i}, \max_{w:uw \in E(G)} x_{w,b_j} \right\} - \max \{x_{u,a_{i+1}}, \alpha\} \quad (6)$$

$$\leq x_{v,b_j} - x_{u,a_{i+1}} \quad (v = \operatorname{argmax}_{w:uw \in E(G)} x_{w,b_j}) \quad (7)$$

$$\leq x_{v,b_j} - x_{u,a_s} \quad (a_s \text{ is the first neighbor of } b_j \text{ after } a_i, \text{ and we have } x_{u,a_s} \leq x_{u,a_{i+1}})$$

$$\leq \sum_{t \in C} (x_{u,a_t} - x_{u,a_{t+1}}) = P_u \quad (7)$$

³⁹⁸ The last inequality is because a_i has no neighbor after b_j and it follows from constraint
³⁹⁹ (C5). Second for the case where b_j has no neighbor after a_i . By constraint (C8), for every
⁴⁰⁰ v that is a neighbor of u we have:

$$x_{v,b_j} - x_{v,b_{j+1}} \leq \sum_{t \in C} x_{u,a_t} - x_{u,a_{t+1}} = P_u \quad (8)$$

⁴⁰¹ We therefore obtain:

$$\mathbb{P}[\text{event } \mathcal{A} \text{ happens}] = \mathbb{P}[\exists uw \in E(G) : \chi_{u,a_i} = \chi_{w,b_j} = 1, \chi_{u,a_{i+1}} = \chi_{w,b_{j+1}} = 0] \quad (9)$$

$$= \mathbb{P}[\exists uw \in E(G) : \max\{x_{u,a_{i+1}}, \alpha\} < X \leq \min\{x_{u,a_i}, x_{w,b_j}\}] \quad (10)$$

$$\leq \min \left\{ x_{u,a_i}, \max_{w:uw \in E(G)} x_{w,b_j} \right\} - \max \{x_{u,a_{i+1}}, \alpha\} \quad (11)$$

$$\leq x_{v,b_j} - \alpha \quad (v = \operatorname{argmax}_{w:uw \in E(G)} x_{w,b_j}) \quad (12)$$

$$\leq x_{v,b_{j+1}} + P_u - \alpha \quad (\text{by (8)})$$

$$\leq x_{v,b_{j+1}} + P_u - x_{v,b_{j+1}} \quad (\text{by (3)})$$

$$= P_u \quad (12)$$

Having uv mapped to $a_i b_j$ in the rounding step, we shift u to a_t with probability $P_{u,t} = (x_{u,a_t} - x_{u,a_{t+1}})/P_u$. That is $\mathbb{P}[\mathcal{B} \mid \mathcal{A}] = P_{u,t}$. Note that the upper bound $\mathbb{P}[\mathcal{A}] \leq P_u$ is independent from the choice of v and b_j . Moreover, recall that random variables X and Y are independent. Therefore, for a fixed a_i , the probability that u is shifted from a_i to a_t is at most

$$\mathbb{P}[\mathcal{B} \mid \mathcal{A}] \cdot \mathbb{P}[\mathcal{A}] \leq ((x_{u,a_t} - x_{u,a_{t+1}})/P_u) \cdot P_u = x_{u,a_t} - x_{u,a_{t+1}}$$

Thus, the expected contribution for a fixed a_i (with its b_j and v) is also at most $c(u, a_t)(x_{u,a_t} - x_{u,a_{t+1}})$. Notice that there are at most $|V(H)| - 1$ of such a_i 's, thus the expected contribution of $c(u, a_t)$ to the expected value of W' is at most $|V(H)|c(u, a_t)(x_{u,a_t} - x_{u,a_{t+1}})$. \square

Theorem 3.12. *Algorithm 1 returns a homomorphism with expected cost at most $|V(H)|$ times optimal solution. The algorithm can be derandomized to obtain a deterministic $|V(H)|$ -approximation algorithm.*

Proof. By Lemma 3.8 and linearity of expectation, for the expected value of W' we have

$$\begin{aligned} \mathbb{E}[W'] &= \mathbb{E} \left[\sum_{u,i} c(u, a_i)(\chi_{u,a_i} - \chi_{u,a_{i+1}}) + \sum_{v,j} c(v, b_j)(\chi_{v,b_j} - \chi_{v,b_{j+1}}) \right] \\ &= \sum_{u,i} c(u, a_i) \mathbb{E}[\chi_{u,a_i} - \chi_{u,a_{i+1}}] + \sum_{v,j} c(v, b_j) \mathbb{E}[\chi_{v,b_j} - \chi_{v,b_{j+1}}] \\ &\leq |V(H)| \left(\sum_{u,i} c(u, a_i)(x_{u,a_i} - x_{u,a_{i+1}}) + \sum_{v,j} c(v, b_j)(\chi_{v,b_j} - \chi_{v,b_{j+1}}) \right) \\ &\leq |V(H)|W \leq |V(H)|W^*. \end{aligned}$$

Thus Algorithm 1 outputs a homomorphism whose expected cost is at most $|V(H)|$ times the minimum cost. It can be transformed to a deterministic algorithm as follows. There are only polynomially many values x_{u,a_i}, x_{v,b_j} (at most $|V(G)| \cdot |V(H)|$). When X lies anywhere

418 between two such consecutive values, all computations will remain the same. Similarly, there
 419 are only polynomially many values of the partial sums $\sum_{p=1}^q P_{u,t_p}$, and when Y lies anywhere
 420 between two consecutive values, all the computations remain the same. Moreover, for any
 421 given X and Y , the rounding and shifting algorithms can be performed in polynomial time.
 422 Thus, we can derandomize the algorithm by trying all the possible values for X and Y and
 423 simply choose the pair that gives us the minimum homomorphism cost. Since the expected
 424 value is at most $|V(H)|$ times the minimum cost, this bound also applies to this best solution.
 425 \square

426 4 A dichotomy for approximating MINHOM on graphs 427 (under a conjecture)

428 Feder et al. [10] proved that $\text{LHOM}(H)$ is solvable in polynomial time iff H is a *bi-arc* graph.
 429 We recall the definition.

430 Let C be a circle with two distinguished points p and q . A *bi-arc* is an ordered pair of arcs
 431 (N, S) on C such that $p \in N \not\ni q$ and $q \in S \not\ni p$. A graph H is a *bi-arc graph* if there exists
 432 a family $\{(N_x, S_x) : x \in V(H)\}$ such that, for any (not necessarily distinct) $x, y \in V(H)$:

- 433 • if $xy \in E(H)$, then neither N_x intersects S_y nor N_y intersects S_x ;
- 434 • if $xy \notin E(H)$, then both N_x intersects S_y and N_y intersects S_x .

435 We call such a family a *bi-arc representation* of H . Note that a bi-arc representation cannot
 436 contain $(N, S), (N', S')$ with $N \cap S' \neq \emptyset$ and $S \cap N' = \emptyset$ (and vice versa). Vertices with
 437 self-loops are allowed.

