
Vertex ordering with precedence constraints

Jeff Kinne1, Akbar Rafiey2, Arash Rafiey1, and Mohammad Sorkhpar1

1 Math and Computer Science, Indiana State University, Indiana, USA,
jkinne@cs.indstate.edu, arash.rafiey@indstate.edu,

msorkhpar@sycamores.indstate.edu
2 University of California San Diego, CA, USA arafiey@ucsd.edu

Abstract. We study bipartite graph ordering problem, which arises in
various domains such as production management, bioinformatics, and job
scheduling with precedence constraints. In the bipartite vertex ordering
problem, we are given a bipartite graph H = (B,S,E) where each vertex
in B has a cost and each vertex in S has a profit. The goal is to find a
minimum K together with an ordering < of the vertices of H, so that
i < j whenever i ∈ B is adjacent to j ∈ S. Moreover, at each sub-
order the difference between the costs and profits of the vertices in the
sub-order does not exceed K.
The bipartite ordering problem is NP-complete when the weights are
one, and the bipartite graph H is a bipartite circle graph. This restricted
version was used in the study of the secondary structure of RNA in [11].
Thus, we seek exact algorithms for solving the bipartite ordering prob-
lem in classes with simpler structures than bipartite circle graphs. We
give non-trivial polynomial time algorithms for finding the optimal solu-
tions for bipartite permutation graphs, bipartite trivially perfect graphs,
bipartite cographs, and trees. There are still several classes of bipartite
graphs for which the ordering problem could be polynomial, such as bi-
partite interval graphs, bipartite convex graphs, bipartite chordal graphs,
etc.
In addition, we formulate the problem as a linear programming (LP)
model and conduct experiments on random instances. We did not find
any example with an integrality gap of two or more when limited to
bipartite circle graphs with unit weights. No example with an integral-
ity gap of more than 5/2 was found for arbitrary bipartite graphs with
random weights. It would be interesting to investigate the possibility of
designing a constant approximation algorithm for this problem.

Keywords: Vertex ordering · Bipartite graph classes· Precedence con-
straints · Energy barrier

1 Introduction and Problem Definition

In this paper, we introduce the bipartite graph ordering problem, motivated by
a studying energy barrier problem for transitioning from one DNA secondary
structure (one folding) to another secondary DNA structure (with the same
sequence and different folding) [14].

2 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

The authors of [11] looked at the energy barrier problem as a combinatorial
problem on bipartite graphs, and they proved that the problem is NP-complete
even on circle bipartite graphs 3 where the input weights are one.

Although the energy barrier problem is NP-complete, several algorithms have
been developed to solve it. In [6, 7] heuristic methods were given. In [17, 18],
the authors have focused on exact algorithms that take exponential time to
solve the problem. The running time of the algorithm in [18] is nO(K), where
K is the minimum energy required for this transformation. The worst-case time
complexity of the algorithm in [17] is O(|H|2|H|), where |H| is the Hamming
distance between the two input structures.

The bipartite ordering problem can be viewed as a variation of job schedul-
ing problems with precedence constraints. The goal of our problem is to find the
minimum initial budget required so that the vertices of the given bipartite graph
are ordered, respecting the precedence and non-negative budget constraints. Job
scheduling problems with precedence constraints have received much attention
in theoretical computer science and applied mathematics due to their real-world
applications in supply chain and production management. The aim of schedul-
ing problems with precedence constraints is to order the jobs while respecting
the precedence constraint. The objective function, however, can be different for
different scenarios. Most of the work on job scheduling with precedence con-
straints has focused on minimizing the weighted completion time of the jobs in
the single-processor or multi-processor setting [1, 2, 13, 19]. The general problem
of finding an ordering of the jobs to schedule that respects the precedence con-
straints and minimizes the weighted completion time, or cost is NP-complete.
Therefore, some approximation algorithms and the hardness of approximation
results have been studied to solve the scheduling problem with precedence con-
straints [1, 2, 19]. There are also some special classes of scheduling problems with
precedence constraints that one can find an exact solution in polynomial time
[3, 10].

Our results : In this work, we develop algorithms for some special graph
classes; trivially perfect bipartite graphs, bipartite cographs, and bipartite per-
mutation graphs; that admit polynomial-time exact solutions for the bipartite
graph ordering problem.

We briefly mention that these classes of bipartite graphs have been consid-
ered in other optimization problems. Trivially perfect bipartite graphs play an
important role in studying the list homomorphism problem. The authors of [5]
showed that the list homomorphism problem could be solved in logarithmic space
for these bipartite graphs. They were also considered in the fixed parametrized
version of the list homomorphism problem in [4]. The subclass of trivially perfect
bipartite graphs called laminar family bipartite graphs was considered in [15] to

3

A circle bipartite graph can be represented as two sets A,B where the vertices
in A are a set of non-crossing arcs on a real line and the vertices in B are a set
of non-crossing arcs from a real line; there is an edge between a vertex in A and a
vertex in B if their arcs cross.

