

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2012 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1576–1596

MONOTONE PROPER INTERVAL DIGRAPHS AND MIN-MAX
ORDERINGS∗

PAVOL HELL† AND ARASH RAFIEY‡

Abstract. We introduce a class of digraphs analogous to proper interval graphs and bigraphs.
They are defined via a geometric representation by two inclusion-free families of intervals satisfying
a certain monotonicity condition; hence we call them monotone proper interval digraphs. They
admit a number of equivalent definitions, including an ordering characterization by so-called Min-
Max orderings, and the existence of certain graph polymorphisms. Min-Max orderings arose in the
study of minimum cost homomorphism problems: if H admits a a Min-Max ordering (or a certain
extension of Min-Max orderings), then the minimum cost homomorphism problem to H is known
to admit a polynomial time algorithm. We give a forbidden structure characterization of monotone
proper interval digraphs, which implies a polynomial time recognition algorithm. This characterizes
digraphs with a Min-Max ordering; we also similarly characterize digraphs with an extended Min-Max
ordering. In a companion paper, we shall apply this latter characterization to derive a conjectured
dichotomy classification for the minimum cost homomorphism problems—namely, we shall prove that
the minimum cost homomorphism problem to a digraph that does not admit an extended Min-Max
ordering is NP-complete.

Key words. interval digraphs, Min-Max orderings, forbidden structure characterizations,
minimum cost homomorphisms

AMS subject classifications. 05C75, 05C85

DOI. 10.1137/100783844

1. Introduction. A graph H is an interval graph if it admits an interval rep-
resentation, where an interval representation of H is a family of closed intervals
Iv, v ∈ V (H), such that u and v are adjacent in H if and only if Iu intersects Iv.
(We take this definition to apply in the case u = v as well, and hence an interval
graph H is automatically reflexive, i.e., each vertex is adjacent to itself, via a loop.)
If I is a closed interval, we denote by �(I) (respectively, r(I)) the left (respectively,
right) endpoint of I. Note that intervals I and I ′ intersect if and only if r(I) ≥ �(I ′)
and r(I ′) ≥ �(I).

The study of interval graphs is one of the most beautiful and popular parts of
graph theory, with interesting applications [12], elegant characterization theorems
[31, 10], and ingenious and efficient recognition algorithms [2, 19, 5]. When it comes
to digraphs, there is a consensus that instead of one family of intervals, one needs two
families, one for the out-neighborhoods, and one for the in-neighborhoods [6, 33, 34].
A digraph H is an interval digraph if it admits a bi-interval representation, where
a bi-interval representation consists of two families of closed intervals Iv, v ∈ V (H),
and Jv, v ∈ V (H), such that uv is an arc of H if and only if Iu intersects Jv. This
concept has been investigated [34], but the results do not seem to have the appeal

∗Received by the editors January 25, 2010; accepted for publication (in revised form) July 30,
2012; published electronically October 25, 2012.

http://www.siam.org/journals/sidma/26-4/78384.html
†School of Computing Science, Simon Fraser University, Burnaby, BC V5A1S6, Canada

(pavol@sfu.ca). This author was supported by an NSERC Canada discovery grant.
‡Informatics Department, University of Bergen, N-5020 Bergen, Norway (arash.rafiey@ii.uib.no).

This author was supported by the NSERC Canada discovery grant of the first author; this author
was also partially supported by ERC advanced grant PREPROCESSING 267959. The facilities of
IRMACS are gratefully acknowledged.

1576

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1577

of interval graphs—for instance, there is no known forbidden structure character-
ization analogous to [31], and the most efficient known algorithm has complexity
O(nm6(n+m) logn) [32]. In the special case of reflexive digraphs, the authors of [9]
have proposed another class of interest: an interval digraph is called an adjusted in-
terval digraph if it admits a bi-interval representation Iv, Jv, v ∈ V (H), in which each
pair of corresponding intervals Iv and Jv has the same left endpoint, �(Iv) = �(Jv)
for all v ∈ V (H). Such a bi-interval representation is called adjusted. For adjusted
interval digraphs, one can prove a forbidden structure characterization, which implies
a faster recognition algorithm [9]. The clue that this class may be a better analogue of
interval graphs came from the fact that interval graphs and adjusted interval digraphs
have the same ordering characterization, by the so-called Min ordering [8, 9].

A linear ordering < of V (H) is a Min ordering of the digraph H if it satisfies the
following property: if u < w and z < v and both uv, wz are arcs of H , then uz is
also an arc of H . It is shown in [9] that a reflexive digraph H has a Min ordering if
and only if it is an adjusted interval digraph. If we interpret a graph as a digraph by
replacing each edge uv by the two opposite arcs uv, vu, then a reflexive graph has a Min
ordering if and only if it is an interval graph [7]. Thus the concept of a Min ordering
suggests that, for reflexive digraphs, one natural generalization of the class of interval
graphs is the class of adjusted interval digraphs. For general digraphs (where possibly
some vertices have loops and others do not) with a Min ordering, there is no known
geometric representation, forbidden structure characterization, or polynomial time
recognition algorithm. It would be very interesting to find such results if they exist.
We note that for structures with two binary relations (digraphs with two kinds of arcs),
the recognition problem of having a Min ordering is NP-complete, via a reduction
(from a preliminary version of [1]) similar to that in the proof of Theorem 4.9.

Thus for general digraphs it is not clear what should be the best generalization
of interval graphs. However, we have had more success generalizing the notion of
proper interval graphs. In this case, we propose here an extension to general di-
graphs, for which we obtain a natural geometric representation, a forbidden structure
characterization, and a polynomial time recognition algorithm.

An interval graph H is a proper interval graph if it admits an interval represen-
tation Iv, v ∈ V (H), which is inclusion-free (no Iv is contained in Iw with v �= w).
Note that proper interval graphs are also reflexive by definition. Taking a cue from
the above example of interval graphs, we seek an ordering characterization of proper
interval graphs that can be applied to more general classes of digraphs. A linear or-
dering < of V (H) is a Min-Max ordering of the digraph H if it satisfies the following
Min-Max property: if u < w and z < v and both uv, wz are arcs of H , then uz and
wv are also arcs of H . A reflexive graph H has a Min-Max ordering if and only if it
is a proper interval graph; cf. [14]. (We again interpret the graph H as a digraph by
replacing each edge uv by the two opposite arcs uv, vu.)

This suggests a digraph analogue of proper interval graphs, namely, those digraphs
that have a Min-Max ordering. It turns out that this concept does correspond to a
natural class of interval digraphs. In analogy with the case of Min orderings described
above, we first focus on the case of reflexive digraphsH : we sayH is an adjusted proper
interval digraph if it has a bi-interval representation by two inclusion-free families that
are adjusted. It will follow from our results that a reflexive digraph H has a Min-Max
ordering if and only if it is an adjusted proper interval digraph.

Consider now general digraphs H (where possibly some vertices have a loop and
others do not). We will still be able to characterize the existence of a Min-Max

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1578 PAVOL HELL AND ARASH RAFIEY

ordering by the possibility of a certain interval bi-representation. Before describing
it, we wish to point out that in general it is convenient to allow some of the intervals
Iv, v ∈ V (H), or Jv, v ∈ V (H), to be empty (if v has zero out-degree or zero in-
degree). To avoid technicalities, we formally define a family that may contain empty
members to be inclusion-free if there is no inclusion relationship between any two
nonempty members of the family. Note that a family Iv, v ∈ V (H), is inclusion-free if
and only if we have �(Iu) < �(Iw) if and only if r(Iu) < r(Iw), for all nonempty pairs
of intervals Iu, Iw, u �= w (and similarly for a family Jv, v ∈ V (H)).

We define two families Iv, Jv, v ∈ V (H) to be monotone if the following condition
is satisfied for any two pairs of nonempty intervals Iv, Jv, Iw, Jw:

• �(Iu) < �(Iw) if and only if �(Ju) < �(Jw).

We say a digraph H is a monotone proper interval digraph if it has a bi-interval
representation by two inclusion-free families that are monotone. Note that a bi-
interval representation that is adjusted is also monotone, and thus every reflexive
adjusted proper interval digraph is a monotone proper interval digraph. We will show
that a digraph H has a Min-Max ordering if and only if it is a monotone proper
interval digraph.

It turns out that monotone proper interval digraphs also generalize another useful
class of graphs. A bigraph is a bipartite graph H with a fixed bipartition of vertices
V (H) = B∪W . A bigraph H is a proper interval bigraph if it admits a representation
by two inclusion-free families of closed intervals Iv, v ∈ B, Jw, w ∈ W , such that
v ∈ B and w ∈ W are adjacent in H if and only if Iu intersects Jv. Note that
a proper interval bigraph is irreflexive, i.e., no vertex has a loop. We shall view a
bigraph as a digraph by orienting every edge vw, v ∈ B,w ∈ W , as an arc vw, i.e.,
oriented from v to w. Under such interpretation, it turns out that a bigraph H is a
proper interval bigraph if and only if it (viewed as a digraph) has a Min-Max ordering
[36] (cf. [14]), i.e., if and only if it is a monotone proper interval digraph. Thus the
class of monotone proper interval digraphs generalizes both proper interval graphs
and proper interval bigraphs.