438 **Theorem 4.1** ([4, 10]). *A graph admits a conservative majority polymorphism if and only*
 439 *if it is a bi-arc graph.*

440 We will use two known facts about reflexive graphs: (i) a reflexive graph admits a min-
 441 ordering iff it is an interval graph [12]; and (ii) if a reflexive graph H is not an interval graph,
 442 then $\text{LHOM}(H)$ is NP-complete [8]. The latter immediately implies that $\text{MINHOM}(H)$ is
 443 inapproximable for any non-interval reflexive H . Combining with the standard algorithm
 444 for the bipartite case (Section 3) yields:

445 **Theorem 4.2.** *Let H be reflexive. Then $\text{MINHOM}(H)$ admits a $|V(H)|$ -approximation if*
 446 *H is an interval graph, and is not approximable otherwise.*

447 As an easy consequence:

448 **Corollary 4.3.** *If a graph H admits a min-ordering, then $\text{MINHOM}(H)$ admits a $|V(H)|$ -*
 449 *approximation algorithm.*

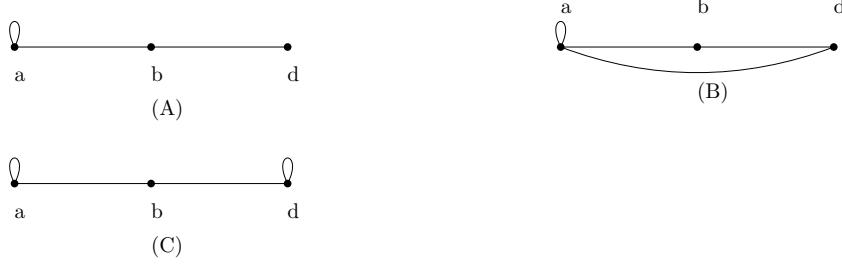


Figure 1: Forbidden induced subgraphs for admitting a min-ordering.

450 **Forbidden obstructions for min-ordering within bi-arc graphs.** We next characterize
 451 when a bi-arc graph admits a min-ordering by forbidding a small set of induced subgraphs
 452 (Figure 1).

453 **Theorem 4.4.** *Let H be a bi-arc graph. Then H admits a min-ordering if and only if H
 454 contains none of the graphs in Figure 1 as an induced subgraph.*

455 *Proof.* First, observe that none of the graphs in Figure 1 admits a min-ordering. Indeed:
 456 (i) if H has a looped vertex a adjacent to an unlooped vertex b , then in any min-ordering
 457 a must precede b ; and (ii) if bd is an edge with both b and d unlooped, then bd cannot be
 458 accommodated by a min-ordering. This means neither of the graphs in (A) and (B) admit a
 459 min-ordering and hence H does not admit a min-ordering. For the configuration (C), suppose
 460 for contradiction that a min-ordering $<$ exists. Then b must come after both a and d ; say
 461 $a < d < b$. Since ab and dd are edges, the min-rule forces ad to be an edge, contradicting
 462 (C). Thus every obstruction in Figure 1 forbids a min-ordering.

463 Now assume H is a bi-arc graph that does not contain any of the forbidden induced
 464 subgraphs in Figure 1. Let C denote the (unique) reflexive component of H (since H is
 465 connected). Because $\text{LHOM}(H)$ is polynomial-time solvable, the result of Feder and Hell
 466 [8] implies that a reflexive component of H must be an interval graph. Moreover, reflexive
 467 interval graphs admit a min-ordering [12]. Fix such a min-ordering on C , as $u_1 < u_2 < \dots <$
 468 u_m .

469 Every other vertex of H (necessarily unlooped) is connected to C by some path. Because
 470 H does not contain obstruction (A), any unlooped vertex u has at least one neighbor in C ;
 471 let u_i be the last neighbor of u in the order on C . Place u immediately after u_i and before
 472 u_{i+1} . If two unlooped vertices u, v have the same last neighbor u_j , then we order them
 473 by the position of their *first* neighbors on C (earlier first neighbor comes earlier), breaking
 474 remaining ties arbitrarily. This yields a linear order $<$ on $V(H)$.

475 We claim that this $<$ is a min-ordering. Consider two edges uv and xy with $u < x$
 476 and $v < y$. We need to show that $\min\{u, x\} \min\{v, y\} \in E(H)$. Without loss of generality,
 477 assume $u < x$. Since there are no edges between two unlooped vertices, at least one endpoint
 478 of each edge is looped; and because $u < v$ in our placement rule, u must be looped. Similarly,
 479 x is looped. If both v and y are looped, the claim follows from the fact that C already has
 480 a min-ordering. Thus assume at least one of v, y is unlooped.

481 If $v < x$, there is nothing to prove. So assume $x < v$ and $y < v$. By construction, v is
482 placed immediately after its last neighbor in C , hence $vx \in E(H)$. Moreover, because $y < v$,
483 the placement rule ensures that y is adjacent to every looped vertex up to (and including)
484 the last neighbor that justifies v 's position; in particular, $yu \in E(H)$. Therefore,

$$\min\{u, x\} = u \quad \text{and} \quad \min\{v, y\} = y,$$

485 and we have $uy \in E(H)$ as required. This verifies the min-rule in all cases, so $<$ is a
486 min-ordering of H . \square

487 4.1 UGC-hard instances of $\text{MINHOM}(H)$

488 **OCT and a three-vertex gadget.** Let H have vertices $\{a, b, d\}$ and edges $\{ab, ad, bd, dd\}$.
489 Assume costs $c(u, d) = 1$ and $c(u, a) = c(u, b) = 0$ for all $u \in V(G)$. If $S \subseteq V(G)$ with
490 $|S| = k$ makes $G \setminus S$ bipartite with bipartition (A, B) , define $f(u) = d$ if $u \in S$, $f(u) = a$ if
491 $u \in A$, and $f(u) = b$ if $u \in B$; this yields a homomorphism of total cost k . Conversely, any
492 homomorphism of cost k maps exactly k vertices to d and the remainder to $\{a, b\}$ so that
493 each odd cycle contains an edge mapped to dd , hence the set $S = \{u : f(u) = d\}$ is an odd-
494 cycle transversal of size k . Since OCT admits no constant-factor approximation under UGC
495 (e.g., [14]), $\text{MINHOM}(H)$ for this H has no constant-factor approximation under UGC.

496 **Bipartite contraction and a loop-edge gadget.** Now let H have vertices $\{a, b, d\}$ and
497 edges $\{ab, ad, dd\}$. This case is tightly related to BIPARTITE EDGE CONTRACTION (known
498 NP-complete [20]). The following corollary is standard reduction from EDGE BIPARTIZATION
499 (edge deletion to bipartite graphs) to Bipartite Contraction problem.

500 **Corollary 4.5.** *Assume the Unique Games Conjecture (UGC). Then the optimization ver-
501 sion of Bipartite Contraction admits no constant-factor approximation.*

502 *Proof.* We reduce Bipartite Edge Deletion (a.k.a. edge-deletion to bipartite graphs) which is
503 UGC-hard to approximate within any constant factor (see [36]), to BIPARTITE CONTRAC-
504 TION via the standard gadget: replace each edge $e = uv$ of G by an internally vertex-disjoint
505 u - v path P_e of odd length $L := 2k + 1$, where k is the parameter/target budget.