Vertex ordering with precedence constraints 3

obtain a polynomial time approximation scheme (PTAS) for special instances
of a job scheduling problem. Each problem instance in [15] is a bipartite graph
H = (J,M,E) where J is a set of jobs, and M is a set of machines. For every pair
of jobs u, v ∈ J , the set of machines that can process u, v are either disjoint or
one is a subset of the other. Bipartite permutation graphs, also known as proper
interval bipartite graphs are of interest in graph homomorphism problems [9],
and in energy production applications where resources (in our case B vertices)
can be assigned (bought) and used (sold) within some successive time steps [12].
There are recognition algorithms for bipartite permutation graphs [9, 16].

1.1 Problem Definition

We are given a bipartite graph H = (B,S,E), where B∪S is the set of vertices,
and E is the set of edges, a subset of B × S. Each vertex u ∈ B has a negative
cost pu, and each vertex v ∈ S has a positive cost pv. The goal of the bipartite
graph ordering problem for H is to find a minimum value bg(H) and an ordering
v1 < v2 < · · · < vn of the vertices of H that satisfies:

– Precedence constraints: if (vi, vj) ∈ E, with vi ∈ B and vj ∈ S then vi < vj .
– Budget constraints: for every sub-order of the vertices v1 < v2 < · · · < vr,

r < |B ∪ S|, we have bg(H) +
∑k=r

k=1 pvk ≥ 0.

We often use the term process first (process next) for a subset of vertices of H,
and we mean order them before (after) some other vertices of H in the final total
ordering. Throughout the paper we denote the input instance by H = (B,S,E)
and we assume the cost of vertices in B are negative and the costs of vertices
in S are positive. Figure 1 describes an example of the problem when the costs
pv = 1, v ∈ S and pu = −1, u ∈ B.

a

b

1

2

3 c

2

1

0

1
2 3

c
ba

budget3

2

b

1

a

c

Fig. 1. The left graph is a bipartite circle graph with B = {1, 2, 3}, and S = {a, b, c}.
Ordering 3, 2, b, 1, a, c and bg(H) = 2 give an optimal solution when the weights are 1
and −1.

The bipartite graph ordering problem is a natural variation of scheduling
problems with precedence constraints. It can be used to model the purchase of
supplies and production of goods when purchasing in bulk. Another way to view
the problem is that the items in B are training sessions that employees must
complete before employees (vertices in S) can begin to work.

4 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

No bound on the value of bg(G) when the weights are one . In what follows,
we introduce a class of bipartite graphs G with maximum degree at most

√
|G|

(|G| number of vertices) while bg(G) is greater than |G|/2. Let P be a projective
plane of order p2+p+1 with p prime. The projective plane of order n = p2+p+1
consists of n lines, each consisting of precisely p+ 1 points, and n points which
each are intersected by precisely p+1 lines. We construct a bipartite graph with
each vertex in B corresponding to a line from the projective plane, each vertex in
S corresponding to a point from the projective plane and a connection from b ∈ B
to s ∈ S if the point corresponding to s is contained in the line corresponding
to B. Vertices in B are given weight -1, and vertices in S are given weight 1.
Note that the degree of each vertex in B is p + 1. One can observe that the
neighborhood of every set of p+1 vertices in S is at least p2−

(
p
2

)
. Therefore, to

process the first p+1 vertices in S we need to process their neighborhood which
decreases the budget by at least p2 −

(
p
2

)
+ p > n/2; implying that bg(G) > n/2.

1.2 Warm-up (simple cases)

In this subsection, we consider simple instances of the problem. This gives a
better understanding of the problem and its difficulty. We provide this section
to assist the reader in developing an intuition for the problem.

Let H = (B,S,E) be a bipartite graph, and let X be a subset of vertices in
H. ∥X∥ refers to the mass of set X defined by

∑
x∈X |px|, where px is the cost

of vertex x. We often consider X to be entirely in B or entirely in S.

Proposition 1. Let H = (B,S,E) be an instance of the bipartite ordering prob-
lem where H is a disjoint union of bicliques (bipartite cliques), and random
weights. Then computing bg(H) is a polynomial-time task.

Proof. First, we note that if H is a biclique, then bg(H) = ∥B∥. Now we consider
the case where our graph is a disjoint union of bicliques H1, H2, ...,Hm where
each Hi = (Bi, Si, Ei) is a biclique. We start with value K =

∑j=m
j=1 ∥Bj∥ as

initial budget. Intuition suggests that we should first process those Hi with
∥Si∥ ≥ ∥Bi∥, which we call positive sets. If multiple positive sets exist, we
process the Hi with minimum ∥Bi∥ and increase K by ∥Si∥−∥Bi∥. Then we are
left with bicliques Hi = (Bi, Si) where ∥Bi∥ > ∥Si∥, which we call negative set.

