
October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research
Vol. 00, No. 00, 00 Month 200x, 1–21

Coordinated scheduling of a single machine with sequence
dependent setup times and time window constraints

Payman Julaa∗ and Arash Rafieyb

aFaculty of Business Adminstration, Simon Fraser University, Burnaby, B.C.,
Canada; bSchool of Computing Science, Simon Fraser University, Burnaby, B.C.,

Canada

(June 2010)

In this paper we consider selecting and scheduling of several jobs on a single
machine with sequence dependent setup times and strictly enforced time win-
dows constraints on the start-times of each job. We demonstrate how to develop
network-based algorithms to sustain the desired work in process (WIP) profile
in a manufacturing environment. Short-term production targets are used to
coordinate decentralized local schedulers and to make the objectives of spe-
cific areas inline with the chain objectives. Wide range of test problems with
two different network structures are simulated. The effectiveness, efficiency,
and robustness of the proposed algorithms are analyzed and compared with
an exhaustive search approach.

Keywords: Machine scheduling; time windows constraints; sequence dependent setups;
manufacturing; supply chain coordination

∗Corresponding author. Email: pjula@sfu.ca

ISSN: 0020-7543 print/ISSN 1366-588X online
c⃝ 200x Taylor & Francis
DOI: 10.1080/00207540xxxxxxxxx
http://www.informaworld.com

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

2 Taylor & Francis and I.T. Consultant

1. Introduction

Motivated by scheduling challenges in complex manufacturing systems, this article ad-
dresses the job selections and scheduling problem on a single machine, considering se-
quence dependent setup times while observing the time window constraints associated
with each job. The goal is to maintain an appropriate work in process (WIP) profile in
the system which is designed to satisfy several supply chain manufacturing objectives
while observing many constraints.

Many steps of advanced manufacturing systems have a time window constraint asso-
ciated with each job, dictating the earliest and the latest time that consecutive step can
start. For instance in hot metal rolling industries, where the heated metal has to undergo
a series of operations at continuously high temperatures before it is cooled in order to
prevent defects. Similarly, in the plastic molding and silverware production industries,
a series of operations must be performed to immediately follow one another to prevent
degradation.

As part of the process flow in semiconductor manufacturing, wafers go through series
of etch and diffusion. Etch is a process where wafers get exposed to series of chemicals to
remove particles from their surfaces. To achieve quality products, the etched wafers have
to go through the diffusion steps within strictly defined time where layers are deposited
on wafers. Within the sequence of deposition steps, the surface of some layers is unstable
and top layer must be deposited within a strictly defined time interval of the previous
step to prevent the wafer to be reworked or scraped. There are many other process
steps in semiconductor manufacturing which dictates a time window for the start time
to prevent the corrosion (e.g. in metal layers) or contamination.

In addition to the time window constraints, there are many process steps which require
setups with setup times depending on previous state of the tool. For example, as part
of semiconductor manufacturing process flow, wafers go through coating in preparation
for the lithography in which small features are printed on the wafer. For better quality,
photo engineers often dictate a time window that wafers must follow to go through the
lithography step after coating. The earliest time is observed to give the coat enough time
to settle and the latest time is required to avoid contamination. Based on its previous
job type or machine state, the lithography tool may need some time for setup for the
new type of job. This time is required for the machine to get an appropriate reticle
and download appropriate software. Another example is the sort area in semiconductor
manufacturing, where the wafers are probed by testers to identify the defected products
and to guarantee the quality of products shipped to customers. Probing jobs have ready
times and due dates associated with them. Depending on previous state, testers may need
setup time to get appropriate type of load board and probe card and to reach to appropri-
ate temperature, which may be different from the previous job’s requirements. Resource
availabilities are among other factors which may impose time window constraints. For
instance, staff or tools availabilities may require jobs to be started or processed within a
specific time frame.

The characteristics of resources and constraints make this scheduling problem com-
plicated and challenging. Furthermore, job arrival rates, availability of resources and
management priorities may change over time. A flexible scheduling system is required to
adapt and react efficiently, effectively and robustly in such a dynamic environment. In
this context, an effective schedule is defined to be a schedule that attains desired targets.
An efficient schedule is a schedule that can be easily generated and is applicable to in-
dustrial settings. A robust schedule is the one that performs well in most given situations,

Payman
of

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 3

even in the presence of significant uncertainties.
Traditionally, schedulers have been designed to address local performance objectives

such as maximizing the on-time delivery at the step, minimizing tardiness, or minimizing
makespan at the step. The above local objectives are not necessarily in line with the chain
objectives. Local schedulers should be coordinated to achieve supply chain goals. In this
paper, we follow the coordinating framework suggested by Jula and Leachman (2008). In
this framework, the desired performance of the chain is translated into production shift
(simply called shift in this document) targets at each step to maintain an appropriate
WIP profile throughout the system. This article is the first that discusses the details
of developing schedulers with sequence-dependent setups and time-windows constraints
within this framework.

The purpose of this paper is to investigate methods for improving the scheduling of
several jobs on a single machine with time constraints considering sequence dependent
setup time while observing a pre-specified time horizon. The contributions of this paper
are in several domains: a) it introduces a scheduling methodology that uses short-term
production targets to maintain a target WIP profile at each step. In this framework,
decentralized local schedulers are coordinated towards achieving the supply chain man-
ufacturing goals, b) it explicitly considers the time windows associated with each job
which indicates the earliest and the latest time that job should be started, c) it addresses
the complexities of sequence dependent setup times. To the best of our knowledge, this
paper is the first to address the coordinated sequencing of jobs with time windows con-
straints observing sequence dependent setup times in manufacturing environments. The
paper studies the efficiency, effectiveness, and robustness of the proposed algorithms.

The rest of the paper is organized as follows: in Section 2, the previous relevant litera-
ture is reviewed. In Section 3, the problem is described. Several algorithms are developed
and explained in Section 4. The results of sets of experiments are reported and analyzed
in Section 5. Finally, conclusions, recommendations and directions for future research are
presented in the last section.

2. Related literature

The problem of scheduling single machine with sequence dependent setup time can be
translated to Traveling Salesperson Problem (TSP), in which each city corresponds to a
job and the distance between cities corresponds to the time required to change from one
job to another. There are many publications in the domain of TSP and scheduling single
machine with sequence dependent setup times (Allahverdi et al., 1999, 2008). Zhu and
Wilhelm (2006) provide a literature review on scheduling and lot sizing with sequence
dependent setup time and cost.

Imposing time constraints in the system significantly complicate the problem. Lenstra
et al. (1977) show that minimizing the total weighted completion time on a single machine
with job ready time or job due dates is an NP-hard problem. Even finding a feasible
solution to the sequencing of jobs on a single machine to satisfy required time windows
is an NP-complete problem (Garey and Johnson, 1979).

Most of the researchers have either considered the job release time or job due dates, but
not both constraints. In a deterministic environment, the job due dates may be translated
to the latest time that job can be started. Minimizing the weighted completion time on
a single machine subject to due dates has been studied by several authors (e.g. Smith
1956, Potts and Wassenhove 1983, Posner 1985). Ahmadi and Bagchi (1986), Chand

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

4 Taylor & Francis and I.T. Consultant

and Schneeberger (1988) investigate enumerative procedures to minimize total weighted
earliness of jobs on a single machine with no wait time and pre specified due dates. The no
wait time process flows (both with due dates and without due dates) are also special cases
of the problem addressed in this article. For recent works on no-wait time scheduling, see,
for example, Li et al.(2008) and Ruiz and Allahverdi (2009). Many authors (e.g. Bianco
and Ricciardelli 1982, Hariri and Potts 1983, and Belouadah et al. 1992) have examined
the problem of minimizing the total weighted completion time with job release date on
a single machine. None of the above articles consider both release times and deadlines
for jobs.