Proper interval graphs (and bigraphs) are characterized by simple forbidden struc-
tures and recognized in polynomial time [35]; cf. [14, 22]. In this paper, we give a
forbidden structure characterization of monotone proper interval digraphs. Our char-
acterization implies forbidden structure theorems for both proper interval graphs and
proper interval bigraphs. The characterization also leads to a polynomial time recog-
nition algorithm for these digraphs. Thus it appears that the class of monotone proper
interval digraphs is a sensible generalization of proper interval graphs and bigraphs.

We give a similar characterization of digraphs which admit certain extended Min-
Max orderings, of interest in minimum cost homomorphism problems. A homomor-
phism of a digraph G to a digraph H is a mapping f : V (G) → V (H) such that
xy ∈ A(G) implies f(x)f(y) ∈ A(H). The minimum cost homomorphism problem for
H , denoted MinHOM(H), asks whether an input digraph G, with integer costs ci(u),
u ∈ V (G), i ∈ V (H), and an integer k, admits a homomorphism to H of total cost∑

u∈V (G) cf(u)(u) not exceeding k. The problem MinHOM(H) was first formulated

in [18]; it unifies and generalizes several other problems [21, 27, 29, 30, 37]. The
complexity of the problem MinHOM(H) for undirected graphs was classified in [14]:
it is polynomial if each component of H is a reflexive interval graph or an irreflexive
interval bigraph. A simple dichotomy classification of MinHOM(H) for reflexive di-
graphs can be found in [13]. It follows from [14, 13] that both for symmetric digraphs
(undirected graphs) and for reflexive digraphs, MinHOM(H) is polynomial time solv-

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1579

able if H admits a Min-Max ordering and is NP-complete otherwise. This is not the
case for general digraphs, as certain extended Min-Max orderings (defined in a later
section) also imply a polynomial time algorithm [16]. However, it was conjectured by
Gutin, Rafiey, and Yeo [16] that MinHOM(H) is NP-complete unless H admits an
extended Min-Max ordering. Several special cases of the conjecture have been verified
[13, 14, 15, 16, 17]. In a companion paper, we apply our characterization of digraphs
with extended Min-Max ordering to prove the conjecture of [16].

2. Monotone proper interval digraphs.

Theorem 2.1. A digraph H admits a Min-Max ordering if and only if it is a
monotone proper interval digraph.

Proof. Suppose first that < is a Min-Max ordering of the vertices of H . We define
a monotone proper bi-interval representation of H as follows. We first lay out points
pv corresponding to the vertices v ∈ V (H) at the integers 1, 2, . . . , n = |V (H)| on
the real line in the order corresponding to <. (We shall use < for both the Min-Max
ordering of vertices and the order of the corresponding points on the real line, as this
will cause no confusion; we also sometimes don’t distinguish between a vertex v and
the corresponding point pv.) We shall now construct intervals Iv, v ∈ V (H): for each
v ∈ V (H), we consider the set Sv of points pw where w is an out-neighbor of v in H
not preceding v in <. (Note that Sv would include pv if v has a loop in H .) If Sv �= ∅,
we let sv be the minimum element of Sv and s′v the maximum element of Sv, and we
let Iv be the closed interval [sv, s

′
v]. If v has out-neighbors but they all precede v in

<, let qv be the rightmost out-neighbor of v and consider the point p = pqv . We let Iv
be the singleton closed interval [p, p]. In the final case when v has no out-neighbors,
we let Iv = ∅.

It follows from these definitions and the Min-Max property of < that v < w
implies �(Iv) ≤ �(Iw) and r(Iv) ≤ r(Iw) if Iv, Iw �= ∅. Indeed, if v < w and �(Iv) =
sv > �(Iw) = sw, then the Min-Max property for vsv, wsw implies that vsw ∈ A(H),
contradicting the definition of sv. If v < w and �(Iv) = qv > �(Iw) = qw, then the
Min-Max property for vqv, wqw implies that wqv ∈ A(H), contradicting the definition
of qw. Finally, if v < w and �(Iv) = sv > �(Iw) = qw, then we obtain wsv ∈ A(H),
contradicting the definition of �(Iw). A similar analysis shows that if v < w and
r(Iv) > r(Iw), then vr(Iv), wr(Iw) implies that wr(Iv) ∈ A(H), contradicting the
definition of r(Iw).

Next, we define the intervals Jv, v ∈ V (H), as follows. Let Tv consist of all points
pw where w is an in-neighbor of v in H , not preceding v in <. If Tv �= ∅, let t′v be the
maximum element of Tv, and let t′′v = max(pv, �(It′v)). We let Jv be the closed interval
[pv, t

′′
v]. (Note that t

′′
v = pv if t′v has no out-neighbors after pv.) If Tv = ∅, then we let

Jv be the singleton closed interval [pv, pv] if v has any in-neighbors at all, and Jv = ∅
otherwise. Note that each �(Jv) = pv, and thus v < w implies �(Jv) < �(Jw). Now
we claim v < w implies r(Jv) ≤ r(Jw). Indeed, if Tv = ∅, then Jv = [pv, pv] and
pv < pw ≤ r(Jw). So suppose Tv �= ∅. If we also have Tw �= ∅, then the Min-Max
property on t′vv, t′ww implies that t′v ≤ t′w; thus r(Jv) = �(It′v) ≤ �(It′w) = r(Jw).
In the last case when Tv �= ∅, Tw = ∅, we note that t′v < w, since t′v ≥ w would
imply t′vw ∈ A(H) by the Min-Max property. We have r(Jv) ≤ r(Jw) unless st′v > w,
because r(Jv) = �(It′v). If st′v > w, then considering an arc zw with z < w, together
with one of the arcs t′vv or t′vst′v , we conclude that t′vw ∈ A(H), contradicting the
definition of st′v .

We now have �(Iv) ≤ �(Iw) if and only if r(Iv) ≤ r(Iw); �(Jv) < �(Jw) if and
only if r(Jv) ≤ r(Jw); and �(Iv) ≤ �(Iw) if and only if �(Jv) < �(Jw). It is well

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1580 PAVOL HELL AND ARASH RAFIEY

known [12] that an interval representation can be perturbed so that all intervals have
distinct endpoints. The same argument applies to bi-interval representations, and
it is easy to see that the changes can be made so that each family Iv, v ∈ V (H),
Jv, v ∈ V (H) is inclusion-free and the monotonicity holds. (It only requires extending
suitable intervals a little to the left or right, without intersecting any new intervals,
and ensuring that we have the stronger equivalences �(Iv) < �(Iw) if and only if
r(Iv) < r(Iw); �(Jv) < �(Jw) if and only if r(Jv) < r(Jw); and �(Iv) < �(Iw) if and
only if �(Jv) < �(Jw).)

It remains to show that uv ∈ A(H) if and only if Iu meets Jv. Note first that
x ∈ Ix if and only if x has a loop in H and x �∈ Jx if and only if Jx = ∅. Therefore Ix
meets Jx if x has a loop. On the other hand, if Ix meets Jx, then we must have both
Sx �= ∅ and Tx �= ∅, hence xsx, t

′
xx with sx ≥ x, t′x ≥ x; therefore x has a loop by the

Min-Max property. This verifies the claim in the case u = v.

If uv ∈ A(H) with u < v, then both Iu and Jv contain the point pv. If uv ∈ A(H)
with u > v, then we have t′v ≥ pu and hence r(Jv) = �(It′v) ≥ �(Iu), as well as
r(Iu) ≥ pv = �(Jv). Thus Iu and Jv intersect.

On the other hand, suppose that Iu and Jv intersect. If Su �= ∅, then Iu is
the closed interval [su, s

′
u], or a small perturbation of it, which does not contain any

px < su (and px > s′u). Suppose first that v < u. Then we must have Tv �= ∅; let
z = t′v. If z = u then uv ∈ A(H) as required; if z > u, then the Min-Max property
for usu, zv implies that uv ∈ A(H) again. Finally, if z < u, then �(Iz) < �(Iu), which
is impossible, since r(Jv) = �(Iz) and Jv intersects Iu. Suppose next that v > u.
Note that pv ≤ s′u since Iu and Jv intersect. If Tv �= ∅, then the Min-Max property
applied to us′u, t

′
vv implies uv ∈ A(H). If Tv = ∅, then since Jv �= ∅, the vertex v

has an in-neighbor w and Jv = [pv, pv]. So we have su ≤ pv ≤ s′u and the Min-Max
property on wv with usu or us′u implies that uv ∈ A(H). If Su = ∅, then Iu is a small
extension of [pw, pw], where w is rightmost out-neighbour of u. Then we must have
v ≤ w < u, in which case the above argument (for v < u) applies verbatim.

