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a b s t r a c t

For a fixed target graph H , the minimum cost homomorphism problem, MinHOM(H), asks,
for a given graph G with integer costs ci(u), u ∈ V (G), i ∈ V (H), and an integer k, whether
or not there exists a homomorphism of G to H of cost not exceeding k. When the target
graph H is a bipartite graph a dichotomy classification is known: MinHOM(H) is solvable
in polynomial time if and only if H does not contain bipartite claws, nets, tents and any
induced cycles C2k for k ≥ 3 as an induced subgraph.

In this paper, we start studying the approximability ofMinHOM(H)whenH is bipartite.
First we note that if H has as an induced subgraph C2k for k ≥ 3, then there is no approxi-
mation algorithm. Thenwe suggest an integer linear program formulation forMinHOM(H)
and show that the integrality gap can be made arbitrarily large if H is a bipartite claw.
Finally, we obtain a 2-approximation algorithm when H is a subclass of doubly convex bi-
partite graphs that has as special case bipartite nets and tents.

Crown Copyright© 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

For graphs G and H , a mapping f : V (G) → V (H) is a homomorphism of G to H if f (u)f (v) is an edge of H whenever uv
is an edge of G. Let H be a fixed graph. The homomorphism problem for H , denoted HOM(H), asks whether or not an input
graph G admits a homomorphism to H . The list homomorphism problem for H , denoted ListHOM(H), asks whether or not an
input graph G, with lists Lu ⊆ V (H), u ∈ V (G), admits a homomorphism f to H in which f (u) ∈ Lu, for all u ∈ V (G). The
minimum cost homomorphism problem for H , denoted MinHOM(H), asks whether or not an input graph G, with integer costs
ci(u), u ∈ V (G), i ∈ V (H), and an integer k, admits a homomorphism to H of total cost


u∈V (G) cf (u)(u) not exceeding k. It

is easy to see that MinHOM(H) generalizes ListHOM(H) which generalizes HOM(H). Since a homomorphism must take a
connected graph to a connected graph, it suffices to consider the problems MinHOM(H) for connected graphs H .

For an undirected graphH , the complexity of the problemHOM(H) has been classified in [9]. IfH is a bipartite graph orH
has a loop then HOM(H) is polynomial time solvable and NP-complete otherwise. The problem ListHOM(H) is polynomial
time solvable when H is a bi-arc graph and NP-complete otherwise [3]. In the case of bipartite graphs if the complement
of bipartite graph H is a circular arc graph with clique cover two then ListHOM(H) is polynomial time solvable and
NP-complete otherwise. The complement of a bipartite graph H is a circular arc graph if there is a family of circular arcs
Av for v ∈ V (H) such that v and v′ are adjacent if the corresponding arcs Av and Av′ do not intersect (see Fig. 1).

A typical example of a bipartite graph H whose complement is not a circular arc graph is an induced cycle C2k, k ≥ 3. For
simplicity in the rest of this paper when we say C2k, we mean an induced cycle C2k.

The minimum cost homomorphism problems MinHOM(H) were introduced, in the context of undirected graphs, in [7];
they were motivated by a repair analysis problem in defense logistics. In general, the problem seems to offer a natural
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Fig. 1. Circular arc representation.

and practical way to model many optimization problems. Special cases include, in addition to the homomorphism and list
homomorphism problems, also the optimum cost chromatic partition problem [8,11,12], which itself has a number of well-
studied special cases and applications [13,14]. A slightly different version of minimum cost homomorphismwas introduced
in [1] that was motivated by the application of channel assignment in wireless networks.

If a bipartite graph H is a proper interval bigraph then MinHOM(H) is polynomial time solvable and NP-complete
otherwise [6]. A bipartite graph H = (V ,U) is called interval bigraph if the vertices in V ,U are represented by intervals
on the real line and uv; u ∈ U , v ∈ V , is an edge of H if their corresponding intervals intersect. If the intervals correspond to
U are inclusion free and the intervals correspond to V are inclusion free then H is called a proper interval bigraph. We say a
bipartite graph H = (U, V ) has a min–max ordering if there are ordering u1, u2, . . . , up of U and ordering v1, v2, . . . , vq
of V such that if uivj, urvs are edges of H then umin{i,r}vmin{j,s} and umax{i,r}vmax{j,s} are edges of H . We say the ordering
u1, u2, . . . , up, v1, v2, . . . , vq is a min–max ordering of H . The following theorems were proved in [6].