Ahmadi and Bagchi (1992) have considered both release date and due dates constraints
in a flow shop problem. However, they assume non-constraining release times in their
solution approach. Gélinas and Soumis (1997) use dynamic programming to minimize
the total weighted completion time considering both job release times and due dates.
Pan and Shi (2005) propose a branch-and-bound algorithm for the problem under dual
constraints. Kedad-Sidhoum and Sourd’s (2010) article is among several articles that
address one machine earliness-tardiness scheduling problem with penalties on earliness
and tardiness of jobs. None of these articles which consider both the release date and the
due dates have addressed the sequence dependent setup times.

Sourd (2006) addresses one machine scheduling problem with sequence dependent setup
time and earliness-tardiness penalties considering release dates and due dates which are
not hard constraints. Asano and Ohta (1996) consider the ready time and due-date as
constraints for each job and also consider sequence dependent setup time between jobs.
The authors propose a branch and bound approach to minimize the total tardiness of
jobs. The computational time of their approach increases exponentially with the increase
of the number of jobs and is not suitable for medium or large problem sizes (i.e. more
than 30 jobs).

Another relevant body of work is the Traveling Salesperson Problem with Time Win-
dows (TSPTW) in which a salesperson, initially located at the origin, must serve a
number of geographically dispersed customers such that each customer is served within
a specified time window. The objective is to find the optimum route with minimum total
cost (time) of travel. TSPTW and its applications has been studied by many authors
(e.g. Dumas et al. 1995, Carlton and Barnes 1996, Gendreau et al. 1998, Ascheuer et al.
2001). Asymmetric TSPTW is a special case of the problem under study in this article,
in which the weights of jobs are equal, and there is no families defined for jobs. As will
be discussed in the next section, assigning weights (scores) to jobs and having families
of jobs are two essential elements in our coordinated scheduling approach in this arti-
cle. Furthermore, the concept of having production targets for each family hasn’t been
addressed in TSPTW related articles.

Traditionally, schedulers have been designed to address local performance objectives
that are not necessarily in line with the chain objectives. Allahverdi et al. (2008) identify
16 performance objectives that are used in more than 300 recent papers in the domain of
scheduling problems with setup times or cost. Examples of these performance measures
are: makespan, total earliness at the step, total setup/change over cost of the step, and
total weighted flow time at the step. None of the identified performance objectives are
directly linked to the performance of the chain.

It is important that the objectives of the local schedulers should be set so that the
schedulers are coordinated with each other in order to achieve supply chain objectives.
There is still a gap in the body of existing literature to address the design of local
decentralized schedulers such that their performance become inline with the global chain

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 5

performance. This article targets this gap.

3. Background and problem statement

In this paper, our approach is to manage the supply chain manufacturing by maintaining
a carefully designed dynamic WIP profile at each step of the system. We monitor the
chain by monitoring the WIP status and control the system by trying to achieve a
desirable WIP profile. The WIP profile is set according to managerial needs, which
addresses combinations of objectives such as maintaining low WIP and cycle time while
having high throughput. Other considerations such as bottleneck starvation avoidance,
or long-unreliable transportation times can also be incorporated in the WIP targets. To
achieve the desirable WIP profile, production targets are set dynamically for each shift
for each product at each step of the chain. These targets can be used to evaluate the chain
performance and guide decentralized schedulers to control the system so as to achieve
desirable outputs. This framework also assists local schedulers to respond effectively and
efficiently to the uncertainties that arise in dynamic environments.

3.1. WIP management and scheduling

Jula and Leachman (2008) established a framework to coordinate local decentralized
schedulers by using the short term production targets. They have shown how these
targets can be set in complex supply chain manufacturing. They derived, from high-
level production plans, short-term production targets for use in decentralized low level
scheduling. By this approach, they established a closed loop between higher-level pro-
duction planners and local decentralized schedulers. Target-generating algorithms use
long-term production targets to set the short term targets for the local scheduler. The
performance of the schedulers affects the available work in processes, which in turn af-
fects the production planner’s results. The target generating unit is adaptive and reactive
to the changes in the system and the performance of schedulers. Changes in the system
and the performance of scheduler affect the WIP status, which in turn affects the future
targets set by the target generator. Efficient local schedulers will then use the short-term
production targets to control the processes.

To measure the earliness or lateness of a job at a station, information about the down
stream WIP, yield, and final demands are required. Two parameters are used to specify
the short term production targets, i.e. Ideal Production Quantity (IPQ), and Schedule
Score (SS). The Ideal Production Quantity (IPQ) indicates the number of units of a
device/step to be completed by the end of a shift in order to meet the target flow time
and catch up with the supply chain manufacturing out schedule. The terms are adjusted
by the planned yields from the step to chain out, so that all terms are expressed in units
of production of the step under study. The IPQ can be expressed as:

IPQ = (The total supply chain outs due until one shift after the target cycle time
from the step to supply chain out) - (actual supply chain output to date) - (the projected
supply chain output from actual downstream WIP)

The amount is called ”ideal” since it may be infeasible to process this amount during
the current shift for a variety of reasons. There might not be enough WIP supplied to
the step during the shift or there might not be enough qualified resources available to
complete the IPQ in one shift.

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

6 Taylor & Francis and I.T. Consultant

The Schedule Score (SS), on the other hand, indicates the earliness or lateness of
current production of a specific product at a step. The schedule score is presented based
on the number of shifts that a particular product/step is ahead of the schedule or late
in schedule if no WIP for that step is completed this shift.

SS = IPQ / (Average supply chain out rate)

Leachman et al. (2002) demonstrated the calculations of IPQs and SSs for a simple
case. In complex situations where the products go through many branching, binning
and substitutions, before reaching customers - calculating IPQs and SSs requires special
algorithms which have been addressed by Jula and Leachman (2008). Jula and Leachman
(2010) show how IPQs and SSs can be used to develop coordinated schedulers for parallel
non-homogenous batch processing machines under multi resource constraints.

3.2. Problem statement

Let {J1, J2, ..., Jn} be the set of non-identical jobs to be scheduled on a single machine.
Each job Ji has a processing time ti, schedule score (SSi), and an associated time window
[ai, bi], in which ai is the earliest possible starting time and bi is the latest possible starting
time for the job. There is a required setup time si,j to execute job Jj after Ji. Readers
should note that si,j maybe different from sj,i. Each job belongs to a family of jobs with
a common pre-specified Schedule Score, and Ideal Production Quantity for a scheduling
horizon (T). In this article we use production working shifts for the scheduling horizon.

There is no arrival of new jobs during the scheduling horizon. Machine can process one
job at a time and when the process of a job is started on the machine, the process is not
interrupted. Machine break-down is not considered in this article.

The goal is to select a sub-set of the jobs and schedule them on the machine during
the scheduling horizon. The primary objective is to maximize the overall schedule score
of scheduled jobs, while satisfying the target production for each family of jobs as much
as possible. The scheduled jobs are credited up to the target production level of their
families (IPQs). The Secondary objective is to minimize the maximum completion time
of all jobs. The constraint is that the jobs are only allowed to be assigned to the machine
during their time-windows.