In processing the remaining negative sets, the budget steadily goes down.
As we shall see momentarily, we should process the Hi with the largest ∥Si∥
first and decrease K by ∥Si∥− ∥Bi∥. Suppose on the contrary that ∥Si∥ > ∥Sj∥
but an optimal strategy opt processes Hj right before Hi. If K is the budget
before this step we first have that K − ∥Bj∥+ ∥Sj∥ ≥ ∥Bi∥ because otherwise,
there would not be sufficient budget after processing Hj to process Hi. Since we
assumed that ∥Si∥ > ∥Sj∥ we have K−∥Bi∥+∥Si∥ ≥ ∥Bj∥. Thus, we could first
process Hi and then Hj . We have thus given a method to compute an optimal
strategy for a disjoint union of bicliques: first process positive sets in decreasing
order of ∥Bi∥, and then process negative bicliques in decreasing order of ∥Si∥.
Suppose during this process K ′ is the minimum value of the current budget.
Thus, bg(H) =

∑j=m
j=1 ∥Bj∥ −K ′. ⊓⊔

Vertex ordering with precedence constraints 5

Notice that when bipartite graph H consists of disjoint paths each of length
4 (path P5) together with random weights, the approach in Proposition 1 does
not work, giving some indication of the difficulty of the problem.

Next, we assume the input graph is a tree, and the costs are pv = 1, v ∈ S
and pu = −1, u ∈ B.

Proposition 2. Let T = (B,S,E) be a tree with weights one. Then bg(T) =
∥B∥ − ∥S∥+ 1 and finding an optimal ordering is a polynomial time task.

Proof. Note that any leaf has a single neighbor (or none if it is an isolated
vertex). We can thus immediately process any leaf j ∈ S by processing its
parent in the tree and then processing j. This requires an initial budget of only
1. After processing all leaves in S, we are left with a forest where all leaves are in
B. We can first remove from consideration any disconnected vertices in B (these
can, without loss of generality, be processed last). We are left with a forest H ′.
We next take a vertex j1 ∈ S (which is not a leaf because all leaves in S have
already been processed) and process all of its neighbors. After processing j1 we
return 1 unit to the budget. Since H ′ is a forest, the neighborhood of j1 has
an intersection at most 1 with the neighborhood of any other sold vertex in S.
Because we have already processed all leaves in S, we know that only j1 can be
processed after processing its neighbors.

After processing j1, we may be left with some leaves in S. If so, we deal with
these as above. We note that if removing the neighborhood of j1 does create any
leaves in S, then each of these has at least one vertex in B that is its neighbor
and is not the neighbor of any of the other leaves in S. When no leaves remain,
we pick a vertex j2 ∈ S and deal with it as we did j1.

This process is repeated until all of H ′ is processed. We note that after
initially dealing with all leaves in S, we gain at most a single leaf in S at a time.
That is, the budget initially increases as we process vertices in S and process
their parents in the tree, and then the budget goes down progressively, only ever
temporarily going up by a single unit each time a vertex in S is processed. Note
that the budget initially increases, and then once it is decreasing only a single
vertex in S is processed at a time. This implies that the budget required for our
strategy is ∥B∥−∥S∥+1, the best possible budget for T with weights 1 and −1.

2 Definitions and Concepts

In this section, we define key terms and concepts that are relevant to algorithms
solving the bipartite graph ordering problem.

Let H = (B,S,E) be a bipartite graph. For a subset, I ⊆ B, let N∗(I) be
the set of all vertices in S whose entire neighborhood lies in I. For example, in
Figure 2, N∗(J) = F .

Definition 1 (Prime set). We say a set I ⊆ B is prime if there exists set
X ⊂ S, where N(X) = I and there is no X ′ with N(X ′) ⊂ I. Equivalently, I is
prime if N∗(I) is non-empty and for every I ′ ⊂ I , N∗(I ′) is empty.

6 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

In Figure 2, J and I are primes, but I ∪ I1 is not prime since I1 ⊂ I ∪ I1, and
N∗(I1) = O ̸= ∅. Other examples for prime sets in Figure 2 are J1 ∪ J2, J , I,
I1 with N∗(J1 ∪ J2) = D, N∗(J) = F , N∗(I) = L, and N∗(I1) = Q. Note that
the bipartite graph induced by a prime set I and N∗(I) is a bipartite clique. For
X ⊂ B, let H[X ∪N∗(X)] be the induced subgraph of H by X ∪N∗(X).

