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Abstract. We study the class of bi-arc digraphs, important from two
seemingly unrelated perspectives. On the one hand, they are a broad
generalization of interval graphs and includes other generalizations of in-
terval graphs, such as co-threshold tolerance graphs and adjusted interval
digraphs. On the other hand, they are precisely the digraphs that admit
certain polymorphisms of interest in the study of constraint satisfaction
problems. These digraphs were first considered in H-coloring problems
by Woeginger et al. in 1992 [13] under the name of X-underbar digraphs.
Since then, they have appeared in many studies on graph homomorphism
and constraint satisfaction problems.
Our main result is a forbidden obstruction characterization of, and a
polynomial recognition for, the class of bi-arc digraphs.
We also show that bi-arc digraphs are precisely the digraphs that admit
a conservative semilattice polymorphism, also known as min ordering.
Moreover, we show that bi-arc digraphs are also precisely the digraphs
that admit certain other kinds of conservative polymorphisms, thus col-
lapsing these polymorphism types on the class of digraphs.
The complexity of the recognition problem for digraphs with conserva-
tive semilattice polymorphisms was an open problem. We complete the
dichotomy classification of all general relational structures for the exis-
tence of conservative semilattice polymorphisms.

Keywords: Min ordering · Polymorphisms · Graph Homomorphism ·
Interval digraphs

1 Background and Motivation

1.1 Graph Theoretic Motivation

Digraph Generalization of Interval Graphs: Part of our motivation stems
from a wish to generalize interval graphs. A graph H is an interval graph if
there is a family of intervals Iv, v ∈ V (H), such that uv ∈ E(H) if and only if
Iu ∩ Iv ̸= ∅. Interval graphs constitute one of the most important graph classes;
they admit efficient recognition algorithms, and elegant obstruction characteriza-
tions and frequently occur in applications [1, 5, 11, 12, 24]. The classical digraph
version of interval graphs [6] lacks many of these desirable attributes. A more



2 Pavol Hell, Akbar Rafiey, and Arash Rafiey

successful generalization is given in [8]: we say that H is an adjusted interval
digraph if there are two families of real intervals Iv, Jv, v ∈ V (H), where for each
v ∈ V (H) the intervals Iv, Jv have the same left endpoint, such that uv ∈ A(H)
if and only if Iu ∩ Jv ̸= ∅. Adjusted interval digraphs have many of the de-
sirable algorithmic attributes of interval graphs, including efficient recognition
algorithms and forbidden structure characterizations [8].

It is useful to view both interval graphs and adjusted interval digraphs as
being reflexive, i.e., each vertex having a loop. (This is consistent with their
definition as each Iv intersects itself, or the corresponding Jv.) The adjusted
interval digraphs appear to be the right generalization of interval graphs for re-
flexive digraphs. For general (not necessarily reflexive) digraphs, the right analog
was less clear. Another special class of digraphs is bipartite digraphs, which are
just bipartite graphs with all edges oriented from one part of the bipartition to
the other part. It turns out there is a natural generalization of interval graphs
amongst bipartite digraphs, namely the two-directional orthogonal ray digraphs
[28], which have many equivalent definitions [15, 17], and also share several of
the desirable properties of interval graphs.

One particular property that has been noticed in studying these classes of
graphs and digraphs is the notion of min ordering. An ordering < of the vertices
of digraph H is min ordering if whenever uv and u′v′ with u < u′ and v′ < v
are arcs of H then uv′ is also an arc of H. For graph H, ordering <, in min
ordering, if whenever u < v < w and uw is an edge, then uv is also an edge of
H. A reflexive graph has a min ordering if and only if it is an interval graph;
a reflexive digraph has a min ordering if and only if it is an adjusted interval
digraph, and a bipartite digraph has a min ordering if and only if it is a two-
directional orthogonal ray graph [8, 15, 17, 28]. Thus it was long believed that
min-orderable digraphs are the right overall generalization of interval graphs.
However, it was not known whether this class of digraphs could be recognized in
polynomial time, whether it has an obstruction characterization, and whether it
has any geometric meaning. Recently, two geometric representations of the class
of digraphs with a min ordering have been given in [16]. Min-orderable digraphs
are shown there to be exactly the same as signed-interval digraphs, which arise
as a natural extension of another well-studied graphs class, the complements
of so-called threshold tolerance graphs. They are also shown to be exactly the
same digraphs as bi-arc digraphs, which are defined as a digraph analogue of the
previously studied class of bi-arc graphs [7]. Both these classes are defined by the
intersection or inclusion of intervals or circular arcs. Thus it remained to find
a forbidden structure characterization for, and a polynomial time recognition
algorithm of, min-orderable digraphs. This is what we accomplish in this paper,
thus contributing to the argument that min-orderable digraphs are the right
general digraph analog of interval graphs.

1.2 CSPs, Meta-question and Algebraic Motivation

Other part of our motivation stems from the study of Constraint Satisfaction
Problems (CSPs) and the so-called algebraic approach to them. A CSP involves
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deciding, given a set of variables and a set of constraints on the variables, whether
or not there is an assignment to the variables satisfying all of the constraints.

A relational structure is a tuple H = ⟨V,R1, . . . , Rs⟩ where V is a non-
empty finite set, called the universe, and each Ri is a relation of arity ri on
V . For instance, a digraph H with vertex set V (H) and arc set A(H) is a
relational structure with universe V (H) and a single binary relation A(H) i.e.,
H = ⟨V (H), A(H)⟩. A homomorphism from a relational structure G to relational
structure H is a mapping from the vertex set of G to the vertex set H that the
image of every r-tuples in G is an r-tuple in H.

The CSP can be formulated in terms of homomorphisms as follows. Given
a pair (G,H) of (similar) relational structures, decide whether or not there is a
homomorphism from the first structure to the second structure. A common way
to restrict this problem is to fix the second structure H so that each structure
H gives rise to a problem CSP(H). The most effective approach to the study of
the CSP(H) is the so-called algebraic approach that associates every H with its
polymorphisms.

A polymorphism of a structure H is defined as a finite operation f : V k → V
that is a homomorphism from Hk to H. That is for every k tuples τ1, . . . , τk from
relation Ri (of arity ri), we have (x1, x2, . . . , xri) ∈ Ri such that xj , 1 ≤ j ≤ ri
is of form xj = f(τ1[j], τ2[j], . . . , τk[j]) where τt[j], 1 ≤ t ≤ k is the j-element of
τt. A polymorphism f is conservative if each value f(x1, x2, . . . , xk) is one of the
arguments x1, x2, . . . , xk. A binary (arity two) polymorphism f : V 2 → V that
is conservative and commutative (f(x, y) = f(y, x) for all vertices x, y) is called
a CC polymorphism. Notice that by definition any binary CC polymorphism
is idempotent i.e, f(x, x) = x. If f is additionally associative then it is called a
conservative semilattice or a CSL polymorphism. That is, it satisfies the following
identities, f(f(x, y), z) = f(x, f(y, z)), and f(x, y) = f(y, x) ∈ {x, y} for all
x, y, z ∈ V .

Roughly speaking, the presence of nice enough polymorphisms leads directly
to the polynomial time tractability of CSP(H), while their absence leads to
hardness. Besides decision CSPs, polymorphisms have been used extensively for
approximating CSPs, robust satisfiability of CSPs, testing solutions (in the sense
of property testing), and the study of the Ideal Membership Problems [3, 22, 27].

An interesting question arising from these studies, is known as the meta-
question. Given a relational structure H, decide whether or not H admits a
polymorphism from a class–for various classes of polymorphisms. In many cases,
hardness results are known. One particular case, that is the study of this paper,
is deciding whether or not H admits a CSL polymorphism. The presence of
semilattice polymorphisms leads to many positive results. As an example, it is
now a classic theorem in the area that for any structure H having a semilattice
polymorphism, the problem CSP(H) is polynomial time decidable [21]. In terms
of approximation algorithms, the Minimum Cost Homomorphism problem to H
(when H is a digraph) is approximable within a constant factor if H admits
a CSL polymorphism [17, 27]. In terms of robust satisfiability, given a (1 − ε)-
satisfiable instance of CSP(H), it is easy to find a (1−O(1/ log(1/ε)))-satisfying
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assignment if H admits a semilattice polymorphism (in fact, the result holds
for width-1 CSPs). However, on the negative side, there are instances where H
admits a semilattice polymorphism and it is hard to find a (1− o(1/ log(1/ε)))-
satisfying assignment [22].

For a single binary relation, i.e., a digraph, the meta-question often turns
out to be better behaved. For instance, there are forbidden induced structure
characterizations for the existence of conservative majority [19] and conserva-
tive Maltsev [4, 19] polymorphisms in digraphs. The question of whether the
existence of conservative semilattice polymorphism is polynomial was explicitly
raised in [20]. This problem is polynomial for reflexive digraphs [8] and bipartite
digraphs [17]. In this paper, we give forbidden obstruction characterization for
digraphs admitting a conservative semilattice polymorphism. Observe that if a
digraph H admits a CSL polymorphism then the CSL polymorphism naturally
defines an ordering on the vertices of H. It turns out that a digraph admits a
CSL polymorphism if and only if it has a min ordering. Other questions about
the existence of polymorphisms of various kinds have turned out to also be in-
teresting [2, 9, 19, 25]. In particular, the existence of conservative polymorphisms
is a hereditary property (if H has a particular kind of conservative polymor-
phism, then so does any induced subgraph of H). Thus, these questions present
interesting problems in graph theory.

1.3 Our Contributions

In this paper, we study the problem of deciding if a relational structure H admits
a conservative semilattice (CSL) polymorphism. That is, we study for which
relational structures Problem 1 is polynomial time decidable and for which
ones it is NP-complete.

Problem 1.
Input: A relational structure H = ⟨V,R1, . . . , Rs⟩,
Goal: Decide if H admits a conservative semilattice (CSL) polymorphism.

Note that any unary relation R admits a CSL polymorphism. This is because
if a, b ∈ R, then applying CSL polymorphism f on a, b, would give either a or
b, and hence, R is closed under f . So the interesting cases are when the arity of
R is at least two. On the positive side, we present a polynomial time algorithm
that, given a relational structure with a single binary relation H = ⟨V,A(V )⟩
i.e., digraph, decides if H admits a CSL polymorphism.

Theorem 1 (Main Theorem). There exists a polynomial time algorithm that,
given a digraph H, decides if H admits a CSL polymorphism or not.

We also have a structural characterization of digraphs with a CSL polymorphism,
in terms of a forbidden structure we call a strong circuit. Recall that the class
of digraphs that admit a CSL polymorphism is exactly the class of digraphs
admitting a min ordering (also called bi-arc digraphs).



Bi-arc Digraphs: Recognition Algorithm and Applications 5

The class of digraphs admitting a min ordering coincides with the class of
signed-interval digraphs. We therefore have the following corollary.

Corollary 1. The class of min-orderable digraphs, bi-arc digraphs and signed-
interval digraphs can be recognized in polynomial time.

Furthermore, we show that there is quite a bit of collapse for digraph classes in
the conservative case. We will point out that the class of digraphs with a min or-
dering is included in the class of digraphs with a conservative set polymorphism,
which is included in the class of digraphs with a conservative and commutative
polymorphism (called CC polymorphism). Formally, we prove the following (see
appendix Section 11).

Theorem 2. Let H be a digraph, then H admits a CSL polymorphism if and only
if H admits a conservative set polymorphism if and only if H admits conservative
cyclic polymorphisms of all arities.

On the negative side, we prove that it is NP-complete to decide if a relational
structure H = ⟨V,R⟩ where R is a ternary relation (arity of R is three) admits
a CSL polymorphism.

Theorem 3. Deciding if a relational structure with a single ternary relation
admits a CSL polymorphism is NP-complete.

Moreover, we prove Problem 1 remains NP-complete even for two binary rela-
tions i.e., two digraphs. This leads us to the following dichotomy classification
of the complexity of Problem 1 (details are given in appendix Section 12).

Theorem 4 (Dichotomy Theorem). Deciding if a relational structure H =
⟨V,R1, . . . , Rk⟩ admits a CSL polymorphism is polynomial-time solvable if all
relations Ri are unary, except possibly one binary relation. In all other cases,
the problem is NP-complete.

2 Bi-arc digraphs and Min-orderable Digraphs

A digraph H consists of a finite vertex set V (H) and an arc set A(H), each arc
being an ordered pair of vertices. We say that uv ∈ A(H) is an arc from u to
v. Sometimes we emphasize this by saying that uv is a forward arc of H, and
also say vu is a backward arc of H. We say that u, v are adjacent in H if uv is a
forward or a backward arc of H (either uv ∈ A(H) or vu ∈ A(H)). A symmetric
arc is an arc uv ∈ A(H) such that vu ∈ A(H); thus, a symmetric arc is both a
forward arc and a backward arc.

A graph H is a symmetric digraph (the binary relation A(H) is symmetric),
where we identify each pair of opposite arcs ab, ba into one edge ab = ba.

Let C be a circle with two distinguished points N and S. A bi-arc is a pair of
arcs I, J on C such that I contains N but not S and J contains S but not N . The
following definition unites many disparate geometric representations, although
we know little about the corresponding class of digraphs.
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A weak bi-arc representation of a digraph H is a family of bi-arcs Iv, Jv, v ∈
V (H), such that ab ∈ A(H) if and only if Ia and Jb are disjoint. A digraph H is
a weak bi-arc digraph if it admits a weak bi-arc representation.

As mentioned above, we do not know which digraphs admit a weak bi-arc
representation and believe they may be interesting. However, several well-studied
graph and digraph classes are characterized by the existence of special kinds of
weak bi-arc representations. A weak bi-arc representation is consistent if the
clockwise end of Ia precedes, in the clockwise order on C, the clockwise end of
Ib if and only if the clockwise end of Ja precedes (in the clockwise order) the
clockwise end of Jb. A consistent weak bi-arc representation will be called simply
a bi-arc representation, and a digraph admitting a bi-arc representation will be
called a bi-arc digraph.

It turns out bi-arc digraphs are precisely the digraphs that admit a min
ordering [7, 16] (see Figure 1, for min ordering definition see page 2). We add
further statements, namely, we prove the following theorem.

N

S

Ia

Ib

Ja

Jb
a b

Fig. 1. A min ordering a < b for digraph H and its bi-arc representation

Theorem 5. Let H be a bi-arc digraph. Then H admits a conservative semi-
lattice polymorphism, admits cyclic polymorphisms of all arities, and admits a
conservative set polymorphism.

A set polymorphism of H is a mapping f of the non-empty subsets of V (H)
to V (H), such that f(S)f(T ) ∈ A(H) whenever S, T are non-empty subsets of
V (H) with the property that for each s ∈ S there is a t ∈ T with st ∈ A(H) and
also for every t ∈ T there is an s ∈ S with st ∈ A(H). It is easy to see, cf. [10],
that H has a conservative set polymorphism if and only if it has conservative
totally symmetric (CTS) polymorphisms of all arities k. A polymorphism f of
arity k on digraph H is called cyclic if f(x1, x2, . . . , xk) = f(x2, x3, . . . , xk, x1)
for all x1, x2, . . . , xk ∈ V (H).

3 Obstructions to Min Ordering

A walk in H is a sequence P = x0, x1, . . . , xn of consecutively adjacent vertices of
H; note that a walk has a designated first and last vertex. A path P = x0, x1, . . . ,
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xn is a walk in which all xi are distinct. A walk P = x0, x1, . . . , xn is closed if
x0 = xn and a cycle if all other xi are distinct. A walk is directed if all its arcs are
forward. We define two walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to
be congruent, if they follow the same pattern of forward and backward arcs, i.e.,
xixi+1 is a forward (backward) arc if and only if yiyi+1 is a forward (backward)
arc (respectively). Suppose the walks P and Q as above are congruent. We say
an arc xiyi+1 is a faithful arc from P to Q, if it is a forward (backward) arc when
xixi+1 is a forward (backward) arc (respectively), and we say an arc yixi+1 is
a faithful arc from Q to P , if it is a forward (backward) arc when xixi+1 is a
forward (backward) arc (respectively). We say that P avoids Q if there is no
faithful arc from P to Q at all. We now introduce a basic tool for this paper.

Definition 1 (The pair digraph H+). The vertices of H+ are all ordered
pairs (x, y) of distinct vertices of H. There is an arc from pair (x, y) to pair
(x′, y′) if and only if

1. xx′, yy′ ∈ A(H) but xy′ ̸∈ A(H), or
2. x′x, y′y ∈ A(H) but y′x ̸∈ A(H).

To avoid confusion with the vertices of H, we will refer to the vertices of
H+ as pairs. Arcs (x, y)(x′, y′) ∈ A(H+) arising from case (1) are called positive
arcs, and those arising from case (2) are called negative arcs.

Note that in H+ we have an arc from (x, y) to (x′, y′) if and only if there is
an arc from (y′, x′) to (y, x). We call this the skew property of H+, and call the
pair (y, x) the dual of the pair (x, y). From the skew property, (x, y)(x′, y′) is a
positive arc in H+ if and only if (y′, x′)(y, x) is a negative arc. Note that when
(x, y)(x′, y′) is an arc of H+ then in any min ordering < of H, if x < y then
x′ < y′. More generally, if there is a directed path from (x, y) to (x′, y′) in H+,
then in any min ordering < (of H) having x < y implies that x′ < y′.

Definition 2 (Circuit, Strong Circuit). Let D be a subset of V (H+). A
circuit in D is a set of pairs (x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0) in D. A
strong circuit of H+ is a circuit in C, where C is a strongly connected component
(in short, strong component) of H+. When n = 1, and (x0, x1), (x1, x0) form a
strong circuit, then (x0, x1) is called an invertible pair.

Thus, in a strong circuit, there are directed paths (in H+) from (xi−1, xi)
to (xi, xi+1) for all i = 1, 2, . . . , n + 1, modulo n + 1. If H+ contains a strong
circuit, then H cannot have a min ordering, since x0 < x1 implies x0 < x1 <
x2 < · · · < xn < x0 (and similarly for x0 > x1) contradicting the transitivity of
<. We have proved that if a digraph H admits a min ordering, then H+ does
not contain a strong circuit. It turns out that the converse also holds.

Theorem 6. A digraph H admits a min ordering if and only if H+ does not
contain a strong circuit.

This is our main result, giving a polynomially testable characterization of
min-orderable digraphs. We provide an algorithm that outputs a min ordering
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when H+ does not have a strong circuit to prove the theorem. We can also use the
algorithm to find a min ordering if one exists by pre-processing the input digraph
to check for strong circuits. The time complexity of our algorithm is O(|A(H)|2).
Detecting a strong circuit in H+ amounts to testing, for each strong connected
component C of H+, the acyclicity of a digraph on V (H) whose arcs are the
pairs in C.
From now on, we write strong component for strongly connected component.

4 Algorithm

In this section, we introduce an algorithm to construct a min ordering < of
H, provided H+ contains no strong circuit. We first give the necessary defini-
tions and terminology in the following subsection and provide the algorithm’s
descriptions in the subsequent subsection.

4.1 Necessary Definitions

Paths and walks. A vertex u′ is said to be reachable from a vertex u in H if
there is a directed path from u to u′ in H; a set U ′ is reachable from a set U if
every vertex of U ′ is reachable from some vertex of U . Note that every vertex
is reachable from itself by a directed path of length zero. A path can also be a
graph on its own, consisting of all the vertices and arcs needed for the definition.
We note that our terms path and walk correspond to what is sometimes called
oriented path and oriented walk.

Net length and (un)balanced digraphs. The net length of a walk is the number
of forward arcs minus the number of backward arcs. A closed walk is balanced if
it has net length zero; otherwise, it is unbalanced. Note that in an unbalanced
closed walk, we may always choose a direction in which the net length is positive
(or negative). A digraph is unbalanced if it contains an unbalanced closed walk
(or, equivalently, an unbalanced cycle ); otherwise, it is balanced. It is easy to
see that a digraph is balanced if and only if it admits a labeling of vertices by
non-negative integers so that each arc goes from a vertex with a label i to a
vertex with a label i+ 1.

We now focus on properties of H+. Reachability in H+ is defined in the usual
way by the existence of directed paths in H+. We use the following notation.

Definition 3 (Reachability Notation). We write (u, v) ⇝ (u′, v′) in H+ if
(u′, v′) is reachable from (u, v) in H+, and, otherwise, we write (u, v) ̸⇝ (u′, v′)
in H+.

Definition 4 (Closure of S). Suppose S ⊆ V (H+). The closure of S, denoted
by Ŝ, is the set of all pairs in H+ that are reachable from S in H+.

Note that Ŝ contains S. We say S is closed under reachability if Ŝ = S.
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Net value of a path in H+. In H+ when we mention a path, we mean a directed
path. A (directed) path W in H+ corresponds precisely to a pair of congruent
walks P,Q in H such that P avoids Q. We occasionally write W = (P,Q) and
also denote the path W from (x, y) to (u, v) by W : (x, y)⇝ (u, v). The net value
of the path W is defined to be the net length of the walk P (or equivalently the
net length of Q). It is the difference between the number of positive and negative
arcs of W . Walk W is called symmetric if P and Q avoid each other.

(Un)balanced components in H+. A closed walk of H+ is balanced if has net
value zero, and unbalanced otherwise. A strong component of H+ is balanced
if it does not contain an unbalanced closed walk, and unbalanced otherwise. A
strong component S of H+, is balanced if every directed cycle of S has net value
zero. Finally, a pair is called balanced if it is in a balanced strong component
otherwise, it is called unbalanced.

4.2 Description of the Algorithm

We will be choosing pairs of H+ to decide the ordering. Specifically, if a pair (x, y)
of H+ is chosen, we will set x < y. Note that choosing a pair requires choosing
all pairs reachable from it. The process of choosing is different for pairs with
balanced and unbalanced strong components. However, the chosen pairs will be
closed under reachability in each case. Then all the duals of the chosen pairs will
be discarded. At any stage of the algorithm, we will have a set Vc of chosen pairs,
and a set Vd of discarded pairs; the pairs in the set R = V (H+)\(Vc∪Vd) will be
called the remaining pairs. Initially, we will have Vc = Vd = ∅, and throughout
the algorithm, we will maintain the following properties:

1. (a, b) ∈ Vc if and only if (b, a) ∈ Vd;
2. if (a, b) ∈ Vc and (a, b)(a′, b′) ∈ A(H+) then (a′, b′) ∈ Vc;
3. Vc does not contain a circuit.

Note that we will always have Vc∩Vd = ∅, and each strong component of H+ lies
entirely in one of the three sets Vc, Vd,R. Moreover, at the end of the algorithm,
the set R will be empty; this ensures that < is a total ordering. Therefore,
property (3) will then imply the following transitivity on the chosen pairs:

– if (a, b) ∈ Vc and (b, c) ∈ Vc then (a, c) ∈ Vc.

This fact, together with property (2), ensures that the chosen pairs do define a
min ordering, by setting x < y for all chosen pairs (x, y).

Algorithm 1 has two phases.
Phase One: In the first phase we reduce the problem to a balanced sub-

digraph H# of H+. We accomplish this by dealing with all the unbalanced
strong components of H+ first.