4. Proposed solutions

We model the problem using network flow architectures, and provide our solutions using
network flow concepts. We will first study the feasibility of scheduling all the available
jobs on the machine in section 4.1. The details of construction of the network model that
are used in subsequent algorithms is explained in section 4.2. We will then develop our
solution in section 4.3 for a base case, by ignoring the family of jobs and their target
productions, and under the assumption that the system temporal parameters are integer
values of a basic time grid. This assumption is later relaxed in section 4.4 and a solution
for the general case is provided. We then extend our approach to consider job families
with target productions for each family in section 4.5.

Payman
The primary objective is to maximize the overall schedule scoreof scheduled jobs, while satisfying the target production for each family of jobs as muchas possible. The scheduled jobs are credited up to the target production level of theirfamilies (IPQs). The Secondary objective is to minimize the maximum completion timeof all jobs.

Payman
from

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 7

4.1. Feasibility analysis

Before we propose our solutions, it is useful to discuss whether it is feasible to execute all
the available jobs on the single machine. Readers should note that if the score of every
job is set to one, then maximizing the overall score is equivalent to finding the maximum
number of jobs that can be executed on the machine.

Consider two jobs Ji, and Jj , where ai ≤ aj . We define Ji has conflict with Jj if
ai + ti + si,j > bj . If Ji has conflict with Jj , then we can not execute Jj after the
execution of Ji. Please note that in this case Jj doesn’t necessarily have conflict with Ji.

Problem 4.1: Given n jobs and their associated time windows, is it feasible to schedule
all jobs on a single machine?

Solution: Let’s set the score of each job to one. We then construct the vertex set G
consisting of nodes {1, 2, .., n}, and arcs connecting node i to j where Ji has conflict with
Jj .

Lemma 4.2: If G has a cycle, then it is not feasible to execute all the jobs on a single
machine, while satisfying their associated time windows constraints.

Proof: Let C = v1, v2, ..., vm, v1 be a cycle in G. Without loss of generality assume
that v1 is executed first. Since there is an arc from v1 to v2 this implies that v2 should
be executed before v1, similarly v3 must be executed before v2 and v1, and hence vn
must executed before v1, v2, ..., vn−1. However, arc vnv1 implies that v1 must be executed
before v1, which is a contradiction. ⋄

By the above Lemma, if G has a directed cycle then it is not feasible to schedule all
jobs on a single machine. In this case, we may need extra capacity to be able to schedule
all the jobs. Alternatively, higher-level production planner may be designed such that it
assigns the jobs to different scheduling horizons on the machine.

4.2. Network construction

In this section the details of the construction of the network model that are used in
subsequent algorithms is explained. Let’s consider � to be a constant basic time grid
length, which can be set according to the temporal characteristics of the system and the
required accuracy of the results. Each job can be started only on time grid points.

There are different ways to construct the network based on this basic time grid. In this
section, we propose the construction of the graph based on the Common Grid Points
Network for all the jobs, called CGPN in this article. Later in Section 5, we will propose
another method of constructing the network.

For simplicity let’s assume � is reasonably small such that bi−ai ≥ � (we will later on
discuss the cases where this condition doesn’t hold). Let i = ⌈ai⌉, the next closest upper
grid for ai. We construct the auxiliary digraph D as follows: for each job Ji consider a set
vertices Ji , Ji+�, ..., Ji+t�, where i+t� ≤ bi and t is a positive integer number. Vertex
Ji+t� represents a possible starting time of job Ji, and i + t� is the time associated
with this vertex. Consider vertex s as the first time when machine becomes available,
and without loss of generality, let’s associate time zero to this vertex. We then add an
arc from vertex u = Ji+t� to vertex v = Jj+t′� if these conditions hold:

∙ i ∕= j

∙ j − i + (t′ − t)� is not less than ti + sij .

We add an arc from the start node s to u with the weight of SSi. The weight of the

Payman
from

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

8 Taylor & Francis and I.T. Consultant

J J
4

J

J

J

J

2

2 4

2

4 6

2s

J

J

J

J J J

1

1

2

2 3

3

0

1
7

7

8
8

8

9 9

9

00

0

2

0

2

2

8

 a b Process time

2

3

4

5

2

3

3 9

7

Score

Job J

Job J

Job J
3

2

1

(a) Network D (b) Setup time

(c) Time windows, process times, and schedule scores

1

1 1

3 3

6

Figure 1. Network diagram.

arc uv, e(uv), is then set to be the schedule score of Jj , e(uv) = SSj .
Let P be a path from s to vertex x. Then, there is a sequence of jobs on path P . Node

u = Ji+t� ∈ P means that job Ji belongs to this sequence and should be started at time
i + t�. The sum of the weights of the arcs over P is then the total schedule score for
this schedule.

Figure 1.a. shows an example of such a network constructed for a simple case of three
jobs. In this figure, the basic time grid � = 2, and J ti denotes vertex Ji+t�, which
indicates job i starts at time i+ t�. For example, J4

2 is associated with the vertex which
indicates the possible start time of the second job is at the time 4. The index [i, j] of the
setup time table depicted in Figure 1.b. corresponds to sequence dependent setup time
si,j . Therefore, for example, it takes one unit of time in order to execute job 3 after job
1. Figure 1.c. shows the time windows, process time, and schedule score associated with
each job. In this network, for example, J2

1 is connected to J4
2 because the total of start

time and processing time for job 1 and the setup time for job 2 (2+2+0=4) is not greater
than the possible start time of job 2 at time 4.

4.3. Base case analysis

We develop our solution in this section for a base case, in which the family of jobs are
ignored and there is no production targets for the jobs. Furthermore, here, we assume
that the system temporal parameters are integer values of a basic time grid.

Problem 4.3: Given a single machine and n jobs, find the best set of jobs and their
sequence such that the overall schedule score is maximized (primary objective), while the
maximum completion time is minimized (secondary objective).

Here is an explanation of our proposed algorithm to find the best schedule on a single
machine case stated in problem 4.3: let W (u) denote the weight of the maximum path
from s to u and let P (u) denotes the last vertex before u on the maximum path from s
to u. At the beginning of the algorithm, W (u) is set to be the weight of arc e(su). At
each step of the algorithm we choose a vertex u which a) has not been chosen before,

Payman
score of Jj , e(uv) = SSj

Payman
(primary objective),

Payman
(secondary objective)

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 9

and b) u has in-degree zero from the unchosen vertices (i.e. there is no edge entering u
from unchosen vertices), and c) W (u) is maximum. For every v from unchosen vertices
connected to u with the edge value of e(uv), W (v) is then updated to be equal to
W (u) + e(uv), and P (v) is set to be equal to u, if the followings hold:

∙ W (v) < W (u) + e(uv),

∙ there is no vertex v′ which corresponds to job Jj on the maximum path from s to u.

Finally, the generated solution need to be modified to minimize the completion time.
Suppose the last job on P is Jn which starts on n+ t�. We then delete all the vertices of
D where their associated time is not less than the associated time to the last vertex on
P , i.e. j + t′� ≥ n+ t�. We try to find the maximum path P ′ in the remaining digraph.
If the overall weight of P ′ is less than the overall weight of P then the algorithm stops,
otherwise it repeats. Here is the detail of the algorithm:

Algorithm 4.4:

(1) FV = (s), fw = 0, Cℎ = {s}, and V (D) = set of all vertices in D;
(2) For every vertex v, set W (v) = e(sv);
(3) Repeat (a), (b), (c), N times (N is the number of nodes in the network):

a) choose vertex u ∕∈ Cℎ, where W (u) is maximum, and u has in-degree zero
in V (D)∖Cℎ;

b) for every vertex v ∈ V (D)∖Cℎ, where uv is an arc, if:
i. W (u) + e(uv) > W (v),

ii. there is no any other vertex v′ on the maximum path from s to v, which
both v′ and v correspond to the same job,

then set W (v) = W (u) + e(uv), and P (v) = u;
c) add u to Cℎ;

(4) Find vertex x where W (x) is maximum;
(5) Consider an empty vector F , and set i = 1, and y = x;
(6) While (y ∕= s)

a) F (i) = y, y = P (y), i = i+ 1;
(7) If W (x) ≥ fw, then set fw = W (x) and FV = F ;
(8) Let x be Ji+t� for some i, and t; delete all vertices Jj+t′� with j + t′� ≥ i+ t�

from D, and go to step 2;
(9) Output fw and the reverse of FV . ⋄

4.3.1. Time Complexity (Efficiency)

In general, if the basic time grid (�) is large, then the chance that we miss some of
the optimum solutions increases. On the other hand, if � is small then the number of
vertices in D increases and the time complexity of algorithms grows, but depending on
the granularity of the temporal parameters of the system, the algorithms may generate
better results in term of our objective.