Theorem 1.1. A bipartite graph H is a proper interval bigraph if and only if it admits a min–max ordering.

Theorem 1.2. The bipartite graphH hasmin–max ordering if and only if H does not contain bipartite claw, bipartite net, bipartite
tent and any cycle C2k, k ≥ 3 as an induced subgraph.

Theorem 1.3. Let H be a bipartite graph. If H admits a min–max ordering then MinHOM(H) is polynomial time solvable.
Otherwise,MinHOM(H) is NP-complete.

The class of bipartite graphs H , where MinHOM(H) is solvable in polynomial time is a subset of whole bipartite graphs.
This serves as an indication that one should relax the requirements to face these problems.

A natural way is to require only an approximate solution—one that is not optimal, but is within a small factor C > 1 of
optimal. More specifically, a C-approximation algorithm is a polynomial time algorithm that produces a solution with an
objective value at most C times the optimal value. Sometimes C is called the (worst-case) performance guarantee of the
algorithm. We formulate this relaxation in the following problem.

Problem 1.4. For a fixed bipartite graphH and an input bipartite graphG togetherwith the costs, is there a C-approximation
(C is a constant number) algorithm for MinHOM(H)?

In this paper, we study Problem 1.4 for bipartite graphs. In Section 2, we consider bipartite graphs H that there is no
approximation algorithm forMinHOM(H), in particular bipartite graphsH that contain C2k, k ≥ 3 as an induced subgraph. In
Section 3, we suggest an integer linear program formulation ILP for the minimum cost homomorphism problem. Moreover,
in Section 3 we deal with bipartite graphs H that contain bipartite claw as an induced subgraph and we show that the
integrality gap between the optimal solution and the solution of the suggested linear program can bemade arbitrarily large.
In Section 4, we obtain a 2-approximation algorithm for a class of bipartite graphs that includes bipartite net and bipartite
tent as special cases, by rounding the linear program relaxation LP of ILP. This class is a subclass of the doubly convex bipartite
graphs.

2. MinHOM(H) when H contains C2k as an induced subgraph

We observe the following. If ListHOM(H) is NP-complete then we show that there is no approximation algorithm for
MinHOM(H). Indeed, from an instance of the ListHOM(H) we obtain an instance of MinHOM(H) as follows. For a vertex u
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Fig. 2. Obstruction to min–max ordering.

of input graph G, if i ∈ V (H) is in Lu, list of u, then we set the cost of mapping u to i to zero otherwise the cost of mapping u
to i is |V (G)|. This way we obtain an instance of MinHOM(H). Now we have one of the following:
• If there is a list homomorphism from G to H then there is a homomorphism from G to H of cost zero.
• If there is no list homomorphism from G to H then the cost of any homomorphism from G to H is at least |V (G)|.

This implies that either the minimum cost homomorphism from G to H has value zero or it has value at least |V (G)| and
it is hard to distinguish which case happens. We conclude that the class of bipartite graphs H for which there is a constant
approximation algorithm for MinHOM(H), is a subset of the class of bipartite graph whose complement is a circular arc
graph with clique cover two.

Since the complement of any induced cycle C2k, k ≥ 3 is not a circular arc graph with clique cover two (see [4]), we have
the following proposition.

Proposition 2.1. If the target bipartite graph H contains C2k, k ≥ 3 as an induced subgraph then there is no approximation
algorithm for MinHOM(H).

Now it remains to deal with the other three obstructions of min–max ordering depicted in Fig. 2. For bipartite tent and
bipartite net we show that they are special cases of a class of bipartite graphs H where there is a 2-approximation algorithm
forMinHOM(H). For the bipartite clawwe present a large integrality gap that might be considered as a hint that no constant
approximation forMinHOM(H)whenH contains a bipartite claw as an induced subgraph.We leave this as an open question.