At each step, we consider an unbalanced strong component C ̸⊂ (Vc ∪ Vd)

and its dual component C ′. In Theorem 8, we prove that if Ĉ ∪ Vc contains a
circuit, then Ĉ ′ ∪ Vc does not contain a circuit. Therefore, if (Ĉ ∪ Vc) does not



10 Pavol Hell, Akbar Rafiey, and Arash Rafiey

contain a circuit, then we add Ĉ into Vc and add the dual pair of Ĉ into Vd,
update R, and proceed to the next unbalanced strong component. Otherwise,
we remove C from further consideration and add Ĉ ′ into Vc and update Vd and
R accordingly.
Phase Two: For the balanced strong components we need a different strat-

egy because of the different structural properties of balanced and unbalanced
strong components. In particular, unbalanced strong components have walks of
unbounded net value.

Now consider the induced sub-digraph H# of H+ consisting of all pairs in
the balanced strong components of H+. Thus, H# is itself balanced. (This is
true, since each closed walk lies in a strong component of H#; recall that in H+

balance refers to the equality of the number of positive and negative arcs in each
closed walk.)

We partition the vertices of H# into layers as follows. Consider an auxiliary
digraph D with V (D) = V (H#) and (a, b)(c, d) ∈ A(D) if and only if (c, d)
is reachable from (a, b) by a path in H# with negative net value. Since all
directed cycles in H# are balanced, D is acyclic. Layer 0 of H#, denoted by
L0, consists of all vertices that have out-degree zero in D. Having defined layers
L1,L2, . . . ,Lj , layer Lj+1 of H# consists of all vertices of out-degree zero in the
digraph obtained from D by removing all the vertices in layers L1,L2, . . . ,Lj .
We handle the pairs in L0,L1, . . . , consecutively, one at a time.

To proceed with the current layer Lk, k ≥ 0, we seek a vertex p ∈ V (H) such
that there exists no q′ ∈ V (H) so that (q′, p) ∈ Vc ∩ Lk, and

– there exists a q such that (p, q) ∈ R ∩ Lk and (p, q) ̸⇝ (q, p),

The existence of such p is justified in Lemma 1. For each choice of p, as long as
there exists some pair (p, r) ∈ R∩Lk so that (p, r) ̸⇝ (r, p) we add (p, r) into Vc.
(This process can start with r being the vertex q from above and then continue
as long as further r can be found.) We now define the transitivity-reachability
(TR) closure of Vc as follows.

Definition 5 (Transitivity+Reachability (TR) Closure). The transitiv-
ity+reachability closure of Vc, Tr(Vc), is the smallest set of pairs containing
Vc that is closed under reachability and transitivity. In other words, if (x, y) ∈
Tr(Vc), and (x, y) ⇝ (x′, y′) then (x′, y′) ∈ Tr(Vc). Moreover, if (x, y), (y, z) ∈
Tr(Vc) then (x, z) ∈ Tr(Vc).

Note that Vc ⊆ Tr(Vc). Then we update the set Vc to be Tr(Vc). Of course,
we also update R by removing all the dual pairs of Vc from R, and all the
pairs of Vc from R. Note that during the computation of Tr(Vc) we may add
(q′, p) ∈ Lk into Tr(Vc) and p no longer satisfies the condition that there exists
no (q′, p) ∈ Vc ∩ Lk. In the next section, we will prove that Tr(Vc) does not
contain a circuit (Lemma 2).

Once we are done with p, we look for another vertex p1 on layer Lk satisfying
the aforementioned conditions and repeat. Once we finish processing all the pairs
in Lk ∩R, we go on to the next layer and consider the remaining pairs in Lk+1.
The details are provided in Algorithm 1.
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Algorithm 1 Algorithm to find a min ordering of input digraph H

1: function MinOrdering(H) ▷ Phase One: Handling unbalanced components
2: Construct H+ and compute its strong components
3: if H+ contains a strong circuit then return False
4: Set Vc = Vd = ∅ and let R = V (H+)
5: while R contains an unbalanced strong component C do
6: if Ĉ ∪ Vc has no circuit then
7: Add Ĉ into Vc, and add all the dual pairs of Ĉ into Vd.
8: Remove from R all the pairs in Ĉ and their dual pairs.
9: else (Ĉ′ ∪ Vc has no circuit)

10: Add Ĉ′ into Vc, and add all the dual pairs of Ĉ′ into Vd.
11: Remove from R all the pairs in Ĉ′ and their dual pairs.

▷ Phase Two: Handling the remaining balanced components
12: Let H# be the set of all balanced pairs, and let R = V (H#) \ Vc

13: Compute the layers of H#; L0,L1, . . . , and set k = 0
14: while R ≠ ∅ do
15: while R∩ Lk ̸= ∅ do
16: Find p ∈ V (H) s.t. no (q′, p) ∈ Vc ∩ Lk and ∃(p, q) ∈ R ∩ Lk with

(p, q) ̸⇝ (q, p)
17: while ∃(p, r) ∈ R ∩ Lk s.t. (p, r) ̸⇝ (r, p) do

▷ at least one (p, r) exists, i.e. r = q in line 16, and empty while loop avoided
18: Add (p, r) into Vc and set Vc = Tr(Vc)
19: Remove all the dual pairs of Vc from R, and add them into Vd.
20: Set R = R \ Vc.
21: Increase k by one

return Vc

5 Correctness

To justify the correctness of Phase One we first define the concept of a dual-
free set and a minimal circuit. A subset of H+ is called dual-free if it does not
contain a pair and its dual.

Definition 6 (Minimal Circuit). Suppose S0, S1, . . . , Sn (not necessarily dis-
tinct) are strong components in T ⊆ V (H+) where T̂ is dual-free. Let C :

(a0, a1), (a1, a2), . . . , (an, a0) be a circuit where (ai, ai+1) ∈ Ŝi, 0 ≤ i ≤ n. We say
C is minimal if there is no other circuit (a′0, a

′
1), (a

′
1, a

′
2), . . . , (a

′
m, a′0), m < n,

where each (a′j , a
′
j+1) belongs to some Ŝi, 0 ≤ i ≤ n.

We need some technical definition to state and prove Theorem 8. For walks
P from a to b, and Q from b to c, we denote by P + Q the walk from a to c
which is the concatenation of P and Q. We denote by P−1 the walk P traversed
in the opposite direction, from b to a; we call P−1 the reverse of P . Notice that
if walk P avoids walk Q then Q−1 avoids P−1.

For a closed walk C, we denote by Ca the concatenation of C with itself a
times. The height of H is the maximum net length of a walk in H. Note that an
unbalanced digraph has infinite height, and the height of a balanced digraph is
the greatest label in non-negative labeling in which some vertex has label zero.
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For a walk P = x0, x1, . . . , xn and any i ≤ j, we denote by P [xi, xj ] the
walk xi, xi+1, . . . , xj . We call P [xi, xj ] a prefix of P if i = 0. Suppose P =
x0, x1, . . . , xn is a walk in H of net length k ≥ 0. We say that P is constricted from
below if the net length of any prefix P [x0, xj ] is non-negative and is constricted
from above if the net length of any prefix is at most k. We also say that P is
constricted if it is constricted both from below and from above. Moreover, we
say that P is strongly constricted from below or above if the corresponding net
lengths are strictly positive or smaller than k. For a walk P of net length k < 0,
we say that P is (strongly or not) constricted from below, or above, or both if
the above definitions apply to the reverse walk P−1.

Definition 7 (Extremal Vertex). Consider a cycle C in H of positive net
length k. A vertex v is extremal in C if traversing C,in the positive direction,
from v yields a walk constricted from below.

A cycle of H is induced if H contains no other arcs on the vertices of the
cycle. An induced cycle with more than one vertex does not contain a loop.

Let W = (P,Q) be a path in H+. We say W is constricted if the walk P
(or Q) is constricted, i.e., if each prefix of W has a net value between zero and
the net value of W . Paths (in H+) constricted from below or above are defined
similarly. Other notions for H+ are also defined in the manner corresponding to
the notions in H. Consider, for instance, the above notion of an extremal vertex.
We define extremal pair of a cycle C in H+ as a pair v̄ such that traversing C
from v̄ in the positive direction yields a walk with values constricted from below.

The correctness of the first phase relies on the following technical theorem.

Theorem 7. Let T be the vertices of a set of unbalanced strong components
(in H+) where T̂ is dual-free, and assume that T̂ contains a minimal circuit
C : (a0, a1), (a1, a2), . . . , (an, a0). Then n > 1 and the following statements hold.

1. There exits some minimal circuit (Definition 6) with extremal pairs (b0, b1),
(b1, b2), . . . , (bn−1, bn), (bn, b0) in T such that (ai, ai+1), (bi, bi+1), 0 ≤ i ≤ n,
are in the same strong component, and (ai, ai+1) is reachable from (bi, bi+1)
by a symmetric walk of non-negative net value, and constricted from below.

2. For each i, 0 ≤ i ≤ n, there exists an infinite walk Pi that starts from bi and
has unbounded positive net length. Pi is obtained by winding around a cycle
in H containing bi. Furthermore, for every i, j, 0 ≤ i < j ≤ n, Pi and Pj

avoid each other 4.
3. In statement 1, for a given 0 ≤ i ≤ n, we can choose (bi, bi+1) to be any

given extremal pair from its corresponding strong component.
4. There is no path in H+ from (bi, bi+1) to any of (bj , bj+1) i ̸= j, and to any

of (bj+1, bj).
5. There is no path in H+ from any of (bi+1, bi), 0 ≤ i ≤ n to (bi, bi+1).
4 When we say two infinite walks P , Q avoid each other it means for every prefix of
P there exists a prefix of Q that avoid each other.
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Theorem 8. Suppose C ̸⊂ (Vc ∪ Vd) is an unbalanced strong component and Vc

does not contain a circuit. If Ĉ ∪ Vc contains a circuit, then Ĉ ′ ∪ Vc does not
contain a circuit.

Proof. Since C ̸⊂ (Vc ∪ Vd), skew property implies C ′ ̸⊂ (Vc ∪ Vd). Suppose
for contradiction that Ĉ ∪ Vc contains a circuit (b0, b1), (b1, b2), . . . , (bn, b0) and
Ĉ ′ ∪ Vc contains a circuit (d0, d1), (d1, d2), . . . , (dm, d0). We may assume that
both are minimal circuits. Notice that Algorithm 1 selects unbalanced strong
components one at a time and adds their closure into Vc. Thus, if Ĉ∪Vc contains
a circuit, then that circuit would be at T̂ where T is a set of unbalanced strong
components in C∪Vc. A similar statement is true for Ĉ ′∪Vc. Observe that since
Vc does not contain a circuit, at least one of the (bi, bi+1) pairs should be in Ĉ.
The same holds for Ĉ ′, and at least one of the (dj , dj+1) pairs is in Ĉ ′. Hence,
without loss of generality, we assume that (bn, b0) ∈ Ĉ, and (dm, d0) ∈ Ĉ ′.

We first assume that both m,n > 1. Thus, there is no (p, q) ∈ C ∪Vc so that
(p, q) ⇝ (q, p), as otherwise, we have (p, q), (q, p) ∈ Ĉ ∪ Vc which contradicts
the minimality assumption and the assumption that n > 1. Similarly, there is
no (p′, q′) ∈ C ′ ∪ Vc so that (p′, q′) ⇝ (q′, p′) ∈ Ĉ ′ ∪ Vc. Therefore, Ĉ ∪ Vc, and
Ĉ ′ ∪ Vc are dual-free. Thus, according to the statement (1) of Theorem 7, we
may also assume that all the pairs on these two circuits are extremal pairs in
H+. Moreover, by statement (3) of Theorem 7, we assume that (bn, b0) ∈ C and
(dm, d0) ∈ C ′, i.e., (d0, dm) ∈ C, and that (bn, b0) = (d0, dm).

Moreover, according to statement (4) of Theorem 7, we may assume that
(bn, b0) is the only pair of the first circuit in C and (dm, d0) is the only pair of
the second circuit in C ′. Now, consider the following circuit (where (bn−1, bn) =
(bn−1, d0), (dm−1, dm) = (dm−1, b0))

(b0, b1), (b1, b2), . . . , (bn−1, d0), (d0, d1), (d1, d2), . . . , (dm−1, b0)

all pairs of which are in Vc . This contradicts the assumption that Vc has no
circuit. In what follows we consider separately the cases when n or m is 1.

Observation 9 If Ĉ ∪ Vc contains a circuit (b0, b1), (b1, b0) (i.e., n = 1) then
by definition we have C ∪ Vc ⇝ (b0, b1), and C ∪ Vc ⇝ (b1, b0). Now by skew
property, we have (b1, b0)⇝ C ′ ∪ Vd and (b0, b1)⇝ C ′ ∪ Vd. Therefore, C ⇝ C ′,
and hence, there is also a circuit (p, q), (q, p) where (p, q) ∈ C, and (p, q)⇝ (q, p)
(it is not possible that, (p, q) or (q, p) in Vc because C ∪ C ′ ̸⊂ Vc ∪ Vd).

If both circuits have n = m = 1 then by the above observation we have C ⇝ C ′

and also C ′ ⇝ C, implying a strong circuit in H+, a contradiction. Finally, if
n = 1, but m > 1, then the first circuit is (b0, b1), (b1, b0) and by Observation 9
and skew property we have (b0, b1) ⇝ C ′ and C ′ ⇝ (b0, b1). Now again since
m > 1, by statement (3) of Theorem 7 we may assume that C ′ contains (b1, b0).
This means (b0, b1) ⇝ (b1, b0) which is in contradiction to statement (5) of
Theorem 7 (i.e., reverse of a pair on the circuit does not reach that pair).

The following two lemmas justify the computation in Phase Two. (Lemma 1
justifies Line 16, and Lemma 2 justifies Line 17.)



14 Pavol Hell, Akbar Rafiey, and Arash Rafiey

Lemma 1. Suppose Vc does not contain a circuit, and furthermore, R∩Lk ̸= ∅.
Then there exists a vertex p ∈ V (H) such that there exists no (q′, p) ∈ Vc ∩ Lk,
and the following condition is satisfied:

– there exists a q such that (p, q) ∈ R ∩ Lk and (p, q) ̸⇝ (q, p).

Lemma 2. Suppose Vc does not contain a circuit, and furthermore, R∩Lk ̸= ∅.
Then after executing the entire while loop at line 17, Vc does not contain a circuit.
In other words, after adding all the (p, r) pairs on line 17 and computing Tr(Vc)
and setting Vc = Tr(Vc), there will not be a circuit in Vc.

Theorem 10. Algorithm 1 correctly decides if a digraph H admits a min or-
dering or not and it correctly outputs a min ordering for H if one exists.

Proof. The proof follows from Theorem 8, Lemma 1, and Lemma 2.

6 Conclusions

We have provided polynomial time algorithm, obstruction characterizations, for
digraphs admitting a min ordering, i.e., a CSL polymorphism. We believe they
are a useful generalization of interval graphs, encompassing adjusted interval
digraphs, monotone proper interval digraphs, complements of circular arcs of
clique covering number two, two-directional orthogonal ray graphs, and other
well-known classes. We also study this problem beyond digraphs, and consider
the general case of relational structures. We fully classify the polynomial-time
cases (see Theorem 4). Due to space limit, this part is presented in the appendix.
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Fig. 2. Example for Lemma 3. The path P (an abstract path on its own) is a common
pre-image of paths P1 and P2 in a digraph H. It admits a homomorphism f1 to P1

that maps the vertices of P , in order, to 1, 2, 1, 2, 3, 4, 5, and a homomorphism f2
that maps the vertices of P , in order, to a, b, c, d, e, d, e. Thus the walk f1(P ) = 1, 2,
1, 2, 3, 4, 5 is the embedded pre-image of P1, and the walk f2(P ) = a, b, c, d, e, d, e
is the embedded pre-image of P2.

7 Structure of walks in H

The pre-image of a walk P ′ in a digraph H is any path P (a digraph that is
a path) that admits a homomorphism f to P ′, taking the first vertex of P to
the first vertex of P ′ and the last vertex of P to the last vertex of P ′. If P is
a pre-image of P ′ (under a homomorphism f), then we say that the sequence
f(P ), which is a walk on the vertices of P ′, is the embedded pre-image of P ′

under f . Note that f(P ) starts with the starting vertex of P ′ and ends with the
ending vertex of P ′. The following lemma is well known. (For a proof, see [14,
29] or Lemma 2.36 in [18]).

Lemma 3. Let P1 and P2 be two constricted walks of net length r in a digraph
H. There exists a constricted path P of net length r that admits a homomorphism
f1 to P1 and a homomorphism f2 to P2, such that each fi, i = 1, 2 takes the
starting vertex of P to the starting vertex of Pi and the ending vertex of P to
the ending vertex of Pi.

We call P a common pre-image of P1 and P2. If P is a common pre-image of
P1 and P2, under homomorphisms f1 and f2, then their embedded pre-images
f1(P ) and f2(P ) are congruent walks on the vertices of P1 and P2, respectively.
We illustrate this in Figure 2.

Corollary 2. Let P1 and P2 be two constricted walks of net length r. Then there
exist congruent walks W1 and W2 that are embedded pre-images of P1 and P2

respectively.

We note for future reference that if two congruent walks P,Q avoid each
other, then the same is true for any congruent embedded pre-images P ′, Q′ of
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P

Q

1 2 3 4

a b c d

Fig. 3. Here P avoids Q, but P ′ = 12, 23, 34, 43, 34 (the embedded pre-image of P )
does not avoid Q′ = ab, bc, cd, dc, cd (the embedded pre-image of Q).

P,Q respectively. However, note that if P avoids Q, it is not necessarily true that
P ′ avoids Q′ because of the back steps involved in the pre-images, see Figure 3.

We often consider a constricted walk or constricted from below walk and
refer to its verities with maximum/minimum height. The following observation
illustrates the existence of such vertices.

Observation 11 We treat every oriented walk W as a balanced digraph. Corre-
sponding to W , we consider an oriented path P with distinct vertices, which is
congruent to W . We give level to the vertices of P , where the first vertex of P
has level zero. Suppose uv is a forward arc of P , then level(u) = level(v)+1, and
if uv is a backward arc, then level(u) = level(v)− 1. Clearly, if P is constricted
from below, then the level of each vertex is at least zero. If P is constricted from
above, then the last of P , say h, has the maximum level. Moreover, if P is con-
stricted, then level of h is the same as the height of P and the same as the net
length of P .

7.1 Four Congruent Walks in H

Consider four walks A,B,C,D in H that start in four distinct vertices, p, q, r, s,
and end respectively in a, b, b, d, i.e., the end vertices of walks B and C coincide.
Assume that A avoids B, and C avoids D. Note that B does not avoid C, and
C does not avoid B: at the last step, there is a faithful arc.

Lemma 4. Let A,B,C,D be four congruent walks in H, from p, q, r, s to a, b, b, d
respectively, such that A avoids B and C avoids D. Suppose in H+ we have the
following:

1. (p, q) ̸⇝ (a, d) and (p, q) ̸⇝ (d, b),
2. (r, s) ̸⇝ (a, d) and (r, s) ̸⇝ (b, a).

Then all pairs from A,B,C,D avoid each other, except the pair B,C.

Proof. Let A be the walk p = a1, a2, . . . , an = a, B the walk q = b1, b2, . . . , bn =
b, C the walk r = c1, c2, . . . , cn = b, and D the walk s = d1, d2, . . . , dn = d. Let
Si denote the statement that all pairs from

A[ai+1, a], B[bi+1, b], C[ci+1, b], D[di+1, d]
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avoid each other, except possibly B[bi+1, b], C[ci+1, b]. The lemma claims that
S0 holds, while Sn−1 holds vacuously. Therefore, let i, 0 ≤ i ≤ n− 1 be the first
index such that Si holds.

Note that aidi+1 is not a faithful arc. Otherwise, (P,Q) : (p, q)⇝ (d, b) in H+

where P = A[p, ai]+aidi+1+D[di+1, d] and Q = B[q, bi]+ bibi+1+B[bi+1, b]. In
more details, note that A[p, ai] avoids B[q, bi] (since A avoids B), aidi+1 avoids
bibi+1 since aibi+1 is not a faithful arc, and finally D[di+1, d] avoids B[bi+1, b]
because Si holds. Therefore, we have (P,Q) : (p, q)⇝ (ai, bi)(di+1, bi+1)⇝ (d, b)
which contradicts the assumption of the lemma that (p, q) ̸⇝ (d, b).

This implies that bidi+1 is also not a faithful arc, since otherwise, (P,Q) :
(p, q) ⇝ (a, d) where P = A and Q = B[q, bi] + bidi+1 + D[di+1, d] (using the
fact that aidi+1 is not a faithful arc). By a similar line of reasoning, we conclude
that ciai+1 is not a faithful arc (as otherwise (r, s)⇝ (a, d)), and then diai+1 is
not a faithful arc (otherwise (r, s)⇝ (b, a)).

Now, dibi+1 is not a faithful arc. Otherwise, (P,Q) : (p, q) ⇝ (a, d) in H+

where P = A[p, ai+1] + ai+1ai + A[ai, a] and Q = B[q, bi+1] + bi+1di +D[di, d].
(using the fact that none of diai+1, aidi+1 is a faithful arc). Similarly aici+1 is
not a faithful arc, as otherwise (r, s)⇝ (a, d).

Now, biai+1 is not a faithful arc. Otherwise, (R,S) : (r, s) ⇝ (a, d) in H+

where R = C + (B[b, bi])
−1 + biai+1 + A[ai+1, a] and S = D + (D[d, di])

−1 +
didi+1 +D[di+1, d] (using the fact that none of dibi+1, diai+1 is a faithful arc).
Similar argument implies that dici+1 is not a faithful arc (otherwise (P,Q) :
(p, q) ⇝ (a, d) where P = A + A([a, ai+1])

−1 + ai+1ai + A[ai, a] and Q = B +
(C[b, ci+1])

−1 + ci+1di +D[di, d]).
Together with the fact that aibi+1 and cidi+1 are not faithful arcs (because

of the assumption that A avoids B and C avoids D), we obtain a contradiction
with the minimality of i; therefore i = 0, and the lemma is proved.

7.2 Implication of Four Constricted Walks

A similar result applies to walks that are not all congruent as long as they are
constricted and have the same net length. Of course, the pairs of walks where
one avoids the other must be congruent by definition.

In the proof of the main result of this subsection, we will use the following
generalization of Lemma 3, or more specifically, of Corollary 2. Consider two
walks in a digraph H, a constricted walk P1 = a1, a2, . . . , an of net length r > 0,
and another walk P2 = b1, b2, . . . , bm which is constricted from below (but not
necessarily from above), and has height r. Suppose P2 has net length ℓ. Note
that P1 also has height r, and contains (possibly several) vertices ax such that
the walk Q = P1 + (P1[an, ax])

−1 also has net length ℓ. The walk Q is a walk
of height r and net length ℓ, on the vertices of P1. We claim that for some ax
the paths P2 and Q have a common pre-image and hence congruent embedded
pre-images.

Lemma 5. Let P1 be a constricted walk of net length r > 0, and P2 a walk
constricted from below of net length ℓ ≥ 0 and height r, both in a digraph H.
Then there exist congruent walks Q1, Q2 with the following properties :
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– Q1 is an embedded pre-image of a walk of net length ℓ and height r, on the
vertices of P1,

– the first vertex of Q1 is the same as P1,
– Q2 is an embedded pre-image of P2.