506 Let $\text{OPT}_{\text{del}}(G)$ be the minimum number of edge deletions that make G bipartite, and
507 let $\text{OPT}_{\text{ctr}}(G')$ be the minimum number of edge contractions that make the constructed
508 G' bipartite. The coloring-based analysis shows a tight correspondence: $\text{OPT}_{\text{ctr}}(G') =$
509 $\text{OPT}_{\text{del}}(G)$. Indeed, from any optimal deletion set F in G we obtain a contraction set of
510 the same size in G' by contracting one internal edge on each P_e for $e \in F$, yielding a proper
511 2-coloring of the contracted graph. Conversely, given any contraction set S in G' , reading
512 off the 2-coloring on the original vertices identifies a deletion set F in G with $|F| \leq |S|$; the
513 choice $L = 2k + 1$ prevents identifying original endpoints within budget.

514 Therefore, a ρ -approximation for BIPARTITE EDGE CONTRACTION would immediately
515 give a ρ -approximation for BIPARTITE EDGE DELETION. Since the latter admits no constant-
516 factor approximation under UGC, neither does BIPARTITE CONTRACTION. \square

517 Let G be an input graph G . Let $f : V(G) \rightarrow V(H)$ be a homomorphism. Then for
 518 every odd induced cycle (an odd cycle without chord) C , f maps an edge of C to edge dd of
 519 G . Suppose this is not the case. Let $C : v_1, v_2, \dots, v_{2k+1}, v_1$. Now between two consecutive
 520 appearances of $f(v_i)$ and $f(v_j)$ where $j > i + 1$ there are even number of edges of C , and
 521 hence, the length of C is even, a contradiction. If we have homomorphism $f : V(G) \rightarrow V(H)$
 522 with minimum cost, then we obtain a set F of minimum size of edges in G to contract and
 523 obtain a bipartite graph, particularly those edges whose both edge point are mapped to d
 524 under f . However, the converse is not true. We can not get a solution for $\text{MinHOM}(H)$
 525 when we contract a few edges in G . From this discussion we believe the following conjecture
 526 hold.

527 **Conjecture 4.6.** *Let H be the three-vertex graph with edges $\{ab, ad, dd\}$. Then $\text{MINHOM}(H)$
 528 is UGC-hard.*

529 Assuming Conjecture 4.6, we obtain the promised dichotomy.

530 **Theorem 4.7** (Dichotomy under Conjecture 4.6). *For every graph H , $\text{MINHOM}(H)$ admits
 531 a constant-factor approximation if and only if H admits a min-ordering.*

532 *Proof.* Note that the graph (C) depicted in Figure 1 does not admit a majority operation.
 533 Observe that by definition $g(a, b, d)g(b, d, d)$ and $g(a, b, d)g(a, a, b)$ must be edges (C), hence,
 534 $g(a, b, d) = b$. By similar argument, $g(b, a, d) = b$. Now $g(a, b, d)g(b, a, d)$ must be an edge of
 535 (C) a contradiction. Therefore, $\text{LHOM}(C)$ is NP-complete and hence $\text{MinHOM}(H)$ does not
 536 admit any approximation. Furthermore, $\text{MinHOM}(B)$ where (B) is the (B) graph depicted
 537 in Figure 1 does not admit a constant approximation algorithm under UGC. By Conjecture
 538 4.6, the graph (A) depicted in Figure 1 does not admit a constant approximation algorithm.
 539 Thus, we forbid the graphs depicted in Figure 1. Now by Theorem 4.4 H admit a mi-ordering.
 540 By Corollary 4.3, $\text{MinHOM}(H)$ admits a $|V(H)|$ -approximation algorithm. \square

5 Inapproximability of H-coloring for graphs

542 We say an optimization problem \mathcal{P} is α -approx-hard, $\alpha > 0$, if it is NP-hard to find an
 543 α -approximation for \mathcal{P} . Note that if \mathcal{P} is a maximization problem then $\alpha \leq 1$, and if it a
 544 minimization problem then $\alpha \geq 1$.

545 We also use another notion of inapproximability under the UNIQUE GAME CONJECTURE
 546 [33], UGC for short. We say an optimization problem \mathcal{P} is α -UG-hard if it is UG-hard to
 547 approximate \mathcal{P} within factor α . See [2] for further details.

548 A nice property of the MinHOM problem is that the hardness results for approximation
 549 are “carried over” by induced sub-graphs. This means if $\text{MinHOM}(H)$ is α -approx-hard or
 550 it is α -UG-hard, then the same holds for any graph which has H as its induced sub-graph.
 551 Informally speaking, such a property holds since the cost functions in the MinHOM problem
 552 are part of inputs, hence, modifying cost functions gives rise to hardness results for every
 553 graph H' which has H as its induced graph. This is proved formally as follows.

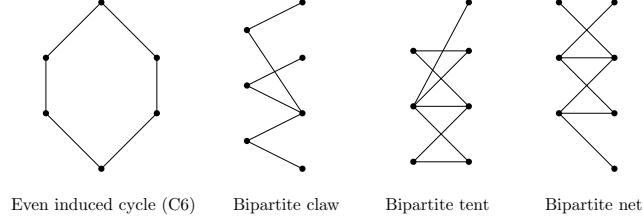


Figure 2: Obstruction to min-max ordering in bipartite graphs, and making $\text{MinHOM}(H)$ NP-complete.

554 **Lemma 5.1.** [Hardness of approximation for sub-graph] Let H be an induced sub-graph of
 555 graph H' . If $\text{MinHOM}(H)$ is α -approx-hard [α -UG-hard], then $\text{MinHOM}(H')$ is α -approx-
 556 hard [α -UG-hard].

557 *Proof.* Let G, H together with cost function $c : G \times H \rightarrow \mathbb{Q}_{\geq 0}$ be an instance of $\text{MinHOM}(H)$.
 558 Construct an instance of $\text{MinHOM}(H')$ with graphs G, H' and cost function $c' : G \times H' \rightarrow$
 559 $\mathbb{Q}_{\geq 0}$ where $c'(u, i) = c(u, i)$ for every $u \in G$ and $i \in H$, otherwise, for every $u \in G$ and
 560 $i \in H' \setminus H$, $c'(u, i) = W$ where W is a number greater than $(1 + \max\{c(u, i) \mid u \in G, i \in$
 561 $H\})|G|$. Notice that the cost of any homomorphism from G to H is strictly less than W .

562 Notice that $f'^* : V(G) \rightarrow V(H')$, the minimum cost homomorphism from G to H' , does
 563 not map any of the vertices of G to any vertex in $H' \setminus H$ due to the way we have defined c' .
 564 Therefore, f'^* is also the minimum cost homomorphism for H . Now it is straightforward to
 565 see that if an algorithm approximates $f^* : V(G) \rightarrow V(H)$, the minimum cost homomorphism
 566 from G to H within a factor α , it is, in fact, computing an α -approximation of f'^* . \square

567 5.1 Hardness of approximation for graphs

568 In this subsection we prove that MinHOM for graphs does not admit any PTAS and in
 569 a sense a constant factor approximation is the best one can achieve. We start with the
 570 following theorems about the complexity of $\text{MinHOM}(H)$ for graph H .