If H is a monotone proper interval digraph with a bi-interval representation
Iv, Jv, v ∈ V (H), we define the ordering < as follows. For vertices v, w with nonempty
Iv, Iw, we let v < w if �(Iv) < �(Iw). For vertices with nonempty Jv, Jw, we let v < w
if �(Jv) < �(Jw). The monotonicity of the bi-interval representation implies that these
definitions agree if they are both applicable. It remains to define < for pairs of ver-
tices v, w, where Iv and Jw are empty. Taking the transitive closure of the current
< defines v < w if there exists a vertex u with nonempty Iu, Ju such that v < u and
u < w (respectively, w < v if there exists a vertex u with nonempty Iu, Ju such that
v < u and u < w). At this point we almost have a linear order; < is a partial order
in which all antichains have at most two elements: two vertices v, w are incomparable
if and only if Iv and Jw are empty and for all other vertices u we have u < v if and
only if u < w. We choose one of the options v < w or w < v arbitrarily. It is easy
to check that < is a linear order. We now claim that < is a Min-Max ordering of H .
Indeed, suppose u < w, z < v and uv, wz ∈ A(H), i.e., Iu ∩ Jv �= ∅, Iw ∩ Jz �= ∅. (In
particular, Iu, Iw, Jv, Jz are all nonempty.) Note that r(Iu) ≥ �(Jv) as uv ∈ A(H)
and �(Jv) > �(Jz) since v > z; thus r(Iu) ≥ �(Jz). Similarly, r(Jz) ≥ �(Iw) >
�(Iu), so we have that Iu, Jz intersect and uz ∈ A(H). By a similar calculation,
wv ∈ A(H).

Corollary 2.2. A reflexive digraph H admits a Min-Max ordering if and only
if it is an adjusted proper interval digraph.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1581

Proof. For reflexive digraphs, the above proof transforms a Min-Max ordering
into an adjusted family of intervals (as long as we take care always extending both Iv
and Jv by the same distance to the left, during the perturbation stage).

3. Min-Max orderings. We first remark that Min-Max orderings correspond
to a particular type of lattice polymorphisms [3]. The product G ×H of digraphs G
and H has the vertex set V (G) × V (H) and there is an arc in G × H from (u, v)
to (u′, v′) if G has an arc from u to u′ and H has an arc from v to v′. The power
Hk is recursively defined as H1 = H and Hk+1 = H × Hk. A polymorphism of
H is a homomorphism f : Hk → H , for some positive integer k. Polymorphisms
are of interest in the solution of constraint satisfaction problems [4, 28]. We say
that polymorphisms f, g : H2 → H are lattice polymorphisms of H if each f and g
is associative, commutative, and idempotent and if, moreover, f and g satisfy the
absorption identities f(u, g(u, v)) = g(u, f(u, v)) = u. It is easy to see that the usual
operations of minimum f(u, v) = min(u, v) and maximum g(u, v) = max(u, v), with
respect to a fixed linear ordering <, are polymorphisms if and only if < is a Min-Max
ordering. It is also clear that they satisfy the lattice axioms. A polymorphism f is
conservative if f(a1, a2, . . . , ak) ∈ {a1, a2, . . . , ak}. Clearly, min and max are both
conservative. We now make the following observation.

Theorem 3.1. A digraph H admits a Min-Max ordering if and only if it admits
conservative lattice polymorphisms f, g.

Proof. To see that any conservative lattice polymorphisms f, g yield a Min-Max
ordering, note first that for u �= v we must have f(u, v) �= g(u, v) because of the
absorption identities. Thus we may define u < v whenever f(u, v) = u, g(u, v) = v:
associative and commutative laws imply transitivity of <, hence < is a Min-Max
ordering.

If uv ∈ A(H), we say that uv is an arc of H , or that uv is a forward arc of
H ; we also say that vu is a backward arc of H . In any event, we say that u, v are
adjacent in H if uv is a forward or a backward arc of H . A walk in H is a sequence
P = x0, x1, . . . , xn of consecutively adjacent vertices of H ; note that a walk has a
designated first and last vertex. A path is a walk in which all xi are distinct. A walk
is closed if x0 = xn and a cycle if all other xi are distinct. A walk is directed if all arcs
are forward. The net length of a walk is the number of forward arcs minus the number
of backward arcs. A closed walk is balanced if it has net length zero; otherwise it is
unbalanced. Note that in an unbalanced closed walk we may always choose a direction
in which the net length is positive (or negative). A digraph is balanced if it does not
contain an unbalanced closed walk (or equivalently an unbalanced cycle); otherwise
it is unbalanced. It is easy to see that a digraph is balanced if and only if it admits
a labeling of vertices by nonnegative integers so that each arc goes from some level i
to the level i + 1. The height of H is the maximum net length of a walk in H . Note
that an unbalanced digraph has infinite height, and the height of a balanced digraph
is the greatest label in a nonnegative labeling in which some vertex has label zero.

For any walk P = x0, x1, . . . , xn in H , we consider the minimum height of P
to be the smallest net length of an initial subwalk x0, x1, . . . , xi, and the maximum
height of P to be the greatest net length of an initial subwalk x0, x1, . . . , xi. Note
that when i = 0, we obtain the trivial subwalk x0 of net length zero, and when
i = n, we obtain the entire walk P . We shall say that P is constricted from below if
the minimum height of P is zero (no initial subwalk x0, x1, . . . , xi has negative net
length) and constricted if moreover the maximum height is the net length of P (no
initial subwalk x0, x1, . . . , xi has greater net length than x0, x1, . . . , xn). We also say

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1582 PAVOL HELL AND ARASH RAFIEY

that P is nearly constricted from below if the net length of P is minus one, but all
proper initial subwalks x0, x1, . . . , xi with i < n have nonnegative net length. It is
easy to see that a walk which is nearly constricted from below can be partitioned
into two constricted pieces, by dividing it at any vertex achieving the maximum
height.

A vertex x of H is called extremal if every walk starting in x is constricted from
below, i.e., there is no walk starting in x with negative net length. It is clear that a
balanced digraph H contains extremal vertices (we can take any x from which starts
a walk with net length equal to the height of H) and a weakly connected unbalanced
digraph does not have extremal vertices (from any x we can find a walk of negative
net length by going to an unbalanced cycle and then following it long enough in the
negative direction). Moreover, in a weakly connected digraph H , any extremal vertex
x is the beginning of a constricted walk of net length equal to the height of H .

For walks P from a to b, and Q from b to c, we denote by PQ the walk from a
to c which is the concatenation of P and Q, and by P−1 the walk P traversed in the
opposite direction, from b to a. We call P−1 the reverse of P . For a closed walk C,
we denote by Ca the concatenation of C with itself a times.

A cycle of H is induced if H contains no other arcs on the vertices of the cycle.
In particular, an induced cycle with more than one vertex does not contain a loop.

The following lemma is well known. (For a proof, see [20, 38] or Lemma 2.36
in [23].)

Lemma 3.2. Let P1 and P2 be two constricted walks of net length r. Then there
is a constricted path P of net length r that admits a homomorphism f1 to P1 and a
homomorphism f2 to P2 such that each fi takes the starting vertex of P to the starting
vertex of Pi and the ending vertex of P to the ending vertex of Pi.

We shall call P a common preimage of P1 and P2.

Suppose < is a Min-Max ordering of H . If xx′, yy′ ∈ A(H) but xy′ �∈ A(H), then
x′ �= y′ and so x < y implies x′ < y′ (since otherwise x < y, y′ < x′ would violate the
Min-Max property). A similar situation arises if xx′, yy′ ∈ A(H) but yx′ �∈ A(H). In
other words, if xx′ ∈ A(H) and yy′ ∈ A(H), but xy′ �∈ A(H) or yx′ �∈ A(H), then
x < y if and only if x′ < y′. This observation suggests the next two definitions.

We define two walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to be con-
gruent if they follow the same pattern of forward and backward arcs, i.e., xixi+1 is a
forward (backward) arc if and only if yiyi+1 is a forward (backward) arc (respectively).
Suppose the walks P,Q as above are congruent. We say an arc xiyi+1 is a faithful arc
from P to Q if it is a forward (backward) arc when xixi+1 is a forward (backward)
arc (respectively), and we say an arc yixi+1 is a faithful arc from Q to P if it is a
forward (backward) arc when xixi+1 is a forward (backward) arc (respectively). We
say that P,Q avoid each other if there is no pair of faithful arcs xiyi+1 from P to Q,
and yixi+1 from Q to P , for some i = 0, 1, . . . , n.

We define the pair digraph H∗ as follows. The vertices of H∗ are all ordered pairs
(x, y) of distinct vertices of H , and (x, y)(x′, y′) ∈ A(H∗) just if both xx′ ∈ A(H) and
yy′ ∈ A(H) but at least one of xy′ �∈ A(H), yx′ �∈ A(H). (Either just one xy′, yx′ is
in A(H) or neither is in A(H).) Note that in H∗ we have an arc from (x, y) to (x′, y′)
if and only if there is an arc from (y, x) to (y′, x′).

We have used similar auxiliary digraphs in the study of list homomorphisms [8, 9]
and interval graphs, bigraphs, and digraphs; cf. [24, 25].

Note that two congruent walks P,Q in H that avoid each other (as defined above)
yield a walk in the pair digraph H∗ from (x0, y0) to (xn, yn), and conversely, any walk

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1583

in the pair digraph H∗ corresponds to a pair of congruent walks in H that avoid each
other. According to our observation, having a walk in H∗ from (x0, y0) to (xn, yn)
means that x0 < y0 if and only if xn < yn in any Min-Max ordering < of H . Thus
all pairs (x, y) in one weak component of H∗ have x < y, or all have x > y, in any
Min-Max ordering of H .

For brevity, we shall from now call a weak component of a digraph just a
component.

A circuit in H∗ is a set of vertices (x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0) of H
∗.

Note that if a component of H∗ contains a circuit, then H cannot have a Min-Max
ordering, since x0 < x1 implies x0 < x1 < x2 < . . . < xn < x0 (and similarly for
x0 > x1), contradicting the transitivity of <. We have proved the following fact.