Proof. Let the walks be P1 = a1, a2, . . . , an and P2 = b1, b2, . . . , bm. We proceed
by induction on the sum m + n. Let h be any subscript such that the prefix
P 1
2 = P2[b1, bh] has net length r (see Observation 6.3). Then P 1

2 is constricted
and of net length r, as is P1.

Let s be a subscript such that P2[bh, bs] has the minimum possible net length
k. (Note that k ≤ 0). The walk P 2

2 = (P2[bh, bs])
−1 has net length −k ≥ 0.

Let t be the greatest subscript such that P1[at, an] has net length −k. Then
P 2
1 = P1[at, an] and P 2

2 are constricted and have the same net length. The
remaining walk P 3

2 = P2[bs, bm] has net length ℓ − (r + k), and is constricted
from below. Suppose it has height z. Let q ≥ t be the smallest subscript, such
that P 3

1 = P1[at, aq] has net length z. Note that P 3
1 is constricted.

P1, P
1
2 are constricted and have the same net length. Therefore, by Corollary

2, they have embedded pre-images X1, Y1 that are congruent . By Corollary 2,
we obtain congruent walks X2, Y2 that are embedded-pre images of P 2

1 , P
2
2 .

Note that P 3
1 is constricted, whence the induction hypothesis applies to P 3

1

and P 3
2 , and hence, we obtain embedded pre-images X3, Y3 (of P 3

1 , P
3
2 ) that are

congruent. Now Q1 = X1 + X2 + X3 and Q2 = Y1 + Y2 + Y3 are the desired
walks.

Lemma 6. Let A,B,C,D be four constricted walks of the same net length, from
p, q, r, s to a, b, b, d respectively, such that A,B are congruent and A avoids B,
and C,D are congruent and C avoids D. Suppose in H+ we have:

1. (p, q) ̸⇝ (a, d) and (p, q) ̸⇝ (d, b),
2. (r, s) ̸⇝ (a, d) and (r, s) ̸⇝ (b, a).

Then there exist congruent walks A′, B′, C ′, D′ that are embedded pre-images of
A,B,C,D respectively, such that all pairs from A′, B′, C ′, D′ avoid each other,
except the pair B′, C ′. Hence, A,B avoid each other, and C,D avoid each other.

Proof. Let A be the walk p = a1, a2, . . . , an = a, B the walk q = b1, b2, . . . , bn =
b, C the walk r = c1, c2, . . . , cm = b, and D the walk s = d1, d2, . . . , dm = d.
Notice that bi ∈ B, 1 ≤ i ≤ n, is the corresponding vertex to ai ∈ A, and dℓ ∈ D,
1 ≤ ℓ ≤ m is the corresponding vertex to cℓ ∈ C. Furthermore, we point out the
following easy observation.

Observation 12 For every 1 ≤ ℓ ≤ n, neither of (a, d), (d, b) is reachable (in
H+) from (aℓ, bℓ), otherwise, they would also be reachable from (p, q) because A
avoids B. Similarly, neither (a, d) nor (b, a) is reachable from (ct, dt), 1 ≤ t ≤ m.

We prove the lemma by induction on the sum of the lengths m+n. If m+n =
0, i.e., m = n = 0, this holds trivially. First, we turn our attention to the
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case where all A,B,C,D are strongly constricted from below. After proving the
lemma for this case, we proceed to the general case.

Suppose first that A,B,C,D are strongly constricted from below (no prefix
of A has net length zero). This means that the first two arcs in each walk are
forward, and the walks A−p,B−q, C−r,D−s (here A−p is the walk obtained
from A by removing the first vertex p) are also constricted walks of the same
net length, with the first two congruent and the last two congruent. Moreover,
by Observation 12, in H+, neither (a, d) nor (d, b) is reachable from (a2, b2).
Similarly, neither (a, d) nor (b, a) is reachable from (c2, d2). By the induction
hypothesis, A − p,B − q, C − r,D − s have congruent embedded pre-images
A′′, B′′, C ′′, D′′ in which all pairs except B′′, C ′′ avoid each other. Noting that
A′′ starts in a2, we let A′ consist of p concatenated with A′′ (i.e., A′ = a1a2+A′′),
let B′ be q concatenated with B′′, and similarly for C ′ and D′. Since A′, B′, C ′, D′

are all congruent, we can apply Lemma 4, and conclude that all pairs avoid each
other, except the pair B′, C ′. This implies that A,B also avoid each other, and
C,D also avoid each other.

Since we have already considered the case when all four walks A,B,C,D are
strongly constricted from below, we may assume, up to symmetry, that A,B
are not strongly constricted from below, i.e., that there exists a subscript j > 1
such that A[p, aj ] and B[q, bj ] have net length zero. We take the subscript j
as large as possible, therefore A[aj , a], B[bj , b] are strongly constricted from be-
low and have the same net length as C,D. Now, by Observation 12, the con-
ditions 1 and 2 of the lemma are satisfied, and by induction hypothesis for
A[aj , a], B[bj , b], C,D, we conclude that A[aj , a], B[bj , b], C,D have congruent
embedded pre-images that pairwise avoid each other (except for the embed-
ded pre-images of B[bj , b], C). This implies that A[aj , a], B[bj , b] also avoid each
other, and C,D also avoid each other. If C,D were also not strongly constricted
from below, we could draw a similar conclusion that A,B avoid each other, as
claimed. However, in general, C,D may happen to be strongly constricted from
below, and we proceed more carefully as follows: we first show the following
claim.

Claim. For every i < j, A[ai, an], B[bi, bn] avoid each other (i.e., A,B avoid each
other).

Once the above claim is established, the lemma follows. Notice that since the
walks A,B,C, and D are constricted, by applying Lemma 3 on A,B we conclude
there exists congruent walks A1, B1 from p, q to a, b (respectively), that are
embedded pre-images of A,B respectively. By applying Lemma 3 on C,D we
conclude there exists congruent walks C1, D1 from r, s to b, d (respectively),
that are embedded pre-images of C,D respectively. Finally, by applying Lemma
3 on A1, C1 we conclude there exists congruent walks A′, C ′ from p, r to a, c
(respectively), that are embedded pre-images of A1, C1 respectively. Now it is
easy to obtain congruent walks A′, B′, C ′, D′ from p, q, r, s to a, b, b, d that are
embedded pre-images of A,B,C,D respectively.

Since A and B are congruent and avoid each other, the walks A′, B′ follow
the same sequence of back and forth steps inside A,B, and also avoid each other.
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Similarly, C ′, D′ also avoid each other. Therefore we can now apply Lemma 4
to A′, B′, C ′, D′ and conclude that all pairs from A′, B′, C ′, D′ avoid each other,
except the pair B′, C ′.

Proof of Claim 7.2. Notice that we have already shown that A[aj , a], B[bj , b]
avoid each other, we proceed by backward induction on i, starting with i = j. Let
i < j be the minimum subscript such that A[ai, a], B[bi, b] avoid each other, and
assume that the height of the walk (A[ai, aj ])

−1 is t. Let h be the first subscript
such that the prefix C[c1, ch] of walk C has net length t. Let P1 = C[c1, ch]
and P2 = (A[ai, aj ])

−1. Lemma 5 implies that there exist congruent walks WA

and WC where WA is an embedded pre-image of P2, and WC is an embedded
pre-image of a walk with height t on the vertices of P1 starting at c1 and ending
at cℓ. Let WB be the embedded pre-image of (B[bi, bj ])

−1 corresponding to WA,
and similarly let WD be walk on D corresponding to WC (WD is congruent
with WC and it starts from d1 and end at dℓ). Combining these, we deduce that
W−1

A +A[aj , a], W−1
B +B[bj , b], W−1

C +C, W−1
D +D all have congruent embedded

pre-images, say, X,Y, Z, U . Notice that X,Y avoid each other and Z,U avoid
each other.

In order to continue our backward induction, we consider A[ai−1, a] and
B[bi−1, b] and prove they avoid each other. The idea of the proof is to con-
tinue this way backwards on A, B until proving that they avoid each other in
their entirety. In what follows, we consider different cases for the direction of
ai−1ai and aiai+1, and in each case we prove A[ai−1, a] and B[bi−1, b] avoid each
other.

p = a1

ai

ai+1

aj

a b

ai−1

c`

c`−1

r = c1

Fig. 4. The notation for Claim 7.2; each straight segment represents a constricted
walk. The figure shows A[a1, ai] plus the embedded pre-image of A[ai, a]. It also shows
(C[cℓ, c1])

−1+C. Here, aiai+1 is a forward arc, i.e., cℓ−1cℓ ∈ C is a backward arc. Note
that in general A[a1, ai−1] may consist of several constricted segments.
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Case 1. ai−1ai, aiai+1 have different directions (see Figure 4). Notice that cℓ−1cℓ
have the same direction as ai−1ai (since X,Z are congruent and the first arc of
X is aiai+1 and the first arc of Z is cℓcℓ−1, aiai+1 and cℓcℓ−1 have the same di-
rection). Thus, ai−1ai+X, bi−1bi+Y , cℓ−1cℓ+Z, dℓ−1dℓ+U are congruent, and
satisfy the conditions of Lemma 4 ( ai−1ai+X avoids bi−1bi+Y and cℓ−1cℓ+Z
avoids dℓ−1dℓ + U), and hence, ai−1ai + X, bi−1bi + Y avoid each other. This
implies that A[ai−1, a], B[ai−1, b] avoid each other.

Case 2. ai−1ai, aiai+1 have the same direction and cℓcℓ+1 has the opposite di-
rection to ai−1ai. Now ai−1ai + X, bi−1bi + Y , cℓ+1cℓ + Z, dℓ+1dℓ + U are all
congruent (since cℓ+1cℓ has the same direction as ai−1ai), and by Lemma 4
ai−1ai + X and bi−1bi + Y avoid each other. Therefore, A[ai−1, aj ], B[bi−1, bj ]
avoid each other.

Case 3. ai−1ai, aiai+1 are forward arcs and cℓcℓ+1 is a forward arc (see Figure 5).
In this case we show that there exists some cℓ′ in C[c1, cℓ] such that cℓ′−1cℓ′ is
a forward arc and cℓ′ play the same role as cℓ in Case 2. The argument is as
follows. Let aℓ′ be the last vertex on X[ai, aj ] such that X[ai, aℓ′ ] is constricted
from below and has net length zero. Such a vertex aℓ′ exists because aiai+1 is
a forward arc. By the choice of aℓ′ , we observe that aℓ′−1aℓ′ is a forward arc.
Let cℓ′ ∈ Z be the corresponding vertex to aℓ′ (notice that X,Z are congruent),
and hence, cℓ′−1cℓ′ is a forward arc. Let ah be a vertex on X[ai, aℓ′ ] with a
maximum height, and let ch ∈ Z be the corresponding vertex to ah. Notice
that X[ai, ah] is constricted. Suppose the net length of X[ai, ah] is L. By the
choice of ah, X[ah, aℓ′ ] is constricted and has net length −L. (Z[ch, cℓ′ ])

−1 is also
constricted and has net length L because Z[ch, cℓ′ ] and X[ah, cℓ′ ] are congruent
and both have net length −L. By Corollary 2, X[ai, ah] and (Z[ch, cℓ′ ])

−1 have
embedded pre-images X1, Z1 that are congruent. We let bℓ′ ∈ Y and dℓ′ ∈ U be
the corresponding vertices to aℓ′ , and let bh ∈ Y , dh ∈ U be the corresponding
vertices to ah. We also let Y1 to be an embedded pre-image of Y [bi, bh] which
is congruent to X1, Z1 and U1 be an embedded pre-image of U [di, bh] which
is congruent to X1, Z1. Now, let X ′ = X1 + X[ah, an], Y ′ = Y1 + Y [bh, bn],
Z ′ = Z1 + Z[ch, cn], and U ′ = U1 + U [dh, dn]. Observe that since X,Y, Z, U
are congruent, X ′, Y ′, Z ′, U ′ are congruent. Since X,Y avoid each other, X ′, Y ′

avoid each other and since Z,U avoid each other Z ′, U ′ avoid each other.

Finally, we recall that ai−1ai and cℓ′−1cℓ′ are both forward arcs. Now, ai−1ai+
X ′ avoids bi−1bi+Y ′ (ai−1bi is not a faithful arc since A avoids B) and cℓ′−1cℓ′+
Z ′ avoids dℓ′−1dℓ′ + U ′. Notice that ai−1ai + X ′, bi−1bi + Y ′, cℓ′−1cℓ′ + Z ′,
dℓ′−1dℓ′ +U ′ are congruent. Therefore, by Lemma 4 for ai−1ai+X ′, bi−1bi+Y ′,
cℓ′−1cℓ′ +Z ′, dℓ′−1dℓ′ +U ′ we conclude that ai−1ai +X ′, bi−1bi + Y ′ avoid each
other. Therefore, A[ai−1, aj ], B[bi−1, bj ] avoid each other.

Case 4. ai−1ai, aiai+1 are backward arcs and cℓcℓ+1 is a backward arc. This case
is analogues to Case 3.
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p = a1

ai

ai+1

aj

a b

ai−1

c`

c`+1 c`−1

r = c1

c`′

Fig. 5. The notation for Claim 7.2; each straight segment represents a constricted
walk. The figure shows A[a1, ai] and the embedded pre-image of A[ai, a]. It also shows
(C[cℓ, c1])

−1+C. Here, aiai+1 is a forward arc, i.e., cℓ−1cℓ ∈ C is a backward arc. Note
that in general A[a1, ai−1] may consist of several constricted segments.

We repeat this argument until i = 1, and hence, Claim 7.2 is proved. This
finishes the proof of Lemma 6. Note that in the above arguments we assumed
A,B,C,D all have the same positive net length. Of course, the argument for the
case when A,B,C,D all have the same negative net length is analogous.

Corollary 3. Let A,B,C,D be four congruent walks in H from p, q, r, s to
a, b, c, d (all distinct) respectively. Suppose A avoids B and C avoids D and
the following conditions hold.

1. (p, q) ̸⇝ (a, c), (a, d), (c, b), (d, b), (d, c)

2. (r, s) ̸⇝ (a, d), (a, c), (b, d), (c, a), (c, b)

Then A,B,C,D pairwise avoid each other except A,B and C,D. Furthermore,
if (b, c) ̸⇝ (a, c), (b, d) then A,B,C,D pairwise avoid each other.

Proof. Let A : p = a0, a1, . . . , an−1, an = a, B : q = b0, b1, . . . , bn−1, bn = b,
C : r = c0, c1, . . . , cn−1, cn = c, and D : s = d0, d1, . . . , dn−1, dn = d. Let j
be the minimum index such that Aj [aj , a], B[bj , b], C[cj , c], D[aj , d] are pairwise
avoid each except except Aj , Bj and Cj , Dj . If j = 0 then we are done. Oth-
erwise, let j > 0. Now aj−1cj is not faithful arc otherwise, we have (p, q) ⇝
(aj , bj)(cj+1, bj+1)⇝ (c, b), a contradiction. Consequently bj−1cj is not a faith-
ful arc as otherwise, (p, q) ⇝ (aj−1, bj−1)(aj , cj) ⇝ (a, c). A similar argument
implies that cj−1bj , cj−1aj+1 are not faithful arcs, as otherwise, (r, s) ⇝ (b, d)
or (r, s)⇝ (a, d). Now since, cj−1aj is not a faithful arc, we have dj−1aj is not a
faithful arc, as otherwise, (r, s) ⇝ (cj−1, dj−1(cj , aj) ⇝ (c, a). By the same line
of reasoning, the absence of cj−1bj implies that dj−1bj is not a faithful arc, as
otherwise, (r, s)⇝ (c, b).
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Now suppose (b, c) ̸⇝ (a, c), (b, d). If bj−1aj is a faithful arc then (bj−1, cj−1)(aj , cj) ∈
A(H+), and hence, (b, c) ⇝ (bj−1, cj−1)(aj , cj) ⇝ (a, c), a contradiction. Simi-
larly, dj−1cj is not a faithful arc. These show that j = 0, and the corollary is
proved.

Corollary 4. Let A,B,C,D be four constricted walks in H from p, q, r, s to
a, b, c, d(all distinct) respectively. Suppose A avoids B and C avoids D with the
following conditions.

1. (p, q) ̸⇝ (a, c), (a, d), (c, b), (d, b), (d, c)

2. (r, s) ̸⇝ (a, d), (a, c), (b, d), (c, a), (c, b)

Then A,B,C,D have embedded pre-images A′, B′, C ′, D′ that pairwise avoid
each other expect A′, B′ and C ′, D′. Furthermore, if (b, c) ̸⇝ (a, c), (b, d) then
A,B,C,D have embedded pre-images A′, B′, C ′, D′ that pairwise avoid each other.

Proof. Add distinct vertices a′, d′ to the end of A,D by adding forward arcs
aa′, dd′ and obtain walks A1, D1 respectively. Moreover, add vertex b′ (distinct
from a′, d′) to the end of both B,C by adding arcs bb′, cb′ and obtain walks
B1, C1 respectively. Observe that A1, B1, C1, D1 are all congruent, and A1 avoids
B1 and C1 avoids D1. Moreover, since (p, q) ̸⇝ (a, d), (d, b), we have (p, q) ̸⇝
(a′, d′), (d′, b′). Similarly, (r, s) ̸⇝ (a′, d′), (b′, d′).

Now by applying Lemma on 6 on A1, B1, C1, D1 we conclude that A1, B1, C1, D1

have embedded pre-images A′
1, B

′
1, C

′
1, D

′
1 (they are all congruent) where A′

1 and
B′

1 avoid each other, and C ′
1 and D′

1 avoid each other. Now by applying Corol-
lary 3, on A′

1 − a′, B′
1 − b′, C ′

1 − b′, and D′
1 − d′ we conclude that they all avoid

each other. This implies that A,B,C,D all avoid each other.

8 Structure of circuits in H+

8.1 M-Lemma

We now consider two particular situations where a circuit occurs in one strong
component of H+. We need to deal with extremal vertices. We observe that
a cycle C of positive net length k has at least k extremal vertices. Namely, we
can obtain such vertices v0, v1, . . . , vk−1 as follows: starting at any vertex x
and following C, the net length of the prefix C[x, v] varies with v from 0 to a
possibly negative minimum m, but ending with k > 0. We let v0 be the last
vertex with the net length of C[x, v0] equal to the minimum m (possibly v0 = x
if m = 0). We can let vi be the last vertex with the net length of C[v0, vi] equal to
i, i = 1, 2, . . . , k− 1. Note that each walk C[vi, vi+1] is strongly constricted from
below and has net length one. We also note for future reference that any other
extremal vertex of C has a walk of net length zero to one of v0, v1, . . . , vk−1. We
say vertex x is an extremal vertex in a digraph H if there exists a cycle C in H
that x is an extremal vertex in C.
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Theorem 13. Suppose C is a closed walk in H of net length greater than one,
and x, y are two extremal vertices of C such that the net length of C[x, y] is
positive. Let Px be the walk starting at x, obtained by continuously following
the cycle C in the positive direction |C|+ 1 times and let Py obtained the same
way starting at y. Suppose H contains two congruent walks X,Y such that X
avoids Y and such that X is an embedded pre-image of Px and Y is an embedded
pre-image of Py. Then H+ contains a strong circuit.

Proof. Let f : X → Px be a homomorphism taking the first vertex of X to the
first vertex of Px, i.e., x, and similarly for g : Y → Py. It is easy to see that X
contains vertices x0, x1, ... and Y contains vertices y1, y2, ... such that (for all i)

1. x0 is the first vertex of X, and y1 is the first vertex of Y ,
2. xi is the vertex on X corresponding to yi+1 on Y ,
3. f(xi) = g(yi), and the vertex vi = f(xi) = g(yi) is extremal on C,
4. each segment X[xi, xi+1] and Y [yi, yi+1] has the same net length as C[x, y].

Since C has at most |C| extremal vertices, we must eventually have f(xi) =
f(xi+j) for some positive i and j. It is now clear that (vi, vi+1), (vi+1, vi+2), . . . , (vi+j , vi)
is a circuit in a strong component of H+, since X[xi, xi+1] = C[vi, vi+1] avoids
Y [yi+1, yi+2] = C[vi+1, vi+2] (subscripts reduced modulo j).

We say a positive arc (x, y)(x′, y′) ∈ H+, is symmetric if and only if (y, x)(y′, x′)
is a positive arc in H+. Similarly, a negative arc (x, y)(x′, y′) ∈ H+, is symmet-
ric if and only if (y, x)(y′, x′) is a negative arc in H+. In other words, when
(x, y)(x′, y′) is a symmetric arc we have xx′, yy′ ∈ A(H) but xy′, yx′ ̸∈ A(H),
or x′x, y′y ∈ A(H) but y′x, x′y ̸∈ A(H). Symmetric arcs of H+ will play an im-
portant role. A walk, strong component, or subgraph of H+ is called symmetric
if all its arcs are symmetric.

In the rest of the paper we stick to the following notation whenever we
consider a circuit. Depending on our need we may choose a specific pair (pi, qi+1)
or assume Zi is more specific.

Notation 14 Let C : (a0, a1), (a1, a2), . . . , (an, a0) be a circuit in H+. To each
pair (ai, ai+1) of the circuit we associate the following (see Figure 6)

1. A pair (pi, qi+1) ∈ H+, and a pair (p′i, q′i+1) ∈ H+ such that (p′i, q′i+1)(pi, qi+1) ∈
A(H+) ( (p′i, q

′
i+1) may not exist),

2. A walk Zi in H+ from (pi, qi+1) to (ai, ai+1) which is constricted from below,
has net value zero, and has height Li ≥ 0,

3. A pair (gi, hi+1) ∈ Zi such that Zi[(pi, qi+1), (gi, hi+1)] is constricted and
has net value Li,

4. A constricted walk Ai from pi to gi with net length Li, and a constricted
walk Bi+1 from qi+1 to hi+1 such that Ai avoids Bi+1,

5. A constricted walk A′
i from gi to ai with net length −Li, , a constricted walk

B′
i+1 from hi+1 to ai+1 such that A′

i avoids B′
i+1,

6. Zi = (Ai +A′
i, Bi+1 +B′

i+1).
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ai
pi

qi+1

ai+1

gi hi+1

Ai
A′

i

Bi+1 B′
i+1

qi+2pi+1

gi+1

Ai+1A′
i+1

ai+2

hi+2

Bi+2 B′
i+2

p′i q′i+1

Fig. 6. This figure refers to circuit C in Notation 14. Each straight segment represents
a constricted walk. The dotted line shows the direction of the walks. Here, Ai (from pi
to gi) avoids Bi+1(from qi+1 to hi+1), and A′

i (from gi to ai ) avoids B′
i+1 (from hi+1

to ai+1).

One of our basic tools is the following lemma illustrated in Figure 7; because
each quadruple of walks resembles the shape of the letter M, we call it the
M-Lemma.

Lemma 7 (M-Lemma). Let (a0, a1), (a1, a2), . . . , (an, a0) be a circuit in H+.
Consider Notation 14 for this circuit. Suppose that 1 < t ≤ n, 0 < ℓ are integers
such that the following hold

1. for each i = 0, 1, . . . , t, Li = ℓ (i.e. Ai, Bi+1 have net length ℓ), and A′
i, B

′
i+1

have net length −ℓ.
2. if k ̸= j + 1, then (pi, qi+1) ̸⇝ (aj , ak), 0 ≤ j, k ≤ t (here qn+1 = q0).