571 **Theorem 5.2.** [17] Let H be a bipartite graph. Then $\text{MinHOM}(H)$ is polynomial-time
 572 solvable if and only if H admits a min-max ordering (i.e., does not contain an induced cycle
 573 of length at least six, or a bipartite claw, or a bipartite net, or a bipartite tent, see Figure 2).

574 **Theorem 5.3.** [17] Let H be a graph with at least one self-loop vertex. Then $\text{MinHOM}(H)$
 575 is polynomial-time solvable if and only if H is reflexive (every vertex has a self-loop) and
 576 admits a min-max ordering (i.e., does not contain an induced cycle of length at least four,
 577 or a claw, or a net, or a tent, see Figure 3).

578 The obstruction to min-max ordering for graphs are invertible pairs [27]. We say two
 579 vertices a and b of graph (bipartite graph) H is an invertible pair if there exist two walks
 580 P from a to b and Q from b to a of the same length such that when $a_i a_{i+1}, b_i b_{i+1}$ are the

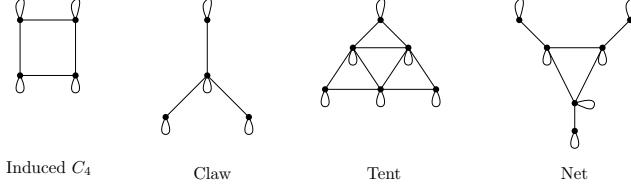


Figure 3: Obstruction to min-max ordering in reflexive graphs, and making $\text{MinHOM}(H)$ NP-complete.

581 i -th edge of P and Q then at least one of the $a_i b_{i+1}, b_i a_{i+1}$ is not an edge of H . We use the
582 existence of these obstruction in our gap preserving approximation reduction.

583 Before going to the main result, recall the following lemma that establishes the relation-
584 ship between non-polynomial cases of the LHM and the approximation of MinHOM.

585 **Lemma 5.4.** [23] *If $\text{LHM}(H)$ is not polynomial-time solvable then $\text{MinHOM}(H)$ does not*
586 *have any approximation.*

587 Now, we are ready to obtain hardness of approximation for $\text{MinHOM}(H)$ when H is a
588 graph.

589 **Theorem 5.5.** *Let H be a graph where $\text{MinHOM}(H)$ is NP-complete. Then $\text{MinHOM}(H)$*
590 *is at least 1.128-approx-hard (under $P \neq NP$ assumption), and 1.242-UG-hard.*

591 *Proof.* We consider two cases, where H is irreflexive (no vertex has a self-loop) and the case
592 where H has a vertex with self-loop.

593 **H is irreflexive:** Without loss of generality, we can assume H is bipartite, as otherwise,
594 $\text{HOM}(H)$ is NP-complete (due to [24]). Hence, $\text{LHM}(H)$ is NP-complete, and by Lemma
595 5.4, $\text{MinHOM}(H)$ does not have any approximation. By this argument and by Lemma
596 5.1 (hardness of approximation for sub-graph), if a sub-graph of H is not bipartite, again
597 $\text{MinHOM}(H)$ does not admit any approximation. Therefore, we continue by assuming that
598 H is bipartite. Moreover, when bipartite graph H contains an induced even cycle of length
599 at least 6, $\text{LHM}(H)$ is NP-complete due to [9], and hence, by Lemma 5.4 $\text{MinHOM}(H)$
600 admits no approximation. By Theorem 5.2 and Lemma 5.1, it remains to consider the cases
601 where H is either bipartite claw, bipartite tent, or bipartite net.

602 We start with bipartite claw first. Let H be a bipartite claw with the vertex set
603 $\{a, b, d, e, i, j, k\}$ and the edge set with edge set $\{bi, ai, aj, ak, ke, dj\}$ (as depicted in Fig-
604 ure 4). It was shown in [34] that it is NP-hard to approximate the Vertex Cover within
605 factor better than $\sqrt{2} - \epsilon$. Vertex Cover is also $(2 - \epsilon)$ -UG-hard by [35]. Let G be any of the
606 graphs described in [6, 34], with $V(G) = \{x_1, x_2, \dots, x_n\}$. This graph has a relatively large
607 vertex cover.

608 *Construction of the bipartite graph G' :* We construct the bipartite graph G' as follows. The
609 vertex set of G' consists of three disjoint copies V_1, V_2, V_3 of $V(G)$ together with set U . Let

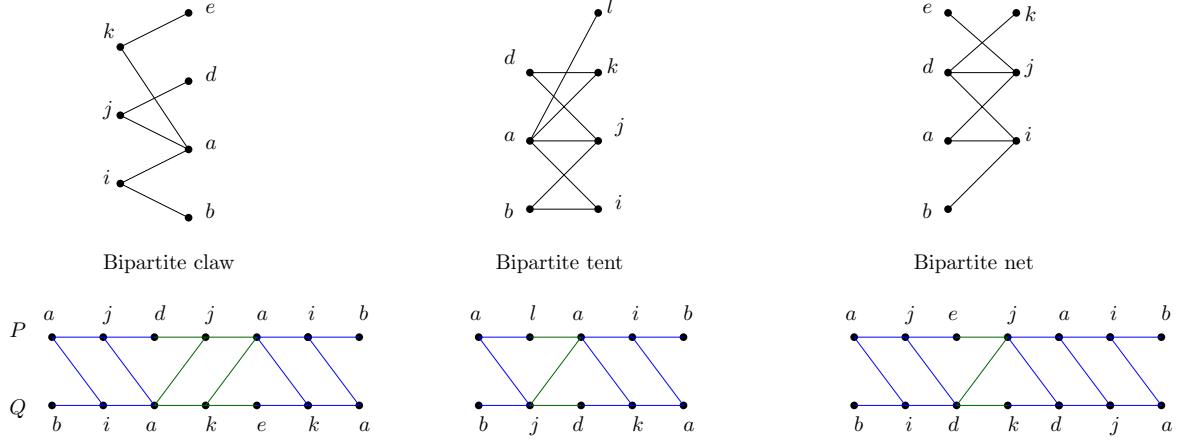


Figure 4: Invertible pair for bipartite claw, tent, and net.

611 $V_1 = \{u_1, u_2, \dots, u_n\}$, $V_2 = \{v_1, v_2, \dots, v_n\}$, and $V_3 = \{w_1, w_2, \dots, w_n\}$. Here, for each r
612 $(1 \leq r \leq n)$, u_r , v_r , and w_r are the vertices corresponding to x_r . As for U , we initially set
613 $U = \emptyset$. For all $1 \leq r, s \leq n$ such that $x_r x_s$ is an edge of G , we introduce into U a new
614 vertex $\alpha_{r,s}$ (corresponding to the pair (r, s)) and add the two edges $u_r \alpha_{r,s}$ and $\alpha_{r,s} v_s$ to G'
615 (the 2-path $u_r, \alpha_{r,s}, v_s$ corresponds to the paths a, j, d and b, i, a in H). Note that when $x_r x_s$
616 is an edge of G , $x_s x_r$ is also an edge; hence, for pair (s, r) we add a new vertex $\alpha_{s,r}$.