3. An integer linear program formulation for MinHOM(H)

Consider digraph D with a source vertex s and sink vertex t . Each arc ij of D has a weight denoted by wij. The minimum
cut problem is partitioning the vertices V (D) into two sets S and T = V (D) − S with s ∈ S and t ∈ T , such that the sum of
the weights of the arcs from S to T is minimized. The weight of the cut (S, T ) is the sum of the weights of the arcs from S to
T . There is an equivalent linear program formulation of the problem as follows.

For every vertex a of digraph D we define variable 0 ≤ Xa ≤ 1. If there is an arc from a to b in D set Za,b ≥ Xa − Xb.
We want to minimize

Za,b>0

Za,bwa,b

with respect to Xs = 1 and Xt = 0.
It is known that the constraint matrix of the above linear program is totally unimodular and hence the LP provides an

integral solution. Now we explain how to relate the minimum cost homomorphism to a minimum cut in a network by
starting when H has a min–max ordering and then we generalize it to arbitrary bipartite graphs.

Let H = (A, B) be a bipartite graphs with vertices a1, a2, . . . , ap ∈ A and vertices b1, b2, . . . , bq ∈ B such that
a1, a2, . . . , ap, b1, b2, . . . , bq is a min–max ordering. Let ℓ(i) be the first index such that aibℓ(i) is an edge of H . Let r(i) be the
first index such that biar(i) is an edge of H .

We assume that H is connected and hence every vertex in H has at least one neighbor.
Let G = (U, V ) be an input graph with the costs. Note that G should be bipartite, and we may assume that the vertex set

U is mapped to A and the vertex set V is mapped to B, and we want to find a minimum cost homomorphism from G to H of
this type.

We construct network D as follows : the vertices of D are pairs (u, ai) for u ∈ U and ai ∈ A, 1 ≤ i ≤ p and (v, bi) for
v ∈ V and bi ∈ B, 1 ≤ i ≤ q. There are two extra vertices s and t . We add the following arcs to D:
• for every vertex u ∈ U , an arc (u, ai) to (u, ai+1) with weight c(u, ai), 1 ≤ i ≤ p − 1, and an arc from (u, ai+1) to (u, ai)

with weight ∞,
• an arc from s to (u, a1) of weight ∞,
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• an arc from (u, ap) to t of weight c(u, ap),
• for every vertex v ∈ V , an arc (v, bi) to (v, bi+1) with weight c(v, bi), 1 ≤ i ≤ q − 1, and an arc from (v, bi+1) to (v, bi)

with weight ∞,
• an arc from s to (v, b1) of weight ∞,
• an arc from (v, bq) to t of weight c(v, bq),
• for every edge uv of G, an arc of weight ∞ from (u, ai) to (v, bℓ(i)) and,
• for every edge uv of G, an arc of weight ∞ from (v, bi) to (u, ar(i)).

By a similar argument as in [6] one can show that theminimum cut in D corresponds to aminimum cost homomorphism
from G to H . Consider a cut (S, T ) of D with weight less than ∞, such that s ∈ S and t ∈ T . Indeed, if an arc (u, ai)(u, ai+1)
belongs to the cut then wemap u to ai and if (v, bj)(v, bj+1) is an arc of the cut wemap v to bj. Observe that if (u, ai) ∈ S and
(u, ai+1) ∈ T then for every j > i, (u, aj) is in T as otherwise there would be an arc of weight infinity from S to T and hence
the weight of the cut would be ∞. This implies that if the weight of any cut in D is less than ∞ then we cut only one of the
arcs (u, ai)(u, ai+1), 1 ≤ i ≤ p and only one of the arcs (v, bi)(v, bi+1), 1 ≤ i ≤ q. On the other hand, if homomorphism
f : V (G) → V (H) assigns vertex u ∈ U to ai of H then we put all the vertices (u, a1), (u, a2), . . . , (u, ai) into S and all the
vertices (u, ai+1), (u, ai+2), . . . , (u, ap) to T . If f (v) = bj for v ∈ V then we add all the nodes (v, bj), j ≤ i to S. Finally, we
add s to S and t to T .

If H has a min–max ordering then the LP program would give an integral solution, the optimal solution corresponds
to a minimum cut and we obtain an optimal solution. If H does not admit a min–max ordering then MinHOM(H) is
NP-complete [6].

If H has no min–max ordering then we add new edges to H in order to obtain a min–max ordering. Now we construct
network D′ with G and (new) H .