Let C be any one of the walks A′
i or B′

i or A−1
i or of B−1

i , and let D be
any one of the walks A′

j or B′
j or A−1

j or of B−1
j , with i ̸= j. Then C,D have

embedded pre-images that avoid each other.

Proof. We prove the lemma with t = n, and it is easy to check that the proof
allows any smaller t, t ≥ 2. We first prove that any B′

i, B
′
j with i ̸= j have

embedded pre-images that avoid each other.

Observation 15 For every 0 ≤ i ≤ n, (gi, hi+1) ̸⇝ (ar, as), r ̸= s − 1, s, 0 ≤
r, s ≤ n. Otherwise, (pi, qi+1) ⇝ (gi, hi+1) ⇝ (ar, as); violating the condition
(2) of the lemma.

Recall that A′
i−1, B

′
i, A

′
i, B

′
i+1 are constricted and have the same net length,

namely −ℓ. Furthermore, A′
i−1 avoids B′

i and A′
i avoids B′

i+1 (by notation 14
(5)). Now by Observation 15, the conditions of Lemma 6 are satisfied for walks

A′
i−1, B

′
i, A

′
i, B

′
i+1, and hence, all pairs from A′

i−1, B
′
i, A

′
i, B

′
i+1 have embed-

ded pre-images that avoid each other, except the pair B′
i, A

′
i. Now by applying

Corollary 4 on A′
i, B

′
i+1, A

′
j , B

′
j+1 (j ̸= i + 1 and i ̸= j + 1) (and the fact
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ai pi qi+1 ai+1 aj pj qj+1 aj+1

gi hi+1 gj hj+1

AiA′
i

Bi+1 B′
i+1 Bj+1 B′

j+1AjA′
j

Fig. 7. The notation for Lemma 7; each straight segment represents a constricted
walk. The dashed line shows the direction of the walks. Here, Ai (from pi to gi) avoids
Bi+1(from qi+1 to hi+1), and A′

i (from gi to ai ) avoids B′
i+1 (from hi+1 to ai+1).

that A′
i, B

′
i+1 avoid each other and A′

j , B
′
j+1 avoid each other) we conclude that

A′
i, B

′
i+1, A

′
j , B

′
j+1 have embedded pre-images that pairwise avoid each other.

Notice that since A′
r, A

′
s (for s ̸= r) have embedded pre-images that avoid

each other, we conclude that (gr, gs)⇝ (ar, as). Therefore, (pi, qi+1) ̸⇝ (ar, as),
s ̸= r, r + 1; as otherwise, (pi, qi+1) ⇝ (ar, as); contradicting the condition 2 of
the lemma. We also notice that (ai, ai+1)⇝ (gi, hi+1) since A′

i, B
′
i+1 avoid each

other, and hence, (A′
i)

−1, (B′
i+1)

−1 avoid each other. Now we have the following.

Observation 16 For every 0 ≤ i ≤ n, (pi, qi+1) ̸⇝ (gr, gs), (hr, hs), (gr, hr),
r ̸= s, s + 1, 0 ≤ r, s ≤ n. Moreover, (ai, ai+1) ̸⇝ (gr, gs), (hr, hs), (gr, hr),
r ̸= s, s+ 1.

By Observation 15, the conditions of Corollary 4 on walks Ai, Bi+1, Aj , Bj+1

(with a = ai, b = ai+1, c = aj , d = aj+1, p = gi, q = hi+1, r = gj , and s = hj+1,
0 ≤ i < j ≤ n) are satisfied, and hence, we conclude that Ai, Bj have embedded
pre-images that avoid each other. Moreover, by Observation 16 the conditions of
Corollary 4 on (A′

i)
−1, (B′

i+1)
−1, Aj , Bj+1 are satisfied, and hence, we conclude

that: (A′
i)

−1, Aj have embedded pre-images that avoid each other, (B′
i+1)

−1, Aj

have embedded pre-images that avoid each other, and finally (B′
i+1)

−1, Bj+1

have embedded pre-images that avoid each other.

Remark 1. Another way to state the conclusion of the Lemma 7 is the following.
There are embedded pre-images of all A′

i, B
′
i, A

−1
i , B−1

i , i = 0, 1, . . . , t, such that
any two embedded pre-images of walks with different subscripts avoid each other.
The lemma will often be used for walks where A′

i = A−1
i and/or B′

i = B−1
i (or

even A′
i = A−1

i = B′
i = B−1

i ).

8.2 Basic Tools for Minimal Circuits

We now analyze a minimal circuit in H+ under certain conditions and we derive
properties of H+.

Definition 8 (UL-pair). Let S be a subset of V (H+). We say (x, y) is an UL-
pair (upper layer pair) with respect to S if there exists a pair (x′, y′) ∈ S that



28 Pavol Hell, Akbar Rafiey, and Arash Rafiey

reaches (x, y) via a path Ux,y in H+ which is strongly constricted from below and
has net value one.

Lemma 8. Let S be a set of pairs in H+ and let Ŝ contain a minimal cir-
cuit (a0, a1), (a1, a2), . . . , (an−1, an), (an, a0), n > 1. Consider Zi, Li, (pi, qi+1)
according to notations 14 for this circuit. Then the following hold.

1. If Li−1 ≤ Li then Zi−1 is symmetric, (ai−1, ai), (ai−1, qi), (pi−1, qi), (pi−1, ai)
are in the same strong component, and they are all reachable from each other
via symmetric and constricted from below paths of net value zero. Moreover,
(ai, ai+1), (qi, ai+1) are in the same strong component, and (ai−1, ai+1), (pi−1, ai+1)
are in a same strong component. Circuit (a0, a1), . . . , (ai−1, qi), (qi, ai+1), . . . , (an, a0)

is a minimal circuit belong to Ŝ.
2. If Li ≤ Li−1 then Zi is symmetric, (ai, ai+1), (ai, qi+1), (pi, qi+1), (pi, ai+1)

are in the same strong component, and they are all reachable from each other
via symmetric and constricted from below paths of net value zero. Moreover,
(ai−1, ai), (ai−1, pi) are in the same strong component, and (ai−1, ai+1), (ai−1, qi+1)
are in a same strong component. Circuit (a0, a1), . . . , (ai−1, pi), (pi, ai+1), . . . , (an, a0)

is a minimal circuit belong to Ŝ.
3. If (ai−1, ai), (ai+1, ai+2) are UL-pairs and Li ≥ Li−1, Li+1 then (ai, ai+1) is

also an UL-pair and (ai, ai+1) is reachable from (qi, pi+1) by a symmetric and
constricted from below path of net value zero. Moreover, (q′i, p

′
i+1)(qi, pi+1)

is a symmetric arc in H+.
4. If (ai, ai+1) and (ai−1, ai) ((ai+1, ai+2)) are UL-pairs and Li−1 ≤ Li ≤ Li+1

(Li+1 ≤ Li ≤ Li−1) then (ai, ai+1) and (qi, qi+1), (ai, qi+1) ((pi, pi+1), (ai, pi+1))
are in the same strong component, and (qi, qi+1) ((pi, pi+1)) is reachable
from (ai, ai+1) by a constricted symmetric path of net value zero. Moreover,
p′i−1qi+1, q

′
iqi+1 ̸∈ A(H) (p′i+1pi, q

′
i+2pi ̸∈ A(H)).

5. If (ai, ai+1), (ai+1, ai+2) are UL-pairs and Li ≤ Li−1, Li+1 then (pi, qi+2), (ai, ai+2)
are reachable from each other via a symmetric and constricted from below
path of net value zero, and (qi+1, qi+2), (ai+1, ai+2) are reachable from each
other via a symmetric and constricted from below path of net value zero.
Moreover, (p′i, q′i+2)(pi, qi+2) , (q′i+1, q

′
i+2)(qi+1, qi+2), and (p′i, q

′
i+1)(pi, qi+1)

are symmetric arcs of H+.

Proof. Proof of 1. Let u be a vertex on A′
i and v be the corresponding vertex to u

on B′
i+1 such that C = A′

i[u, ai], D = B′
i+1[v, ai+1] are constricted and have net

length −Li−1 (C,D shown by green in Figure 8). Since the circuit is minimal, we
have (pi−1, qi) ̸⇝ (ai−1, ai+1), and (pi, qi+1) ̸⇝ (ai−1, ai+1), as otherwise, we get
a shorter circuit, violating the minimality of the circuit. Similarly, (pi−1, qi) ̸⇝
(ai+1, ai), and (pi, qi+1) ̸⇝ (ai, ai−1).

As a consequence, since (pi−1, qi)⇝ (gi−1, hi), we have (gi−1, hi) ̸⇝ (ai−1, ai+1),
and (gi−1, hi) ̸⇝ (ai+1, ai). Since (pi, qi+1)⇝ (u, v), we have (u, v) ̸⇝ (ai−1, ai+1), (u, v) ̸⇝
(ai, ai−1). Therefore, for p = gi−1, q = hi, r = u, and s = v and a = ai−1, b = ai,
c = ai, d = ai+1, and walks A′

i−1, B
′
i, C,D (all constricted and have same net

length) Lemma 6 is applied to conclude that A′
i−1, B

′
i avoid each other and C,D
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avoid each other. Moreover, A′
i−1, C have embedded pre-images avoiding each

other and B′
i, D have embedded pre-images avoiding each other.

Now we observe that C−1 + C avoids D−1 + D. C−1 + C is a walk from
ai to ai, and in the condition of the Lemma 7, pi is assumed to be ai, and
qi+1 is assumed to be ai+1. D−1 + D is a walk from ai+1 to ai+1, and in the
condition of the Lemma 7. Ai−1, Bi, C

−1, D−1 has net Li− 1, and A′
i−1, B

′
i, C,D

have net length −Li−1. Since the circuit is minimal, condition 2 of Lemma 7 is
satisfied for Ai−1, A

′
i−1, Bi, B

′
i, C

−1, C,D−1, D and we conclude that A′
i−1, B

−1
i

have congruent embedded pre-images A,B (respectively) that avoid each other.
Moreover, B′

i, D have embedded pre-images B1, D1 that avoid each other and
Bi, D

−1 (shown by green in Figure 8) have embedded pre-images B2, D2 that
avoid each other.

From the above conclusions, Ai−1+A and Bi+B are constricted from below
path with net value zero that avoid each other, and hence, (pi−1, qi), (ai−1, qi),
(ai−1, ai) are in the same strong component. Moreover, B2+B1 and D1+D2 avoid
each other, and hence, (qi, ai+1), (ai, ai+1) are in the same strong components.
These allow us to replace ai by qi in the circuit (a0, a1), . . . , (an−1, an), (an, a0)

and obtain C1 : (a0, a1), . . . , (ai−1, qi), (qi, ai+1), . . . , (an, a0) in Ŝ.

Proof of 2. Analogous to proof of 1.

Proof of 3. Since Li−1 ≤ Li, by (1) we replace ai by qi and obtain a minimal
circuit C1 : (a0, a1), . . . , (ai−1, qi), (qi, ai+1),
. . . , (an, a0). Notice that by (1) (qi, ai+1) and (ai, ai+1) are reachable from each
other via constricted from below paths of net value zero. According to (2)
(argument on blue walks in Figure 8 for circuit C1) we conclude that C2 :
(a0, a1), . . . , (ai−1, qi), (qi, pi+1), (pi+1, ai+2) . . . , (an, a0) is a minimal circuit in
Ŝ.

pi−1 qiai−1 ai
pi qi+1

gi−1 hi
u v

A′i−1
B′iAi−1

Bi

A′i B′i+1

ai+1
ai+2

pi+1 qi+2

p′i−1 q′i p′i+1 q′i+2

C

D−1C−1

D

Ai+1

Bi+2

A′i+1 B′i+2

Fig. 8. Illustration of the proof of Lemma 8. The orange dashed arcs are the missing
arcs. The green, blue dashed walks show the direction of the walks.
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Moreover, (qi, ai+1), (qi, pi+1) are reachable from each other via constricted
from below paths of net value zero. Therefore, (ai, ai+1), (qi, pi+1) are reachable
from each other via constricted from below paths of net value zero. It also follows
that (pi−1, pi+1)⇝ (ai−1, ai+1) and (qi, qi+2)⇝ (qi, ai+2).

Now p′i−1pi+1 ̸∈ A(H) (see Figure 8), as otherwise, (p′i−1, q
′
i)(pi+1, qi) ∈

A(H+), and hence (pi+1, qi) ∈ Ŝ; contradicting the minimality of the circuit C2.
Since p′i−1pi+1 ̸∈ A(H), we have q′ipi+1 ̸∈ A(H), otherwise, (p′i−1, q

′
i)(pi−1, pi+1) ∈

A(H+), and since (pi−1, pi+1), (ai−1, ai+1) are in the same strong component,
we have (p′i−1, q

′
i) ⇝ (ai−1, ai+1), contradicting the minimality of the original

circuit. We also note that p′i+1qi ̸∈ A(H), as otherwise, (p′i+1, q
′
i+1)(qi, qi+2) ∈

A(H+); implying that (qi, qi+2) ∈ Ŝ, and since by (1) (qi, qi+2), (qi, ai+2) are in
the same strong component, we have (p′i+1, q

′
i+2)⇝ (qi, ai+2), contradicting the

minimality of the circuit C2. Therefore, (q′i, p′i+1) ⇝ (ai, ai+1) via a symmetric
path constricted from below and with net value one.

Proof of 4. We assume (ai, ai+1), (ai−1, ai) are UL-pair and the case where
(ai, ai+1), (ai+1, ai+2)) are UL-pair is similar. By (1) one can replace ai, ai+1 by
qi, qi+1 (respectively) and obtain minimal circuit C2 : (a0, a1), . . . , (ai−1, qi), (qi, qi+1), (qi+1, ai+2),

. . . (an, a0) in Ŝ. It also follows that (qi, qi+1), (ai, ai+1) are in the same strong
component (using the red walks in Figure 9). Now p′i−1qi+1 ̸∈ A(H), other-
wise, (p′i−1, q

′
i)(qi+1, qi) ∈ A(H+), and hence, (qi+1, qi) ∈ Ŝ while (qi, qi+1) ∈ Ŝ;

contradicting the minimality of circuit C2. Now, the absence of the arc p′i−1qi+1

implies that q′iqi+1 is not an arc of H, as otherwise, (p′i−1, q
′
i)(pi−1, qi+1) is an arc

of H+. Since, (pi−1, qi+1) ⇝ (ai−1, qi+1), we have (p′i−1, q
′
i) ⇝ (ai−1, qi+1) ∈ Ŝ;

contradiction to minimality of C2.

pi−1 qi
ai−1 ai

pi qi+1

gi hi+1
u v

A′i B′i+1
Ai

Bi+1

A′i+1 B′i+1

ai+1 ai+2

pi+1 qi+2

p′i−1 q′i p′i q′i+1

C Dgi−1 hi

Fig. 9. Each straight segment represents a constricted walk. The dashed line shows the
direction of the walks. Walks A,B avoid each other and walks C,D avoid each other.
The orange dashed arrows are missing arc in H.
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Proof of 5. Suppose Li+1 ≤ Li−1. The argument for the other case is similar. By
(1) Ai +A′

i, Bi+1 +B′
i+1 avoid each other (see Figure 10).

ai−1 aipi−1 qi
qi+1

p′i+1q′i+1

ai+1pi qi+2

B′i+2

p′i q′i+2

pi+1

Ai+1

B′i+1

B′i

A′i

A′i−1

ai+2

Ai−1
Bi

Ai

Bi+1

A′i+1

Bi+2

A B

A−1

B−1

Fig. 10. Lemma 8 (5) where for contradiction we first suppose Li−1 > Li, Li+1 (the
case Li+1 > Li−1 > Li is proved similarly). A′

j avoids B′
j+1, and Aj avoids Bj+1,

j = i− 1, i, i+ 1. The dashed arcs are missing arcs in H. In the proof we first we first
show p′i+1pi is a missing arc, then q′i+1pi is a missing arc, and finally p′iqi+2 is a missing
arc.

We show that Ai+1+A′
i+1 and Bi+2+B′

i+2 avoid each other (see Figure 10).
Since the circuit is minimal, the condition in Corollary 4 for A′

i+1, B
′
i+2, A,B

(where A,B) are constricted portion of A′
i−1, B

′
i with net length −Li+1 are sat-

isfied, and hence, A,B,A′
i+1, B

′
i+2 pairwise avoid each other. Again by applying

Corollary 4 on Ai+1, Bi+2 and A−1, B−1 we conclude that the embedded pre-
images of A,B,Bi+2, Ai+1 pairwise avoid each other.

We may assume Zi = (Ai+A′
i+(B′)−1+B′, Bi+1+B′

i+1+A′′
i+1+(A′′

i+1)
−1)

(here B′, A′′
i+1 are the embedded pre-images of A,A′

i+1) ,and hence, Li = Li+1.
By Lemma 7 we observe that Bi+1 +B′

i+1 + (A′
i+1)

−1 +A′
i+1 and Bi+2 +B′

i+2

have embedded pre-images that avoid each other, and hence, (qi+1, qi+2) ⇝
(ai+1, ai+2), similarly (pi, qi+2), (ai, ai+2) are in the same strong component.

By 4, we have p′i+1pi, q
′
i+2pi ̸∈ A(H). We observe that p′iqi+2 ̸∈ A(H), as

otherwise, (p′i, q′i+1)(qi+2, qi+1) ∈ A(H+), and hence, (p′i, q′i+1) ⇝ (ai+2, ai+1),
contradicting the minimality of the circuit. Therefore, (p′i, q

′
i+2)(pi, qi+2) is a

symmetric arc, and hence, (p′i, q
′
i+2) ⇝ (ai, ai+2) via a symmetric path, con-

stricted from below and with net value one. Now q′i+2qi+1 ̸∈ A(H), as oth-
erwise, (pi, qi+1)(p

′
i, q

′
i+2) ∈ A(H+), and since (p′i, q

′
i+1)(pi, qi+1) ∈ A(H+),

(pi, qi+1)⇝ (p′i, q
′
i+2)⇝ (ai, ai+2) we get a contradiction to the minimality of the

circuit. Moreover, q′i+1qi+2 ̸∈ A(H), as otherwise, (p′i, q′i+1)(pi, qi+2) ∈ A(H+)

and since, (pi, qi+2) ⇝ (ai, ai+2), we have (p′i, q
′
i+1) ⇝ (ai, ai+2) ∈ Ŝ, contra-

dicting the minimality of the circuit. Notice that q′i+2qi+1 ̸∈ A(H), otherwise,
(p′i, q

′
i+1) ⇝ (pi, qi+1) ⇝ (p′i, q

′
i+2) ⇝ (ai, ai+2), contradicting the minimality

of the circuit. Now (q′i+1, q
′
i+2), (qi+1, qi+2), (ai+1, ai+2) are in the same strong

component.
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Finally, q′i+1pi ̸∈ A(H). Otherwise, (q′i+1, q
′
i+2)(pi, qi+2) ∈ A(H+), and con-

sequently, (ai+1, ai+2) ⇝ (q′i+1, q
′
i+2) ⇝ (pi, qi+2) ⇝ (ai, ai+2), a contradiction

to minimality of the circuit.

Theorem 17. Let S be a set of pairs in H+ and let Ŝ contain a minimal circuit
(a0, a1), (a1, a2), . . . , (an−1, an), (an, a0), n > 1, such that each (ai, ai+1) is an
UL-pair with respect to Ŝ. Then there exists another circuit (a′0, a′1), (a′1, a′2), . . . , (a′n, a′0)
in Ŝ, and walks Pi, Qi, i = 0, . . . , n, in H, such that

1. Pi, Qi are walks of net length one, and avoid each other,
2. Pi, Qi are constricted from below, and Pi is from a′i to ai, Qi is from a′i+1

to ai+1.

Proof. Since each (ai, ai+1) is an UL-pair with respect to Ŝ, there exists a path
Ui = Uai,ai+1

in H+. We consider Notations 14, and let (p′i, q
′
i+1) be first vertex

and (pi, qi+1) be the second vertex of Ui, and Zi = Ui[(pi, qi+1), (ai, ai+1)] which
is constricted from below and has net value zero.

We will find n vertices a′i from amongst the 2n vertices p′i, q′i which satisfy the
conclusion. As an intermediate step, we will find n vertices a∗i of the 2n vertices
pi, qi which also yield a circuit in Ŝ. For any i, if Li−1 < Li we let a∗i = qi and
a′i = q′i and if Li−1 ≥ Li we let a∗i = pi and a′i = p′i. We first prove that each
pair (a∗i , a

∗
i+1) in the circuit (a∗0, a

∗
1), (a

∗
1, a

∗
2), . . . , (a

∗
n, a

∗
0) can be reached from

the corresponding pair (ai, ai+1).

Case 1. Li−1 ≤ Li and Li+1 ≤ Li. In this case we have (a∗i , a
∗
i+1) = (qi, pi+1)

and (a′i, a
′
i+1) = (q′i, p

′
i+1). The proof follows from Lemma 8 (3). See Figure 8 for

the walks: from qi to ai and pi+1 to ai+1 that avoid each other).

Case 2. Li−1 < Li < Li+1. In this case we have (a∗i , a
∗
i+1) = (qi, qi+1) and

(a′i, a
′
i+1) = (q′i, q

′
i+1). We show that (ai, ai+1), (qi, qi+1) are reachable from each

other via a constricted symmetric path of net value zero. The proof is symmetric
for the case where Li+1 < Li < Li−1. In fact, we assume Li−1 < Li < Li+1 <
· · · < Li+j ≥ Li+j+1 for some j ≥ 1. Note that this means that

a∗i = qi, a
∗
i+1 = qi+1, . . . , a

∗
i+j−1 = qi+j−1, a

∗
i+j = qi+j , a

∗
i+j+1 = pi+j+1.

By Lemma 8 (1,2) we may replace ai, ai+1, . . . , ai+j by qi, qi+1, . . . , qi+j−1, pi+j(respectively)
and obtain the following minimal circuit in Ŝ.

Cj : (a0, a1), . . . , (ai−1, qi), (qi, qi+1), . . . , (qi+j−2, qi+j−1), (qi+j−1, pi+j), (pi+j , ai+j+1), . . . , (an, a0)

Observation 18 Suppose q′r+1qr ̸∈ A(H) for some r ≤ i ≤ i + j − 1. Then
(q′r, q

′
r+1)(qr, qr+1) is a symmetric arc (because q′rq

′
r+1 ̸∈ A(H) by Lemma 8 (

4)), and hence, (q′r, q′r+1) ∈ Ŝ. As a consequence, q′rqr−1 ̸∈ A(H), as otherwise,
(q′r, q

′
r+1)(qr−1, qr+1) ∈ A(H+) and consequently, (q′r, q

′
r+1)(qr−1, qr+1), imply-

ing that (qr−1, qr+1) ∈ Ŝ, a contradiction to minimality of Cj.
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By Lemma 8 (3), (q′i+j , p
′
i+j+1)(qi+j , pi+j+1) is a symmetric arc of H+, and

(qi+j , pi+j+1), (ai+j , ai+j+1) are in the same strong component. Now q′i+jqi+j−1 ̸∈
A(H), as otherwise, (q′i+j , p

′
i+j+1)(qi+j−1, p

′
i+j+1) ∈ Ŝ, a contradiction to min-

imality of Cj . Thus, by above Observation, we conclude that q′i+1qi ̸∈ A(H).
Therefore, (q′i, q′i+1)(qi, qi+1) is a symmetric arc of H+. It remains to observe
that by Lemma 8 (4) (qi, qi+1) reaches (ai, ai+1) by a symmetric path W of net
value zero. Now (Pi, Qi) = (q′i, q

′
i+1) +W .