Suppose for every 1 ≤ i ≤ n, (bi−ai)/� ≤ r. Then there are maximum nr nodes in the
digraph D. The complexity of finding the maximum path in D is in the order of O(r2n2).
More precisely the complexity is on order of O(m) where m is the number of arcs in D
and m is at most r2n2. At the end of the algorithm, we delete some of the nodes and
repeat the whole process again. Finding maximum weight path is repeated at most bn/�
times, where bn is the last possible start time of the last job. Since bn ≤ T , then the time
complexity of the Algorithm 4.4 is O(r2n2T/�), where T is the scheduling horizon.

Payman
(i.e. there is no edge entering ufrom unchosen vertices),

Payman
every v from unchosen verticesconnected to u with the edge value of e(uv),

Payman
V (D) = set of all vertices in D;

Payman
V (D)nCh;

Payman
V (D)nCh

Payman
Let x be Ji+t� for some i, and t; delete all vertices Jj+t0� with j +t0� � i+t�from D, and go to step 2;

Payman
W(x) � fw

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

10 Taylor & Francis and I.T. Consultant

4.3.2. Effectiveness

Lemma 4.5: If the temporal parameters (ai, bi, ti, si,j) for each job Ji are multiples of
�, then Algorithm 4.4 finds the optimal solution.

Proof: We first show the following claim:

Claim 4.6: Let D be an acyclic digraph in which each vertex has a weight. Then,
Algorithm 4.4 finds the maximum weighted path in D.

Digraph D has a vertex (source) which is adjacent to all other vertices. At each step,
the algorithm picks a vertex v with no in-neighbor among all the unselected vertices.
The maximum weighted path from the source to v is the weight of v plus the weight
of maximum path from source to u where uv is an arc in D, and u has the maximum
weighted path among all the in-neighbors of v. It is clear that this algorithm finds the
maximum weighted path.

Now suppose each job can start only at one particular time, i.e. ai = bi for all job
Ji. Then, finding the optimal solution for the jobs translates to finding the maximum
weighted path in the corresponding network, which is done by the algorithm. However,
in general ai ∕= bi, therefore, there maybe several vertices for job Ji in the graph. Since
all ai, ti, si,j ’s are integer multiples of the basic time grid (�), then corresponding to
any start time of each job Ji, there exists a node in the network. The algorithm then
finds the maximum weighted path P from the source to the vertex v; corresponding to
some starting point of job Ji. Moreover, P does not contain any other vertex u which
corresponds to the same job Ji. Thus algorithm finds the optimal solution.

Consider an optimal solution in which some of the jobs do not start at integer multiples
times of �. Here, we show that there exists an equal optimal solution in which all jobs
start at multiple points of �. Let Ji be the first job in a sequence of jobs in an optimal
solution in which jobs doesn’t start at integer multiples of �. If i > 1, then Ji−1 starts
at multiple of � and since the process time of Ji−1 is multiple of �, and also setup time
between Ji−1, Ji is multiple of �, then Ji−1 ends at a multiple point of �. Since Ji could
start at multiple of �, we can start Ji earlier such that its start point becomes multiple of
�. Note that this is possible because the time interval of Ji is at least �. Therefore, if the
first job does not start at multiple of � then we can shift back and start it at a multiple
point of �. Hence, we may assume that in optimal solution all jobs start at multiples of
�. ⋄

In most industrial environments, a basic time grid can be suggested such that the
temporal parameters of the system can be expressed based on this time grid. In semicon-
ductor manufacturing, for example, the processing times and time intervals for a product
or batch of products are usually expressed in minutes. Therefore, having the basic time
grid of one minute is sufficient to generate an acceptable and executable optimal solution.

The problem arises when temporal paraments of the system such as ti or ai is not
integer value of the basic time grid for some job Ji. In this case the proposed algorithm
may generate a sub-optimal solution. In the following lemma, we discuss some properties
of a sub-optimal case.

Lemma 4.7: Let SO be the overall schedule score of the solution obtained by Algorithm
4.4, and OPT be that of the optimal solution with the following conditions:

∙ ai, bi are multiples of �, and bi − ai ≥ �;

∙ processing time of each job ti ≥ � (but not necessarily multiples of �) ;

Payman
Let SO be the overall schedule score of the s

Payman
be that of the

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 11

Then, SO ≥ OPT
2 .

Proof: If all the jobs in OPT have starting time which are multiples of � then corre-
spond to these jobs there are vertices in the network constructed in the algorithm and
hence SO = OPT . So, suppose for some Ji in OPT the starting time is not a multiple of
�. Let St1, St2, ..., Stm be the starting time of the jobs in OPT . Consider two jobs Ji+1

and Ji−1 in OPT . If SSi+1 < SSi then by deleting Ji+1 and shifting Ji to ⌈Sti+1⌉ we can
find a vertex correspond to Ji in the network. Similarly if SSi−1 < SSi then by deleting
Ji−1 and shifting Ji to ⌊Sti+1⌋ we can find a vertex correspond to Ji in the network. This
way by deleting at most half of the jobs in OPT we can find the corresponding vertices
in the network constructed for the rest of the jobs in OPT ; thus SO ≥ OPT

2 . ⋄
Considering above lemma, and based on our study, in the following section, we propose

an enhancement to Algorithm 4.4.

4.4. Shift-based algorithm

Please note that based on the network structure, jobs can start only on time grid points.
Therefore, depending on the granularity of �, the algorithm may impose idle times, and
therefore the solution may need to be refined to accommodate more jobs. In this section,
we propose a new shift-based algorithm that enhances solutions produced by Algorithm
4.4. This new algorithm moves some of the jobs in order to add more jobs that might not
been scheduled by the previous algorithm due to the granularity of time grids. Suppose
S is the set of jobs found by Algorithm 4.4. Then, shift-based algorithm finds the best
solution among all solutions which contains set S as a sub-solution.

Here is a brief explanation on how this algorithm works. Let P be the maximum path
found by the Algorithm 4.4. Note that there is no directed cycle inD, because the network
is constructed such that there is no arc in which the start time of its beginning is greater
than the start time of its end point. Let K1,K2, ...,Km be the jobs in P . Consider the
machine Gantt chart; We define the gap Gr to represent the gap between the finish time
of job Kr and the start time of job Kr+1. This gap can be expressed as r+1 + t�− Γr,
where Γr is the completion time of job Kr in P . Note that these gaps are ordered set
where Gr is before Gr+1.