If aibj is a new edge in H then for every edge uv of Gwe add

Xu,ai − Xu,ai+1 + Xv,bj − Xv,bj+1 ≤ 1. (1)

The objective function remains the same. Observe that in the LP solution the weight of the cut is less than ∞. Now since
there is an arc with weight ∞ from (u, ai+1) to (u, ai), 1 ≤ i ≤ p, we have Xu,ai ≥ Xu,ai+1 . Also there is an arc with weight
∞ from (v, bi+1) to (v, bi), 1 ≤ i ≤ q and hence Xv,bi ≥ Xv,bi+1 .

If the LP program provides an integral solution, corresponds to minimum cut, then we define a homomorphism f from
G to new H in a same way as explained before. According to the constraints in the LP program aibj is an old edge in H as
otherwise Xu,ai − Xu,ai+1 + Xv,bj − Xv,bj+1 > 1; violating a constraint of the LP. Therefore, f is a homomorphism from G to H
with the old edges. If the LP program does not provide an integral solution then we explain in the next section how to round
the values provided by the LP and obtain a homomorphism from G to H , by losing the optimality of the solution.

3.1. Integrality gap of the LP program relaxation

The following result shows that even for a bipartite claw the integrality gap of the suggested LP can be made arbitrarily
large.

Lemma 3.1. If the target bipartite graph H has the bipartite claw as an induced subgraph then the integrality gap of the LP
described in Section 2 can be arbitrarily large.

Proof. In Fig. 3, the input graph G is a path v1, u1, v2, u2, . . . , vn−1, un−1 and the target graphH = {12, 23, 34, 45, 36, 76} is
a bipartite claw. Note that we need to add new edge 56 to H in order to obtain a min–max ordering. We have the following
cost function. For 1 ≤ i ≤ n − 1, c1(ui) = c2(vi) = M and c3(ui) = 2nM . We have c4(v1) = c7(un−1) = 2nM . In any
other case, the cost is 1. According to the LP solution shown in Fig. 3, for every edge viui, 1 ≤ i ≤ n − 1, we have Xvi,2 = 1,
Xvi,6 = 1−i/n andXui,1 = 1,Xui,5 = 1−1/n,Xui,7 = 1−(i+1)/n. Therefore, for edgeuivi, 1 ≤ i ≤ n−2,Xvi,6+Xui,5−Xui,7 = 1
and for edge uivi+1 we have Xvi+1,6 + Xui,5 − Xui,7 = 1 − (i + 1)/n + 1 − 1/n − (1 − (i + 1)/n) = 1 − 1/n < 1. Also we
have Xvn−1,6 + Xun−1,5 − Xun−1,7 = 1 − (n − 1)/n + 1 − 1/n = 1. Thus the constraints in Eq. (1) are satisfied. There is a
homomorphism f : V (G) → V (H) that assigns ui to 1 and vi to 2 for 1 ≤ i ≤ n−1. Since c1(ui) = c2(vi) = M , 1 ≤ i ≤ n−1,
the cost of f is 2(n− 1)M . We claim that any other homomorphism g : V (G) → V (H) has cost at least 2(n− 1)M . If g maps
v1 to 6 then it must map u1 to 7 as otherwise the cost of g would be at least 2nM . Now g must map v2 to 6 and again g maps
u2 to 7 and if we continue along the path, at the end g maps un−1 to 7 and hence the cost of g is at least 2nM . If g maps v1
to 4 then the cost of g would be at least 2nM . If g maps v1 to 2 then it must map u1 to 1 as otherwise the cost of g would
be at least 2nM , and now g must map v2 to 2 and hence g must map every edge of G to edge 12 of H as otherwise the cost
of g would be at least 2nM . Therefore, the cost of g is at least 2(n − 1)M . For every 1 ≤ i ≤ n − 2 the value contributed by
vertex ui to the objective function of the LP is (1 − Xui,3)M + Xui,5 − Xui,7 + Xui,7 = M/n + 1 − 1/n. The value contributed
by vertex un−1 to the objective function of the LP isM/n + 1 − 1/n.