Theorem 3.3. If some component of the pair digraph H∗ has a circuit, then H
does not admit a Min-Max ordering.

We now single out two particular situations in which a circuit occurs in one com-
ponent of the pair digraph H∗. A symmetrically invertible pair in H is a pair of
distinct vertices u, v such that there exist congruent walks, P from u to v and Q from
v to u, that avoid each other. (We have previously used a similar notion of so-called
invertible pair in [8, 9]; thus we distinguish this notion by adding the adjective ”sym-
metrically.”) Obviously, a symmetrically invertible pair in H corresponds precisely to
a circuit with n = 2 in one component of H∗. Another situation is described in the
next theorem.

Theorem 3.4. If H contains an induced cycle of net length greater than one,
then some component of H∗ contains a circuit.

Proof. Indeed, suppose C is an induced cycle of net length k > 1, and let x0 be
a vertex of C in which we can start a walk P around C which is constricted from
below. It is easy to see that such a vertex must exist; in fact, we may even assume
that P \ x0 is constricted from below. Then following P let xi (1 ≤ i ≤ k − 1) be
the last vertex on P such that the walk from x0 to xi has net length i. It is easy to
see that xi, i = 0, 1, . . . , k− 1, are all found in the first pass around C. We show that
(x0, x1), (x1, x2), . . . , (xk−1, x0) belong to the same component of H∗. Let X be the
portion of P from xi−1 to xi and Y be the portion of P from xi to xi+1.

First suppose the height of X is not greater than the height of Y . Let h be the
last vertex of Y with the maximum height. Let h′ be the first vertex of Y after xi

such that the portion of Y from h′ to h has net length one. Now the portion of P
from xi−1 to h′ and the portion of P from xi to h are constricted and have the same
height. Thus by Lemma 3.6 they have a common preimage A. Also the portion of
P−1 from h′ to xi and the portion of P from h to xi+1 are constricted and have the
same height; thus they also have a common preimage A′. The walk in C from xi−1

to xi corresponding to AA′ and the walk in C from xi to xi+1 corresponding to AA′

avoid each other, since C is an induced cycle. This implies that (xi−1, xi) to (xi, xi+1)
are in the same component of H∗.

Now suppose the height of X is greater than the height of Y . Let h be the last
vertex of P with the maximum height, and let h′ be the first vertex of P after xi+1

such that the walk from h′ to h has net length zero. Now the portion of P from xi−1

to h and the portion of P from xi to h′ are constricted and have the same height,
yielding a common preimage A, by Lemma 3.2. The portion of X from h to xi and
the the portion of P−1 from h′ to xi+1 are constricted and have the same height,
yielding a common preimage, A′. The walk in C from xi−1 to xi corresponding to
AA′ and the walk in C from xi to xi+1 corresponding to AA′ again avoid each other,

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1584 PAVOL HELL AND ARASH RAFIEY

since C is an induced cycle. This also implies that (xi−1, xi) to (xi, xi+1) are in the
same component of H∗.

We are now ready to claim the converse of Theorem 3.3.
Theorem 3.5. A digraph H admits a Min-Max ordering if and only if no com-

ponent of the pair digraph H∗ has a circuit.
Thus we shall assume that no component of H∗ has a circuit; in fact, it will turn

out to be sufficient to assume that the digraph H has no induced cycle of net length
greater than one and no symmetrically invertible pair.

We shall frequently use the following key lemma.
Lemma 3.6. Let a, b, c be three vertices of H such that the component of H∗

which contains (a, b) contains neither of (a, c), (c, b).
Let A,B,C be congruent walks starting at a, b, c, respectively.
If A and B avoid each other, then B and C also avoid each other, and A and C

also avoid each other.
Proof. By symmetry, it suffices to prove the claim about B and C.
Suppose A = a1, a2, . . . , an, B = b1, b2, . . . , bn, and C = c1, c2, . . . , cn (here a1 =

a, b1 = b, and c1 = c). For a contradiction, suppose that B and C do not avoid each
other, and let i be the least subscript such that both bici+1 and cibi+1 are faithful
arcs in H . (Note that i could be equal to n− 1.)

Since (a, b) and (a, c) are not in the same component of H∗, the congruent walks

R = a1, . . . , ai, ai+1, ai, . . . , a1 and S = b1, . . . , bi, bi+1, ci, . . . , c1

do not avoid each other. Since A and B do avoid each other, any faithful arcs between
R and S must be between bi+1, ci, . . . , c1 and ai+1, ai, . . . , a1. Suppose first there exists
a subscript j < i such that ajcj+1 and cjaj+1 are faithful arcs, and let j to be chosen
as small as possible subject to this. Note that there is a second possibility, that aibi+1

and ciai+1 are the only faithful arcs. We think of this case as having j = i with the
understanding that cj+1 is replaced by bj+1, and we will deal with it at the end of
this proof.

Since (a, b) and (c, b) are not in the same component of H∗, the congruent walks

R′ = a1, . . . , aj , aj+1, cj , . . . , c1 and S′ = b1, . . . , bj, bj+1, bj, . . . , b1

do not avoid each other. Since A and B do avoid each other and since j < i while
i was chosen to be minimal, the faithful arcs must be bjaj+1, cjbj+1. Similarly, the
congruent walks

R′′ = a1, . . . , aj , cj+1, cj , . . . , c1 and S′′ = b1, . . . , bj, bj+1, bj, . . . , b1

yield the faithful arcs ajbj+1 and bjcj+1— contradicting the fact that A,B avoid each
other.

Returning now to the special case when j = i, we observe that we can use the
same pair of walks R′, S′ as above and then modify the walks

R′′ = a1, . . . , ai, ai+1, ci, . . . , c1 and S′′ = b1, . . . , bi, ci+1, bi, . . . , b1

to conclude that biai+1 is again an arc, yielding the same contradiction.
We note that two congruent paths which avoid each other cannot intersect; thus

the lemma implies that B and T are disjoint.
We now formulate a corollary which will also be used frequently.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1585

Corollary 3.7. Let a, b, c be three vertices of H, such that the component of
H∗ which contains (a, b) contains neither of (a, c), (c, b).

Let A,B,C be three constricted walks of the same net length, starting at a, b, c,
respectively. Suppose that A and B are congruent and avoid each other.

Then there exists congruent common preimages A′, B′, C′ of A,B,C starting at
a, b, c, respectively, such that B′ and C′ avoid each other, and A′ and C′ also avoid
each other.

We note that Corollary 3.7 will sometimes be applied to walks that are not con-
stricted but can be partitioned into constricted walks of corresponding net lengths,
and then the corollary is applied to each piece separately.

Since H has no symmetrically invertible pairs, we conclude that if a pair (u, v) is
in a component C of H∗, then the corresponding reversed pair (v, u) is in a different
component C′ �= C ofH∗. Moreover, if any (x, y) also lies in C, then the corresponding
reversed (y, x) must also lie in C′, since reversing all pairs on a walk between (u, v)
and (x, y) results in a walk between (v, u) and (y, x). Thus the components of H∗

come in pairs C,C′ so that the ordered pairs in C′ are the reverses of the ordered
pairs in C. We say the components C,C′ are dual to each other.

4. The algorithm. We now introduce an algorithm to construct a Min-Max
ordering <, proving Theorem 3.5. As mentioned above, it will be sufficient to assume
that H has no induced cycle of net length greater than one and no invertible pair.

At each stage of the algorithm, some components ofH∗ have already been chosen.
Whenever a component C of H∗ is chosen, its dual component C′ is discarded. The
objective is to avoid a circuit

(a0, a1), (a1, a2), . . . , (an, a0)

of pairs belonging to the chosen components. Our algorithm always chooses a com-
ponent X of maximum height from among the as yet unchosen and undiscarded
components. If X creates a circuit, then the algorithm chooses the dual component
X ′. We shall show that at least one of X and X ′ will not create a circuit. (Note that
this implies that the component X does not contain a circuit.) Thus at the end of the
algorithm we have no circuit. The chosen components define a binary relation < as
follows: we set a < b if the pair (a, b) belongs to one of the chosen components. Since
there was no circuit amongst the chosen pairs, the relation < is transitive and hence
a total order. It is easy to see that < is a Min-Max ordering. Indeed, if i < j, s < r
and ir, js ∈ A(H) but is �∈ A(H) or jr �∈ A(H), then (i, j) and (r, s) are adjacent
in H∗ — hence we have either i < j, r < s or j < i, s < r, contrary to what was
supposed.

Theorem 4.1. The algorithm does not create a circuit consisting of pairs from
the chosen components.

Thus suppose that at a certain time T there was no circuit with pairs from the
chosen components, that X had the maximum height from all unchosen (and undis-
carded) components, and that the addition of X to the chosen components created
the circuit (a0, a1), (a1, a2), . . . , (an, a0), and the addition of the dual component X ′

created the circuit (b0, b1), (b1, b2), . . . , (bm, b0). We may suppose that T was mini-
mum for which this occurs, then n was minimum value for this T , and then m was
minimum value for this T and n. We may also assume that X contains the pairs
(an, a0), (b0, bm) and possibly other pairs (ai, ai+1) or (bj , bj+1).