Definition 2 (Positive/Negative set). A set I ⊆ B is called positive if
∥I∥ ≤ ∥N∗(I)∥ and it is negative if ∥I∥ > ∥N∗(I)∥.

Definition 3 (Positive minimal set). A set I ⊆ B is called positive minimal
if I is positive, and for every other positive subset I ′ of I we have bg(H[I ′ ∪
N∗(I ′)]) ≥ bg(H[I ∪N∗(I)]).

For the given graph in Figure 2, I1 is the only positive minimal set where
N∗(I1) = O contains 7 vertices. Note that, in general, there can be more than
one positive minimal set. Positive minimal sets are key in algorithms solving the
general case of bipartite graph ordering because these are precisely the sets that
we can process first, as can be seen from Lemma 2. In the graph of Figure 2, the
positive set I1 is the first to be processed.

J1 I 1

D E F

J J2 I

L

71

6

P Q

5

8 9

12

8

12

11

12

Fig. 2. Each bold line shows a complete connection, i.e. the induced sub-graph by
I ∪ L is a biclique. The numbers in the boxes are the number of vertices. The
sets J1, J2, J, I, I1 are the vertices B, with each vertex having weight -1. The sets
D,E, F, L, P,O are the vertices in S, with each vertex having weight 1.

Fixing an order for B in instance H = (B,S,E): Let ≺ be an arbitrary order of
the vertices in B. We order the positive minimal subsets of B, in the lexicographic
order ≺L. This means for two sets A1 ⊂ B and A2 ⊆ B, A1 ≺L A2 (A1 is before
A2) if the smallest element of A1 (according to ≺) say a1 is before the smallest
element A2, say a2. If a1 = a2 then A1 ≺L A2 if A1 \ {a1} ≺L A2 \ {a2}.

Definition 4 (Closure). For I ⊆ B of instance H = (B,S,E), let cℓ(I) =
∪r
i=1Ii ∪ I where each Ii ⊆ B, 1 ≤ i ≤ r is the lexicographically first positive

minimal subset in Hi = H \ (∪i−1
j=0Ij ∪N∗(∪i−1

j=0Ij)) (I0 = I) such that in Hi we

have bg(Ii) ≤ bg(H)−∪i−1
j=0∥Ij∥+∪i−1

j=0∥N∗(Ij)∥. Here r is the number of times
the process of ordering a positive minimal set can be repeated after I.

Vertex ordering with precedence constraints 7

Note that cℓ(I) could be only I, in this case r = 0. For instance, consider
Figure 2. In the graph induced by {J, J1, J2, I,D,E, F, L} we have cℓ(J) = J∪J1.

In what follows, we define trivially perfect bipartite graphs, bipartite cographs,
and bipartite permutation graphs. We discuss the key properties that are used
in our algorithm for solving the bipartite graph ordering problem on these graph
classes.

Definition 5 (Trivially perfect bipartite graph). A bipartite graph H =
(B,S,E) is called trivially perfect if it can be constructed using the follow-
ing operations. If H1 and H2 are trivially perfect bipartite graphs, then the
disjoint union of H1 and H2 is trivially perfect. If H1 = (B1, S1, E1) and
H2 = (B2, S2, E2) are trivially perfect bipartite graphs then by joining every ver-
tex in S1 to every vertex in B2, the resulting bipartite graph is trivially perfect.
Notice that a bipartite graph with one vertex is trivially perfect.

Bipartite graph H is trivially perfect if and only if it does not contain any of
the following as an induced sub-graph: C6, P6 [5].

Definition 6 (Bipartite cograph). A bipartite graph H = (B,S,E) is called
cograph if it can be constructed using the following operations. If H1 and H2 are
bipartite cographs then the disjoint union of H1 and H2 is a bipartite cograph. If
H1 = (B1, S1, E1) and H2 = (B2, S2, E2) are bipartite cographs, their complete
join—where every S1 is joined to every vertex in B2 and every vertex in B1 is
joined to every vertex in S2—is a cograph. A bipartite graph with one vertex is
a cograph.

The bipartite cographs studied in [8], and in terms of forbidden obstruction
characterization, H is a bipartite cograph if and only if it does not have any of
the following graphs depicted in Figure 3 as an induced sub-graph.

P7 Star(1, 2, 3) Sun− (4)

Fig. 3. Forbidden constructions for bipartite cographs.

An example of each type of graph is given in Figure 4. In the left figure
(trivially perfect) I = {I1, I2} and J = {I2, I3} are prime sets. On the right figure

8 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

(bipartite cograph) prime sets are R1 = {J1, J2, J3}, R2 = {J1, J2, J4}, R3 =
{J3, J4, J1}, R4 = {J3, J4, J2} are prime sets.