617 For each pair v_r and w_r we add a new corresponding vertex β_r to U and add the edges
618 $v_r \beta_r$ and $\beta_r w_r$ (corresponding to the paths d, j, a and a, k, e in H). Finally, for each pair u_r
619 and w_r , we add a new vertex λ_r to U and then, add the two edges $u_r \lambda_r$ and $\lambda_r w_r$ to G' .
620

621 *Defining the cost function:* Define the cost function $c : V(G') \times V(H) \rightarrow \mathbb{Q}_{\geq 0}$ as follows. For
622 each vertex $u_r \in V_1$ set $c(u_r, a) = 1$, $c(u_r, b) = 0$, and $c(u_r, l) = |G|$ for each $l \notin \{a, b\}$. For
623 each vertex $v_r \in V_2$, set $c(v_r, a) = 1$, $c(v_r, d) = 0$, and $c(v_r, l) = |G|$ for each $l \notin \{a, d\}$. For
624 each vertex $w_r \in V_3$, set $c(w_r, a) = 1$, $c(w_r, e) = 0$, and $c(w_r, l) = |G|$ for each $l \notin \{a, e\}$.
625 Finally, for every $u \in U$, put $c(u, i) = c(u, j) = c(u, k) = 0$, and for every other case, set the
626 cost to be $|G|$.
627

628 *From a vertex cover in G to a homomorphism from G' to H :* Let VC be a vertex cover
629 in the original graph G . Define the mapping $f : V(G') \rightarrow V(H)$ as follows. For every
630 vertex $u_r \in V_1$ set $f(u_r) = a$ if $x_r \in VC$; otherwise, set $f(u_r) = b$. For every $v_r \in V_2$
631 set $f(v_r) = a$ if $x_r \in VC$; otherwise, set $f(v_r) = d$. For every $w_r \in V_3$ set $f(w_r) = a$ if
632 $x_r \notin VC$; otherwise, set $f(w_r) = e$. For every vertex $\alpha_{r,s}$ corresponding to pair (x_r, x_s) such
633 that $x_r x_s \in E(G)$, set $f(\alpha_{r,s}) = i$ if $f(u_r) = b$; otherwise, set $f(\alpha_{r,s}) = j$. For every $\lambda_r \in G'$
634 where $u_r \lambda_r, \lambda_r w_r \in E(G')$, set $f(\lambda_r) = i$ if $f(u_r) = b$; otherwise, set $f(\lambda_r) = k$. Finally, for
635 every $\beta_r \in G'$ with $v_r \beta_r, \beta_r w_r \in E(G')$, set $f(\beta_r) = j$ if $f(v_r) = d$; otherwise, set $f(\beta_r) = k$.

636 We show that f is a homomorphism from G' to H with cost $c(f) = |VC| + |G|$. Let
637 $u_r \alpha_{r,s}$ be an edge of G' . Then, by the construction of G' , $\alpha_{r,s} v_s$ is also an edge of G' , where

638 $\alpha_{r,s}$ corresponds to a pair (x_r, x_s) with $x_r x_s \in E(G)$. Since VC is a vertex cover for G ,
 639 at least one of x_r and x_s is in VC . Without loss of generality, assume that $x_r \in VC$,
 640 and assume x_r corresponds to vertex u_r in V_1 . Now, by definition, $f(u_r) = a$, and hence,
 641 $f(\alpha_{r,s}) = j$, where $aj \in E(H)$; thereby, $f(u_r)f(\alpha_{r,s}) \in E(H)$. Moreover, $f(v_s) \in \{a, d\}$, and
 642 hence, $f(\alpha_{r,s})f(v_s) \in E(H)$. Now, consider the edge $v_r\beta_r$ in G' . Notice that there is also
 643 an edge $\beta_r w_r$ of G' ($v_r \in V_2$, $w_r \in V_3$). First, consider the case where $x_r \notin VC$. Then, by
 644 definition, $f(w_r) = a$ and $f(v_r) = d$ and, consequently, $f(\beta_r) = j$; thus, $f(w_r)f(\beta_r) \in E(H)$,
 645 since aj is an edge of H . In this case, we additionally have $\beta_r v_r \in E(G')$, and, hence,
 646 $f(\beta_r)f(v_r) \in E(H)$. Now, consider the case where $x_r \in VC$. By definition, $f(v_r) = a$
 647 and $f(w_r) = e$. In this case, we have $f(\beta_r) = k$ where β_r is the corresponding vertex in
 648 U to v_r and w_r . Since $ak, ek \in E(H)$, we have $f(v_r)f(\beta_r), f(\beta_r)f(w_r) \in E(H)$. A sim-
 649 ilar argument is applied when we consider a vertex $\lambda_r \in U$ corresponding to u_r and w_r .
 650 Therefore, f is a homomorphism from G' to H . It is easy to see that the cost of f is
 651 $|VC| + |VC| + |G| - |VC| = |G| + |VC|$.
 652

653 *From a homomorphism from G' to H to a vertex cover in G :* Let f be a homomorphism from
 654 G' to H . To obtain a vertex cover in G , we modify f into a homomorphism so that it agrees
 655 on every $u_r \in V_1$ and $v_r \in V_2$. Suppose $f(u_r) = a$ and $f(v_r) = d$ for some $u_r \in V_1$ and $v_r \in V_2$.
 656 Consider the vertex $\beta_r \in U$ corresponding to v_r and w_r . Since v_r, β_r, w_r is a path in G' , and
 657 there is no path of length two in H from d to e , we must have $f(w_r) = a$ and $f(\beta_r) = j$.
 658 Then, we define a homomorphism f' from G' to H as follows. We set $f'(v_r) = a$, $f'(w_r) = e$,
 659 and $f'(\beta_r) = k$. Moreover, for the vertex $\lambda_r \in U$ corresponding to vertices u_r and v_r , we set
 660 $f'(\lambda_r) = k$. Note that for every vertex $\alpha_{s,r}$ corresponding to a pair (x_s, x_r) with $x_r x_s \in E(G)$,
 661 we have $f(\alpha_{s,r}) = j$ and $f(u_s) = a$ — notice that $\alpha_{s,r}v_r, u_s\alpha_{s,r} \in E(G')$. As such, we set
 662 $f'(\alpha_{s,r}) = i$, thereby, get $f(u_s)f'(\alpha_{s,r}) \in E(H)$. Finally, for every other vertex z , we set
 663 $f'(z) = f(z)$. It is easy to see that f' is a homomorphism from G' to H with $c(f) = c(f')$.
 664 Next, suppose for some u_s we have $f'(u_s) = b$ and $f'(v_s) = a$. By a similar modification, we
 665 modify f' further and obtain a homomorphism f'' so that $f''(u_s) = f''(v_s) = a$. We continue
 666 this process until we obtain a homomorphism f^t so that $f^t(u_r) = a$ if and only if $f^t(v_r) = a$
 667 for every $1 \leq r \leq n$.