We say gaps Gi, Gi+1, ..., Gi+j can be attached together if by shifting these gaps to the
right (i.e. start jobs earlier) or to the left (i.e. start jobs later), or by shifting G1, G2, ..., Gl
to the left and Gl+1, Gl+2, ..., Gi+j to the right, more jobs can be added into P . This
interval is constructed only if it does not conflict with the time windows limits of the
jobs in P . An auxiliary graph G can then be constructed from Gr’s as follows. For each
set of consecutive gaps Gi, Gi+1, ..., Gi+j which can be attached together, an interval
[i, i+ j]∗ is introduced. This interval starts at gap i and ends at i+ j, and ∗ is either +,
−, or ±l. The + sign means that gaps Gi, Gi+1, ..., Gi+j can be shifted to the right and
− means they can be shifted to the left, and finally ±l means that gaps G1, G2, ..., Gl
are shifted to the left and Gl+1, Gl+2, ..., Gi+j are shifted to the right.

Job Jr can then be associated with this interval, if its time windows, and sequence
dependent setup times (to the previous job and the next job) is consistent with this
interval. For each interval, the schedule score of job Jr (SSr) is then considered and for
each interval [i, i + j]∗, a vertex with the same score as job Jr is then introduced. This
means that if we choose to shift jobs Ki,Ki+1, ...,Ki+j to the right (left) we can add
job Jr, and therefore the total score of jobs increases by SSr. An edge is then added
between two vertices vr, and vs, if their corresponding intervals intersects. It is clear that
G is an interval graph. For more information on interval graphs, interested readers are

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

12 Taylor & Francis and I.T. Consultant

encouraged to refer to (Golumbic, 1980).
Vertices of G correspond to some of the jobs that are not present in P . We then choose

some of these vertices to maximize the overall score. Two vertices which are adjacent in
G can not be selected, because their intervals intersect. Therefore, a maximum weight
independent set I in G should be found. There is a polynomial time algorithm to find
this independent set, see (Hsiao et al. 1992). Once set I is found, the corresponding jobs
in I are then added to schedule P .

Figure 2 illustrates this procedure for an example of 7 jobs. Here, the scheduled jobs
(1-4) are presented by cross-hatched areas on the machine’s Gantt chart, while the re-
maining un-scheduled jobs (5-7) are shown by dark solid areas. The time windows of jobs
K1,K2,K3,K4, J5, J6, J7 are given by the following array:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
2 4
5 7
8 11
4 7
8 10
2 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
the processing times for jobs are t = [2.5, 2.5, 2.5, 2.5, 1.5, 1, 1.5], and the schedule scores

are SS = [5, 5, 5, 5, 4, 3, 2]. For simplicity, we do not consider setup times in this example
(i.e. si,j = 0).

As shown in Figure 2.a., there are three gaps G1, G2, G3 between the scheduled four
jobs K1,K2,K3,K4. In the first part of the figure 2.b we move job K2 to the left and
shift K3 to the right, so we obtain a gap of length 1.5 which can be used to schedule job
J5 with SS = 4. In the second part we move K3 to the left and find a gap of length 1,
which allow us to execute job J6. Finally we shift jobs K2,K3 to the right and we find a
gap of size 1.5 after job K1, so we can schedule J7 in this gap.

In Figure 2.c. we associate J7 to the gaps 1, 2, 3 since we were able to combine three
gaps and process J7 in the gap provided. Similarly, we associate J5 to 1, 2, 3 and finally
J6 is associated to 2, 3. Figure 2.d. shows the interval presentation of jobs J5, J6, J7. The
procedure identifies J5 as the best job that can be added to the schedule. Here is the
details of shift-based algorithm.

Algorithm 4.8:

(1) FV = (s), fw = 0, Cℎ = {s}, and V (D) = set of all vertices in D;
(2) For every vertex v, set W (v) = e(sv);
(3) Repeats (a), (b), (c), N times (N is the number of nodes in the network):

a) choose vertex u ∕∈ Cℎ, where W (u) is maximum, and u has in-degree zero
in V (D)∖Cℎ;

b) for every vertex v ∈ V (D)∖Cℎ, where uv is an arc, if:
i. W (u) + e(uv) > W (v),

ii. there is no any other vertex v′ on the maximum path from s to v, which
both v′ and v correspond to the same job,

then set W (v) = W (u) + e(uv), and P (v) = u;
c) add u to Cℎ;

(4) Find vertex x where W (x) is maximum;

Payman
and V (D) = set of all vertices in D

Payman
V (D)nCh;

Payman
V (D)nCh

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 13

J 7 J 6J 5

J 6

J 5

J 7

G2 G3G1J 7

J 5
G1 G3G2

G3G2J 6

2.5 5 6.50

0 2.5 3

9

5.5 8 9

11.5

SS=3

SS=4

SS=2

0 2.5 96.54

G2 G3

:

:

G1 G2 G3

G1

0 2.5 3 5.5 98.56

11.5

11.5

11.5

:

0 2.5 3 5.5 98.56 11.5K 2 K K

KKKK

K

K

K K K

KKK

K KKK

3 4

4321

2 3 4

4321

1

K 1

1 2 3 4

(a) Solution at the first stage of the algorithm

(b) Possible shifts

(c) Dependency graph

(d) Final interval graph

Figure 2. Gap diagram.

(5) Consider an empty vector F , and set i = 1, and y = x;
(6) while(y ∕= s)

a) F (i) = y, y = P (y), i = i+ 1;
(7) Set fwtmp = W (x) and FVtmp = F ;
(8) Consider the gaps in F , construct graph G as explained above;
(9) Find the maximum independent set I in G;

(10) Add the new jobs corresponding to vertices in I; update fwtmp and FVtmp accord-
ingly;

(11) If fwtmp ≥ fw, then set fw = fwtmp and FV = FVtmp;
(12) Let x be Ji+t� for some i, and t; delete all vertices Jj+t′� with j + t′� ≥ i+ t�

from D, and go to step 2;
(13) Output fw and the reverse of FV . ⋄

Payman
Let x be Ji+t� for some i, and t; delete all vertices Jj+t0� with j +t0� � i+t�from D, and go to step 2;

Payman
Set fwtmp = W(x) and FVtmp = F;

Payman
If fwtmp � fw, then set fw = fwtmp and FV = FVtmp;

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

14 Taylor & Francis and I.T. Consultant

4.4.1. Time complexity of shift-based algorithm

The proposed shift-based Algorithm 4.8 enhances Algorithm 4.4 by finding the max-
imum independent sets in interval graphs. According to Hsiao et al.(1992), finding the
maximum independent set in an interval graph has the time complexity of less than
O(n2), where n is the number of nodes. Therefore, the shifting process applied at the
end of the Algorithm 4.4 does not change its complexity, and the algorithm complexity
remains at O(r2n2T/�).

4.5. IPQ-based algorithm

In this section we propose an algorithm which addresses the problem defined in Section
3.2. Here, we enhance the previous algorithms by considering the pre-specified production
targets (IPQs) for product families during the scheduling horizon.

In this case, jobs are partitioned into k sets S1, S2, ..., Sk according to their families
(product types). The scores of all the jobs in each set Sf are the same (i.e. SSi =
SSf ,∀Ji ∈ Sf). It is desirable to execute nf = ⌈IPQf⌉ jobs of set Sf , for each 1 ≤ f ≤ k.
Furthermore, we try to maximize the overall schedule score (primary objective), while
minimizing the maximum completion time (secondary objective).