Case 3. Li ≤ Li−1 and Li ≤ Li+1. We have (a∗i , a
∗
i+1) = (pi, qi+1) and

(a′i, a
′
i+1) = (p′i, q

′
i+1).

It follows from Lemma 8 (1) that Zi is symmetric and has net value zero.
Moreover, by Lemma 8 (5), (p′i, q′i+1)(pi, qi+1) is a symmetric arc in H+. There-
fore, (Pi, Qi) = (p′i, q

′
i+1) + Zi.

9 Tools for proving Theorem 8 (proof of Theorem 7)

In this section, we provide the tools needed to prove Theorem 8, which justified
the correctness of Phase One. We use the structural properties of walks in H+

(Section 7) and the structural properties of circuits in H+ (Section 8). The proof
relies on the following results, which we proceed to prove first.

Lemma 9. Let T be a set of unbalanced strong components where T̂ is dual-
free. Suppose T̂ contains a minimal circuit C : (a0, a1), (a1, a2), . . . , (an, a0) with
n > 1. Then each pair (ai, ai+1) is an UL-pair with respect to T̂ .

Proof. Recall that each unbalanced pair belongs to a strong component contain-
ing an unbalanced directed cycle. Plus, each unbalanced directed cycle contains
an extremal pair. Now, for each i, let Ci be the strong component of H+ con-
taining an extremal pair in T̂ where (ai, ai+1) is reachable from Ci, and let Di

be the directed cycle in Ci containing that extremal pair.

When some Di has positive net value. Then there is an infinite path W (start-
ing at some extremal vertex in component Ci) continuously going around Di

in the positive direction, which is constricted from below with unbounded net
value. By following W as far as necessary and then following a path that reaches
(ai, ai+1) from Ci (such a path exists both when (ai, ai+1) is in Ci or reachable
from Ci), we obtain a path Wi in H+ that is constricted from below5. According
to Notation 14, we let (p′i, q′i+1) be the last vertex on Wi such that the net value
of Wi[(p

′
i, q

′
i+1), (ai, ai+1)] is one, and we set Zi = Wi[(pi, qi+1), (ai, ai+1)], where

(p′i, q
′
i+1)(pi, qi+1) is a forward arc of Wi. Note that Li (the height of Zi) could

be zero, in case we have (pi, qi+1) = (ai, ai+1). Thus, (ai, ai+1) is an UL-pair.

5 We say a path X in H+ is constricted from below when the walks A1, A2 in H
corresponding to X are constricted from below
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When some Di has negative net value. Now let W be a walk in H+ that starts
from an extremal vertex on Di and then following around Di in negative direction
(sufficiently many times) and then to (ai, ai+1). This way we can assume that W
is constricted from above. If W is not constricted from below, then, we obtain
a suffix of Wi of W which is constricted from below and has net value one, and
hence, (ai, ai+1) is an UL-pair and we can use Notation 14 for the pair (ai, ai+1)
and define (p′i, q

′
i+1), (pi, qi+1), Zi. So we may assume that W is constricted, and

hence, in this case, Wi = W . In what follows, we show that each Di has positive
net values, and hence, each (ai, ai+1) is an UL-pair.

Suppose next that there are two subscripts i, i + 1 (addition modulo n)
such that both Di and Di+1 have negative net values, and both Wi and Wi+1

are constricted (as we discussed above), from some pairs (u, v), (w, x) ∈ T̂ to
(ai, ai+1), (ai+1, ai+2) respectively . We may assume that the pairs (u, v), (w, x)
are on the cycles Di, Di+1, and that the net values of Wi,Wi+1 are the same
and arbitrary (by choosing for their starting vertices a suitable extremal vertex
on Di, Di+1). Now according to Lemma 8 ( 1) Wi,Wi+1 are both symmetric.
This implies that the reverse traversal of the cycles Di, Di+1 is also a cycle in
H+, of positive net value, and we can proceed as in the case when Di, Di+1 had
positive net value.

Thus, it remains to consider the case when Di has negative net value, Wi is
constricted (both from below and from above), and Di−1, Di+1 have positive net
values. There exists, (g, h) ∈ Wi so that C,D are constricted and have net length
−Li−1 (the same net length as B′

i) where (C,D) = Wi[(g, h), (ai, ai+1)]. Notice
that C avoids D. Now according to Lemma 8 (3) we conclude that (ai, ai+1) is
an UL-pair.

Statement of Theorem 7 Let T be the vertices of a set of unbalanced strong
components (in H+) where T̂ is dual-free, and assume that T̂ contains a min-
imal circuit C : (a0, a1), (a1, a2), . . . , (an, a0). Then n > 1 and the following
statements hold.

1. There exists some minimal circuit (see Definition 6) with extremal pairs
(b0, b1), (b1, b2), . . . , (bn−1, bn), (bn, b0) in T such that (ai, ai+1), (bi, bi+1), 0 ≤
i ≤ n, are in the same strong component, and (ai, ai+1) is reachable from
(bi, bi+1) by a symmetric walk of non-negative net value, and constricted
from below.

2. For each i, 0 ≤ i ≤ n, there exists an infinite walk Pi that starts from bi and
has unbounded positive net length. Pi is obtained by going (in the clockwise
direction) around a cycle in H containing bi. Furthermore, for every i, j,
0 ≤ i < j ≤ n, Pi and Pj avoid each other 6.

3. In statement 1, for a given 0 ≤ i ≤ n, we can choose (bi, bi+1) to be any
given extremal pair from its corresponding strong component.

4. There is no path in H+ from (bi, bi+1) to any of (bj , bj+1) i ̸= j, and to any
of (bj+1, bj).

6 When we say two infinite walks P , Q avoid each other it means for every prefix of
P there exists a prefix of Q that avoid each other.
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5. There is no path in H+ from any of (bi+1, bi), 0 ≤ i ≤ n to (bi, bi+1).

Proof. We first show that n > 1. Otherwise, by definition (x, y) ⇝ (a0, a1),
and (x′, y′)⇝ (a1, a0) where (x, y), (x′, y′) ∈ T . Now by skew property we have
(a0, a1) ⇝ (y′, x′), and hence, (x, y) ⇝ (y′, x′), a contradiction that T̂ is dual-
free. Recall that each unbalanced pair belongs to a strong component containing
an unbalanced directed cycle. Plus, each unbalanced directed cycle contains an
extremal pair. Now, for each i, let Ci be the strong component of H+ containing
an extremal pair in T̂ where (ai, ai+1) is reachable from Ci, and let Di be the
directed cycle in Ci containing that extremal pair.

Proof of 1. According to Lemma 9, each (ai, ai+1) is an UL-pair. Therefore,
it is possible to apply Theorem 17, and conclude that there exists another
minimal circuit (a′0, a

′
1), (a

′
1, a

′
2), . . . , (a

′
n, a

′
0) in T̂ with the corresponding walks

Ai, Bi where each Ai and Bi is constricted from below with net length one.
Furthermore, each Ai is from a′i to ai, and each Bi is from a′i+1 to ai+1. We
can repeat the argument obtaining, at the k-th step, an ordered sequence of
vertices ak0 , a

k
1 , . . . , a

k
n such that (ak0 , a

k
1), (ak1 , a

k
2), . . . , (a

k
n, a

k
0) is a circuit in

T̂ with each (aki , a
k
i+1) is reachable from (ak+1

i , ak+1
i+1 ) by a symmetric walk of

net value 1 (symmetric follows from Theorem 17 since Pi and Qi avoid each
other). Thus, there exist r ̸= s such that ar0 = as0, a

r
1 = as1, . . . , a

r
n = asn. Thus,

we obtain the circuit (b0, b1), (b1, b2), . . . , (bn, b0) where (bi, bi+1) = (ari , a
r
i+1),

0 ≤ i ≤ n, and note that (bi, bi+1) = (ari , a
r
i+1) is extremal because for each k,

(ak+1
i , ak+1

i+1 )⇝ (aki , a
k
i+1) via a path constricted from below and net value 1.

Proof of 2. Continuing the last sentence from the proof of (1), let (Wi,W
′
i ) :

(ari , a
r
i+1) = (bi, bi+1) ⇝ (asi , a

s
i+1) = (bi, bi+1), 0 ≤ i ≤ n. Here, Wi is the

closed walk from bi to bi of net length |s − r| > 0, and constricted from below,
and W ′

i is the closed walk from bi+1 to bi+1 such that Wi,W
′
i avoid each other.

For 0 ≤ i ≤ n, let Qi, be the walk going around Wi (repeating Wi), α times
for arbitrary large positive integer α, and let Q′

i be the walk obtained by going
around the closed walk W ′

i , α times. Let hi ∈ Qi such that Ri = Qi[bi, hi] is
constricted and have net length α|r−s| (notice that hi could be bi). Let h′

i ∈ Q′
i

be the corresponding vertex to hi and let R′
i = Q′

i[bi+1, h
′
i]. Notice that since

Ri, R
′
i avoid each other and are constricted, (Ri)

−1, (R′
i)

−1 also avoid each other.
For 0 ≤ i ≤ n, let Ai = Ri, A′

i = (R′
i)

−1, Bi+1 = Ri+1, B′
i+1 = (R′

i+1)
−1,

(pi, qi+1) = (bi, bi+1), and (ai, ai+1) = (bi, bi+1) according to Notations 14. Now
one can apply the Lemma 7 on R0, (R

′
0)

−1, R1, (R
′
1)

−1, . . . , Rn, (R
′
n)

−1 and con-
clude that R1, R2, . . . , Rn have congruent embedded pre-images P1, P2, . . . , Pn

that all avoid each other. Notice that Pi starts at bi, 0 ≤ i ≤ n. This proves (2).

Proof of 3. By statement (2) of Theorem 7, there exist infinite walks Pi, 0 ≤ i ≤
n, starting at bi with unbounded positive net length. Moreover, all pairs Pi, Pj ,
0 ≤ i < j ≤ n, avoid each other. We prove the statment for i = 0 (the other
cases are similar).
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Let (x, y) be an arbitrary extremal pair in the strong component C0 con-
taining (b0, b1). We may assume there exists a path W (in H+) from (x, y) to
(b0, b1) which is constricted and has positive net value. This can be done by go-
ing around a directed cycle, in C0 containing (x, y), in the positive direction as
many times as needed. Note that by (2), the cycle has positive net value because
of the walks P0, P1. This means that W = (X,Y ) where X is constricted and
has positive net length, and avoids Y . Note that the net length of X could be
arbitrarily large.

Let b′i, 0 ≤ i ≤ n, be a vertex on Pi such Pi[b
′
i, bi] is constricted and has the

same net length as X. Now, by applying Lemma 7 on X,Y, P1[b
′
1, b1], P2[b

′
2, b2],

and on Pn[b
′
n, bn], P0[b

′
0, b0], X, Y we conclude that X,Y have congruent embed-

ded pre-images X ′, Y ′ that avoid each other. Moreover, we can choose X0 from
x to b0, X1 from y to b1, X2 from b′2 to b2, and Xn from b′n to bn in such a
way that X0, X1, X2, Xn are all congruent and all avoid each other. Note that
X0, X1, X2, Xn are congruent embedded pre-images of X ′, Y ′, P2[b

′
2, b2], Pn[b

′
n, bn],

respectively. This means (x, y), (y, b′2), (b
′
2, b

′
3), ..., (b

′
n, x) is also a circuit, and

each (b′i, b
′
i+1) is an extremal pair. Now it is easy to see that there exist P ′

0, P
′
1, . . . , P

′
n

starting at x, y, b′2, b
′
3, . . . , b

′
n (respectively) so that P ′

i , P
′
j avoid each other.

Proof of 4. Suppose there exists a path W in H+ from (bi, bi+1) to (bj , bj+1).
We may assume W has non-positive net value (the argument for the other case
is similar). Now, define W ′ to be a walk in H+ starting at (bi, bi+1) and then
following the cycle Di (containing (bi, bi+1)) in negative direction sufficiently
many times and then following W to (bj , bj+1) and then following cycle Dj

(containing (bj , bj+1) in negative direction sufficiently many times such that W ′

is constricted. Notice that W ′ has negative net value. Let W ′ = (X1, X2) and
observe that X1 is a walk in H from bi to bj and X2 is a walk from bi+1 to bj+1

and X1 avoids X2. Now we can take vertices b′i+1, b
′
i+2 on Pi+1, Pi+2 such that

Pi+1[b
′
i+1, bi+1], Pi+2[b

′
i+2, bi+2] are constricted and have the same net length as

X1, X2. Since the circuit is minimal, there is no path from (bi, i+ 1) to any of
(bi, bi+2), (bi+2, bi+1) and there is no path from (b′i+1, b

′
i+2) (in the same com-

ponent as (bi+1, bi+2)) to any of (bi, bi+2), (bi+1, bi). Therefore, by Lemma 6 we
conclude that X1, X2 avoid each other. This allows us to consider a directed cycle
(C1, C2) in H+ going through both (bi, bi+1), (bj , bj+1) with net value positive
and assume that X1 is part of the closed walk C1 in H containing both bi, bj .

Let b′0, b
′
1, . . . , b

′
n be the vertices on P0, P1, . . . , Pn such that for every 0 ≤

r ≤ n, P ′
r = Pr[b

′
r, br] has the same net length as (C1)

a (here a is an arbitrary
large positive integer). Let Cbi be the walk going around C1 (a time) start-
ing at bi, Cbi+1

be the walk going around C2 (a time) starting at bi+1, Cbj

be the walk going around C1 (a time) starting at bj , Cbj+1
be the walk go-

ing around C2 (a time) starting at bj+1. Now by applying Lemma 7 on walks
P ′
0, P

′
1, . . . , P

′
i−1, Cbi , Cbi+1

, P ′
i+2, . . . , P

′
j−1, Cbj , Cbj+1

, P ′
j+1, . . . , P

′
n we conclude

that Cbi and Cbj avoid each other. Now it is easy to see that Cbi , Cbj satisfy the
condition of Theorem 13, and hence, we obtain a strong circuit in H+; contra-
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diction to our assumption that H+ does not have a strong circuit.

Proof of 5. Assume, without loss of generality, that i = n, the other cases are
symmetric. By (2), we conclude that (b0, bn) is also an extremal pair.

Using (3), there is a circuit (d0, d1), . . . , (dn−1, dn), (dn, d0) with (dn, d0) =
(b0, bn) where (di, di+1) ⇝ (bi, bi+1) (via a symmetric path according to (1))
and (dn, d0) is in the same strong component as (bn, b0). Therefore, (bn, b0) and
(b0, bn) are in the same strong component, a contradiction.

9.1 Auxiliary Results Obtained from Theorem 7

The results of this subsection follow from Theorem 7; some are used in Subsection
10 and some in Section 11.

Proposition 1. Let T be a set of unbalanced pairs where T̂ is dual-free. Let
(b0, b1), (b1, b2), . . . , (bn, b0) be any minimum circuit in T̂ . By Theorem 7, let Pi

be an infinite walk starting at bi, 0 ≤ i ≤ n. Suppose for some i, (bi, bi+1) lies on
arbitrary cycle Di ∈ H+ with positive net value. Let Di = (C1, C2), (i.e. C1, C2

are closed walks in H and C1 avoids C2). Then Pi is a walk obtained by going
around cycle C1 as many times as necessary.

Proof. By Theorem 7(2) walk Pi, 0 ≤ i ≤ n, is constricted and has unbounded
positive net length. Moreover, Pi, Pj , 0 ≤ i < j ≤ n avoid each other. Since
bi, bi+1 are extremal, there exists a vertex (b, c) on Di, such that C1[b, bi], C2[c, bi+1]
are constricted. Now we can take vertices b′i+1, b

′
i+2 on Pi+1, Pi+2 such that

Pi+1[b
′
i+1, bi+1], Pi+2[b

′
i+2, bi+2] are constricted and have the same net length as

C1[b, bi]. Since the circuit is minimal, there is no path from (b, c) (in the same
component of (bi, bi+1)) to any of (bi, bi+2), (bi+2, bi+1) and there is no path from
(b′i+1, b

′
i+2) (in the same component as (bi+1, bi+2)) to any of (bi, bi+2), (bi+1, bi).

Therefore, by Lemma 6 we conclude that C1, C2 avoid each other. Again one can
apply the Lemma 7 on any prefix of walks P0, P1, . . . , Pi−1, C1, C2, Pi+2, . . . , Pn,
where all have the same net length, and conclude that there exists, P ′

0, P
′
1, . . . , P

′
n

where P ′
i , P

′
j , i ̸= j, avoid each other. Observe that P ′

i goes around C1.

The purpose of the following is to consider a circuit in H+ and consider the
case when it is not minimal.

Corollary 5. Let A,B,C,D be congruent walks in H from p, q, r, s to a, b, b, d
respectively where A avoids B and C avoids D. If A,B or A,C or A,D or B,D
or C,D do not avoid each other then either X1 : (p, q)⇝ (a, d) or X2 : (p, q)⇝
(d, b) or X3 : (r, s)⇝ (a, d) or X4 : (r, s)⇝ (b, a) exists. If Xi 1 ≤ i ≤ 4, exists
then there are walks P1, P2 such that Xi = (P1, P2), and P1, P2, A,B,C,D have
congruent embedded pre-images, and P1, A have the same net length.

Proof. Let A : p = a1, a2, . . . , an = a, B : q = b1, b2, . . . , bn = b, C : r =
c1, c2, . . . , cn = b, and D : s = d1, d2, . . . , dn = d. Let Si denote the statement
that : all pairs from A[ai+1, a], B[bi+1, b], C[ci+1, b], D[di+1, d] avoid each other,
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except possibly B[bi+1, b], C[ci+1, b]. If there is a faithful arc aidi+1 then (P1, P2) :
(p, q)⇝ (ai, bi)⇝ (di+1, bi+1)⇝ (d, b). More precisely, P1 = A[a1, ai]+aidi+1+
D[di+1, d] and P2 = B[b1, bi] + bibi+1 + B[bi+1, b] where P1 avoids P2. Notice
that P1 is congruent to A,B,C,D, and hence, they have the same net length.
Following the argument in the proof of Lemma 4, if dibi+1 is a faithful arc then
(p, q) ⇝ (a, d) which is composed of two walks P1 = A, and P2 = B[q, bi] +
bidi+1 + D[di+1, d] that are congruent and congruent with A,B,C,D and we
are done. By a similar line of reasoning, if any of ciai+1, diai+1 is a faithful
arc, we reach the same conclusion. So we may assume ciai+1, diai+1 are not
a faithful arcs. Now suppose dibi+1 is a faithful arc. Then P1 = A[p, ai+1] +
(ai+1ai)

−1 +A[ai, a] and P2 = B[q, bi+1] + (dibi+1)
−1 +D[di, d] where P1 avoids

P2 yield a walk from (p, q) to (a, d). Notice that P1 and P2 have the same net
length as A,B,C,D, and it is easy to see that by adding (aiai+1)

−1 + aiai+1

right after ai+1 we obtain an embedded pre-image of A that is congruent with
P1, P2. By similar argument we conclude that if biai+1 is a faithful arc then
P1 = C + B−1[b, bi] + biai+1 + A[ai+1, a] and P2 = D +D−1[d, di] +D[di+1, d]
where P1 avoids P2 yields a walk from (r, s) to (a, d) in H+. Notice that we can
simply find an embedded pre-image of A that is congruent with P1. A similar
argument would imply when dici+1 is a faithful arc.

From Corollary 5, and the proofs of Lemma 4 and Lemma 6 we have the
following.

Corollary 6. Suppose A,B,C,D are four constricted walks in H of the same
net length from p, q, r, s to a, b, b, d (respectively) where A avoids B and C avoids
D. Then one of the following occurs:

– There are embedded pre-images A′, B′, C ′, D′ of A,B,C,D respectively such
that A′, B′, and A′, C ′, and A′, D′, and B′, D′, and C ′, D′ avoid each other.

– X1 : (p, q) ⇝ (a, d) or X2 : (p, q) ⇝ (d, b) or X3 : (r, s) ⇝ (a, d) or X4 :
(r, s) ⇝ (b, a) exists. If Xi exists, 1 ≤ i ≤ 4, then Xi consists of two walks
P1, P2 (P1 avoids P2) in H such that P1, P2, A,B,C,D have embedded pre-
images that are congruent, and P1, A has the same net length.

When the four walks A,B,C,D all have distinct end points, a, b, c, d in Corol-
lary 6, and following Corollary 4 we obtain the following corollary.

Corollary 7. Suppose A,B,C,D are four constricted walks of the same net
length from p, q, r, s to a, b, c, d (respectively) where A avoids B and C avoids D.
Then one of the following occurs:

– There are embedded pre-images A′, B′, C ′, D′ of A,B,C,D respectively such
that A′, C ′, and A′, D′, and B′, D′, and avoid each other.

– X1 : (p, q) ⇝ (a′, b′) for some (a′, b′) ∈ {(a, c), (a, d), (c, b), (d, b), (d, c)} or
(r, s) ⇝ (c′, d′) for some (c′, d′) ∈ {(a, d), (a, c), (b, d), (c, a), (c, b)}. If Xi

exists, 1 ≤ i ≤ 2, then Xi consists of two walks P1, P2 (P1 avoids P2) in H
such that P1, P2, A,B,C,D have embedded pre-images that are congruent,
and P1, A has the same net length.
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Proposition 2. Let S be a set of pairs in H+ such that Ŝ is dual-free. Suppose
Ŝ contain a circuit (a0, a1), (a1, a2), . . . , (an−1, an), (an, a0), n > 1. For every,
i = 0, 1, . . . , n, consider the path Zi according to Notation 14 which is the suffix
of a walk starting from a pair in S and ending at (ai, ai+1). Then one of the
following occurs:

1. either there is no path from a vertex on Zi to some (ar, as), r ̸= s− 1, s,
2. or there is a path Yi from beginning of Zi to some (ar, as), r ̸= s− 1, s, s+1

(s+1 is not possible as otherwise it would mean (x, y)⇝ (y, x)) where Yi is
constricted from below and has the same net value as Zi.

Proof. Referring to Notation 14 for the circuit, consider the case when Li < Lj

(i ≤ j then case where j < i is similar). Now let (u, v) be a vertex on Zj such
that Zj [(u, v), (aj , aj+1)] is constricted and has net value −Li. Let (A,B) =
Zj [(u, v), (aj , aj+1)]. When j = i+ 1, we apply Corollary 6 to A,B,A′

i, B
′
i+1. If

the first item of Corollary 6 does not occur, then either (gi, hi+1) ⇝ (ai, ai+2)
via a path which is constricted and has net value which is the same as length
A′

i or (gi, hi+1)⇝ (ai+2, ai+1) via a constricted path (in H+) with net value the
same as net length A′

i or (u, v)⇝ (ai, ai+2) via a constricted path with net value
the same as net length A′

i or (u, v)⇝ (ai+1, ai) via a constricted path with net
value the same as net length of A′

i. Thus, one of the following occurs.

– (pi, qi+1) ⇝ (ai, ai+2) (in H+) is constricted from below and has net value
zero.