668 Therefore, for the sake of simplicity, we may assume $f^t = f$ and $f(u_r) = a$ if and only
 669 if $f(v_r) = a$ for every $u_r \in V_1$. Notice that if $f(u_r) = f(v_r) = a$, then we may assume
 670 $f(w_r) = e$. Otherwise, we change the image of w_r to e , and still, f is a homomorphism from
 671 G' to H , with a smaller cost.

672 Let $VC' = \{u_r, v_r \mid f(u_r) = f(v_r) = a\}$. Notice that as we discussed just above
 673 $VC' \cap \{u_s, v_s \mid f(w_s) = a\} = \emptyset$. Therefore, $c(f) = |VC'| + |\{w_s \mid f(w_s) = a\}|$, and
 674 hence, $c(f) = |VC'| + |G| - \frac{|VC'|}{2}$. Let $VC = \{x_r \mid f(u_r) = a\}$, and notice that $|VC| = \frac{|VC'|}{2}$.
 675 Thus, $c(f) = |VC| + |G|$. We show that VC is a vertex cover in G . Suppose $x_r x_s \in E(G)$.
 676 Now there is a vertex $\alpha_{r,s} \in U$, and two edges $u_r\alpha_{r,s}, \alpha_{r,s}v_s$ in G' . Since, there is no path
 677 of length two between b, d in H and f is a homomorphism from G' to H , at least one of
 678 the $f(u_r), f(v_s)$ is a , say $f(u_r) = a$. Thus, by definition $u_r \in VC'$, and consequently $x_r \in VC$.
 679

680 *Showing the 1.128-approximation is NP-hard:* We show that it is NP-hard to find a ho-
 681 momorphism $f : V(G') \rightarrow V(H)$ with $c(f) < (1 + \lambda)c(f^*)$ (here $\lambda = 0.128$, and f^* is the
 682 optimal minimum cost homomorphism from G' to H). For contradiction, suppose there is a
 683 polynomial-time algorithm that produces such a homomorphism f . Then, $c(f) = |VC| + |G|$
 684 and $c(f^*) = |VC^*| + |G|$ (here VC^* is the optimal vertex cover in G). We have $|VC| + |G| <$
 685 $(1 + \lambda)(|VC^*| + |G|)$.

686 Thus, $|VC| < (1 + \lambda)|VC^*| + \lambda|G|$, and hence, $|VC| - \lambda|G| < (1 + \lambda)|VC^*|$. We may assume
 687 $|VC| \geq 0.639|G|$, thanks to the construction in [6]. Therefore, we have $|VC|(1 - \frac{\lambda}{0.639}) \leq$
 688 $|VC| - \lambda|G| < (1 + \lambda)|VC^*|$, and consequently, we have $|VC| < \frac{1+\lambda}{1-\frac{\lambda}{0.639}}|VC^*|$.

689 By setting $\frac{(1+\lambda)0.639}{0.639-\lambda} = \sqrt{2}$, we get a contradiction since, as shown in [34], the vertex cover
 690 cannot be approximated within any factor better than $\sqrt{2} - \epsilon$. Thus, $1 + \lambda = 1.128$ and
 691 it is NP-hard to approximate $\text{MinHOM}(H)$ within factor 1.128 when H is a bipartite claw.
 692 Moreover, by setting $\frac{(1+\lambda)0.639}{0.639-\lambda} = 2$, ($\lambda = 0.242$) we get a contradiction with the $(2 - \epsilon)$ -
 693 UG-hardness for the Vertex Cover [35]. That is, for every $\epsilon \geq 0$, $\text{MinHOM}(H)$ when H is a
 694 bipartite claw is 1.242-UG-hard.

695 *Reduction for bipartite tent:* Let $V_1 = \{u_1, u_2, \dots, u_n\}$, $V_2 = \{v_1, v_2, \dots, v_n\}$ and $V_3 =$
 696 $\{w_1, w_2, \dots, w_n\}$ be three disjoint copies of $V(G) = \{x_1, x_2, \dots, x_n\}$. Let set U be initially
 697 empty. At the end of the construction, the vertex set of G' is $V_1 \cup V_2 \cup V_3 \cup U$. For every
 698 edge $x_r x_s$ of G , we add the edges $u_r v_s$ and $v_s u_r$ into G' . For every $v_r \in V_2$ and $w_r \in V_3$,
 699 corresponding to vertex $x_r \in G$, add edge $v_r w_r$ into G' . Finally, for every $u_r \in V_1$ and
 700 $w_r \in V_3$, corresponding to vertex $x_r \in G$, add a new vertex λ_r to U , and add the edges $u_r \lambda_r$
 701 and $\lambda_r w_r$ into G' . We define the cost function $c : V(G') \times V(H) \rightarrow \mathbb{Q}_{\geq 0} \cup \{\infty\}$ as follows.
 702 For every $u_r \in V_1$, set $c(u_r, a) = 1$, $c(u_r, b) = 0$, and $c(u_r, p) = |G|$ for every $p \notin \{a, b\}$. For
 703 every $v_r \in V_2$, set $c(v_r, j) = 1$, $c(v_r, l) = 0$, and $c(v_r, p) = |G|$ for every $p \notin \{l, j\}$. For every
 704 $w_r \in V_3$, set $c(w_r, a) = 1$, $c(w_r, d) = 0$, and $c(w_r, p) = |G|$ for every $p \notin \{a, d\}$. Finally,
 705 for every λ_r corresponding to vertices $u_r \in V_1$ and $w_r \in V_3$, set $c(\lambda_r, i) = c(\lambda_r, k) = 0$,
 706 and $c(\lambda_r, p) = |G|$ for every $p \notin \{i, k\}$. Now, by a similar argument as the one for the bi-
 707 partite claw we get the inapproximability bound for $\text{MinHOM}(H)$ when H is a bipartite tent.

709 *Reduction for bipartite net:* Let $V_1 = \{u_1, u_2, \dots, u_n\}$, $V_2 = \{v_1, v_2, \dots, v_n\}$ and $V_3 =$
 710 $\{w_1, w_2, \dots, w_n\}$ be three disjoint copies of $V(G) = \{x_1, x_2, \dots, x_n\}$. Let sets U_1, U_2 be
 711 initially empty. At the end of the construction, the vertex set of G' is $V_1 \cup V_2 \cup V_3 \cup U_1 \cup U_2$.
 712 For every edge $x_r x_s$ of G , we add a new vertex $\alpha_{r,s}$ to U_1 and the edges $u_r \alpha_{r,s}, \alpha_{r,s} v_s$ into G'
 713 (here $u_r \in V_1$ is the copy of $x_r \in G$ and $v_s \in V_2$ is the copy of $x_s \in G$).