Let Ai be the component of H∗ containing the pair (ai, ai+1) and let Bj be the
component containing the pair (bj , bj+1); subscripts are modulo n and m, respectively.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1586 PAVOL HELL AND ARASH RAFIEY

(Thus X = An = B′
m.) Note that the minimality of n implies that no Ai contains a

pair (ak, a�) for subscripts (reduced modulo n+ 1) � �= k + 1 (and similarly for Bj).
(This is helpful when checking the hypothesis of Lemma 3.6 and Corollary 3.7, as in
Case 2 below.)

The following lemma is our basic tool.

Lemma 4.2. Suppose that none of the pairs (ai, ai+1) is extremal in its
component Ai.

Then there exists another circuit (a′0, a
′
1), (a

′
1, a

′
2), . . . , (a

′
n, a

′
0), where each (a′i, a

′
i+1)

can be reached from the corresponding (ai, ai+1) by a walk in Ai nearly constricted from
below.

Proof. Since (ai, ai+1) is not extremal, there exists a walk Wi in Ai from (ai, ai+1)
to some (pi, qi), which is nearly constricted from below. Corresponding to this walk in
Ai, there are two walks Pi and Qi in H , from ai to pi and from ai+1 to qi, respectively,
which avoid each other. Let Li be the maximum height of Wi (which is the same as
that of Pi and Qi).

We now explain how to choose n of the 2n vertices pi, qi which also form a circuit.
For any i, instead of ai, we choose a′i = qi−1 if Li−1 < Li, and we choose a′i = pi
otherwise. We now show that (a′0, a′1), (a′1, a′2), . . . , (a′n, a′0) is a circuit; it suffices to
show that each (a′i, a

′
i+1) is in Ai.

Case 1. Suppose Li ≤ Li−1 and Li ≤ Li+1.

In this case, we have a′i = pi, a
′
i+1 = qi, and (pi, qi) is in Ai by definition.

Case 2. Suppose Li ≥ Li−1 and Li ≥ Li+1, and Case 1 does not happen.

In this case, we have a′i = qi−1, a
′
i+1 = pi+1. We may assume that Li+1 ≤ Li−1

(otherwise the argument is symmetric). Consider the congruent walks A = Pi−1

from ai−1 to pi−1 and B = Qi−1 from ai to qi−1. They are nearly constricted from
below and have maximum height Li−1. Consider the following walk C from ai+1 to
pi+1: the walk C starts with a portion of Qi, up to the maximum height Li−1 and
then back down to ai+1, followed by Pi+1. Note that C is also nearly constricted
from below and has the same maximum height Li−1. It follows that A,B,C can
each be partitioned into two constricted pieces of corresponding net lengths. Since
(ai−1, ai+1), (ai+1, ai) �∈ Ai−1 by the minimality of n, Corollary 3.7 (applied to each of
the constricted pieces) implies that B and C avoid each other. Since a′i = qi−1, a

′
i+1 =

pi+1, we have a walk in H∗ from (ai, ai+1) to (a′i, a
′
i+1), hence (a′i, a

′
i+1) ∈ Ai.

Case 3. Suppose Li−1 < Li < Li+1 (or Li−1 > Li > Li+1).

In this case, we have a′i = qi−1, a
′
i+1 = qi. Since the subscripts are computed

modulo n + 1, there must exist a subscript s such that Ls ≥ Li ≥ Ls+1. Now we
again apply Corollary 3.7 to the walks A = Pi, B = Qi, and C from as+1 to ps+1

using Ps+1 and a portion of Qs, to conclude that C avoids B. Finally, we once more
apply Lemma 3.6 to the three walks B,C, and D from ai to a′i = qi−1 using Qi−1

and a portion of Pi, to conclude that D avoids B. Hence there is a walk in H∗ from
(ai, ai+1) to (a′i, a

′
i+1), implying that (a′i, a

′
i+1) ∈ Ai.

We now continue with the proof of Theorem 4.1.

We distinguish two principal cases, depending on whether the component X is
balanced.

We first assume that the component X is balanced.

Suppose the height of X is h.

Lemma 4.3. Suppose some (ak, ak+1) is extremal in Ak.

Let (ai, ai+1), (aj , aj+1) be distinct nonextremal pairs in Ai, Aj, respectively, and
let Wi,Wj be walks in Ai, Aj starting from (ai, ai+1), (aj , aj+1), respectively, that

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1587

are nearly constricted from below. Let Li, Lj be the maximum heights of Wi,Wj ,
respectively.

Then Li > h or Lj > h.

Proof. Suppose Li ≤ h, Lj ≤ h, and assume, without loss of generality, that
Li ≤ Lj . Since some (ak, ak+1) is extremal, we may assume that neither (ai−1, ai),
nor (aj+1, aj+2) initiates walks of negative net length with maximum height at most h.
Thus each of (ai−1, ai), (aj+1, aj+2) either is extremal, and thus initiate a constricted
walk of net length h, or initiates a walk of negative net length, with maximum height
greater than h, and hence again initiates a constricted walk of net length h. Thus we
have

• a constricted walk Ui of net length h from ai;
• a walk Vi, nearly constricted from below, from ai to some p;
• a constricted walk Uj+1 of net length h from aj+1;
• a constricted walk Uj+2 of net length h from aj+2, which avoids Uj+1 and is
congruent to it;

• a walk Vj , nearly constricted from below, from aj ; and
• a walk Vj+1, nearly constricted from below, from aj+1 to some q, which avoids
Vj and is congruent to it.

Consider the three walks A,B,C, where A is the reverse of Vj+1 (starting in q),
B is the reverse of Vj , and C is the reverse of Vi followed by a suitable piece of Ui

(and its reverse) as needed to have the same maximum height Lj as Vj . Each of these
walks consists of two constricted pieces and hence we can apply Corollary 3.7 twice
to conclude that there exist congruent preimages A′ and C′ of A and C, respectively,
which avoid each other. We can also apply Corollary 3.7 to the constricted walks
Uj+1, Uj+2, Ui to conclude that there are congruent preimages A′′, C′′ of Uj+1, Uj ,
respectively, which avoid each other. Concatenating A′ with A′′ and C′ with C′′, we
conclude that (p, q) belongs to a component of H∗ which has height greater than h;
this means that before X we should have chosen the component of H∗ containing
(ai, aj), which is a contradiction.

We remark that the algorithm’s choice of a component of maximum height is
crucial in the above argument.

We will use the following analogue of Lemma 3.2 for infinite walks which are
constricted in the infinite sense, i.e., are constricted from below and have infinite
height.

Corollary 4.4. Let P1 and P2 be two walks of infinite height, constricted from
below. Assume that Pi starts in pi, i = 1, 2, and let qi be a vertex on Pi such that the
infinite portion of Pi starting from qi is also constricted from below and the portions
of Pi from pi to qi have the same net length for i = 1, 2.

Then there is a path P that admits homomorphisms fi to Pi taking the starting
vertex of P to pi and the ending vertex of P to qi for i = 1, 2.

Proof of the corollary. Let P ′
i be the portion of Pi from pi to qi, and suppose,

without loss of generality, that the height h of P ′
1 is greater than or equal to the height

of P ′
2. Let ri be the first vertex after qi (or equal to qi) on Pi such that the net length

from pi to ri is h. Let Ri be the subwalk of Pi from pi to ri. Now Lemma 3.2 implies
that there is a path R with homomorphisms fi to Ri taking the beginning of R to
pi and the end of R to ri. Suppose x is the last vertex on P ′

1 with f1(x) = q1: if
f2(x) = q2, we are done, so suppose f2(x) = y �= q2. Now consider the subwalk Y of
P ′
2 joining y and q2: it has net length zero and is constricted from below, because the

portion of R between x and the end of R has net length zero and is constricted from

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1588 PAVOL HELL AND ARASH RAFIEY

below. Let h′ be the height of Y , and let X be the walk on P ′
1 from q1 to the first

vertex making a net length h′ and then back to q1. Since X and Y have the same
height and have net length zero, we can split them into two constricted pieces, and
so Lemma 3.2 implies that there is a path R′ which is a common preimage of X and
Y . Concatenating R with R′ yields a path P and we can extend the homomorphisms
fi to P so that also the ending vertex of P is taken to qi for i = 1, 2.

Lemma 4.5. If any (ai, ai+1) is extremal in Ai, then (an, a0) is extremal in
X = An.

Proof. Suppose (an, a0) is not extremal. By Lemma 4.3, it remains to consider
the case when both (a0, a1) and (an−1, an) are extremal. Since (a0, a1) is extremal,
there exists a constricted walk in H∗ starting from (a0, a1) of net length equal to the
height of A0, which is at least h, according to our algorithm. Similarly, there exists
a constricted walk from (an−1, an) of net length equal to the height of An−1, which
is also at least h. From the walk in An−1, we extract a constricted walk A starting
in an−1 and a congruent constricted walk B starting in an such that A,B have net
length h and avoid each other. From the walk in A0 we moreover extract a walk
C starting in a0 which is also constricted and has net length h. Now Corollary 3.7
ensures that B and C have congruent preimages B′ and C′ which avoid each other.
Let B′′, C′′ be two congruent walks of negative net length from an, a0, respectively,
which avoid each other; such walks exist since (an, a0) is not extremal. Now taking
the concatenations of (B′′)−1 with B′ and (C′′)−1 with C′ yields a walk in X of net
length greater than h, which is a contradiction.

Thus Lemma 4.2 ensures that we may assume that (an, a0) is extremal in X (and
similarly for (b0, bm)). The proof now distinguishes whether X contains another pair
(ai, ai+1) (or similarly for (bj , bj+1)).