– (pi, qi+1)⇝ (ai+2, ai+1) is constricted from below and has net value zero.
– (pi+1, qi+2)⇝ (ai, ai+2) is constricted from below and has net value zero.
– (pi+1, qi+2)⇝ (ai+1, ai) is constricted from below and has net value zero.

When j ̸= i + 1, we apply Corollary 7 to A,B,A′
i, B

′
i+1. If the first item of

Corollary 7 does not occur, then either (gi, hi+1) ⇝ (a′, b′) for some (a′, b′) ∈
{(ai, aj), (ai, aj+1), (aj , ai+1), (aj+1, ai+1), (aj+1, aj)} via a path which is con-
stricted and has net value which is the same as length A′

i or (u, v) ⇝ (c′, d′)
for some (c′, d′) ∈ {(ai, aj+1), (ai, aj), (ai+1, aj+1), (aj , ai), (aj , ai+1) via a con-
stricted path with net value the same as net length A′

i.
From the above discussion, it is easy to conclude that if the circuit is not

minimal, then there is a constricted from below path with net value zero, from
(pi, qi+1) to some (ar, as) ̸= (aj , aj+1).

9.2 Strong Circuits and Closed Walks in H.

The following Lemma and Theorem consider the case when a strong circuit exists
in H+ and are used in Section 11.

Lemma 10. Let S be a strong component in H+ such that Ŝ is dual-free. If S
contains a circuit then S contains a minimal circuit with at least three pairs.
Moreover, S is an unbalanced component.
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Proof. Suppose C : (a0, a1), (a1, a2), . . . , (an, a0) is a circuit in S. By the argu-
ment at the beginning of proof of Theorem 7 we assume n > 1. We first prove
S cannot be balanced. For contradiction, suppose S is a balanced component.
In this case, we prove S contains an invertible pair which contradicts the as-
sumption that Ŝ is dual-free. Let (x, y) be a pair on the lowest layer of S. Now,
consider a path Xi = (Ai, Bi) ∈ H+ from (x, y) to (ai, ai+1), 0 ≤ i ≤ n; here
Ai is from x to ai, and Bi is from y to ai+1 where Ai avoids Bi. Let Zi be the
suffix of Xi which is constricted from below and has net value zero.

There is no path from a vertex on a path Xi to (ai+1, ai), as otherwise, this
would imply that (x, y) ⇝ (ai+1, ai) as well as (x, y) ⇝ (ai, ai+1), and hence,
(x, y) ⇝ (y, x), a contradiction to Ŝ being dual-free. Considering the paths
X0, X1, . . . , Xn, by Proposition 2, one of the following occurs for Zi’s.

1. either there is no path from a vertex on Zi to some (ar, as), r ̸= s− 1, s.
2. there is a path from a vertex on Zi to some (ar, as), r ̸= s−1, s, s+1, which

is constricted from below and has the same net value as Zi.

Note that if item 1 occurs then the circuit C is minimal. If item 2 occurs,
we get a shorter circuit of length greater than 1 in Ŝ. Therefore, we continue
by assuming there exists a minimal circuit C ′ that has length m > 1, and each
pair (a′i, a

′
i+1), 0 ≤ i ≤ m of C ′ is reachable from (x, y) via a path X ′

i that
is constricted from below and has non-negative net value. So, without loss of
generality, we continue with minimal circuit C ′. We also assume at least one X ′

i

has net value zero. Otherwise, by repeatedly applying Theorem 17, t times we
obtain another minimal circuit (at0, at1), (at1, at2), . . . , (atn, at0) where the net value
of a path from (x, y) to (ati, a

t
i+1) is t times less than the net value of the path

from (x, y) to (ai, ai+1). Thus, we may assume at least one of the X ′
i has net

value zero.
Suppose X ′

i has net value zero. We may assume that X ′
i has a maximum

height in component S which can be done by adding a prefix to X ′
i, going from

(x, y) to a vertex with max height in S and then back to (x, y).
We show that none of X ′

i−1 and X ′
i+1 has net value zero. For contradiction,

suppose, X ′
i+1 has net value zero. Again we may assume that X ′

i+1 has maximum
height and is the same as X ′

i. Thus, X ′
i = (Ai + A′

i, Bi+1 + B′
i+1) and X ′

i+1 =
(Ai+1 + A′

i+1, Bi+2 + B′
i+2) according to Notations 14. Moreover, (pi, qi+1) =

(x, y) and (pi+1, qi+2) = (x, y). Note that Ai, Bi+1, Ai+1, Bi+2 all have the same
net length. By Lemma 7 Ai and Ai+1 avoid each other, which is a contradiction
since they have the same start vertex x. Similarly, X ′

i−1 does not have net value
zero. Therefore, we assume both (ai−1, ai) and (ai+1, ai+2) are UL-pairs.

Now, by Lemma 8 (3) (Figure 8) we conclude that (ai, ai+1) is an UL-pair;
a contradiction to X ′

i have net value zero.
We proceed by assuming S is an unbalanced component and prove it con-

tains a minimal circuit with at least three pairs. Let C ′ : (a′0, a
′
1), (a

′
1, a

′
2), . . . ,

(a′m, a′0) be a minimal circuit in Ŝ with m > 1. Notice that m > 1 because
Ŝ is dual-free. Now, according to Theorem 7 (1) and (3), there exists another
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minimal circuit (b′0, b
′
1), . . . , (b

′
m, b′0) where all (b′i, b′i+1) belong to S. Therefore,

(b′0, b
′
1), . . . , (b

′
m, b′0) is the desired circuit.

Theorem 19. If there exists a circuit in a strong component of H+ then either
H+ contains an invertible pair or there exists a closed walk W in H composed
of walks W [v0, v1], W [v1, v2],. . . ,W [vr, v0] with the following properties:

1. each W [vi, vi+1] is constricted from below,
2. each W [vi, vi+1] has a positive net length ℓ (all have the same net length ℓ),
3. W [vi, vi+1],W [vj , vj+1] avoid each other for every 0 ≤ i < j ≤ r (vr+1 = v0).

Proof. Suppose C : (a0, a1), (a1, a2), . . . , (an, a0) is a circuit in a strong compo-
nent S of H+. We may assume n > 1, as otherwise, an invertible pair exists, and
we are done. Furthermore, if S ⇝ S′ (recall S′ is the dual of S) then we consider
a circuit in S′ and observe that in this case S′ ̸⇝ S, as otherwise, S = S′, and
hence, there exists an invertible pair in S. Thus, without loss of generality, we
may assume S ̸⇝ S′. This also means that Ŝ is dual-free.

By Lemma 10, S is an unbalanced component and we can assume C is a min-
imal circuit. According to Theorem 7, we may assume all (ai, ai+1) are extremal
pairs. Since all of (ai, ai+1)’s are in the same strong component, we may assume
that all lie on one directed cycle (X,Y ) = D in S in which (ai+1, ai+2) is after
(ai, ai+1), 0 ≤ i ≤ n, if we traverse D in the clockwise direction.

Consider the walks Pi, 0 ≤ i ≤ n, for circuit C according to Theorem 7
(2). Each walk Pi starts at ai, is constricted, and has unbounded positive net
length. Every Pi, Pj , 0 ≤ i < j ≤ n, avoid each other. Moreover, Pi is obtained by
walking around the closed walk X. This can be assumed according to Proposition
1. Notice that the net value of D is positive since each Pi has positive net value.
Thus, without loss of generality, assume the portion of D from (a0, a1) to (a1, a2)
has positive net value ℓ.

Now we are going to cut the closed walk X into pieces, of net length ℓ.
More precisely, consider walks W0 = X[a′0, a

′
1] where a′0 = a0 and a′1 = a1, and

Wj = X[a′j , a
′
j+1]; j = 1, 2, . . . where a′j+1 is an extremal vertex on X and Wj

has net length ℓ. Notice that each a′j lies on the same closed walk X. Since H
is finite, at some point we must have two subscripts r, k such that a′r+1 = a′k.
W.l.o.g. assume that a′0 = a′r+1. It remains to observe that Wi,Wj , 0 ≤ i ≤ j ≤ r
avoid each other since P0, P1, P2, . . . , Pn avoid each other.

10 Correctness of Phase Two

In this section, we prove the lemmas used in the proof of Lemmas 1, 2. Recall
that in Line 16 of Algorithm 1 we seek a vertex p ∈ V (H) with some special
properties, namely, no (q′, p) ∈ Vc∩Lk and ∃(p, q) ∈ R∩Lk with (p, q) ̸⇝ (q, p).
In line 18 for vertex p, we add a pair (p, r) where (p, r) ̸⇝ (r, p), into Vc. Pair
(p, r) is called an initial pair. In the sub-digraph of H+ induced by vertices of
Vc, a pair reachable in H+ from an initial pair is called an 1-implied pair. Note
that the path from an initial pair to a 1-implied pair is constricted from below.
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This is because all the pairs that are reachable from an initial pair via a path of
negative net value are in lower layers, and our algorithm has already processed
them.

The sequence of pairs Ch : (y0, y1), (y1, y2), . . . , (ym−1, ym) is called a chain
of pairs between y0 and ym. When all the pairs of Ch are in Vc, we say Ch is
minimal if none of its pairs is by transitivity, and among the chains between
(y0, ym) in Vc, Ch has the minimum length.

Lemma 11. Let Ch : (y0, y1), (y1, y2), . . . , (ym−1, ym), m > 1 be a minimal
chain in Vc which is currently circuit free. Suppose for each 0 ≤ i ≤ m−1 either
(yi, yi+1) is an UL-pair (with respect to Vc, see Definition 8) or it is a 1-implied
pair reachable from an initial pair by a constricted from below path of net value
zero. For each pair (yi, yi+1), 0 ≤ i ≤ m − 1, let Zi = (Ai + A′

i, Bi+1 + B′
i+1)

be a path in H+ with net value zero from a pair (pi, qi+1) ∈ Vc to (yi, yi+1), and
let Li be the height of Zi. Here Ai is constricted and has net length Li, A′

i is
constricted and has net length −Li. Ai avoids Bi+1, and A′

i avoids B′
i+1. Then

the following hold.

1. Suppose (yi, yi+1) is an 1-implied pair reachable from an initial pair (pi, qi+1).
Then Li > Li−1, Li+1.

2. Suppose (yi, yi+1), (yi+2, yi+3) are UL-pairs (with respect to Vc). Then min{Li, Li+2} <
Li+1 < max{Li, Li+2}, and (yi+1, yi+2) is also an UL-pair.

3. If (yi, yi+1) is an 1-implied pair then i = 0 or i = m− 1.
4. Suppose (yi, yi+1), (yi+1, yi+2), 1 < i ≤ m − 2 are UL-pairs with respect to

Vc such that Li ≤ Li+1. Then (yi−1, yi) is also an UL-pair, and Li−1 < Li.
5. Suppose (yi, yi+1), (yi+1, yi+2), 1 < i ≤ m− 2 are UL-pairs (with respect to

Vc) such that Li ≥ Li+1. Then (yi+2, yi+3) is also an UL-pair, and Li+1 >
Li+2.

Proof. The assumptions in Lemma 7 and Lemma 8 (no shortcut in the circuit,
i.e., minimal circuit) are also applied for a minimal chain.

Proof of 1. For contradiction, first, assume that Li < Li+1. Let h be a ver-
tex on A′

i+1 such that A1 = A′
i+1[h, yi+1] is constricted and has the same

net length as A′
i, and let g be the corresponding vertex to h on B′

i+1, and
let B1 = B′

i+1[g, yi+2]. By applying Lemma 7 on A′
i, B

′
i, A1, B1 we conclude that

A′
i, B

′
i, A1, B1 have embedded pre-images that pair-wise avoid each other. More-

over, A′
i, B

′
i avoid each other and A1, B1 avoid each other. Again by applying 7

on Ai+A′
i, Bi+B′

i, A
−1
1 +A1, and B−1

1 +B1, we conclude that A′
i, A

−1
1 , B′

i, B
−1
1

have embedded pre-images that pair-wise avoid each other. Therefore, (pi, yi+2),
(yi, yi+2) are in the same strong component of H+. We note that (yi+2, yi) ̸∈ Vc.
Notice that (yi+2, pi) ̸∈ Vc, as otherwise, since (yi+2, pi) ⇝ (yi+2, yi), we would
have (yi+2, yi) ∈ Vc; a circuit in Vc. Now according to the rules of the Algorithm
1 lines 16, 17, (pi, yi+2) ∈ Vc should have been added into Vc before (pi+1, qj+2),
and hence, (yi, yi+2) ∈ Vc (because (pi, yi+2) ⇝ (yi, yi+2)), contradicting the
minimality of the chain Ch; unless (yi+2, pi) is already in Vc which would yield
a circuit in Vc; impossible. Notice that when pi = pi+1 again (pi, yi+2) is a pair
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that should be added into Vc (because we consider any circuit after running en-
tire line 17) which gives a shorter chain. The argument for the case Li−1 < Li

is analogous. This proves the first premise of the lemma.

Proof of 2. For j = i, i+2, let (p′j , q′j+1) ∈ Vc such that (p′j , q′j+1)(pj , qj+1) is an
arc of H+. By Lemma 8 (3), we conclude that (q′i+1, p

′
i+2), (yi+1, yi+2) are in the

same strong component, and hence, (q′i+1, p
′
i+2) ∈ Vc. Since (p′i, q′i+1), (q

′
i+1, p

′
i+2) ∈

Vc and we apply transitivity, (p′i, p
′
i+2) ∈ Vc. However, because (p′i, pi+2) ⇝

(pi, pi+2)⇝ (yi, yi+2) we get a shorter chain, a contradiction.

Proof of 3. According to (1), if (yj , yj+1) is an 1-implied pair, then (yj+1, yj+2) (if
exists) is not an 1-implied pair. Moreover, if (yj , yj+1) is an 1-implied pair then
(yj−1, yj) (if exists) is an UL-pair with Lj−1 < Lj , and (yj+1, yj+2) (if exists) is
an UL-pair with Lj+1 < Lj , a contradiction to (2). Thus, the only possibility is
when (y0, y1) is an 1-implied pair or (ym−1, ym) is an 1-implied pair.

Proof of 4. For j = i, i + 1, let (p′j , q
′
j+1) ∈ Vc such that (p′j , q

′
j+1)(pj , qj+1) is

an arc of H+, and p′jpj , q
′
j+1qj+1 ∈ A(H) (see Figure 10). For contradiction

first assume that (yi−1, yi) is an 1-implied pair. Now by (1) we have Li−1 >
Li. First assume Li−1 > Li+1. By applying Lemma 8 (5), we conclude that
(qi+1, qi+2), (q

′
i+1, q

′
i+2) are in the same strong component. We also have (p′i+1, q

′
i+2)⇝

(yi+1, yi+2) ⇝ (qi+1, qi+2) ⇝ (q′i+1, q
′
i+2). Therefore, (q′i+1, q

′
i+2) is in Vc. How-

ever, by the transitivity rule of the algorithm, we should have (p′i, q
′
i+2) ∈ Vc,

and hence, (pi, qi+2) ∈ Vc, and consequently (yi, yi+2) ∈ Vc. This is a contradic-
tion to the minimality of the chain Ch. Thus, we conclude that (yi−1, yi) is an
UL-pair.

Now consider the case Li+1 > Li−1 > Li. If (yi−1, yi) is an UL-pair then
by similar argument one can conclude that (yi−1, yi+1) is already in Vc, a con-
tradiction to the minimality of Ch. If (yi−1, yi) is an 1-implied pair then again
similar to the argument in (2) above, we conclude that according to the rules
of the algorithm, (pi−1, yi+1) is in Vc, and hence, (pi−1, yi+1) ⇝ (yi−1, yi+1), a
contradiction to minimality of the Ch.

Proof of 5. It is analogous to the proof of 4.

Lemma 12. Suppose Vc is circuit-free. Let (ai, ai+1) ∈ Vc be a pair reach-
able from (y0, ym) ∈ Vc where (y0, ym) is by transitivity on a minimal chain
Ch : (y0, y1), (y1, y2), . . . , (ym−1, ym), m > 1. Moreover, under this assumption
for (y0, ym), suppose there exists Z : (y0, ym) ⇝ (ai, ai+1) that is symmetric,
constricted from below, and with net value zero. Then (ai, ai+1) is by transitivity
on pairs (ai, b1), (b1, b2), . . . , (br−1, br), (br, ai+1) in Vc where each of them is ei-
ther an UL-pair or 1-implied pair reachable from an initial pair via a constricted
from below path of net value zero.

Proof. We use induction on the number of transitivity and reachability steps
taken in order to place (ai, ai+1) into Vc. For each pair (yi, yi+1), 0 ≤ i ≤ m− 1,
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let Zi be a path in H+ from (pi, qi+1) ∈ Vc to (yi, yi+1) which is constricted
from below and has net value zero. Let Li denote the height of Zi. We denote
the Zi = (Ei, Fi+1) where Ei is a constricted from below walk from pi to yi,
with net length zero, and avoiding Fi+1. Let L be the height of Z.

Base of induction: First assume that each pair in Ch is either an UL-pair
or is 1-implied pair. When (yi, yi+1), 0 ≤ i ≤ m − 1, is an UL-pair then let
(p′i, q

′
i+1) ∈ Vc such that (p′i, q

′
i+1)(pi, qi+1) is an arc in H+ (p′ipi, q′i+1qi+1 ∈

A(H), p′iqi+1 ̸∈ A(H)). Now the following hold.

1. (ym, y0) ̸⇝ (y1, y0), otherwise, (y0, y1) ⇝ (y0, ym) and this contradicts the
minimality of the chain Ch. Moreover, (ai+1, ai) ̸⇝ (y1, y0), otherwise, (y0, y1)⇝
(ai, ai+1), contradiction to the mininality of Ch.

2. (ym, y0) ̸⇝ (ym, y1), as otherwise, (y1, ym) ⇝ (y0, ym) ⇝ (ai, ai+1); contra-
dicting the minimality of Ch, and assumption about (ai, ai+1). Also (ai+1, ai) ̸⇝
(ym, y1), otherwise, (y1, ym) ⇝ (ai, ai+1); contradicting the minimality of
Ch.

3. (p0, q1) ̸⇝ (ym, y1), otherwise, we get a circuit (y1, y2), . . . , (ym−1, ym), (ym, y1)
in Vc, a contradiction.

4. (p0, q1) ̸⇝ (y0, ym), otherwise, it contradicts the minimality of the chain Ch.
5. (ym−1, ym) ̸⇝ (ym−1, y0), otherwise, (y0, ym−1)⇝ (ym, ym−1), and we get a

circuit in Vc, a contradiction.
6. (ym−1, ym) ̸⇝ (y0, ym), otherwise, (ym, y0) ⇝ (ym, ym−1), and we get a

circuit in Vc , a contradiction.
7. (pm−1, qm) ̸⇝ (y0, ym), otherwise, it contradicts the minimality of Ch. More-

over, (ai+1, ai) ̸⇝ (y0, ym−1), otherwise, (ym−1, ym)⇝ (ai, ai+1), contradic-
tion to minimality of Ch.

8. (pm−1, qm) ̸⇝ (ym−1, y0), because of the minimality of the chain Ch. More-
over, (ai+1, ai) ̸⇝ (ym−1, y0), as otherwise, (y0, ym−1) ⇝ (ai, ai+1), contra-
diction to minimality of Ch.

ai y0 p0 q1 y1 ym−1 ym ai+1pm−1 qm

AA′

C

C−1

D D−1 EE−1 F

F−1

B B′

L

L0

Lm−1

L

Fig. 11. In Lemma 12, assume L0, Lm−1 > L. Z = (A + A′, B + B′) where A + A′

and B + B′ avoid each other. A,B, (A′)−1, (B′)−1, C, D, E, C−1, D−1, E−1, F−1

constricted and have same net length. C avoids D, and E avoids F .
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First suppose Lm−1 ≥ L and L0 ≥ L. According to (1,2,3,4) by Lemma 6, and
Lemma 7 on the four walks inside Z0, Z (in Figure 11, A,A′, B,B′, C, C−1, D,D−1),
we conclude that (y0, y1)⇝ (ai, y1). Similarly by considering (5,6,7,8) and apply-
ing Lemmas 6, 7 on the walks inside Zm−1, Z (in Figure 11, A,A′, B,B′, E,E−1, F, F−1),
we conclude that (ym−1, ym)⇝ (ym−1, ai+1). Thus, we obtain the chain (ai, y1), (y1, y2), . . . , (ym−2, ym−1), (ym−1, ai+1),
and the lemma holds.

Next we continue by assuming that min{L0, Lm−1} < L. We prove the lemma
when L0 ≤ Lm−1 (the argument for the other case is similar). First assume that
(y0, y1) is an 1-implied pair. Now since L > L0, (p0, ym)⇝ (y0, ym)⇝ (ai, ai+1),
and since (p0, ym) is also chosen as an initial pair or in line 17 of the algorithm,
we get a contradiction to minimality of Ch. Thus, we may assume (y0, y1) is an
UL-pair.

Claim. m = 2, and (y1, y2) is an 1-implied pair.

Proof. First suppose (y1, y2) is an 1-implied pair. Now according to Lemma
11(3) m = 2, and (y1, y2) is an 1-implied pair. Thus, we continue by assuming
m > 2 and that (y1, y2) is an UL-pair. Let 1 < j ≤ m − 1 be the small-
est subscripts such that (yj , yj+1) be an 1-implied pair. Suppose such j exists.
Thus, by Lemma 11 (3) j = m − 1. Now according to Lemma 11 we conclude
that L0 < L1 < · · · < Lm−1 and all the pairs (y0, y1), . . . , (ym−2, ym−1) are
UL-pairs and (ym−1, ym) is an 1-implied pair. If j doesn’t exist then all the
pairs (y0, y1), (y1, y2), . . . , (ym−1, ym) are UL-pairs, and L0 < L1 · · · < Lm−1 or
(y0, y1), (y1, y2), . . . , (ym−1, ym) are UL-pairs, and L0 > L1 · · · > Lm−1.

Suppose L0 > L1 > · · · > Lm−1 and they are all UL-pair. Now one can
use the argument in Lemma 11 (5) on the walks inside Zm−2, Zm−1, Z (since
L > Lm−2, Lm−1) we get a contradiction to minimality of Ch. Similarly when
L0 < L1 . . . Lm−2 < Lm−1 we get a contradiction.

We continue by assuming m = 2. First assume that L1 > L. Now again similar
to the argument in the proof of the Claim 10, by applying Lemma 6 and Lemma
7 on the walks inside Z0, Z1, Z, we conclude that (y0, y1), (ai, y1) are in the
same strong component of H+, and (y1, y2), (y1, ai+1) are in the same strong
component of H+; a contradiction to minimality of the chain Ch. Therefore,
L > L1. Now in this case again using the same application of Lemma 6, 7, we
conclude that (y0, y1) and (y0, p1) are in the same strong component of H+. This
would imply that (y0, p1) is an UL-pair because (y0, y1) is an UL-pair. However,
this is a contradiction to the choice of p1, as it implies that (y0, p1) ∈ Vc ∩ Lk.

Remark 2. By applying Lemma 7 on Zi, Zi+1 when Li ≤ Li+1, we conclude that
Zi is a symmetric path. Similarly if Li ≥ Li+1 then Zi+1 is symmetric.