715 For every $v_r \in V_2$ and $w_r \in V_3$, corresponding to vertex $x_r \in G$, add edge $v_r w_r$ into
 716 G' . Finally, for every $u_r \in V_1$ and $w_r \in V_3$, corresponding to vertex $x_r \in G$, add two new
 717 vertices λ_r, β_r to U_2 , and add the edges $u_r \lambda_r, \lambda_r \beta_r, \beta_r w_r$ into G' . We define the cost function
 718 $c : V(G') \times V(H) \rightarrow \mathbb{Q}_{\geq 0} \cup \{\infty\}$ as follows. For every $u_r \in V_1$, set $c(u_r, a) = 1$, $c(u_r, b) = 0$,
 719 and $c(u_r, p) = |G|$ for every $p \notin \{a, b\}$. For every $v_r \in V_2$, set $c(v_r, d) = 1$, $c(v_r, e) = 0$,
 720 and $c(v_r, p) = |G|$ for every $p \notin \{e, d\}$. For every $w_r \in V_3$, set $c(w_r, j) = 1$, $c(w_r, k) = 0$,
 721 and $c(w_r, p) = |G|$ for every $p \notin \{j, k\}$. For every $\alpha_{r,s} \in U_1$, set $c(\alpha_{r,s}, i) = c(\alpha_{r,s}, j) = 0$,

722 and $c(\alpha_{r,s}, p) = |G|$ for every $p \notin \{i, j\}$. Finally, every $\lambda_r, \beta_r \in U_2$, corresponding to vertices
723 $u_r \in V_1$ and $w_r \in V_3$, set $c(\lambda_r, a) = c(\lambda_r, d) = c(\beta_r, i) = c(\beta_r, j) = 0$ and for every other case
724 the cost is $|G|$. Now, by a similar argument as the one for the bipartite claw, we get the
725 inapproximability bound for $\text{MinHOM}(H)$ when H is a bipartite net.

726
727 In conclusion, when H is a bipartite and $\text{MinHOM}(H)$ is **NP**-complete, we get that
728 $\text{MinHOM}(H)$ is 1.128-approx-hard and 1.242-UG-hard.

729 **H has vertices with self-loops:** We show that H must be reflexive; meaning every vertex
730 has a loop. Otherwise, H must contain an induced sub-graph $H_1 = \{aa, ab\}$ where b does not
731 have a self-loop (recall that we assume H is connected). As we mention in the introduction,
732 **Vertex Cover** problem is an instance of $\text{MinHOM}(H_1)$. **Vertex Cover** is $(\sqrt{2} - \epsilon)$ -approx-hard
733 and $(2 - \epsilon)$ -UG-hard for every $\epsilon > 0$. Therefore, $\text{MinHOM}(H_1)$ is $(\sqrt{2} - \epsilon)$ -approx-hard
734 and $(2 - \epsilon)$ -UG-hard for every $\epsilon > 0$. By the hardness of approximation for sub-graphs
735 (Lemma 5.1), we obtain better hardness bounds for MinHOM than the claim of the theorem.
736 Therefore, we may assume that H is reflexive henceforth.

737 If H contains an induced cycle of length at least 4 (when removing the self-loops),
738 $\text{LHOM}(H)$ is **NP**-complete due to [7], and hence, by Lemma 5.4, $\text{MinHOM}(H)$ does not
739 admit any approximation. Thus, by Theorem 5.3 and Lemma 5.1, we need to consider the
740 case where H is a claw, tent or net. When H is any of these three graphs, H contains
741 an invertible pair (see Figure 5). In particular for the reflexive claw, we start with graph
742 G as explained in the bipartite claw, and construct three partite graph G' with V_1, V_2, V_3 ,
743 and we add an edge between $u_r \in V_1$ and $v_s \in V_2$ (corresponding to edges ae, aa, ba in the
744 claw in Figure 5) if $x_r u_s \in E(G)$. Between $v_r \in V_1$ and $w_r \in V_2$ we place a path of length
745 2 (corresponding to walks a, d, d and a, d, a and e, e, a) and finally between $u_r \in V_1$ and
746 $w_r \in V_3$ we add an edge. The cost function is defined as follows, $c(u_r, a) = 1$, $c(u_r, b) = 0$,
747 for every $u_r \in V_1$, and $c(v_r, a) = 1$, $c(v_r, e) = 0$ for every $v_r \in V_2$. Finally for every $w_r \in V_3$,
748 set $c(w_r, a) = 1$, $c(w_r, d) = 0$. The rest of the costs are defined in a similar way as in the
749 bipartite claw reduction.

750 Now, by a similar argument for bipartite claw, we conclude that $\text{MinHOM}(H)$ is 1.155-
751 approx-hard and 1.389-UG-hard. Similar treatment is used for $\text{MinHOM}(H)$ when H is a
752 reflexive net or a reflexive tent.

753 In conclusion, if H is reflexive and $\text{MinHOM}(H)$ is **NP**-complete then $\text{MinHOM}(H)$ is
754 1.155-approx-hard and 1.389-UG-hard. This completes the proof of the theorem.

755 □

756 References

757 [1] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima
758 in lattices, codes, and systems of linear equations. *Journal of Computer and System
759 Sciences*, 54(2):317–331, 1997.

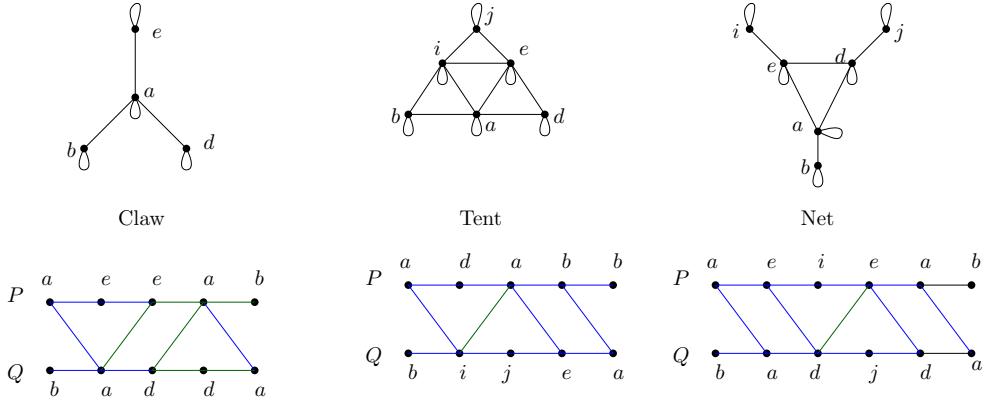


Figure 5: Invertible pair for claw, tent, and net.

[2] P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and independent set in bounded degree graphs. In *Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009*, pages 74–80. IEEE Computer Society, 2009.

[3] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic sums and distributed resource allocation. *Information and Computation*, 140(2):183–202, 1998.

[4] R. C. Brewster, T. Feder, P. Hell, J. Huang, and G. MacGillivray. Near-unanimity functions and varieties of reflexive graphs. *SIAM Journal on Discrete Mathematics*, 22(3):938–960, 2008.

[5] N. Creignou, S. Khanna, and M. Sudan. *Complexity classifications of boolean constraint satisfaction problems*, volume 7. SIAM, 2001.

[6] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. *Annals of Mathematics*, 162(1):439–485, 2005.

[7] T. Feder and P. Hell. List homomorphisms to reflexive graphs. *Journal of Combinatorial Theory, Series B*, 72(2):236–250, 1998.

[8] T. Feder and P. Hell. List homomorphisms to reflexive graphs. *Journal of Combinatorial Theory, Series B*, 72(2):236–250, 1998.