Suppose first that some (ai, ai+1) ∈ X , and let W be a walk from (an, a0) to
(ai, ai+1) in X . We observe that the net length of W must be zero. Indeed, since
(an, a0) is extremal in X , the net length of W must be nonnegative. If the net
length were positive, then W−1 would be a walk from (ai, ai+1) of negative net
length and with maximum height less than h. Thus Lemma 4.3 implies that both
(ai−1, ai), (ai+1, ai+2) initiate walks of net length h, yielding walks Ui−1, Ui, Ui+1, Ui+2

of net length h, from Ui−1, Ui, Ui+1, Ui+2, respectively. Here Ui−1, Ui are congruent
constricted walks that avoid each other, and hence Corollary 3.7 implies that there
are preimages of Ui, Ui+1 of net length h that are congruent and avoid each other.
This yields a walk in X from (ai, ai+1) of net length h—and concatenated with W
we obtain a walk in X from (an, a0) of net length strictly greater than h, which is
impossible.

Thus the net length of W is zero, and hence it can be partitioned into two con-
stricted pieces, U from (an, a0) to some vertex (z1, z2) of maximum height and V from
(z1, z2) to (ai, ai+1). Let U1 (respectively, U2) denote the corresponding walk from an
to z1 (respectively, from a0 to z2), and similarly for V1, V2. Then Lemma 3.6 applied
to U1, U2, V2 implies that (z1, z2) and (an, ai+1) are in the same component of H∗;
however, (z1, z2) ∈ X , so (an, ai+1) ∈ X , contrary to the minimality of n.

Thus we conclude that X does not contain another (ai, ai+1) or (bj, bj+1). In
other words, before time T we have chosen all the pairs

(a0, a1), . . . , (an−1, an), (b0, b1), . . . , (bm−1, bm),

and then at time T we chose the component X containing (an, a0) as well as (b0, bm).
Consider a fixed walk W in X from (an, a0) to (b0, bm). Since (an, a0), and by symme-

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1589

try also (b0, bm), is extremal, W must have net length zero. Moreover, we may assume
that W reaches some vertex (z1, z2) of maximum height h. Thus W consists of two
constricted walks U, V . Let again U1 (respectively, U2) be the corresponding walk in
H from an (respectively, from a0) to a vertex of maximum height, and similarly let
V1 (respectively, V2) be the corresponding walks from the vertices of maximum height
to b0 (respectively, bm).

We shall prove first that there is a constricted walk of net length h from a1.
Indeed, the component A0 containing the vertex (a0, a1) must have height at least
h, according to the rules of our algorithm. If (a0, a1) does not initiate a walk of net
length h, it must not be extremal, i.e., it must initiate a walk of negative net length.
The same argument yields a walk of negative net length from (a1, a2). Since such
walks contain walks that are nearly constricted from below, we obtain a contradiction
with Lemma 4.3. A similar argument applies to b1.

Thus there are constricted walks of net length h from both a1 and b1, say, R and
S, respectively. We can now use Corollary 3.7 on the walks A = U1, B = U2, C = R,
and again on the walks A = V1, B = V2, C = R−1 to deduce that U2 concate-
nated with V2 and R concatenated with R−1 avoid each other, hence (a0, a1) and
(bm, a1) are in the same component of H∗. By a similar argument we also deduce
that (b0, b1) and (an, b1) are also in the same component of H∗. This is impos-
sible, as it would mean that at time T − 1 there already was a circuit, namely,
(bm, a1), (a1, a2), . . . , (an, b1), (b1, b2), . . . , (bm−1, bm).

This completes the proof of Theorem 4.1 in the case where X is balanced.

We now assume the component X is unbalanced. In this case, the rules of the
algorithm imply that each component Ai and Bj is also unbalanced.

We shall define a vertex u in an unbalanced digraph to be weakly extremal if there
is a walk starting from u which is constricted from below and has infinite maximum
height. Each cycle of positive net length, and hence each unbalanced digraph, contains
a weakly extremal vertex.

Let Di be a fixed unbalanced cycle in the component Ai for all i. We claim that
we may assume without loss of generality that each pair (ai, ai+1) lies in Di and it
is weakly extremal. Indeed, if some (ai, ai+1) is not weakly extremal, then there is
a walk from a weakly extremal vertex in Di to (ai, ai+1) which is constricted from
below. (Such a walk can be obtained by first following Di in the positive direction as
many time as necessary and then proceeding to (ai, ai+1).)

Observe now that if (aj , aj+1) already is weakly extremal, there still is such a
walk, constricted from below, to (aj , aj+1). This walk may start from another weakly
extremal vertex onDj ; note that in an induced cycle of net length r there are r weakly
extremal vertices.Thus we can apply Lemma 4.2 as many times as needed until every
(ai, ai+1) becomes weakly extremal on the corresponding Di. Naturally, the same
conclusion holds for the components Bj .

We now claim that we may assume that each Di is an oriented cycle of net length
one.

Since (ai, ai+1) is in Di and it is weakly extremal, there is a closed walk Y in H ,
from ai to itself, which is constricted from below. Note that some of the vertices in
Y may be repeated. If the pth vertex of Y is the same as the qth vertex of Y , with
p < q, and the portion of Y from the pth vertex to the qth vertex has net length
zero, then we delete all vertices from the (p + 1)st vertex to the (q − 1)st vertex of
Y , yielding a new walk which has the same net length as Y . We repeat this process
until such a situation no longer occurs, obtaining a final walk V .

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1590 PAVOL HELL AND ARASH RAFIEY

Suppose now the pth vertex and the qth vertex of V , with p < q, are the same,
and no vertex between them is repeated. Suppose first that the portion of V from
the pth vertex to the qth vertex has net length one. Then we obtain a walk W in H
from ai to ai, constricted below and of net length one as follows. We walk from ai
to the pth vertex of V along some walk S, then follow V to the qth vertex, and then
walk back to ai along S−1.

Otherwise the portion of V from the pth vertex to the qth vertex has net length
greater than one; note that it must have a chord, as otherwise there would be an
induced oriented cycle of net length greater than one in H . In fact there must be a
chord which forms, together with a portion of V , an induced oriented cycle Z of net
length one. Now we obtain a walk W in H from ai to ai, constricted below and of net
length one, as follows. We again walk from ai to Z along some walk S, then follow Z
once around in positive direction, and then follow S−1 back to ai.

Let W ′ be the infinite walk in H obtained by repeating W . Let U ′ be the corre-
sponding walk in H obtained by the same process in the component Ai+1. (Thus U

′

is an infinite walk obtained by repeating a walk U , constricted below, of net length
one, from ai+1 to ai+1.)

Since (ai+1, ai+2) is weakly extremal in Di+1, we obtain two other infinite walks
Xi+1, Xi+2 in H , starting in ai+1, ai+2, respectively. Note that Xi+1 and Xi+2 are
constricted from below, avoid each other, and have infinite height.

Now we apply Lemma 3.6 to Xi+1, Xi+2,W
′ and conclude that W ′, Xi+2 avoid

each other. Applying Lemma 3.6 to Xi+2,W
′, U ′, we conclude that U ′,W ′ also avoid

each other. We now apply Corollary 4.4 to W ′, U ′ with the subwalks W,U . This
allows us to conclude that there is a closed walk on net length one from (ai, ai+1) to
(ai, ai+1) in H∗.

Recall our assumptions that X contains (an, a0), (b0, bm) and maybe other pairs,
creating the circuit (a0, a1), (a1, a2), . . . , (an, a0) in X and the circuit (b0, b1), (b1, b2),
. . . , (bm, b0) in X ′.

As in the balanced case, we first assume that some (ai, ai+1) ∈ X . Then there is
a walk W from (an, a0) to (ai, ai+1) in X of net length zero. Indeed, the argument
above shows that both (an, a0) and (ai, ai+1) have a walk of net length � to (ei, ei+1),
since in this case Ai = An = X . As before, W can be partitioned into two con-
stricted pieces, U and V , and Lemma 3.6 implies that (an, ai+1) ∈ X , contrary to the
minimality of n.

If X does not contain another (ai, ai+1) or (bj , bj+1), we again proceed as in the
balanced case. There exists a walk W in X of net length zero from (an, a0) to (b0, bm).
(Both (an, a0) and (b0, bm) can reach (en, e0) with walks of the same net length.) Let
L be the maximum height of W . Thus W consists of two constricted walks U, V .
Let again U1 (respectively, U2) be the corresponding walk in H from an (respectively,
from a0) to a vertex of maximum height, and similarly let V1 (respectively, V2) be the
corresponding walks from the vertices of maximum height to b0 (respectively, bm).
Since (a0, a1) is weakly extremal, there is a constricted walk of net length L from a1,
and for a similar reason, there is also such a walk from b1.

We can now use Corollary 3.7 as in the balanced case to deduce that (a0, a1) and
(bm, a1) are in the same component of H∗ and that (b0, b1) and (an, b1) are in the
same component of H∗, yielding the same contradiction.

This completes the proof of Theorem 4.1. We observe that in the proof we only
used the fact that H has no invertible pairs and no induced cycles of net length greater
than one.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1591

Corollary 4.6. The following statements are equivalent for a digraph H:

1. H is a monotone proper interval digraph.
2. H admits conservative lattice polymorphisms.
3. H admits a Min-Max ordering.
4. No component of H∗ contains a circuit.
5. H has no symmetrically invertible pair and no induced cycle of net length

greater than one.