1I 1J 2J 3J 4J

1P 2P 3P 4P

2I 3I

P Q

Fig. 4. Each bold line shows a complete connection, i.e. the induced sub-graph by
I1 ∪ P is a biclique (complete bipartite graph)

Definition 7 (Bipartite permutation graph). A bipartite graph H = (B,S,E)
is called permutation graph (proper interval bipartite graph) if there exists an
ordering b1, b2, . . . , bp of the vertices in B, and an ordering s1, s2, . . . , sq of the
vertices in S such that if sibj and si′bj′ are edges of H and j′ < j and i < i′

then sibj′ , si′bj ∈ E(H). This ordering is called min-max ordering [9].

3 Polynomial Time Cases

We mention the following lemma which is correct for solving the general case of
bipartite graphs. Therefore, identifying the prime subsets of B, would lead us to
an optimal solution according to the following lemma.

Lemma 1. Let H = (B,S,E) be a bipartite graph without isolated vertices.
Then, there is an optimal strategy to compute bg(H) starting by a prime set.

Proof. Let u1, u2, . . . , un be an optimal ordering that does not start with a prime
set. Suppose ui, 2 ≤ i ≤ n, is the first vertex in S. Let M = {u1, u2, . . . , ui−1}.
Let I ⊆ M be the smallest set with N∗(I) ̸= ∅. Note that such I exists since all
the adjacent vertices to ui are among vertices in M . Observe that changing the
processing order on vertices in M does not harm optimality. Therefore, we can
modify the order, by placing the vertices in I first, without changing the budget.
In addition, we can order N∗(I) immediately after the vertices in I.

We continue this section by two lemmas about the positive minimal subsets
which are used in designing our polynomial time algorithms, and they can also
be used in designing a heuristic.

Lemma 2. Let H = (B,S,E) be a bipartite graph that can be processed with
bg(H) = K. If H contains a positive minimal set I with bg(I) ≤ K then there
is a strategy for H with budget K that begins by processing a positive minimal
subset of H.

Vertex ordering with precedence constraints 9

Lemma 3. Suppose that I+ is a positive subset with bg(H[I+ ∪N∗(I+)]) > K
and I− is a negative subset where bg(H[I− ∪N∗(I−)]) ≤ K and I+ ∩ I− ̸= ∅. If
bg(H[I+ ∪ I− ∪N∗(I+ ∪ I−)]) ≤ K then I+ ∪ I− forms a positive subset.

3.1 Polynomial Time Algorithm for Trivially Perfect Bipartite
graph, Bipartite cographs, and Bipartite Permutation Graphs

We continue this section by designing algorithms to solve the bipartite graph
ordering for Trivially perfect bipartite graphs and bipartite cograph.

Algorithm 1 BudgetTriviallyPerfect (H,K)

1: Input: Trivially perfect bipartite graph H = (B,S,E), integer K, and decompo-
sition tree T for H

2: Output: ”True” if we can process H with budget at most K, otherwise ”False”.
3: if S = ∅ and K ≥ 0 then return True

4: if H is a bipartite clique and ∥B∥ ≤ K then process H by ordering vertices in B
first and then ordering vertices in S after and return True

5: if H is constructed by join operation between H1 = (B1, S1) and H2 = (B2, S2)
then

▷ bg(H1), bg(H2) already computed and B1 and S2 induce a bipartite clique.
6: if bg(H1) > K then return False;
7: else if bg(H2) > K − ∥B1∥+ ∥S1∥ then return False;
8: else first process H1 then process H2 and return True,

9: if H is constructed by union of H1 and H2 then
10: return Combine(H1, H2,K)

Our algorithm to solve bg(H) for trivially perfect bipartite graphs and bi-
partite cographs centers around constructing H as in Definition 5. We view this
construction as a tree of operations that are performed to build up the final
bipartite graph, and where the leaves of the tree of operations are bicliques. If
H is not connected, then the root operation in the tree is a disjoint union, and
each of its connected components is a trivially perfect bipartite graph (respec-
tively, bipartite cograph). If H is connected, then the root operation is a join. It
is easy to construct a decomposition tree for a given trivially perfect bipartite
graph. We traverse the decomposition tree in a bottom-up manner. Algorithm
1, takes the input bipartite graph H with weights and a decomposition tree for
H = (B,S,E), together with integer K, and it returns yes together with an or-
dering if bg(H) ≤ K. To guess the right value for bg(H), we do a binary search
between 1 and ∥B∥.

At each node of the decomposition tree, we assume the optimal budgets
for its children have been computed and stored for the graph associated with
a particular tree node. If H is constructed by union operation, it requires a
merging procedure, which is given in Algorithm 2 called Combine. Combine
takes optimal solutions of two trivially perfect (respectively co-bipartite) graphs

10 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

and return an optimal strategy for their union. We give the description of our
algorithm and prove its correctness. Recall that we assume every vertex in B
has at least one neighbor.