The algorithms presented in the previous sections have to be modified to select nf jobs
of set Sf . Therefore, as the score of the maximum path at each step of the new algorithm
is updated, we check whether the production target (nf) has been reached. Let Pu be a
path from the start node to vertex u in the network. Note that u corresponds to one of
the jobs. Let rf be the number of jobs from set Sf on path P , and Let ∣P ∣ denote the
number of nodes on path P . The weight of u can then be defined as follows :

W (u) =

∣P ∣∑
i

miSSi

where mi = 1 if rf ≤ nf , and mi = 0 when rf > nf , ∀Ji ∈ Sf . Consequently, when the
IPQf for some set Sf in path P is reached, the algorithm does not add the weight of
vertex v to P , where v corresponds to any job Ji ∈ Sf .

Here is an explanation of the IPQ-based algorithm. Digraph D can be constructed as
described in the previous sections. For vertex u = Ji+t�, let W (u) denotes the weight of
the maximum path from source s to u and let P (u) denotes the last vertex before u on
the maximum path from s to u. At the beginning of the new algorithm, W (u) is set to
be the weight of the arc su. Recall that e(Ji+t�Jj+t′�) is set to be equal to the weight
of job Jj . At each step of the algorithm, we consider arbitrary vertex u = Ji+t� which
has not been selected before, and has in-degree zero among all unselected vertices.

Note that there is a vertex u′ such that it has been selected in one of the previous
steps and u′u is an arc in D. Let Pu be the corresponding maximum path for u, and let

rf be the number of jobs in Pu from product family set of Sf . Set W (u) =
∑∣P ∣

i miSSi
where mi = 1 when rf ≤ nf , and mi = 0 otherwise, for Ji ∈ Sf . For every other vertex
v = Jj+t′�, replace W (v) by W (u) + e(uv), and set P (v) to be u if the followings hold:

∙ W (v) < W (u) + e(uv),

∙ there is no vertex v′ with the same associated job as v, on the maximum path from s
to u.

Payman
Ji 2 Sf

Payman
Ji 2 Sf

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 15

Here is the algorithm:

Algorithm 4.9:

(1) FV = (s), fw = 0, Cℎ = {s}, and V (D) = set of all vertices in D;
(2) For every vertex v, set W (v) = e(sv);
(3) Repeats (a), (b), (c), N times (N is the number of vertices in D):

a) choose vertex u ∕∈ Cℎ, where W (u) is maximum, and u has in-degree zero
in V (D)∖Cℎ;

b) for every vertex v ∈ V (D)∖Cℎ, where uv is an arc,
c) Suppose v belongs to a job in Sf for some f , Let rf be the number of jobs

from Sf over path Pu; if rf < nf , then temp = W (u) + e(uv), otherwise
temp = W (u); if:

i. temp > W (v),
ii. there is no any other vertex v′ on the maximum path from s to u, which

both v′ and v correspond to the same job,
then set W (v) = temp and P (v) = u, update the number of jobs from Sf

in Pv. (It needs to copy from u to v);
d) add u to Cℎ;

(4) Find vertex x where W (x) is maximum;
(5) Consider an empty vector F , and set i = 1, and y = x;
(6) while (y ∕= s),

a) F (i) = y, y = P (y), i = i+ 1;
(7) If W (x) ≥ fw, fw = W (x) and FV = F ;
(8) Let x be Ji+t� for some i, and t; delete all vertices Jj+t′� with j + t′� ≥ i+ t�

from D, and go to step 2;
(9) Output fw and the reverse of FV . ⋄

4.5.1. Efficiency and effectiveness of IPQ-based algorithm

The proposed IPQ-based Algorithm 4.9 is similar to Algorithm 4.4 on the changes of
the score of each node, which is still in the order of O(rn). In addition to save the trace
of maximum path Pu from start to vertex u, we also need to have a record of number
of vertices that belong to set Si in Pu. In order to keep these information we use ∣D∣
by k array, where k is the number of Si’s. Therefore, the time complexity of IPQ-based
algorithm is O(kr2n2T/�), where r is the maximum number of basic time grids in time
windows intervals, n is the number of jobs, and T is the scheduling time horizon.

Algorithm 4.9 works based on the same approach as Algorithm 4.4. The main difference
is in the computing of the weight of the maximum weight path at each step, in which we
ignore adding up the score of the jobs if their IPQ target have been met, to the maximum
weight path. Therefore, the optimality can be shown similar to Subsection 4.3.2; when
all the temporal parameters of the system are multiples of �, then the algorithm finds
the optimal solution.

5. Experiments

To assess the performance of proposed scheduling methods, test data sets have been
generated to cover a wide range of system structure and characteristics. We used two
different structures of networks for each experiment. We then applied the IPQ-based
Algorithm and collected the CPU-runtime, and the total schedule score of scheduled

Payman
V (D) = set of all vertices in D;

Payman
V (D)nCh

Payman
Let x be Ji+t� for some i, and t; delete all vertices Jj+t0� with j +t0� � i+t�from D, and go to step 2;

Payman
If W(x) � fw, fw = W(x) and FV = F;

Payman
V (D)nCh

Payman
We then applied the IPQ-basedAlgorithm

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

16 Taylor & Francis and I.T. Consultant

jobs. Here are the two types of the networks:

I. Common Grid Points Network (CGPN): in this network, the time grid points
are common for all the jobs as described in Section 4.2. The first possible start time
of job i is set to be ⌈ai⌉, the next grid point time (i.e. i = ⌈ai⌉). There are constant
time intervals � between the grids. Consequently, other points will be at (⌈ai⌉+ t�). The
quality of results may deteriorate by increasing the basic time grid length. Furthermore,
based on the structure of the CGPN, if the basic time grid � is very large, the time
windows for some jobs may fall within the grid points. In this case, there will be no
nodes associated with these jobs in the network, which will result in ignoring these jobs
by the algorithm. To improve the quality of the results, we can modify the construction
of the network by assigning the grid points to individual jobs.

II. Individual Jobs Grid Points Network (IJGPN): in this network, the grid
points are different for each job. Here, the first possible start time of job i is set to
be (i = ai). The network are then constructed according to the guidelines explained in
Section 4.2. Consequently, other points will be at ai+ t�. Since we start the first node for
Ji at (i = ai), there will be at least one node for each job in IJGPN network, regardless
of the basic time grid length.

We designed our experiments for different numbers of jobs, number of families of jobs,
basic grid lengths, schedule scores, time windows, processing times, and setup times. For
each scenario, we have produced 5 replicates based on different random seeds.

Data has been generated for two different test categories: effectiveness, and efficiency.
The effectiveness test emphasizes more on measuring the quality of the results from each
scheduling method by comparing the results with optimal solution. In the efficiency test
the emphasis is more on the study of the performance of proposed scheduling methods
in terms of CPU run-time. We used C program on a laptop computer with a 2-GHz
CPU to run these simulation experiments. During these tests we have carefully observed
the robustness of the scheduling methods in terms of their consistency of acceptable
performances over a wide range of system’s parameters.

The proposed scheduling methods are valid for any scheduling horizon. In this study,
typical production shift of 8 hours have been used. Small scheduling horizons result in
more frequent re-scheduling of resources, and are recommended for fast-changing envi-
ronments; or the environments where higher accuracy (smaller time grids) are needed.
Long scheduling horizons are recommended for the environments in which the changes
are slow and processing times are long. In environments that long scheduling horizon with
fine time granularity (small �) is needed, a rolling horizon scheduling system maybe used.

5.1. Effectiveness test

In the effectiveness test, we produce scenarios in which optimal solutions are achieved
by an exhaustive search (OPT). We then compare the performance of the proposed
scheduling methods against the optimal solutions. Due to the complexity of the problem,
finding an optimal solution using exhaustive search with large number of jobs are difficult
in this case.