For every 2 ≤ i ≤ n − 1 the value contributed by vertex vi to the objective function of the LP is (1 − Xvi,4)M + Xvi,4 −

Xvi,6 + Xvi,6 = M/n + 1 − 1/n. The value contributed by vertex v1 to the objective function of the LP is M/n + 1 − 1/n.
Therefore, the value of the solution provided by LP is 2(n − 1)M/n + 2(n − 1)(1 − 1/n) ≤ 2M + 2(n − 1). By setting
M = n − 1, we have OPT/LP > (n − 1)/2. �
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Fig. 3. Integrality gap for bi-claw.

Note that in the next section we show that there is a 2-approximation algorithm for minimum cost homomorphism to
bipartite tent and bipartite net (see Fig. 2).

4. A 2-approximation algorithm

In this section, we consider a class of bipartite graphs H that includes as special cases the bipartite tent and bipartite
net (see Fig. 2). The latter implies that MinHOM(H) is NP-complete [6] and we provide a 2-approximation algorithm for
MinHOM(H).

We say a bipartite graphH = (A, B) has amin ordering if there are ordering a1, a2, . . . , ap of A and ordering b1, b2, . . . , bq
of B such that if aibj, arbs are edges ofH then amin{i,r}bmin{j,s} is an edge ofH . We say the ordering a1, a2, . . . , ap, b1, b2, . . . , bq
is a min ordering of H (see [5]).

Bipartite graph H is called double convex bipartite if there is an ordering of the vertices in A and there is an ordering of
the vertices in B such that every vertex in A is adjacent to consecutive vertices in B and every vertex in B is also adjacent to
consecutive vertices in A; the neighborhood of each vertex is an interval [15].
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Observe that if H admits a min–max ordering then H admits a min ordering and also H is a doubly convex bipartite
graph. There are bipartite graphs that do not admit min–max ordering but they admit a min ordering and are doubly convex
bipartite graphs. For example, bipartite tent and bipartite net (see Fig. 2) admitmin ordering and are doubly convex bipartite
graphs, while bipartite claw admits a min ordering but it is not a doubly convex bipartite graph. For every k ≥ 3, C2k does
not admit a min ordering.

Theorem 4.1. If bipartite graph H = (A, B) admits a min ordering such that the neighborhood of each vertex is an interval then
there is a 2-approximation algorithm for MinHOM(H).

Proof. Let π = a1, a2, . . . , ap, b1, b2, . . . , bq be a min ordering such that the neighborhood of each vertex is an interval. If
π is a min–max ordering then we construct the network D as explained in Section 3 and we obtain an optimal solution in
polynomial time. Otherwise, there are vertices ai, aj, br , bs with i < j, r < s such that aibs and ajbr are edges and ajbs is not
an edge. Note that aibr is an edge since π is min ordering. Since π is a min ordering, for every 1 ≤ i ≤ p the first neighbor
of ai; is not before the first neighbor of ai−1, and for every 1 ≤ j ≤ q the first neighbor of bj is not before the first neighbor
of bj−1. We need to add a set of new edges to H in order to obtain a min–max ordering.

Observe that π is min ordering. Without loss of generality, we may assume that H is connected. If π is not min–max
ordering then there are some ak and ak′ , k < k′ such that the last neighbor of ak, say bs is after the last neighbor of ak′ , and
hence we need to add edges from ak′ to all the neighbors of ak that are after the last neighbor of ak′ . Now vertex bs+1 does
not have any neighbor ar with k′

≤ r . As otherwise since H is connected, ar should have a neighbor to some vertex before
bs+1 and hence ar would be adjacent to bs (by interval property) and consequently bs and bk′ are adjacent, a contradiction.
Therefore, we should also add an edge from ak′ to bs+1. By continuing this argument, we need to add an edge from ak′ to any
vertex after bs. This allows us to obtain a way of adding new edges to H such that at the end π is min–max ordering. At each
step we add a set of new edges to H .
1. Let 1 ≤ k′

≤ p be the smallest index (from left to right) that there is some k > k′ such that the last neighbor of ak
(according to the ordering) is before the last neighbor of ak′ , and k is minimum. Now let bs be the last neighbor of ak.

2. Let 1 ≤ t ′ ≤ q be the smallest index (from left to right) that there is some t > t ′ such that the last neighbor of bt is before
the last neighbor of bt ′ , and t is minimum. Now let ar be the last neighbor of bt .