Proof. The equivalence of 1 and 3 is Theorem 2.1, the equivalence of 2 and 3 is
Theorem 3.1. We have proved that 3 implies 4 in Theorem 3.3. Theorem 3.4 and the
remark preceding it tell us that 4 implies 5. Finally, 5 implies 3 because the above
algorithm does not create a circuit among the chosen pairs, hence < is a Min-Max
ordering as explained above the statement of Theorem 4.1.

Corollary 4.6 implies that a digraph H is a monotone proper interval digraph if
and only if it does not contain an induced cycle of net length greater than one, or
a symmetrically invertible pair. For reflexive graphs and digraphs the only induced
cycles are the loops, which have net length one, and for bigraphs (which are digraphs
with all edges oriented from one part to the other) all cycles have net length zero.
Therefore the cycle condition is trivially satisfied for these special graph classes, and
we obtain the following corollary.

Corollary 4.7. If H is a reflexive digraph, then H is an adjusted proper interval
digraph if and only if it has no symmetrically invertible pairs.

If H is a reflexive graph, then H is a proper interval graph if and only if it has
no symmetrically invertible pairs.

If H is a bigraph, then H is a proper interval bigraph if and only if it has no
symmetrically invertible pairs.

Thus we also obtain new obstruction characterizations for the well-studied classes
of proper interval graphs and bigraphs [12, 32, 35, 36].

Moreover, Corollary 4.6 implies Theorem 3.5 or, equivalently, the following char-
acterization of monotone proper interval digraphs.

Corollary 4.8. A digraph H is a monotone proper interval digraph if and only
if no component of the pair digraph H∗ contains a circuit.

This result implies a polynomial time recognition algorithms for monotone proper
interval digraphs, i.e., for digraphs admitting a Min-Max ordering. It suffices to
construct H∗, find its weak components, and test each for circuits. Testing a weak
component for circuits amounts to looking at a set of ordered pairs, i.e., a digraph,
and looking for a directed cycle. Acyclicity of a digraph is checked in linear time
by topological sort. In fact, what our algorithm accomplishes is to find a common
topological sort of the set of acyclic digraphs corresponding to the pairs in the chosen
components.

We close this section by noting that the existence of a Min-Max ordering in
more general structures is not likely to admit nice characterizations by forbidden
substructures such as in statement 5 of Corollary 4.6.

A binary structureH consists of a vertex set V (H) and two arc setsA1(H), A2(H),
each being a binary relation. A Min-Max ordering of a binary structure H is a
linear ordering < of V (H) such that u < w, z < v and uv, wz ∈ Ai(H) imply that
uz ∈ Ai(H) and wv ∈ Ai(H), for all u, v, w, z, and i.

Theorem 4.9. It is NP-complete to decide whether a given binary structure
admits a Min-Max ordering.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1592 PAVOL HELL AND ARASH RAFIEY

Proof. The following problem is known to be NP-complete [11]. Given a finite
set V and a collection of k triples (ai, bi, ci), i = 1, 2, . . . , k, of distinct elements of
V , can the elements of V be ordered by < so the ordering is consistent with each
triple (ai, bi, ci), i.e., so that ai < bi < ci or ci < bi < ai for each i? We will
reduce this problem to the existence of a Min-Max ordering of a suitable binary
structure H . Since the existence of a Min-Max ordering is clearly in NP, this will
prove the theorem.

For the vertices of H we take the disjoint union of k copies Vi of the set V with
i = 1, 2, . . . , k. Note that each copy Vi corresponds to a different triple (ai, bi, ci). For
the first arc set A1 we take, for each triple (ai, bi, ci), the arcs aibi, bici in the copy Vi.
For the second arc set A2 we take all arcs uv, where u and v are copies of the same
vertex in V , and u lies in the ith copy and v in the (i+1)st copy, for i = 1, 2, . . . , k−1.
We claim that V has an ordering consistent with all triples (ai, bi, ci), i = 1, 2, . . . , k,
if and only if H has a Min-Max ordering.

If V has an ordering < consistent with all the triples, then we can order the
vertices of H by taking this ordering on all copies Vi, in an arbitrary order. It is
easy to see that the resulting ordering is a Min-Max ordering. Conversely, if < is a
Min-Max ordering of HC , then the relation A2 ensures that all copies Vi are ordered
in the same way, i.e., if x precedes y in Vi, then it also precedes it in Vi+1 and hence
in all Vj . This means that there is an ordering < of V corresponding to all of them.
The relation A1 ensures that each triple is consistent with respect to <.

The reduction in Theorem 4.9 is due to Bagan, Durand, Filiot, and Gauwin, who
used it in the context of Min orderings; it has appeared only in a preliminary version
of [1].

5. Extended Min-Max orderings. We now discuss extended Min-Max or-
derings. In some cases when Min-Max orderings do not exist, there may still ex-
ist extended Min-Max orderings, which is sufficient for the polynomial solvability of
MinHOM(H) [16]. We denote by �Ck the directed cycle on vertices 0, 1, . . . , k− 1. We
shall assume in this section that H is weakly connected. Indeed the minimum cost
homomorphism problem to H can be easily separated into subproblems corresponding
to the weak components of H ; moreover, any version of the Min-Max property also
applies to each individual weak component of H separately. This assumption allows
us to conclude that any two homomorphisms �, �′ of H to �Ck define the same partition
of V (H) into the sets Vi = �−1(i), and we will refer to these sets without explicitly
defining a homomorphism �.

Thus suppose H is homomorphic to �Ck, and let Vi be the partition of V (H)
corresponding to all such homomorphisms. A k-Min-Max ordering of H is a linear
ordering < of each set Vi, so that the Min-Max property (u < w, z < v and uv, wz ∈
A(H) imply that uz ∈ A(H), wv ∈ A(H)) is satisfied for u,w and v, z in any two
circularly consecutive sets Vi and Vi+1, respectively, (subscript addition modulo k).

Note that any H is homomorphic to the one-vertex digraph with a loop �Ck, and
a 1-Min-Max ordering of H is just the usual Min-Max ordering. Also note that a
Min-Max ordering of a digraph H becomes a k-Min-Max ordering of H for any �Ck

that H is homomorphic to. However, there are digraphs homomorphic to �Ck which
have a k-Min-Max ordering but do not have a Min-Max ordering—for instance �Ck

(with k > 1). An extended Min-Max ordering of H is a k-Min-Max ordering of H for

some positive integer k such that H is homomorphic to �Ck.
We observe for future reference that an unbalanced digraph H has only a limited

range of possible values of k for which it could be homomorphic to �Ck, and hence a

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1593

limited range of possible values of k for which it could have a k-Min-Max orderings.
It is easy to see that a cycle C admits a homomorphism to �Ck only if the net length
of C is divisible by k [23]. Thus any cycle of net length q > 0 in H limits the possible
values of k to the divisors of q. If H is balanced, it is easy to see that H has a
k-Min-Max ordering for some k if and only if it has a Min-Max ordering.

For a digraph H homomorphic to �Ck we shall consider the following version of the
pair graph. The digraphH(k) is the subgraph ofH∗ induced by all ordered pairs (x, y)
belonging to the same set Vi. We say that (u, v) is a symmetrically k-invertible pair in
H if H(k) contains a walk joining (u, v) and (v, u). Thus a symmetrically k-invertible
pair is a symmetrically invertible pair in H in which u and v belong to the same set
Vi. Note that H may contain symmetrically invertible pairs but no symmetrically
k-invertible pair. Consider, for instance, the directed hexagon �C6. The pair 0, 3
is symmetrically invertible and symmetrically 3-invertible, but not symmetrically 6-
invertible.

The extended version of our main theorem follows. Since we are interested in
the minimum cost homomorphism problem, we focus only on the main parts of the
characterization.

Theorem 5.1. The following statements are equivalent for a weakly connected
digraph H:

1. H admits an extended Min-Max ordering.
2. There exists a positive integer k such that H is homomorphic to �Ck and no

component of H(k) contains a circuit.
3. There exists a positive integer k such that H is homomorphic to �Ck and H

contains no symmetrically k-invertible pair and no induced cycle of positive
net length other than k.

Proof. We shall in fact prove that the following statements are equivalent for a
positive integer k such that H is homomorphic to �Ck:

1. H admits a k-Min-Max ordering.
2. No component of H(k) contains a circuit.
3. H contains no symmetrically k-invertible pair and no induced cycle of positive

net length other than k.

Suppose H admits linear orderings < of sets Vi satisfying the Min-Max property
between consecutive sets Vi, Vi+1. Any circuit (x0, x1), (x1, x2), . . . , (xn, x0) in H(k)

must have all vertices x0, x1, . . . , xn in the same set Vi, and hence if all the pairs
(xi, xi+1) were in the same component ofH(k) we would obtain the same contradiction
with transitivity of < as above the statement of Theorem 3.3. This proves that 1
implies 2.