Induction step: Suppose some (yi, yi+1) is not an initial pair. If Li ≤ Li+1 or
Li < Li−1 then Zi is symmetric, and hence, by induction hypothesis (yi, yi+1)
is by transitivity on pairs where each is either an initial pair or is an UL-pair.
Otherwise, suppose Li > Li+1, Li−1. Note that Zi−1, Zi+1 are symmetric, and by
induction hypothesis, (yi−1, yi) is by transitivity on 1-implied pairs or UL-pairs.
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So we may assume each of the (yi−1, yi) and (yi+1, yi+2) is either an UL-pair or
is 1-implied pair. Note that by Lemma 11 none of the (yi−1, yi) and (yi+1, yi+2)
is an 1-implied pair, and now this is a contradiction according to Lemma 11 (2).

Lemma 13. Let X,Y be two paths that are constricted from below with net
value zero in H+. Suppose X starts from (p, q) and reaches (a, b) where p = b or
q = a. Suppose Y starts from (r, s) and reaches (b, c). Then one of the following
occurs.

1. (r, s) ⇝ (a, c); via a path that is constricted from below and has net value
zero.

2. (r, s) ⇝ (b, a); via a path that is constricted from below and has net value
zero,

3. (p, q) ⇝ (a, c); via a path that is constricted from below and has net value
zero,

4. (p, q) ⇝ (c, b); via a path that is constricted from below and has net value
zero.

Proof. Without loss of generality, suppose that h(X) ≤ h(Y ) (here h(X) is the
height of X). Let (g1, h1), be a vertex on X with the maximum height, and let
(g2, h2), be a vertex on Y with the maximum height. Let X = (A+A′, B +B′)
where A starts from p and ends at g1, and A′ starts from g1 and ends at a ( here
g1 is a vertex with the maximum height on A + A′). B starts from q and ends
at h1 (h1 corresponding to g1), and B′ starts from h1 and ends at b. Notice that
A + A′ avoids B + B′. Let Y = (C + C ′, D + D′) where C starts from r and
ends at g2, and C ′ starts from g2 and ends at b. D starts from s and ends at h2

(h2 corresponding to g2), and D′ starts from h2 and ends at c. Note that A,C
are constricted and (A′)−1, (C ′)−1 are also constricted. By assumption of the
lemma, h(X) ≤ h(Y ). So, let (g, h) be a vertex on Y such that E = C ′[g, b] is
constricted and have the same net length as A′, and F = D′[h, c] is constricted
and have the same net length as B′ (see Figure 12).

Suppose none of the 1,2,3,4 occurs. Now we can apply Lemma 6 on walks
A′, B′, E, F , and hence, conclude that E,F have congruent embedded pre-images
that avoid each other. Now Lemma 7 is applied to the walks A,A′, B,B′, E,E−1, F, F−1

(in Figure 12), and hence, we conclude that (B)−1 and A′ have (congruent) em-
bedded pre-images that avoid each other, and B′, (A)−1 have (congruent) em-
bedded pre-images that avoid each other. But, this is not possible because when
p = b, the endpoint of B′ and (A)−1 are the same and they cannot avoid each
other. Similarly, we get a contradiction when q = a. Therefore, one of the (1),
(2), (3), (4) should occur.

Using Proposition 2 (2) we conclude that there is a constricted from below
path with net value zero follows from (r, s) to (a, c) or from (r, s) ⇝ (b, a) or
from (p, q) to (a, c) or from (p, q) to (c, b).

Lemma 14. Let X,Y be two constricted from below with net value zero in H+.
Suppose X starts from (p, q) and reaches (a, b). Suppose Y starts from (r, s) and
reaches (b, c) where r = c or s = b. Furthermore, assume that h(Y ) ≤ h(X).
Then one of the following occurs.
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C

A′
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F−1B

g1 h1 g h
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c

B′
E−1

C ′ D′

Fig. 12. In Lemma 13 where we assume h(X) ≤ h(Y ); height of X is smaller than
the height of Y which is the same as the height of A. Here X = (A + A′, B + B′),
where A+A′ avoids B +B′, and Y = (C +C′, D +D′) where C +C′ avoids D +D′.
A′, B′, A−1, B−1, E, F,E−1, F−1 are constricted, and E avoids F .

1. (r, s) ⇝ (a, c); via a path that is constricted from below and has net value
zero.

2. (r, s) ⇝ (b, a); via a path that is constricted from below and has net value
zero.

3. (p, q) ⇝ (a, c); via a path that is constricted from below and has net value
zero.

4. (p, q) ⇝ (c, b); via a path that is constricted from below and has net value
zero.

10.1 Proofs of Lemma 1 and Lemma 2

Recall that Phase One of the algorithm deals with the unbalanced components
and after handling unbalanced components we are left with a subdigraph of
H+ which only contains balanced components. In this section we deal with the
remaining balanced components in H+ and prove the correctness of the Phase
Two.

In Phase Two of the algorithm, we partition the remaining balanced sub-
digraph into layers and iterate on those layers. Having processed the pairs on
layers 1, . . . , k − 1, our goal here is to show there always exists a "good pair"
on layer k to start the process with. The next lemma states the conditions of a
such a "good pair" and its existence.

Lemma 15 (Lemma 1, paraphrased). Suppose Vc does not contain a circuit
and Lk ∩ R is not empty. Then there exists a vertex p ∈ V (H) such that no
(q′, p) ∈ Vc ∩ Lk and there exists a vertex q ∈ V (H) so that (p, q) ∈ R ∩ Lk and
(p, q) ̸⇝ (q, p).

Proof. We construct digraph G′ = (V,A) as follow:

– V (G′) = {p ∈ V (H) | (p, x) ∈ R ∩ Lk}
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– A(G′) = {xp | (x, p) ∈ Vc ∩ Lk or (p, x) ∈ Lk with (p, x)⇝ (x, p)}.

If there exists a vertex p in G′ with in-degree zero then p is the desired vertex.
In what follows, we prove G′ contains a vertex p with in-degree zero. Our proof
is by contradiction. We prove if G′ contains no vertex with in-degree zero then
there must be a circuit in Vc which contradicts our assumption about Vc.

Suppose G′ contains no vertex with in-degree zero then there exists a di-
rected cycle v0, v1, v2, . . . , vn, v0 in G′. Now this means there exists a circuit
C1 : (v0, v1), (v1, v2), . . . , (vn, v0) so that each (vi, vi+1) is in Vc∩Lk or (vi+1, vi) ∈
Lk with (vi+1, vi) ⇝ (vi, vi+1). Relax the conditions on the pairs of C1 and
assume there exists a circuit C : (x0, x1), (x1, x2), . . . , (xn, x0) such that each
(xi, xi+1) is either a pair in Vc or (xi, xi+1) ̸∈ Vc and (xi+1, xi)⇝ (xi, xi+1) and
(xi+1, xi) ∈ Lk. Suppose C has minimum length among such circuits i.e., n is the
smallest possible. On one hand, Claim 10.1 states that we cannot have two con-
secutive pairs (xi, xi+1) and (xi+1, xi+2) on C such that neither of them is not
in Vc i.e., (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ̸∈ Vc. On the other hand, Claim 10.1
stats that we cannot have (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ∈ Vc either. These two
claims yield that all pairs on C must be in Vc, a contradiction to our assumption
that Vc is circuit free.

Let us start off with some useful properties of paths Xi : (xi+1, xi) ⇝
(xi, xi+1) where (xi, xi+1) ̸∈ Vc and (xi+1, xi) ∈ Lk. Note that if (xi, xi+1) ∈ Vc

then (xi+1, xi) in Vd, and hence, (xi+1, xi) ̸∈ R.

Claim. In the case where (xi+1, xi) ̸∈ Vc, let Xi be a path in H+ from (xi+1, xi)
to (xi, xi+1). Such a path is constricted from below and has net value zero.

Proof. According to the definition of the layers and because (xi+1, xi) ∈ Lk,
Xi is constricted from below. Otherwise, consider a pair (a, b) on Xi, where
Xi[(xi+1, xi), (a, b)] has net value less than zero. Notice that Xi : (xi+1, xi) ⇝
(a, b)⇝ (xi, xi+1), and by skew property, we have (xi+1, xi)⇝ (b, a)⇝ (xi, xi+1).
Now, since (a, b) is on a lower layer, either (a, b) or (b, a) has been placed in Vc,
and hence (xi, xi+1) is already in Vc, a contradiction to our assumption. Now
suppose Xi has positive net value. Similarly, if Xi has net value greater than
zero then by skew property, the reverse of Xi, X−1

i , which is also a path from
(xi+1, xi) to (xi, xi+1), has negative net value, and hence, there exists some
(a, b) ∈ X−1

i , so that (a, b) placed on a lower layer than (xi+1, xi). This means
either (a, b) ∈ Vc or (b, a) ∈ Vc. Now again this means (xi, xi+1) should be in Vc,
and (xi+1, xi) ∈ Vd and not in R.

We further relax the conditions on C, and we may assume C has minimum length
among all the circuits where each pair on the circuit is either a pair in Vc or is
a pair (x, y) such that (y, x) ⇝ (x, y) via a path that is constricted from below
and has net value zero. In other words, we may assume we cannot short cut C.

Notice: In the rest of the proof, when we mention a path X : (x, y)⇝ (x′, y′),
we assume X is constricted from below with net value zero, unless specified.
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Moreover, (x, y) ̸⇝ (x′, y′) means that (x′, y′) is not reachable from (x, y) by a
constricted from below path with net value zero. Now we the following observa-
tion.

Observation 20 Since C has a minimum length then the following occur.

1. (xi+2, xi) ̸⇝ (xi, xi+2). Otherwise, we replace C by (x0, x1), . . . , (xi−1, xi), (xi, xi+2), . . . , (xn, x0),
a contradiction to C having minimum length.

2. If (xi, xi+1) ̸∈ Vc then (xi+2, xi) ̸⇝ (xi+1, xi) (i.e. (xi, xi+1) ̸⇝ (xi, xi+2)).
Otherwise, by skew property, (xi+2, xi)⇝ (xi+1, xi)⇝ (xi, xi+1)⇝ (xi, xi+2),
contradiction to (1).

3. Similar to (2), if (xi+1, xi+2) ̸∈ Vc then (xi+2, xi) ̸⇝ (xi+2, xi+1) (i.e.
(xi+1, xi+2) ̸⇝ (xi, xi+2) ).

We proceed by showing all pairs on C are in Vc. Suppose there exists a pair
(xi, xi+1) ̸∈ Vc. Thus, according to our assumption, the path Xi : (xi+1, xi) ⇝
(xi, xi+1) is constricted from below and has net value zero. Note that n > 1 as
otherwise, we must have (x0, x1)⇝ (x1, x0), and (x1, x0)⇝ (x0, x1), and hence,
a strong circuit of length 2 in H+, a contradiction. We consider two cases. First,
we consider the case where (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ̸∈ Vc. Second, we
consider the case where (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ∈ Vc. In both cases we
derive a contradiction. Before we proceed to the proof of Claim 10.1 we observe
the following.

Observation 21 Suppose (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ̸∈ Vc. Since C has a
minimum length, the followings hold.

1. At most one of the X : (xi+2, xi)⇝ (xi, xi+1), Y : (xi+2, xi)⇝ (xi+1, xi+2)
exists. Otherwise, by Lemmas 13,14 for X,Y , (xi+2, xi) must reach one of
the (xi, xi+2), (xi+1, xi), (xi+2, xi+1). However, by Observation 20 (1, 2, 3),
(xi+2, xi) ̸⇝ {(xi, xi+2), (xi+1, xi), (xi+2, xi+1)}; a contradiction.

2. At most one of the X : (xi+2, xi)⇝ (xi, xi+1), Y : (xi, xi+1)⇝ (xi+1, xi+2)
exists. Otherwise, by Observation 20 (xi, xi+1) ̸⇝ (xi, xi+2). Moreover, (xi, xi+1) ̸⇝
(xi+1, xi), as otherwise, we have (xi+1, xi) ⇝ (xi, xi+1) ⇝ (xi+1, xi), a
strong circuit of length 2 in H+. Finally, by Observation 20 (1, 3) (xi+2, xi) ̸⇝
{(xi, xi+1), (xi+2, xi+1)}. However, this is a contradiction to Lemmas 13, 14
for X,Y .

3. At most one of the X : (xi+1, xi+2)⇝ (xi, xi+1), Y : (xi, xi+1)⇝ (xi+1, xi+2)
exists. Otherwise, by Observation 20(2) (xi, xi+1) ̸⇝ (xi, xi+2). Moreover,
(xi, xi+1) ̸⇝ (xi+1, xi), as otherwise, a strong circuit of length 2 in H+.
Analogously, (xi+1, xi+2) ̸⇝ {(xi, xi+2), (xi+2, xi+1)}. However, this is a
contradiction to Lemmas 13,14 for X,Y .

4. Analogous to (2), at most one of the X : (xi+2, xi) ⇝ (xi+1, xi+2), Y :
(xi+1, xi+2)⇝ (xi, xi+1) exists.

Claim. There does not exists two pairs (xi, xi+1) and (xi+1, xi+2) on C such
that (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ̸∈ Vc.
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Proof. For contradiction suppose there are (xi, xi+1) and (xi+1, xi+2) on C such
that (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ̸∈ Vc. Recall that, this mean we have two
paths Xi : (xi+1, xi)⇝ (xi, xi+1) and Xi+1 : (xi+2, xi+1)⇝ (xi+1, xi+2). Having
Xi and Xi+1, according to Lemma 13 (when h(Xi) < h(Xi+1); h(Xi) is the
height of Xi) or Lemma 14 (when h(Xi) ≥ h(Xi+1)) one of the following occurs.

1. (xi+2, xi+1)⇝ (xi, xi+2)
2. (xi+2, xi+1)⇝ (xi+1, xi)
3. (xi+1, xi)⇝ (xi, xi+2)
4. (xi+1, xi)⇝ (xi+2, xi+1).

In what follows, we show that none of the above can occur; yielding a contra-
diction.

For contradiction, suppose 1 occurs, i.e., (xi+2, xi+1) ⇝ (xi, xi+2). By skew
property, X ′

i+1 : (xi+2, xi)⇝ (xi+1, xi+2). Now consider the paths Xi, X
′
i+1 (see

Figure 13).

1.1 By Observation 20 (1) (xi+2, xi) ̸⇝ (xi, xi+2).
1.2 By Observation 20 (2) (xi+2, xi) ̸⇝ (xi+1, xi).
1.3 (xi+1, xi) ̸⇝ (xi, xi+2). Otherwise, (xi+2, xi)⇝ (xi, xi+1) and because (xi+2, xi)⇝

(xi+1, xi+2), we get a contradiction by Observation 21 (1).
1.4 (xi+1, xi) ̸⇝ (xi+2, xi+1). Otherwise, by skew property (xi+1, xi+2)⇝ (xi, xi+2),

and because (xi+2, xi)⇝ (xi+1, xi+2), we get a contradiction by Observation
21 (2).

Since none of the 1.1, 1.2, 1.3, and 1.4 occurs, we get a contradiction by Lemmas
13, or 14 for walks Xi, X

′
i+1. Therefore, 1 does not occur. By analogous argu-

ment, we can show that 3 does not occur. We show that 4 does not occur, and
analogously, 2 cannot occur.

For contradiction, suppose 4 occurs i.e., (xi+1, xi) ⇝ (xi+2, xi+1). Thus, by
skew property, we have X ′

i : (xi+1, xi+2) ⇝ (xi, xi+1). Now for paths X ′
i, Xi+1

(Figure 14) we have the following :

Xi

X ′
i+1

xi+1xi xi+1 xi xi+2 xi xi+2

Fig. 13. Assuming (xi+2, xi) ⇝
(xi+1, xi+2)

Xi+1

X ′
i

xi+2xi xi+1
xi xi+2xi+1

xi+1 xi+2

Fig. 14. Assuming (xi+1, xi+2) ⇝
(xi, xi+1)

4.1 (xi+1, xi+2) ̸⇝ (xi+2, xi+1), as otherwise, since (xi+2, xi+1) ⇝ (xi+1, xi+2),
we get a strong circuit of length 2; a contradiction.

4.2 (xi+1, xi+2) ̸⇝ (xi, xi+2). Otherwise, by skew property we have (xi+2, xi)⇝
(xi+2, xi+1), a contradiction by Observation 20 (3).
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4.3 (xi+2, xi+1) ̸⇝ (xi, xi+2). This follows from Observation 21 (4).
4.4 (xi+2, xi+1) ̸⇝ (xi+1, xi). This follows from Observation 21 (3).

Since none of the 4.1, 4.2, 4.3, and 4.4 is satisfied for X ′
i and Xi+1, we get a

contradiction according to Lemmas 13, 14. Therefore, we conclude that 4 does
not occur.

Finally, we conclude that none of the conditions 1, 2, 3, and 4 is satisfied for
Xi, Xi+1 which is a contradiction according to Lemma 13 or Lemma 14. This
finishes the proof of Claim 10.1

Claim. There does not exists two pairs (xi, xi+1) and (xi+1, xi+2) on C such
that (xi, xi+1) ̸∈ Vc and (xi+1, xi+2) ∈ Vc.

Proof. Since (xi+1, xi+2) ∈ Vc, there exists a path Xi+1 : (pi+1, qi+2)⇝ (xi+1, xi+2)
with (pi+1, qi+2) ∈ Vc. Furthermore, recall that because (xi, xi+1) ̸∈ Vc, we have
the path Xi : (xi+1, xi) ⇝ (xi, xi+1), which is constricted from below and has
net value zero. We observe the following .

1. (pi+1, qi+2) ̸⇝ (xi, xi+2), otherwise, (xi, xi+2) is a pair in Vc, yielding a
shorter circuit than C.

2. (pi+1, qi+2) ̸⇝ (xi+1, xi), otherwise, (pi+1, qi+2)⇝ (xi+1, xi)⇝ (xi, xi+1)⇝
(qi+2, pi+1); circuit in Vc.

3. (xi+1, xi) ̸⇝ (xi+2, xi+1), otherwise, (xi+1, xi+2)⇝ (xi, xi+1) implying that
(xi, xi+1) is in Vc; a contradiction to our assumption about (xi, xi+1).

4. (xi+1, xi) ̸⇝ (xi, xi+2). Otherwise, let X ′
i = (xi+2, xi)⇝ (xi, xi+1). Now by

1,2, (pi+1, qi+2) ̸⇝ (xi, xi+2), and (pi+1, qi+2) ̸⇝ (xi+1, xi). By Observation
20 (1) (xi+2, xi) ̸⇝ (xi, xi+2). Moreover, (xi+2, xi) ̸⇝ (xi+2, xi+1), as other-
wise, by skew property (xi+1, xi+2) ⇝ (xi, xi+2), implying (xi, xi+2) ∈ Vc,
a contradiction to the minimality of C. However, this is a contradiction ac-
cording to Lemmas 13, 14 for paths X ′

i, Xi+1.

The above four observations and the contrapositive of Lemma 13 imply
that h(Xi) > h(Xi+1) and as a conclusion of Lemmas 13,14, and 7 it can be
shown that Xi+1 is a symmetric path. Note that by the argument in Claim 10.1,
(xi−1, xi) must be a pair in Vc. Thus, again by a similar argument (using Lemma
14) we conclude that h(Xi−1) < h(Xi), and Xi−1 is symmetric.

Now if both (xi−1, xi), (xi+1, xi+2) are UL-pair with respect to Vc then ac-
cording to the argument in Lemma 11 (5) we get a contradiction (i.e., (xi, xi+1)
is in Vc). So, we may assume that at least one of the (xi−1, xi), (xi+1, xi+2) is
not an UL-pair, and hence, one of (pi−1, qi), (pi+1, qi+2) is by transitivity.

Since, both Xi−1, Xi+1 are symmetric, according to Lemma 11 and the rules
of the algorithm, the pair (pi+1, qi+2) is replaced by the UL-pairs. This would
allow us without loss of generality to assume (pi+1, qi+2) is an UL-pair, and
similarly, (pi−1, qi) is also an UL-pair (with respect to Vc). Thus again, according
to the argument in Lemma 11 (3) we get a contradiction (i.e. (xi, xi+1) is in Vc).

Lemma 16 (Lemma 2 repeated). At the end of line 17 of the Algorithm 1,
Vc is still circuit free.
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Proof. Suppose by adding (p, r) we close a minimal circuit C : (a0, a1), . . . , (an−1, an), (an, a0).
In the case where n = 1 we have (p, r) ⇝ (a0, a1), and also (p, r) ⇝ (a1, a0).
Now by skew property, we have (p, r) ⇝ (a1, a0) ⇝ (r, p); contradiction to the
choice of (p, r). Hence, we proceed by assuming n > 1.

Notice that C is minimal if every sub-chain of it is minimal. Thus, by Lemma
12, we may assume that each (ai, ai+1) is either 1-implied or is UL-pair. Observe
that if each pair (ai, ai+1) is a UL-pair then by Lemma 17 there is another
circuit C ′ : (a′0, a

′
1), . . . , (a

′
n, a

′
0), and hence, we consider C ′ instead. Moreover,

we consider a circuit after adding an initial pair on layer k, so we may assume
at least one pair is an 1-implied pair. Suppose for some 0 ≤ i ≤ n, (ai, ai+1) is
an 1-implied pair.

For each pair (ai, ai+1), 0 ≤ i ≤ n, let Zi be a constricted path of net value
zero from (pi, qi+1) ∈ Vc to (ai, ai+1). Let Li denote the height of Zi. Since
(ai, ai+1) is an 1-implied pair, thus, by Lemma 11 (1) (ai−1, ai), (ai+1, ai+2) are
both UL-pairs this is because when (ai−1, ai) is 1-implied then by Lemma 11
Li−1 > Li, on the other hand, since (ai, ai+1) is 1-implied, by Lemma 11 we must
have Li > Li−1, a contradiction (the same argument applied for (ai+1, ai+2)).
Therefore, we have that (ai−1, ai) is 1-implied and both (ai−1, ai), (ai+1, ai+2)
are UL-pairs. However, this is in contradiction to Lemma 11 (2).

11 Connection to other polymorphisms

We first draw a comparison between the obstruction to conservative majority
and conservative Maltsev and conservative semilattice. A conservative major-
ity polymorphism µ of H is a ternary polymorphism such that µ(x, x, y) =
µ(x, y, x) = µ(y, x, x) = x for all x, y ∈ V (H). A conservative Maltsev polymor-
phism h of H is a ternary polymorphism such that h(x, y, y) = h(y, y, x) = x for
all x, y ∈ V (H).

Definition 9. Let H be a digraph. Define H+k to be the digraph with the vertex
set V (H+k) = {(a1, a2, . . . , ak) | ai ∈ V (H), 1 ≤ i ≤ k} and the arc set :
A(H+k) = {(a1, a2, . . . , ak)(b1, b2, . . . , bk) | aibi ∈ A(H), 1 ≤ i ≤ k, a1bj ̸∈
A(H) ∀j, 2 ≤ j ≤ k} ∪
{(a1, a2, . . . , ak)(b1, b2, . . . , bk) | biai ∈ A(H), 1 ≤ i ≤ k, bja1 ̸∈ A(H) ∀j, 2 ≤
j ≤ k}

When k = 2, then we get the usual H+ defined in the previous sections.