If there are k′, k or t, t ′ in the current step, we add all the new edges aibj that i ≥ k, j ≥ s + 1, and all the new edges aibj
that i ≥ t , j ≥ r + 1 to H .

Observe thatπ is amin–max ordering for newH . We construct networkD′ with input graph G = (U, V ) and newH . Now
we write the LP program for network D′ and we add extra constraints. The set of constraints added here is slightly different
from the LP in Section 3. We show that under these new constraints we have an equivalent formulation of the MinHOM(H).

At step ℓ of obtaining new H , for every edge uv of G if there are k, s; according to 1, or there are t, r; according to 2, then
we add the following extra constraints respectively.

Xu,ak + Xv,bs+1 ≤ 1, Xv,bt + Xu,ar+1 ≤ 1

The objective function remains the same. Since there are arcs with weight infinity from (u, ai+1) to (u, ai) and from
(v, bi+1) to (v, bi), we have the following proposition. �

Claim 4.2. In any optimal fractional solution found by the above LP program, Xu,ai ≥ Xu,ai+1 and Xv,bi ≥ Xv,bi+1

Claim 4.3. If there is an integer solution for the above LP, then there is homomorphism from G to H that does not map any edge
of G to a new edge of H.

Proof of the Claim. We define homomorphism f : V (G) → V (H) in same way as we defined in Section 3. Indeed, if edge
uv of G is mapped to a new edge aibj of H such that i ≥ k, j ≥ s + 1 then as Xu,ak ≥ Xu,ai and Xv,bs+1 ≥ Xv,bj we have
Xu,ak = Xv,bs+1 = 1 and hence the constraint Xu,ak + Xv,bs+1 ≤ 1 is violated. Similarly, we get a contradiction when i ≥ t ,
j ≥ r + 1. �

Each constraint in the LP has 2 variables and therefore they satisfy the conditions in [10] (Section 3). The results in [10]
imply a 2-approximation algorithm for the addressed problem. Alternatively following [2] the simple arguments below
show that the integrality gap is upper bounded by 2.

Let OPTLP be the optimal solution obtained by an LP. We obtain an integral solution as follows. We choose a variable X
uniformly at random between [

1
2 , 1] and we do the following: for every u ∈ V (G) and 1 ≤ i ≤ p if X ≤ Xu,ai then we round

Xu,ai to 1 otherwise Xu,ai is set to zero. For every v ∈ V (G) and 1 ≤ j ≤ q if X ≤ Xv,bj then we round Xv,bj to 1 otherwise Xv,bj
is set to zero. This guarantees that no edge uv of G is mapped a new edge of H .

Let E[Zu,i] ≥ Xu,ai − Xu,ai+1 , and E[Zv,j] ≥ Xv,bj − Xv,bj+1 . Now the expected value that an edge is being cut is as follows:
E[Zu,i] = Pr[Xu,ai = 1 ∧ Xu,ai+1 = 0] and E[Zv,j] = Pr[Xv,bj = 1 ∧ Xv,bj+1 = 0].

WhenXu,ai+1 < 1
2 , Pr[Xu,ai = 1] =

Xu,ai−1/2
2 = 2Xu,ai−1. Hence Pr[Xu,ai = 1∧Xu,ai+1 = 0] = 2Xu,ai−1 ≤ 2(Xu,ai−Xu,ai+1).

If Xu,ai+1 ≥
1
2 then Pr[Xu,ai = 1 ∧ Xu,ai+1 = 0] = 2(Xu,ai − Xu,ai+1). Therefore, we have

E[Zu,i] = Pr[Xu,ai = 1 ∧ Xu,ai+1 = 0] ≤ 2(Xu,ai − Xu,ai+1),
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Similarly, we have

E[Zv,j] = Pr[Xv,bj = 1 ∧ Xv,bj+1 = 0] ≤ 2(Xv,bj − Xv,bj+1)

Therefore, there is a way of rounding the variables to obtain a solution that is at most twice the value of the OPTLP. Since
the OPTLP ≤ OPT , we obtain a 2-approximation ratio. �

5. Future work

It would be interesting to settle the dichotomy for the approximation of MinHOM(H).

Open Problem 5.1. Characterize bipartite graphs H that there is a constant approximation algorithm for MinHOM(H)?
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