Processing times for jobs are generated to be integer numbers with random values
up to four different levels (5, 10, 30, 120 mins). Time windows intervals are also integer
numbers with random values up to four levels of (10, 30, 120, 240 mins). The experiments
are run for different numbers of jobs, number of families of jobs, basic grid lengths,

Payman
Since we start the �rst node forJi at (i = ai), there will be at least one node for each job in IJGPN network, regardlessof the basic time grid length.

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

International Journal of Production Research 17

Table 1. Effectiveness test.

α=1 (min) α= 5 (min) αα=15 (min)α α =30 (min)

 N
um

be
r o

f J
ob

s

 C
G

PN
-%

 IJ
G

PN
-%

 O
PT

-R
un

Ti
m

e
(s

ec
)

 C
G

PN
-%

 IJ
G

PN
-%

 O
PT

-R
un

Ti
m

e
(s

ec
)

 C
G

PN
-%

 IJ
G

PN
-%

 O
PT

-R
un

Ti
m

e
(s

ec
)

 C
G

PN
-%

 IJ
G

PN
-%

 O
PT

-R
un

Ti
m

e
(s

ec
)

2 0.00 0.00 0.00 -1.25 0.00 0.00 -17.50 0.00 0.00 -36.25 0.00 0.00
5 0.00 0.00 0.00 -2.11 -0.42 0.00 -15.50 -0.42 0.00 -26.75 -0.42 0.00

10 0.00 0.00 0.14 -2.24 -0.21 0.14 -12.96 -0.51 0.14 -33.74 -1.58 0.14
12 0.00 0.00 16.40 -1.81 -0.31 17.42 -14.83 -0.41 17.46 -31.79 -1.91 13.41
13 0.00 0.00 183.40 -1.44 -0.08 205.65 -14.05 -1.18 162.11 -28.78 -1.87 171.36

schedule scores, and setup times. For each scenario, five replications are produced based
on different random seeds. We collected the total schedule score and the CPU run-
time for three methods (CGPN, IJGPN, and OPT). The results of 9600 observations in
effectiveness test have been summarized in Table 1. The average run-time for CGPN, and
IJGPN for each instance has been less than one second, therefore hasn’t been included
in this table. The OPT run-time has been reported.

Table 1 shows the quality of schedules produced by CGPN-, and IJGPN-based al-
gorithms compared with the optimal solutions generated by the OPT algorithm. The
results are normalized to the optimal solution. Therefore, if for example, the IJGPN-
based algorithm was able to produce total score of 48 and OPT score was 50, the IJGPN
result is 48− 50/50 = −4% off the optimal solution.

There are several observations from the results of Table 1: First) in the column where
� = 1 min, both CGPN- and IJGPN-based algorithms produce optimal solutions. This
represents the case where all temporal parameters of the system are multiples of the basic
time grid, and was previously addressed in this article; Second) the quality of results from
both CGPN and IJGPN-based algorithms deteriorates with the increase of the basic
time grid length; Third) IJGPN-based algorithm is less sensitive to the increase of the
basic time grid length than CGPN-based algorithm. Even with relatively large � (e.g.
30 min), IJGPN-based algorithm result’s average is within 2% of the optimal solution;
Fourth) both IJGPN and CGPN-based algorithm average run-times are less than one
second, while the OPT method takes relatively long time, and its run-time exponentially
increases with the increase of the number of jobs. For n=14 (not reported in the table)
it may take several hours for OPT approach for each experiment to produce any results,
which shows OPT is not an efficient method.

In general, OPT produces optimal solution, however it is not efficient in terms of
run-time in medium or large number of jobs, therefore may not be useful in industrial
environments. CGPN produces acceptable results, but is very sensitive to the length of
the basic time grid length and its quality deteriorates with the increase of the basic
time grid length. Among the tested algorithms, IJGPN shows its superior performance
in effectiveness test.

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

18 Taylor & Francis and I.T. Consultant

Table 2. Efficiency test, ”-” indicates the CPU run-time less than one second.

 N
um

be
r o

f J
ob

s

 C
G

PN
-S

co
re

 C
G

PN
-R

un
Ti

m
e

(s
ec

)

 IJ
G

PN
-S

co
re

 IJ
G

PN
-R

un
Ti

m
e

(s
ec

)

 C
G

PN
-S

co
re

 C
G

PN
-R

un
Ti

m
e

(s
ec

)

 IJ
G

PN
-S

co
re

 IJ
G

PN
-R

un
Ti

m
e

(s
ec

)

 C
G

PN
-S

co
re

 C
G

PN
-R

un
Ti

m
e

(s
ec

)

 IJ
G

PN
-S

co
re

 IJ
G

PN
-R

un
Ti

m
e

(s
ec

)

 C
G

PN
-S

co
re

 C
G

PN
-R

un
Ti

m
e

(s
ec

)

 IJ
G

PN
-S

co
re

 IJ
G

PN
-R

un
Ti

m
e

(s
ec

)

5 41.10 - 41.10 - 40.54 - 41.34 - 34.56 - 41.40 - 27.08 - 39.80 -
10 87.96 - 87.96 - 92.31 - 93.08 - 71.59 - 81.76 - 58.68 - 82.63 -
30 213.08 - 213.08 - 212.00 - 213.20 - 156.08 - 182.30 - 132.64 - 178.03 -
50 333.20 - 333.20 - 302.29 - 304.03 - 237.14 - 281.01 - 187.73 - 314.98 -

100 524.49 2.94 524.49 2.99 491.34 - 508.41 - 369.54 - 490.10 - 236.83 - 474.34 -

α=1 (min) α=5 (min) α=15 (min) α=30 (min)

5.2. Efficiency test

The focus of this test is to study the efficiency of proposed approaches in-terms of the
CPU run-time required to generate schedules. Since the proposed algorithms are designed
to run at the beginning of short scheduling horizons, it is important that the schedules
can be efficiently produced. In this test, the system parameters range are similar to those
discussed in the effectiveness test. Similar to the previous test, each scenario has been
replicated 5 times with different random seeds. However, here the number of jobs are
many more than the previous test (i.e. more than 100 jobs in some cases). As discussed
before, OPT takes very long time in large number of jobs and is not practical for our
purposes, therefore OPT results hasn’t been reported here. The efficiency test results are
summarized in Table 2.

The results show the changes of CPU run-time verses the changes in the number of
jobs, and the basic time grid. As shown, the decrease in the value of the basic time grid
length will result in longer run-time. The increase in the number of jobs also will results
in the longer run-times.

The efficiency study shows that even with the large number of jobs and fine time grids,
both CGPN and IJGPN- based algorithms are efficient in producing schedules in accept-
able run-time. CGPN-based algorithm slightly outperforms IJGPN-based algorithm in
terms of run-time, because it may have less number of nodes. Similar to the effectiveness
test, however, IJGPN produces better quality results in large basic time grids.

In conclusion, based on our study and the efficiency and effectiveness tests, OPT is a
very slow scheduling approach and therefore not implementable in most systems. Both
IJGPN and CGPN-based approaches are efficient and therefore suitable for our purposes.
CGPN-based approach is slightly more efficient than IJGPN-based approach, but the
effectiveness of CGPN-based approach in terms of producing quality results deteriorates
rapidly with the increase of the basic time grid. Therefore, IJGPN-based algorithm shows
its superior performance in-terms of producing quality schedules in acceptable time.