We now prove that 2 implies 3. Thus assume that no component of H(k) contains
a circuit. Then there can be no symmetrically k-invertible pair, as it would again
correspond to a circuit of length two in a component of H(k). Furthermore, H cannot
contain an induced cycle C of positive net length q �= k. Otherwise q would be a
multiple of k since we assumed H is homomorphic to �Ck. If q = rk, we proceed as
in the proof of Theorem 3.4, choosing x0 as a vertex of C from which there is a walk
P around C constricted from below, and then letting xi be the last vertex on P such
that the walk from x0 to xi has net length ik. Then the proof of Theorem 3.4 shows
that the circuit (x0, x1), (x1, x2), . . . , (xr−1, x0) lies in the same component of H(k).
It remains to observe that by the definition the vertices x0, x1, . . . , xr−1 are in the
same set Vi.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1594 PAVOL HELL AND ARASH RAFIEY

We finally prove that 3 implies 1. Thus assume that H is homomorphic to �Ck and
H contains no symmetrically k-invertible pair and no induced cycle of positive net
length other than k. We shall construct a k-Min-Max ordering of H . We have again
the components of H(k) in dual pairs C,C′, where C′ consists of the reverses of the
pairs in C, and we can proceed with a similar algorithm as before. At each stage of the
algorithm, some component of H(k) is chosen and its dual component discarded. We
again choose a component X of maximum height, unless X creates a circuit (among
the chosen pairs), in which case we choose its dual X ′; we claim that in such a case the
dual X ′ does not create a circuit. The proof is analogous to the proof of Theorem 4.1:
we suppose for contradiction that both X and X ′ create circuits (a0, a1), . . . , (an, a0)
and (b0, b1), . . . , (bm, b0), respectively, and assume that the time T when this occurs
was minimum, and then the value of n and then of m was minimum. Recall that
we must have a0, a1, . . ., an in the same set Vs, and b0, b1, . . . , bm in the same set Vt.
Denote again by Ai (respectively, Bj) the component of H(k) containing (ai, ai+1)
(respectively, (bj , bj+1)). Now Lemmas 4.2, 3.4, and 4.5 apply verbatim to the new
situation, and in particular, we can conclude as stated after the proof of Lemma 4.5
that both (an, a0) and (bm, b0) are extremal.

When X is balanced, we must furthermore have Vs = Vt, since otherwise either
(an, a0) or (bm, b0) would not be extremal. Now the conclusion of the proof of Theorem
4.1 in the case X is balanced applies verbatim.

When X is unbalanced, we proceed again as in the proof of Theorem 4.1, letting
Di be a fixed unbalanced cycle in Ai, and concluding that we may assume that
each (ai, ai+1) is weakly extremal on the corresponding Ai (and similarly for the
components Bj). Instead of the claim that each Di has net length one, however,
we now claim that each Di has net length k. We leave the analogous proof to the
reader—the only changes required are to replace each occurrence of “net length one”
by “net length k.” (There are seven such occurrences, all in the first four paragraphs
of the proof.) The rest of the proof of Theorem 4.1 again applies verbatim.

We again note that the theorem implies a polynomial time algorithm to test
whether an input digraph H has an extended Min-Max ordering. As noted above, it
suffices to check for each component of H separately, so we may assume that H is
weakly connected. If H is balanced, we have already observed this is only possible
if H has a Min-Max ordering, which we can check in polynomial time. Otherwise
we find any unbalanced cycle in H , say, of net length q, and then test for circuits in
components H(k) for all k that divide q.

REFERENCES

[1] G. Bagan, A. Durand, E. Filiot, and O. Gauwin, Efficient enumeration for conjunctive
queries over x-underbar structures, in Proccedings of CMF2010, Marseille, France, 2010.

[2] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[3] C. Carvalho, V. Dalmau, and A. Krokhin, Caterpillar duality for constraint satisfaction
problems, in Proccedings of the 23rd Annual IEEE Symposium, LICS 2008, pp. 307–316.

[4] D. Cohen, M. C. Cooper, and P. Jeavons, Constraints, consistency and closure, Artificial
Intelligence, 101 (1998), pp. 251–265.

[5] D. G. Corneil, S. Olariu, and L. Stewart, The LBFS structure and recognition of interval
graphs, SIAM J. Discrete Math., 23 (2009), pp. 1905–1953.

[6] S. Das, M. Francis, P. Hell, and J. Huang, Chronological interval digraphs, submitted.
[7] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combinatorial Theory B,

72 (1998,) pp. 236–250.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MONOTONE PROPER INTERVAL DIGRAPHS 1595

[8] T. Feder, P. Hell, J. Huang, and A. Rafiey, Adjusted interval digraphs, Electron. Notes
Discrete Math., 32 (2009), pp. 83–91.

[9] T. Feder, P. Hell, J. Huang, and A. Rafiey, Interval graphs, adjusted interval digraphs,
and reflexive list homomorphisms, Discrete Appl. Math., 160 (2012), pp. 697–707.

[10] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math.,
15 (1965), pp. 835–855.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman, San Francisco
1979.

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[13] A. Gupta, P. Hell, M. Karimi, and A. Rafiey, Minimum cost homomorphisms to reflexive
digraphs, LATIN 2008: Theoretical Informatics, Lecture Notes in Computer Science, 4957
(2008), pp. 182–193, DOI: 10.1007/978-3-540-78773-0 16

[14] G. Gutin, P. Hell, A. Rafiey, and A. Yeo, A dichotomy for minimum cost graph homo-
morphisms, European J. Combin., 29 (2008), pp. 900–911.

[15] G. Gutin, A. Rafiey, and A. Yeo, Minimum cost and list homomorphisms to semicomplete
digraphs, Discrete Appl. Math., 154 (2006), pp. 890–897.

[16] G. Gutin, A. Rafiey, and A. Yeo, Minimum Cost Homomorphisms to Semicomplete Bipar-
tite Digraphs, SIAM J. Discrete Math., 22 (2008), pp. 1624–1639.

[17] G. Gutin, A. Rafiey, and A.Yeo, Minimum cost homomorphism to oriented cycles, Graphs
Combin., 25 (2009), pp. 521–531.

[18] G. Gutin, A. Rafiey, A. Yeo, and M. Tso, Level of repair analysis and minimum cost
homomorphisms of graphs, Discrete Appl. Math., 154 (2006), pp. 881–889.

[19] M. Habib, R. McConnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement,
with applications to transitive orientation, interval graph recognition and consecutive ones
testing, Theoret. Comput. Sci., 234 (2000), pp. 59–84.

[20] R. Häggkvist, P. Hell, D. J. Miller, and V. Neumann Lara, On multiplicative graphs and
the product conjecture, Combinatorica 8 (1988), pp. 71–81.

[21] M. M. Halldorsson, G. Kortsarz, and H. Shachnai, Minimizing average completion
of dedicated tasks and interval graphs, in Approximation, Randomization, and Com-
binatorial Optimization, Lecture Notes in Comput. Sci., 2129, Springer, Berlin, 2001,
pp. 114–126.

[22] P. Hell, J. Huang, Interval bigraphs and circular arc graphs, J. Graph Theory, 46 (2004),
pp. 313–327.

[23] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford,
UK, 2004.

[24] P. Hell and A. Rafiey, Duality for Min-Max orderings and dichotomy for minimum cost
homomorphisms, arXiv:0907.3016v1, 2009.

[25] P. Hell and A. Rafiey, Minimum Cost Homomorphism Problems to Smooth and Balanced
Digraphs, manuscript 2007.

[26] P. Hell and A. Rafiey, The dichotomy of minimum cost homomorphism problems for di-
graphs, SIAM J. Discrete Math., 26 (2012), pp. 1597–1608.

[27] K. Jansen, Approximation results for the optimum cost chromatic partition problem, J. Algo-
rithms, 34 (2000), pp. 54–89.

[28] P. G. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci.,
200 (1998), pp. 185–204.

[29] T. Jiang and D. B. West, Coloring of trees with minimum sum of colors, J. Graph Theory,
32 (1999), pp. 354–358.

[30] L. G. Kroon, A. Sen, H. Deng, and A. Roy, The optimal cost chromatic partition problem for
trees and interval graphs, in Graph-Theoretic Concepts in Computer Science (Cadenabbia,
1996), Lecture Notes in Comput. Sci., 1197, Springer, Berlin, 1997, pp. 279–292.

[31] C. G. Lekkerkerker, and J. C. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[32] H. Mueller, Recognizing interval digraphs and interval bigraphs in polynomial time, Discrete
Appl. Math., 78 (1997), pp. 189–205.

[33] E. Prisner, A characterization of interval catch digraphs, Discrete Math. 73 (1989),
pp. 285–289.

[34] M. Sen, S. Das, A. B. Roy, and D. B. West, Interval digraphs: An analogue of interval
graphs, J. Graph Theory, 13 (1989), pp. 581–592.

[35] J. Spinrad, Efficient Graph Representations, Fields Inst. Monogr., AMS, Providence, RI, 2003.
[36] J. Spinrad, A. Brandstaedt, and L. Stewart, Bipartite permutation graphs, Discrete Appl.

Math., 18 (1987), pp. 279–292.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1596 PAVOL HELL AND ARASH RAFIEY

[37] K. Supowit, Finding a maximum planar subset of a set of nets in a channel, IEEE Trans.
Computer-Aided Design, 6 (1987), pp. 93–94.

[38] X. Zhu, A simple proof of the multiplicativity of directed cycles of prime power length, Discrete
Appl. Math., 36 (1992), pp. 333–345.

D
ow

nl
oa

de
d

12
/0

3/
12

 to
 1

42
.5

8.
22

9.
60

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