Algorithm 2 Combine (H1, H2,K)

1: Input: K and optimal strategies for H1 = (B1, S1, E1), H2 = (B2, S2, E2)
2: Output: ”True” if we can process H = H1 ∪H2 with budget at most K,

otherwise ”False”
3: if H1 is empty then process H2 if bg(H2) ≤ K and return True, else return False.

4: if H2 is empty then process H1 if bg(H1) ≤ K and return True, else return False.

5: while ∃ positive minimal set I in H1 ∪H2 with bg(I) ≤ K do
6: Process cℓ(I) and N∗(I).
7: if I ⊂ H1 then Set H1 \ (cℓ(I) ∪N∗(cℓ(N∗(I))
8: else Set H2 \ (cℓ(I) ∪N∗(cℓ(N∗(I)))

9: Set K ← K − ∥cℓ(I)∥+ ∥N∗(cℓ(I))∥.
10: Let J1 be the first prime set in an optimal solution for H1 and J2 be the first prime

set in optimal solution for H2.
11: if ∥J1∥ > K OR bg(H2) > K − ∥cℓ(J1)∥+ ∥N∗(cℓ(J1))∥ then
12: Process cℓ(J2) and N∗(cℓ(J2))
13: Call Combine(H1, H2 \ (cℓ(J2) ∪N∗(cℓ(J2))),K − ∥cℓ(J2)∥+ ∥N∗(cℓ(J2))∥).
14: else
15: Process cℓ(J1) and N∗(cℓ(J1))
16: Call Combine (H1 \ (cℓ(J1) ∪N∗(cℓ(J1))), H2,K − ∥cℓ(J1)∥+ ∥N∗(cℓ(J1))∥).

Theorem 1. For trivially perfect bipartite graph H with n vertices the Bud-
getTriviallyPerfect algorithm runs in O(n2) and correctly decides if H can
be processed with budget K (Algorithm 1 and Algorithm 2).

Our algorithm for computing bg(H) when H is bipartite cograph is simi-
lar to Algorithm 1. The main difference is in the way we deal with bipartite
cograph H = (B,S,E) when it is constructed from two bipartite cographs
H1 = (B1, S1, E1) and H2 = (B2, S2, E2) by join operation. Recall that in the
join operation for bipartite cographs, H[B1 ∪ S2] and H[B2 ∪ S1] are bipartite
cliques. Observe that, in this case, there are two possibilities for processing H:

– first process entire B2 then solve the problem for H1 with budget K−∥B2∥,
and at the end process S2, or

– first process entire B1 then solve the problem for H2 with budget K−∥B1∥,
and at the end process S1.

For the case when H is constructed from H1 and H2 by union operation, we
call Combine Algorithm 2. The proof of correctness is almost identical to the
proof of Theorem 1.

Theorem 2. bg(H) can be found in polynomial time for bipartite cograph H.

Vertex ordering with precedence constraints 11

Let H = (B,S, , E) be a bipartite permutation graph. Notice that by defini-
tion 7, the neighborhood of each vertex in S and B form an interval. Note that
the class of circle bipartite graphs G = (X,Y), for which obtaining the optimal
budget is NP-complete, contains the class of bipartite permutation graphs. Let
B[i, j] denote the interval of vertices bi, bi+1, . . . , bj in B. We compute the opti-
mal budget for every B[i, j]. In order to compute bg(H[B[i, j] ∪N∗(B[i, j)]) we
assume that the optimal strategy starts with some sub-interval J of B[i, j] and
it processes cℓ(J), which is indeed an interval. This is because of the property
of the min-max ordering. We are left with two disjoint instances, B1 and B2

possiblity with some vertices in S with neighbors in B1 ∪ cℓ(J) or in B2 ∪ cℓ(J).
We then argue how to combine the optimal solutions of B1 and B2 and obtain

an optimal strategy for B[i, j] \ cℓ(J). We must consider every possible prime
interval J in the range B[i, j] and take the minimum budget. For details, see
Algorithm 3.

Algorithm 3 BudgetPermutation (H,K)

1: Input: Bipartite permutation graph G = (B,S,E) with ordering < on vertices in
B,S i.e. b1 < b2 < · · · < bn, s1 < s2 < · · · < sm which is a min-max ordering

2: Output: Computing the budget for G and optimal strategy
3: for i = 1 to i = n− 1 do
4: for j = 1 to j ≤ n− i do
5: Let H ′ = (B[j, j + i], N∗(B[j, j + i]))
6: Let K′ be the minimum number s.t. Optimal-Budget(H ′,K′) is True
7: Set bg(H ′) = K′ and process H ′ be according to Optimal-Budget(H ′,K′)
8: Let Sr be the set of vertices with neighbors in both B[i, i+j], B[i+j+1, n])
9: Set Hr = H ′ ∪ Sr

10: Let K′ be the minimum number s.t. Optimal-Budget(Hr,K
′) is True

11: Set bg(Hr) = K′ and process Hr be according to Optimal-Budget(Hr,K
′)

12: Let Sl be the set of vertices with neighbors in both B[1, i− 1], B[i, j + i]
13: Set Hl = H ′ ∪ Sl

14: Let K′ be the minimum number s.t. Optimal-Budget(Hl,K
′) is True

15: Set bg(Hl) = K′ and process Hl be according to Optimal-Budget(Hl,K
′)

Theorem 3. Bipartite Ordering Problem on a bipartite permutation graph
with n vertices is solved in time O(n6 log ∥B∥).