6. Summary and closing remarks

In this paper, we demonstrated how to develop network-based scheduling algorithms
to sustain the desired WIP profile in manufacturing environments. We used short-term
production targets to coordinate decentralized local schedulers and to make the objectives

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

REFERENCES 19

of specific areas inline with the chain objectives.
We introduced a basic network-based algorithm to select and schedule several jobs

on a single machine with sequence dependent setup times and strictly enforced time
windows constraints on the start-times of each job. We studied some of the properties
of the solution in respect to changes in system parameters. We introduced a shift-based
algorithm which enhances the basic algorithm by shifting some of the jobs and inserting
more jobs to improve the solution quality. Finally, we included non-homogenous family
of jobs, and used Ideal Production Targets in the IPQ-based algorithm.

We modeled wide range of test problems with two different network structures;
namely, Common Grid Points Network (CGPN) and Individual Job Grid Points Net-
work (IJGPN). In CGPN, all the jobs use the time grid points that are common for all
of them. In IJGPN, each job has its own time grid points. We compared the effectiveness
and the efficiency of the proposed algorithms in terms of the quality of results and the
running time to generate schedules. As a benchmark, we also included the results of a
simple exhaustive search (OPT) algorithm in our analysis.

Our study shows the proposed algorithms substantially outperform the OPT algorithm
in terms of the efficiency of producing results in terms of the required time for generating
any schedules. Both CGPN and IJGPN-based algorithms produce optimal results when
the temporal parameters of the system are integer multiples of the basic time grid. These
algorithms produce results that are close to optimal solution where the basic time grid is
small under a broad variety of scenarios. CGPN-based algorithm shows a slight advantage
in the efficiency test over IJGPN-based algorithm, but its quality of results deteriorate
rapidly with the increase of the basic time grid length. Therefore, among the tested
methods, IJGPN-based algorithm appears to be a reliable method with acceptable levels
of efficiency and effectiveness.

Several directions for future research are apparent from this study. Firstly, in this
study the basic time grid is considered to be the same and constant for all the jobs.
Studies can be conducted on situations in which dynamic time grids are used for jobs.
In these cases, the basic time grid can be adjusted for each job according to the schedul-
ing needs. Secondly, this research could be extended to address both homogenous and
non-homogenous multiple machine environments. Thirdly, we developed our approaches
based on network flow methods. Further studies could be done on using mathemati-
cal programming methods (e.g. Mixed Integer Programming), and developing efficient
heuristics to generate schedulers. Finally, similar approaches could be developed to ad-
dress the scheduling challenges in service industries. The efficiency and effectiveness of
these approaches should be further studied under different scenarios.

References

[1] Ahmadi, R.H., and Bagchi, U., 1992. Minimizing job idleness in deadline con-
strained environments. Operations Research, 40(5), 972-985.

[2] Allahverdi, and A., Gupta, JND., Aldowaisan, T., 1999. A review of scheduling
research involving setup considerations. OMEGA- International Journal of Man-
agement Science, 27(2), 219-239.

[3] Allahverdi, A., Ng, C.T., Cheng, TCE., and Kovalyov, MY., 2008. A survey of
scheduling problems with setup times or costs. European Journal of Operationl
Research, 187 (3), 985-1032.

[4] Asano, M., and Ohta, H., 1996. Single machine scheduling using dominance relation

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

20 REFERENCES

to minimize earliness subject to ready and due times. International Journal of
Production Economics, 44 (1-2), 35-43.

[5] Ascheuer, N., and Fischetti, M., Grötschel M., 2001. Solving the asymmetric trav-
eling salesman problem with time windows by branch-and-cut. Mathematical Pro-
gramming Series A, 90(3), 475-506.

[6] Belouadah, H., Posner, ME., and Potts, CN., 1992. Scheduling with release dates
on a single machine to minimize total weighted completion time. Discrete Applied
Mathematics, 36(3), 213-231.

[7] Bianco, L., and Ricciardelli, S., 1982. Scheduling of a single machine to minimize
total weighted completion time subject to release times. Naval Research Logistics
Quarterly, 29(1), 151-167.

[8] Carlton, WB., and Barnes, JW., 1996. Solving the traveling-salesman problem with
time windows using tabu search. IIE Transactions, 28(8), 617-629.

[9] Chand, S., and Schneeberger, H., 1988. Single machine scheduling to minimize
weighted earliness subject to no tardy jobs. European Journal of Operational Re-
search, 34(2), 221-230.

[10] Dumas, Y., Desrosiers, J., Gelinas, E., and Solomon, MM., 1995. An optimal algo-
rithm for the traveling salesman problem with time windows. Operations Research,
43(2), 367-371.

[11] Garey, MR., and Johnson, DS., 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, San Francisco, CA.

[12] Gendreau, M., Hertz, A., Laporte, G., and Stan, M., 1998. A generalized inser-
tion heuristic for the traveling salesman problem with time windows. Operations
Research, 46(3), 330-335.

[13] Gélinas, S., and Soumis, F., 1997. A dynamic programming algorithm for single
machine scheduling with ready times. Annals of Operations Research, 69(10), 135-
156.

[14] Golumbic, M., 1980. Algorithmic, Graph Theory and Perfect Graphs. Academic
Press, New York.

[15] Hariri, AMA., and Potts, CN., 1983. Algorithm for single machine sequencing with
release dates to minimize total weighted completion time. Discrete Applied Math-
ematics, 5(1), 99-109.

[16] Hsiao, J.Y., Tang, C.Y., and Chang, R.S., 1992. An efficient algorithm for finding
a maximum weight 2-independent set on Interval Graphs. Information Processing
Letters, 43(5), 229-235.

[17] Jula, P., and Leachman, R.C., 2008. Coordinating decentralized local schedulers
in complex supply chain manufacturing. Annals of Operations Research, 161(1),
123-147.

[18] Jula, P., and Leachman, R.C., 2010. Coordinated multi stage scheduling of parallel
batch processing machines under multi resource constraints. Operations Research,
158(4), 933-947.

[19] Kedad-Sidhoum, S., and Sourd, F., 2010. Fast neighborhood search for the single
machine earliness-tardiness scheduling problem. Computers & Operations Research,
37(8), 1464-1471.

[20] Leachman, R.C., Kang, J., and Lin.,V., 2002. SLIM: short cycle time and low
inventory in manufacturing at samsung electronics. Interfaces, 32(1), 61-77.

[21] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., 1977. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1, 343-362.

[22] Li, X.P., Wang, Q., and Wu, C., 2008. Heuristic for no-wait flow shops with

October 13, 2010 20:34 International Journal of Production Research Pjula˙IJPR˙Oct2010˙2

REFERENCES 21

makespan minimization. International Journal of Production Research, 46(9), 2519-
2530.

[23] Pan, Y., and Shi, L., 2005. Dual constrained single machine sequencing to minimize
total weighted completion time. IEEE Transactions on Automation Science and
Engineering, 2(4), 344-357.

[24] Posner, M., 1985. Minimizing weighted completion times with deadlines. Operations
Research, 33(3), 562-574.

[25] Potts, CN., and Wassenhove, LN., 1983. Algorithm for single machine sequencing
with deadlines to minimize total weighted completion time. European Journal of
Operational Research, 12(4), 379-387.

[26] Ruiz, R., and Allahverdi, A., 2009. New heuristics for no-wait flow shops with a
linear combination of makespan and maximum lateness. International Journal of
Production Research, 47(20), 5717-5738.

[27] Smith, WE., 1956. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3(1-2), 59-66.

[28] Sourd, F., 2006. Dynasearch for the earliness-tardiness scheduling problem with
release dates and setup constraints. Operations Research Letters, 34 (5), 591-598.

[29] Zhu, XY., and Wilhelm, WE., 2006. Scheduling and lot sizing with sequence-
dependent setup: A literature review Source. IIE Transactions, 38(11), 987-1007.