Definition 10 (permutable triple). A permutable triple is three vertices a, b, c
together with vertices αa, αb, αc, βab,
βbc, βca together with three directed paths P1, P2, P3 in H+3 such that P1 : (a, b, c)⇝
(αa, βbc, βbc), P2 : (b, c, a)⇝ (αb, βca, βca) and finally P3 : (c, a, b)⇝ (αc, βab, βab).

Theorem 22. [19] A digraph H admits a conservative majority polymorphism
if and only if H does not admit a permutable triple.



Bi-arc Digraphs: Recognition Algorithm and Applications 53

We say a, b, c ∈ V (H) is a Maltsev triple if there exist vertices αa, αc, βab, βbc

in H such that (αa, βbc, βbc) ⇝ (a, b, c) in H+3 and (αc, βab, βab) ⇝ (c, b, a) in
H+3.

Theorem 23. [19] A digraph H admits a conservative Maltsev polymorphism
if and only if H does not admit a Maltsev triple.

We continue to consider other interesting polymorphisms. In order to estab-
lish our results about other polymorphisms, it is required to carefully consider
the situation where we have a circuit in a strong component of H+. In this case,
as we have shown in Subsection 9.2 either H+ contains an invertible pair, and
hence, H does not admit a CC polymorphism or there exists a closed walk with
special properties described in Theorem 19

11.1 Collapse: CSL = CST = Conservative Cyclic of All Arities

A polymorphism f of H of arity k is totally symmetric if f(x1, x2, . . . , xk) =
f(y1, y2, . . . , yk) whenever the sets {y1, y2, . . . , yk} and {x1, x2, . . . , xk} are the
same. A set polymorphism of H is a mapping f of the non-empty subsets of V (H)
to V (H), such that f(S)f(T ) ∈ A(H) whenever S, T are non-empty subsets of
V (H) with the property that for each s ∈ S there is a t ∈ T with st ∈ A(H) and
also for every t ∈ T there is an s ∈ S with st ∈ A(H). It is easy to see, cf. [10],
that H has a conservative set polymorphism if and only if it has conservative
totally symmetric (CTS) polymorphisms of all arities k. A polymorphism f of
arity k on digraph H is called cyclic if f(x1, x2, . . . , xk) = f(x2, x3, . . . , xk, x1)
for all x1, x2, . . . , xk ∈ V (H).

We note that a digraph H that admits a CSL polymorphism also admits CTS
polymorphisms of all arities: the conservative set function that assigns to each set
S the minimum under the min ordering. Moreover, a CTS polymorphism applies
to all arities, including arity two, whence it implies a CC polymorphism. Thus,
the class of digraphs with a min ordering is included in the class of digraphs
with a conservative set polymorphism, which is included in the class of digraphs
with a CC polymorphism.

Theorem 24. A digraph H admits a CSL polymorphism if and only if it admits
a conservative set polymorphism.

Proof. Since a min ordering allows to define a conservative set polymorphism
as the minimum, it suffices to show that a digraph that does not have a min
ordering also cannot have a conservative set polymorphism. We show this by
showing that a circuit in one component of H+ means that H does not have a
conservative set polymorphism.

So suppose (a0, a1), (a1, a2), . . . , (an, a0) is a circuit in a strong component
S of H+. Then, by Theorem 19, we have that either there exists an invertible
pair in H+, and hence, there is no CC polymorphism, or there exists a closed
walk W composed of walks W [v0, v1], W [v1, v2], . . . ,W [vr, v0] with the following
properties:
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– each W [vi, vi+1] is constricted from below,
– each W [vi, vi+1] has a positive net length ℓ,
– W [vi, vi+1] and W [vj , vj+1] avoid each other for every 0 ≤ i < j ≤ r (vr+1 =

v0).

Now, for any conservative set polymorphism f , we must have f(v0, v1, . . . , vr) =
f(v1, v2, . . . , vr, v0). Since the walks W [vi, vi+1],W [vj , vj+1], 0 ≤ i < j ≤ r
avoid each other( avoidance definition requires being congruent) they all have
the same number of vertices. Let W [vj , vj+1] = vj , v

1
j , . . . , v

t
j , vj+1, 0 ≤ j ≤ r.

Now we apply the conservative polymorphism f on the vertices of the walks
W [v0, v1],W [v1, v2], . . . ,W [vr, v0], and conclude that, if f(v0, v1, . . . , vr) = vi
then f(v10 , v

1
1 , . . . , v

1
r) = v1i ∈ W [vi, vi+1], f(v20 , v21 , . . . , v2r) = v2i , consequently

f(vt0, v
t
1, . . . , v

t
r) = vti , and finally f(v1, v2, . . . , vr, v0) = vi+1, a contradiction.

We remark that in the proof, we have only used the fact that H does not have a
conservative cyclic polymorphism. Thus, we have actually proved the following.

Theorem 25. The class of bi-arc digraphs coincides with each of the following
classes of digraphs:

1. digraphs with a CSL polymorphism,
2. digraphs with a conservative set polymorphism,
3. digraphs with CTS polymorphisms of all arities, and
4. digraphs with conservative cyclic polymorphisms of all arities.

Remark 3. It is proved in [22] that CSP(H) is decided by the so-called canonical
LP relaxation if and only if H admits a symmetric polymorphisms of all arities.
In the same paper, it is claimed that any relational structure has symmetric
polymorphisms of all arities if and only if it has TS polymorphisms of all arities.
However, this claim turned out to be wrong for general relational structures, see
example 99 in [23].

Remark 4. A constraint language admits TS polymorphisms of all arities if and
only if it has width 1. CSP(H), has width 1 if the so-called 1-minimality algorithm
refutes every unsatisfiable instance of CSP(H).

12 NP-complete cases and a dichotomy classification

For NP-completeness, we use a reduction from the classical NP-complete problem
betweenness [26]. Given a set U = {u1, u2, . . . , un} and a list of triples (i, j, k)
of distinct integers from {1, 2, . . . , n}, the betweenness problem asks if there is a
linear ordering of {u1, u2, . . . , un} such that for each triple (i, j, k) in the list, uj

is between ui and uk. In the following subsections, we use reductions from the
betweenness problem.
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12.1 NP-completeness for Two Binary Relations

This subsection discusses the case when a relational structure R contains two
binary relations. The argument for the following lemma can be obtained from
[20]. For the sake of completeness, we provide detailed proof here.

Lemma 17. Let H1 and H2 be two digraphs (binary relations) on the same
vertex set V . Then it is NP-complete to decide whether V admits an ordering
that it is a min ordering with respect to both H1 and H2.

Proof. For positive integer n, let In = {1, 2, . . . , n}. Let B be an instance of the
betweenness problem. We are given a set U , and a subset S from set {(i, j, k) |
i, j, k ∈ In}. The goal is to find an ordering u1 < u2 < · · · < un of the vertices
in U such that for every (i, j, k) ∈ S, either ui < uj < uk or uk < uj < ui.

Let B = (U, S) be an instance of the betweenness problem and let r = |S|+1
where |S| denotes the number of triples in S. Suppose U = {u1, u2, . . . , un}.
H1 and H2 have the same vertex set which consists of r = |S| + 1 copies of U .
Precise construction for H1 and H2 is as follows (an example for this construction
is given in Figure 15).

1. V (H1) = V (H2) = {ai,j | 1 ≤ i ≤ |S|+1, and 1 ≤ j ≤ n, ai,j corresponds to uj in copy i of U},
2. A(H1) = {at,iat,j , at,jat,k | (i, j, k) is the t-th element of S}.
3. A(H2) = {ai,jai+1,j | 1 ≤ i ≤ r, and 1 ≤ j ≤ n}.

a1,1

a2,1

a3,1

a4,1

a5,1

a6,1

a1,2

a2,2

a3,2

a4,2

a5,2

a6,2

a1,3

a2,3

a3,3

a4,3

a5,3

a6,3

a1,4

a2,4

a3,4

a4,4

a5,4

a6,4

a1,5

a2,5

a3,5

a4,5

a5,5

a6,6

Fig. 15. An example for the construction in Lemma 17. Here, S =
{(2, 1, 3), (3, 4, 5), (1, 4, 5), (2, 4, 1), (5, 2, 3)} and A(H1) is in red, and A(H2) is in blue.

Claim. There is an ordering of U satisfying the betweenness condition if and
only if there is an ordering of V (H1) that is a min ordering with respect to both
H1 and H2.
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Proof. If U has an ordering < consistent with all the triples, then we can order
the vertices of H1 by taking this ordering on all copies of U , and put all the
vertices of the i-th copy before all the vertices of the (i + 1)-st copy. It is easy
to see that the resulting ordering is a min ordering. Conversely, if < is a min
ordering of H1 and H2 simultaneously, then the arcs in A(H2) ensure that all
copies are ordered in the same way, i.e., if x precedes y in some copy, then it also
precedes it in next copy, and hence in all the copies of U . This means there is
an ordering < of U corresponding to all of them. The arcs in A(H1) ensure that
each triple is consistent with respect to <. This is because when ab and bc are
arcs in A(H1), and H1 has a min ordering, then either a < b < c or c < b < a in
the ordering.

This finishes the proof of the lemma. An example for Claim 12.1 is given in
Figure 16.

a1,3

a2,3

a3,3

a4,3

a5,3

a6,3

a1,1

a2,1
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a6,1

a1,4

a2,4

a3,4

a4,4

a5,4

a6,4

a1,2

a2,2

a3,2

a4,2

a5,2

a6,2

a1,5

a2,5

a3,5

a4,5

a5,5

a6,6

Fig. 16. An example for Claim 12.1. An ordering for V (H1), according to the discussion
in Claim 12.1, which is a min ordering with respect to both A(H1) (red arcs) and
A(H2) (blue arcs). The betweenness ordering for set S = {(2, 1, 3), (3, 4, 5), (1, 4, 5),
(2, 4, 1), (5, 2, 3)} is 3, 1, 4, 2, 5.

12.2 NP-completeness for Arity 3

In this subsection, we focus on the case where a relational structure consists
of a ternary relation. We prove to decide if a ternary relation admits a CSL
polymorphism is NP-complete.

Theorem 26. Deciding if a ternary relation admits a CSL polymorphism is
NP-complete.
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Proof. We start from an instance of the betweenness B = (U, S), and construct
two digraphs H1 and H2 and from these two digraphs we construct a ternary
relation. Let U = {u1, u2, . . . , un}. Construct digraphs H1 and H2 in the same
way discussed in Lemma 17. Recall that, by Claim 12.1, there is an ordering of U
satisfying the betweenness condition if and only if there is an ordering of V (H1)
that is a min ordering with respect to both H1 and H2. Let R be a ternary
relation constructed as follows. The ground set of R is V (H1). The tuples of R
are (at,i, at,j , at+1,j+1) where at,iat,j ∈ A(H1). In other words, the tuples of R
are (x, y, z) where xy is an arc of H1 and yz is an arc of H2. In what follows, we
prove R admits a CSL polymorphism if and only if there is an ordering of the
vertices of H1 that is a min ordering for both H1 and H2.

⇒) Suppose there is an ordering < of the vertices of H1 that is a min ordering
for both H1 and H2. According to the proof of Claim 12.1, in this ordering,
the vertices of each copy appear together and according to the ordering of the
elements of U in the betweenness instance (when all the triples are satisfied).
More precisely, suppose u1 < u2 < · · · < un is the ordering of U , where for each
triple (i, j, k) ∈ S either ui < uj < uk or uk < uj < ui. Then at,1 < at,2 < · · · <
at,n < at+1,1 < at+1,2 < · · · < at+1,n, for 1 ≤ t ≤ r + 1, is an ordering of V (H1)
which is a min ordering for both H1, H2.

Now define f(a, b) = f(b, a) = a if a < b in the ordering, i.e., f(a, b) =
min{a, b}. We show that f is a semilattice polymorphism for R. We need to
show that R is closed under f . Suppose (a, b, c) ∈ R, and (a′, b′, c′) ∈ R. Thus,
ab, a′b′ ∈ A(H1), and bc, b′c′ ∈ A(H2). Since < is a min ordering for both H1, H2,
min{a, a′}min{b, b′} is an arc of H1 and min{b, b′}min{c, c′} is an arc of H2.
This means f(a, a′)f(b, b′) ∈ A(H1), and f(b, b′)f(c, c′) ∈ A(H2), and hence, by
definition of R, (f(a, a′), f(b, b′), f(c, c′)) is in R. Note that since min ordering
is commutative and associative, f is a semilattice.

⇐) Conversely, suppose f is a CSL polymorphism of R. We will define an
ordering on V (H1) that is a min ordering on both H1, H2. First, we will show
that f can be modified in a way that it is still a CSL polymorphism of R and,
furthermore, it satisfies the following properties:

1. for every at,i, as,j , t < s, f(at,i, as,j) = f(as,j , at,i) = at,i,
2. f(at,i, at,i′) = at,i if and only if f(as,i, as,i′) = as,i.

We first obtain f1 from f as follows. For every at,i, as,j , t < s, f1(at,i, as,j) =
f1(as,j , at,i) = at,i. In any other case f1(x, y) = f(x, y). In other words, f1
and f have the same outcome on the vertices inside each copy of U . Clearly by
definition f1(x, y) = f1(y, x) ∈ {x, y}. Thus, f1 is a CC operation. Now, we show
that f1(x, f1(y, z)) = f1(f1(x, y), z) for every x, y, z in the ground set of R (i.e.,
for all x, y, z ∈ V (H1) = V (H2)).

If all x, y, z belong to the same copy of U , then because f has associative
property, f1 would be associative. Suppose x = at,i, y = as,j , z = ap,k. We
may assume |{t, s, p}| > 1, otherwise, since f is associative, f1 is also associa-
tive. First, suppose t < s, p. Then, by definition, f1(at,i, f1(as,j , ap,k)) = at,i,
and f1(at,i, as,j) = at,i and since f1(at,i, ap,k) = f1(at,i, as,j) = at,i, we have
f1(at,i, f1(as,j , ap,k)) = f1(f1(at,i, as,j), ap,k). Second, suppose t ≥ min{s, p}. If
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t > s, p then f1(at,i, f1(as,j , ap,k)) = f1(as,j , ap,k), and f1(f1(at,i, as,j), ap,k) =
f1(as,j , ap,k), and f1(at,i, f1(as,j , ap,k)) = f1(f1(at,i, as,j), ap,k). Third, assume
t = s < p (or t = p < s). In this case, f1(at,i, f1(as,j , ap,k)) = f1(at,i, as,j) =
f(at,i, as,j), and f1(f1(at,i, as,j), ap,k) = f1(f(at,i, as,j), ap,k) = f(at,i, as,j). The
other case can be treated similarly. Therefore, f1 is associative. Next, we show
that R is closed under f1. Suppose (at,i, at,j , at+1,j), (as,i′ , as,j′ , as+1,j′) ∈ R,
and let µ = (f1(at,i, as,i′), f1(at,, as,j′), f1(at+1,j , as+1,j′)). First, suppose t <
s. Then µ = (at,i, at,j , at+1,j) ∈ R. Similarly, if t > s then µ ∈ R. So we
continue by assuming t = s. In this case, according to the construction of
R, we have i′ = j, j′ = ℓ such that at,iat,j , at,jat,ℓ ∈ A(H1). Thus, µ =
(f(at,i, at,j), f(at,j , at,ℓ), f(at+1,j , at+1,ℓ)) and hence, µ ∈ R.

By the above discussion, without loss of generality, we proceed by assuming
that f has the following property. For every at,i, as,j , t < s, f(at,i, as,j) = at,i.

Suppose at,iat,j , at,jat,ℓ are arcs of H1. Then, (at,i, at,j , at+1,j), (at,j , at,ℓ, at+1,ℓ) ∈
R, and since f is a CSL we have (f(at,i, at,j), f(at,j , at,ℓ), f(at+1,j , at+1,ℓ)) ∈ R.
Moreover, because the arcs of H1 are among each copy of U , one of the following
must hold.

1. f(at,i, at,j) = at,i, f(at,j , at,ℓ) = at,j , f(at+1,j , at+1,ℓ) = at+1,j , and f(at,i, at,ℓ) =
at,i (because f is associative)

2. f(at,i, at,j) = at,j , f(at,j , at,ℓ) = at,ℓ, f(at+1,j , at+1,ℓ) = at+1,ℓ, and f(at,i, at,ℓ) =
at,ℓ (because f is associative).

Thus, we would have the following observation.

Observation 27 At this point, the restriction of f on the arcs of H1, is a CSL.
In other words, if at,iat,j , at,jat,ℓ are arcs of H1, then f(at,i, at,j)f(at,j , at,ℓ) is
also an arc of H1.

In order to obtain a min ordering for H1, using f , we further modify f so
that f(at,i, at,i′) = at,i if and only if f(as,i, as,i′) = as,i, and keeping f being
a CSL with respect to the arcs of H1 (inside each copy of U), as well as with
respect to the arcs of H2. Notice that f defines a min ordering on each copy of
U ; that is for every 1 ≤ t ≤ r, we obtain ordering ≺t, by setting at,i ≺t at,j if
and only if f(at,i, at,j) = at,i.

Let G be a graph constructed as follows. V (G) = {(x, y) | x, y ∈ V (H1)}.
The edge set of G consists of the union of the following,

E(G) = {(at,i, at,j)(as,i, as,j) |
f(at,i, at,j) = at,i , f(as,i, as,j) = as,i and at,iat,j , as,ias,j ∈ A(H1)}

∪ {(at,i, at,j)(as,i, as,j) |
f(at,i, at,j) = at,j , f(as,i, as,j) = as,j and at,iat,j , as,ias,j ∈ A(H1)}

∪ {(at,i, at,j)(at,j , at,ℓ), (at,i, at,j)(at,i, at,ℓ), (at,j , at,ℓ)(at,i, at,ℓ) |
[f(at,i, at,j) = at,i, f(at,jat,ℓ) = at,j ] or [f(at,i, at,j) = at,j , f(at,jat,ℓ) = at,ℓ]}

Suppose for some arc at,iat,j of H1, f(at,i, at,j) = at,i while for some arc
as,ias,j of H1 with t < s, we have f(as,i, as,j) = as,j . We may assume t is the
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smallest subscript, and secondly, s is the smallest subscript. Let G1 be the set of
vertices in G that are reachable from (as,i, as,j) in G, i.e., a connected component
of G containing (as,i, as,j). Now, for every (x, y) ∈ G1, set f(x, y) = f(y, x) = x.
Notice that by the construction of G, and since f is also a CC polymorphism,
there is no path from (x, y) ∈ G1 to (y, x) ∈ G1. Therefore, the changes to f
would be consistent.

Notice that after this modification for a fixed pair of indices i, j, (at,i, at,j),
1 ≤ t ≤ r + 1, f(at,i, at,j) = at,i when at,iat,j ∈ A(H1) (note that direction
of the arcs is not according to f). Next we consider another arc at′,i′at′,j′ ∈
A(H1), with f(at′,i′ , at′,j′) = at′,i′ while for some arc as′,i′ , as′,j′ with t′ < s′,
we have f(as′,i′ , as′,j′) = as′,j′ . Let G2 be the vertices that are reachable from
(as′,i′ , as′,j′). Again for every pair (x, y) ∈ G2, we set f(x, y) = x. Since G
is a graph, there is no vertex in G1 that is reachable from a vertex in G2.
Thus, the f value for the vertices in G1 is not going to change anymore. In
other words, the changes of f on G2 would be consistent with the changes of
f on G1. Notice that since f is a CC polymorphism, there is no path from
(x, y) ∈ G2 to (y, x) ∈ G2 ∪ G1. We repeat the above procedure until no such
pairs (at′,i′ , at′,j′), (as′,i′ , as′,j′) where at′,i′at′,j′ , as′,i′as′,j′ are arcs of H1, and
f(at′,i′ , at′,j′) = at′,i′ , f(as′,i′ , as′,j′) = as′,j′ , can be found.

In the next step we look for some (at,i, at,j), where t is the smallest index
so that there exists a pair (as,i, as,j), t < s where (as,i, as,j) is not an isolated
vertex in G, and f(at,i, at,j) = at,i while f(as,i, as,j) = as,j . Let G3 be connected
component of G, containing (as,i, as,j). We further modify f on the vertices of
G3, by setting f(x, y) = x for every (x, y) ∈ G3. Notice that as we argued above
the changes are consistent with the previous changes on f .

At the final stage, we consider pairs (at′,i′ , at′,j′), and (as′,i′ , as′,j′) so that
both are isolated vertices in G, t′ < s′, and f(at′,i′ , at′,j′) = at′,i′ while f(as′,i′ , as′,j′) =
as′,j′ (assuming t′ is the smallest index, and then s′ is then smallest index). In
this case we set f(as′,i′ , as′,j′) = as′,i′ .

Finally, we define an ordering < on the vertices H1 by setting x < y if and
only if f(x, y) = x. This means that we would have at,1 < at,2 < · · · < at,n <
at+1,1 < at+1,2 < · · · < at+1,n, 1 ≤ t ≤ r. Notice that this ordering is a min
ordering for H1, and it is easy to see that is also a min ordering for H2.

12.3 Higher Arities and a Dichotomy Theorem

Theorem 28. Let R be a relation of arity r > 3. Then deciding whether R
admits a CSL is NP-complete.

Proof. We use reduction from deciding whether a ternary relation has a CLS.
Let R1 be an arbitrary ternary relation on set A. Let R be a relation of arity r,

with the tuples (

r−3︷ ︸︸ ︷
a, a, . . . , a, a1, a2, a3) for every a ∈ A, and every (a1, a2, a3) ∈

R1. Suppose f is a CSL on R1. Then we show that f is also a CSL for R.
We need to show that for every two tuples t1 = (a, a, . . . , a, a1, a2, a3), t2 =
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(b, b, . . . , b, b1, b2, b3),

(f(a, b), f(a, b), . . . , f(a, b), f(a1, b1), f(a2, b2), f(a3, b3)) ∈ R.

Since R1 is closed under f , we have (f(a1, b1), f(a2, b2), f(a3, b3)) ∈ R1, and
hence, f(t1, t2) ∈ R. Therefore, f is a CLS for R. Conversely, suppose f is a
CSL on R. Then the projection of f on the last three coordinates of R is a CSL
on R1.

Theorems 26, 28, and Lemma 17 together with Theorem 6 provide a full complex-
ity classification of Problem 1 and yield us the following dichotomy theorem.

Theorem 29 (Dichotomy theorem). Deciding if a relational structure H =
⟨V,R1, . . . , Rk⟩ admits a CSL polymorphism is polynomial-time solvable if all
relations Ri are unary, except possibly one binary relation. In all other cases,
the problem is NP-complete.

13 Conclusions

We have provided polynomial time algorithm, obstruction characterizations, for
digraphs admitting a min ordering, i.e., a CSL polymorphism. We believe they
are a useful generalization of interval graphs, encompassing adjusted interval
digraphs, monotone proper interval digraphs, complements of circular arcs of
clique covering number two, two-directional orthogonal ray graphs, and other
well-known classes. We have also similarly characterized digraphs admitting a
CC polymorphism. We showed that the class of digraphs admitting a set poly-
morphism, i.e., CTS polymorphisms of all arities, coincides with the class of
digraphs with a min ordering, and so is equal to the class of bi-arc digraphs. Our
algorithm can be adapted to recognize the digraphs that admit extension of min
ordering, the so-called k-min ordering (k ≥ 2).

Open Problem 30 What is the complexity of deciding whether a digraph ad-
mits a (not necessarily conservative) semilattice polymorphism?