We heavily use the min-max ordering property to find bg(H) when H =
(B,S,E) is a bipartite permutation graph. The next natural superclass of bi-
partite permutation graphs is the class of convex bipartite graphs. A bipartite
graph H is convex if the vertices are ordered in B so that the neighborhood of
each vertex in S is an interval.

Problem 1. Let H be a convex bipartite graph. Is it polynomial to decide the
optimal value of bg(H)?

12 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

1: function Optimal-Budget(H = (B,S), K)
2: Input: Bipartite permutation graph H = (B,S,E) with ordering < on vertices

in B,S
3: Output: Process H with budget at most K, otherwise ”False”
4: if S = ∅ and K ≥ 0 OR H is a bipartite clique and ∥B∥ ≤ K then process H

return True
5: if for every prime I ⊆ B, ∥I∥ > K then return False

6: while ∃ positive prime set I with bg(I) ≤ K do
7: Process cℓ(I) ∪N∗(cℓ(I)) and set H ← H \ cℓ(I) ∪N∗(cℓ(I)).
8: Set K ← K − ∥cℓ(I)∥+ ∥N∗(cℓ(I))∥
9: for every prime interval I of H do
10: Set B1 = {b1, b2, . . . , bi} and B2 = {bj , . . . , bn} where bi+1 is the first vertex

of cℓ(I) and bj−1 is the last vertex of cℓ(I) in the ordering <
11: Let Si, i = 1, 2 be the set of vertices in S that have neighbors in Bi

▷ S1 ∩ S2 = ∅
12: Let H1 = H[B1 ∪ S1] and H2 = H[B2 ∪ S2].
13: Set Flag=Combine(H1, H2,K − ∥cℓ(I)∥+ ∥N∗(cℓ(I))∥)
14: if Flag=True then
15: return Process of cℓ(I) together with process of H \ (cℓ(I)∪N∗(cℓ(I)))

by Combine Algorithm.

When the instance T = (B,S,E) is a tree with arbitrary weights. It is easy
to see that every prime and positive set form a sub-tree in T ; hence, we can
find all the positive sets in polynomial time. Moreover, once a prime set I and
N∗(I) is removed from T , the remaining becomes a forest. Suppose we have
bg(T1), bg(T2), . . . , bg(Tr), where T1, T2, . . . , Tr are disjoint sub-trees in T \ (I ∪
N∗(I)). Now we can use the Combine algorithm 2 to combine the optimal
strategy of T1 and T2 and obtain an optimal strategy for T1 ∪ T2, and then the
optimal strategy for T1 ∪ T2 ∪ T3, and eventually an optimal strategy for T and
bg(T). Therefore, we have the following proposition.

Proposition 3. Let T = (B,S,E) together with arbitrary weights be an instance
of the bipartite graph ordering problem. If T is a tree, then bg(T) can be computed
in polynomial time.

4 Linear Program Formulation of the problem

Let H = (B,S,E) together with the weight be an instance of the bipartite
ordering problem. Suppose there is an ordering < on the vertices of a given
bipartite graph H = (B,S,E) in which for every edge uv of H (u ∈ B and
v ∈ S) u is before v in <. Then we obtain a strategy for solving the budget
minimization on H and decide whether the budget would be K or smaller.
With a given value K for bg(H), we translate this ordering process into a linear
program as follows. For every pair of vertices u, v ∈ B ∪ S, we define variable
0 ≤ Xu,v ≤ 1. We interpret Xu,v = 1 (in integral solution) as placing u before

Vertex ordering with precedence constraints 13

v in a total ordering. The linear program defines as follows. Minimize K such
that:

∀u ∈ B, v ∈ S, with uv ∈ E, Xu,v = 1

∀u, v ∈ B ∪ S, u ̸= v, Xu,v +Xv,u = 1

∀u, v, w ∈ B ∪ S, u ̸= v, Xu,v +Xv,w +Xw,u ≥ 1

∀y ∈ B ∪ S, K +
∑
u∈B

puXu,y +
∑
v∈S

pvXv,y ≥ 0

K ≥ min
v∈S

{
∑

u∈N(v)

|pu|}

∀u, v ∈ S if N(u) ⊂ N(v) then Xu,v = 1

∀u, v ∈ B, if N(u) ⊂ N(v) then Xv,u = 1

∀u, v, w ∈ B ∪ S with w ̸∈ {u, v} if N(u) = N(v) then Xu,w = Xv,w

There is a one-to-one correspondence between the optimal solutions of the
bg(H) and integral solutions of the above LP. The following table shows the
result of our experiment. We have run the LP on random graphs and integer LP
on those samples (each having 50 vertices) and taken the maximum ratio of the
integral LP by optimal fractional LP.