[9] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. *Combinatorica*, 19(4):487–505, 1999.

[10] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homomorphisms. *Journal of Graph Theory*, 42(1):61–80, 2003.

782 [11] T. Feder, P. Hell, J. Huang, and A. Rafiey. Adjusted interval digraphs. *Electronic Notes
783 in Discrete Mathematics*, 32:83–91, 2009.

784 [12] T. Feder, P. Hell, J. Huang, and A. Rafiey. Interval graphs, adjusted interval digraphs,
785 and reflexive list homomorphisms. *Discrete Applied Mathematics*, 160(6):697–707, 2012.

786 [13] T. Feder, P. Hell, P. Jonsson, A. Krokhin, and G. Nordh. Retractions to pseudoforests.
787 *SIAM Journal on Discrete Mathematics*, 24(1):101–112, 2010.

788 [14] S. Ghoshal and A. Louis. Approximation algorithms and hardness for strong unique
789 games. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA)*, pages 414–433. SIAM, 2021.

790 [15] K. Giaro, R. Janczewski, M. Kubale, and M. Małafiejski. A 27/26-approximation algo-
791 rithm for the chromatic sum coloring of bipartite graphs. In *International Workshop on
792 Approximation Algorithms for Combinatorial Optimization (APPROX)*, pages 135–145.
793 Springer, 2002.

794 [16] A. Gupta, P. Hell, M. Karimi, and A. Rafiey. Minimum cost homomorphisms to reflexive
795 digraphs. In E. S. Laber, C. F. Bornstein, L. T. Nogueira, and L. Faria, editors, *LATIN
796 2008: Theoretical Informatics, 8th Latin American Symposium, Búzios, Brazil, April
797 7-11, 2008, Proceedings*, volume 4957 of *Lecture Notes in Computer Science*, pages
798 182–193. Springer, 2008.

799 [17] G. Gutin, P. Hell, A. Rafiey, and A. Yeo. A dichotomy for minimum cost graph homo-
800 morphisms. *European Journal of Combinatorics*, 29(4):900–911, 2008.

801 [18] G. Z. Gutin, A. Rafiey, A. Yeo, and M. Tso. Level of repair analysis and minimum cost
802 homomorphisms of graphs. *Discret. Appl. Math.*, 154(6):881–889, 2006.

803 [19] M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Minimizing average completion of
804 dedicated tasks and interval graphs. In *Approximation, Randomization, and Combinatorial
805 Optimization: Algorithms and Techniques*, pages 114–126. Springer, 2001.

806 [20] P. Heggernes, P. v. Hof, D. Lokshtanov, and C. Paul. Obtaining a bipartite graph by
807 contracting few edges. *SIAM Journal on Discrete Mathematics*, 27(4):2143–2156, 2013.

808 [21] P. Hell and J. Huang. Interval bigraphs and circular arc graphs. *Journal of Graph
809 Theory*, 46(4):313–327, 2004.

810 [22] P. Hell, J. Huang, R. M. McConnell, and A. Rafiey. Interval-like graphs and digraphs.
811 In *43rd International Symposium on Mathematical Foundations of Computer Science
(MFCS), 2018, August 27-31, 2018, Liverpool, UK*, pages 68:1–68:13, 2018.

812 [23] P. Hell, M. Mastrolilli, M. M. Nevisi, and A. Rafiey. Approximation of minimum cost ho-
813 momorphisms. In *European Symposium on Algorithms (ESA)*, pages 587–598. Springer,
814 2012.

817 [24] P. Hell and J. Nešetřil. On the complexity of h-coloring. *Journal of Combinatorial*
 818 *Theory, Series B*, 48(1):92–110, 1990.

819 [25] P. Hell and J. Nesetril. *Graphs and homomorphisms*. Oxford University Press, 2004.

820 [26] P. Hell and A. Rafiey. The dichotomy of list homomorphisms for digraphs. In *Proceedings*
 821 *of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA*
 822 *2011, San Francisco, California, USA, January 23-25, 2011*, pages 1703–1713, 2011.

823 [27] P. Hell and A. Rafiey. The dichotomy of minimum cost homomorphism problems for
 824 digraphs. *SIAM Journal on Discrete Mathematics*, 26(4):1597–1608, 2012.

825 [28] P. Hell and A. Rafiey. Monotone proper interval digraphs and min-max orderings. *SIAM*
 826 *Journal on Discrete Mathematics*, 26(4):1576–1596, 2012.

827 [29] K. Jansen. Approximation results for the optimum cost chromatic partition problem.
 828 *J. Algorithms*, 34(1):54–89, 2000.

829 [30] T. Jiang and D. B. West. Coloring of trees with minimum sum of colors. *arXiv preprint*
 830 *math/9904140*, 1999.

831 [31] P. Jonsson and G. Nordh. Introduction to the maximum solution problem. In *Complexity*
 832 *of Constraints*, pages 255–282. Springer, 2008.

833 [32] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of
 834 constraint satisfaction problems. *SIAM Journal on Computing*, 30(6):1863–1920, 2001.

835 [33] S. Khot. On the power of unique 2-prover 1-round games. In *Proceedings on 34th*
 836 *Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,*
 837 *Canada*, pages 767–775. ACM, 2002.

838 [34] S. Khot, D. Minzer, and M. Safra. On independent sets, 2-to-2 games, and grassmann
 839 graphs. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of*
 840 *Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017*, pages 576–589.
 841 ACM, 2017.

842 [35] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon.
 843 *J. Comput. Syst. Sci.*, 74(3):335–349, 2008.

844 [36] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut
 845 problems and embeddability of negative-type metrics into ℓ_1 . *Journal of the ACM*,
 846 62(1):8:1–8:39, 2015.

847 [37] L. G. Kroon, A. Sen, H. Deng, and A. Roy. The optimal cost chromatic partition
 848 problem for trees and interval graphs. In *International Workshop on Graph-Theoretic*
 849 *Concepts in Computer Science (WG)*, pages 279–292. Springer, 1996.

850 [38] E. Kubicka and A. J. Schwenk. An introduction to chromatic sums. In *Proceedings of*
851 *the 17th conference on ACM Annual Computer Science Conference*, pages 39–45. ACM,
852 1989.

853 [39] M. Mastrolilli and A. Rafiey. On the approximation of minimum cost homomorphism
854 to bipartite graphs. *Discrete Applied Mathematics*, 161(4):670–676, 2013.

855 [40] H. Müller. Recognizing interval digraphs and interval bigraphs in polynomial time.
856 *Discret. Appl. Math.*, 78(1-3):189–205, 1997.

857 [41] A. Rafiey. Recognizing interval bigraphs by forbidden patterns. *J. Graph Theory*,
858 100(3):504–529, 2022.

859 [42] A. Rafiey, A. Rafiey, and T. Santos. Toward a dichotomy for approximation of h-coloring.
860 In *46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece*, volume 132 of *LIPICS*, pages 91:1–91:16. Schloss
861 Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

863 [43] H. Uppman. The complexity of three-element min-sol and conservative min-cost-hom. In *International Colloquium on Automata, Languages, and Programming (ICALP)*, pages
864 804–815. Springer, 2013.