Graph type Circle
bipartite
graph

Circle
bipartite
graph
with
weight

General
bipartite
graph

General
bipartite
graph
with
weight

Max Ratio 1.8181818182.8139494332.1795039454.311947725
Number of samples 1943 677 1687 932

We pose the following problem.

Problem 2. Does the bipartite ordering problem admit a constant factor approx-
imation ?

Conclusion and Future works The bipartite ordering problem has several
applications, there are several open problems which leaves the door open for
future research.

References

1. Christoph Ambühl, Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson.
On the approximability of single-machine scheduling with precedence constraints.
Mathematics of Operations Research, pages 653–669, 2011.

2. Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability
results for sparsest cut, optimal linear arrangement, and precedence constrained
scheduling. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07), pages 329–337. IEEE, 2007.

14 Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

3. André Berger, Alexander Grigoriev, Pinar Heggernes, and Ruben van der Zwaan.
Scheduling unit-length jobs with precedence constraints of small height. Oper. Res.
Lett., 42(2):166–172, 2014.

4. Rajesh Chitnis, László Egri, and Dániel Marx. List h-coloring a graph by removing
few vertices. In European Symposium on Algorithms, pages 313–324. Springer,
2013.

5. László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The complexity of
the list homomorphism problem for graphs. Theory of Computing Systems, pages
143–178, 2012.

6. Christoph Flamm, Ivo L Hofacker, Sebastian Maurer-Stroh, Peter F Stadler, and
Martin Zehl. Design of multistable rna molecules. Rna, pages 254–265, 2001.

7. Michael Geis, Christoph Flamm, Michael T Wolfinger, Andrea Tanzer, Ivo L
Hofacker, Martin Middendorf, Christian Mandl, Peter F Stadler, and Caroline
Thurner. Folding kinetics of large rnas. Journal of molecular biology, pages 160–
173, 2008.

8. Vassilis Giakoumakis and Jean-Marie Vanherpe. Bi-complement reducible graphs.
Advances in Applied Mathematics, pages 389–402, 1997.

9. Gregory Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for min-
imum cost graph homomorphisms. European Journal of Combinatorics, pages
900–911, 2008.

10. Berit Johannes. On the complexity of scheduling unit-time jobs with or-precedence
constraints. Oper. Res. Lett., 33(6):587–596, 2005.

11. Ján Maňuch, Chris Thachuk, Ladislav Stacho, and Anne Condon. Np-completeness
of the direct energy barrier problem without pseudoknots. In International Work-
shop on DNA-Based Computers, pages 106–115. Springer, 2009.

12. Monaldo Mastrolilli and Georgios Stamoulis. Restricted max-min fair allocations
with inclusion-free intervals. In International Computing and Combinatorics Con-
ference, pages 98–108. Springer, 2012.

13. Rolf H Möhring, Martin Skutella, and Frederik Stork. Scheduling with and/or
precedence constraints. SIAM Journal on Computing, pages 393–415, 2004.

14. Steven R Morgan and Paul G Higgs. Barrier heights between ground states in a
model of rna secondary structure. Journal of Physics A: Mathematical and General,
page 3153, 1998.

15. Gabriella Muratore, Ulrich M Schwarz, and Gerhard J Woeginger. Parallel machine
scheduling with nested job assignment restrictions. Operations Research Letters,
pages 47–50, 2010.

16. Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation
graphs. Discrete Applied Mathematics, pages 279–292, 1987.

17. Hiroki Takizawa, Junichi Iwakiri, Goro Terai, and Kiyoshi Asai. Finding the di-
rect optimal rna barrier energy and improving pathways with an arbitrary energy
model. Bioinformatics, 36:227–235, 07 2020.

18. Chris Thachuk, Ján Maňuch, Arash Rafiey, Leigh-Anne Mathieson, Ladislav Sta-
cho, and Anne Condon. An algorithm for the energy barrier problem without
pseudoknots and temporary arcs. In Biocomputing 2010, pages 108–119. World
Scientific, 2010.

19. Gerhard J Woeginger. On the approximability of average completion time schedul-
ing under precedence constraints. Discrete Applied Mathematics, pages 237–252,
2003.

