Recognizing Interval Bigraphs by Forbidden Patterns

Arash Rafiey *

Abstract

Let H be a connected bipartite graph with n vertices and m edges. We give an $\mathcal{O}(n m)$ time algorithm to decide whether H is an interval bigraph. The best known algorithm has time complexity $\mathcal{O}\left(n m^{6}(m+n) \log n\right)$ and it was developed by Muller in 1997 [16]. Our approach is based on an ordering characterization of interval bigraphs introduced by Hell and Huang in 2003 [11]. We transform the problem of finding the desired ordering to choosing strong components of a pair-digraph without creating conflicts. We make use of the structure of the pair-digraph as well as decomposition of bigraph H based on the special components of the pair-digraph. This way we make explicit what the difficult cases are and gain efficiency by isolating such situations.

1 Introduction

The vertex set of a graph H is denoted by $V(H)$ and the edge set of H is denoted by $E(H)$. A bigraph H is a bipartite graph with a fixed bipartition into black and white vertices. We sometimes denote these sets as B and W, and view the vertex set of H as partitioned into (B, W). A bigraph H is called an interval bigraph if there exists a family $I_{v}, v \in B \cup W$, of intervals (from the real line) such that, for all $x \in B$ and $y \in W$, the vertices x and y are adjacent in H if and only if I_{x} and I_{y} intersect. Then, this family of intervals is called an interval representation of bigraph H.

Interval bigraphs were introduced in [9] and have been studied in [2,11,16]. They are closely related to interval digraphs introduced by Sen et al. [6]. In particular, our algorithm can be used to recognize interval digraphs (in time $\mathcal{O}(m n)$), as well.

Interval bigraphs and interval digraphs have become of interest in such new areas as graph homomorphisms, e.g. [8].

A co-circular arc bigraph is a bipartite graph whose complement is a circular arc graph. The class of interval bigraphs is a subclass of co-circular arc bigraphs. Indeed, the former class consists exactly of those bigraphs whose complement is the intersection of a family of circular arcs no two of which cover the circle [11]. There is a linear-time recognition algorithm for co-circular arc bigraphs [15]. On the other hand, the class of interval bigraphs is a super-class of proper interval bigraphs (also known as bipartite permutation graphs), for which there is also a linear-time recognition algorithm [11, 17].

Interval bigraphs can be recognized in polynomial time using the algorithm developed by Muller [16]. Muller's algorithm runs in time $\mathcal{O}\left(n m^{6}(n+m) \log n\right)$. This is in sharp contrast with the recognition of interval graphs, for which several linear time algorithms are known, e.g., [1, 3, 4, 10, 14].

In $[11,16]$, the authors attempted to give a forbidden structure characterization of interval bigraphs, but fell short of the target. In this paper, some light is shed on these attempts, as we clarify which situations are not covered by the existing forbidden structures. We believe our algorithm can be used as a tool for producing the interval bigraph obstructions. For the time being, there are infinitely many obstructions, which still lack a description that fit them into a finite collection of nicely defined families. However, the main purpose of this paper is to devise an efficient algorithm for recognizing interval bigraphs.

We use the ordering characterization of interval bigraphs in [11]. A bigraph H is an interval bigraph if and only if its vertices admit a linear ordering < without any of the forbidden patterns in Figure 1. Hence,

[^0]we will rely on the existence of a linear ordering $<$ such that if $v_{a}<v_{b}<v_{c}$ (not necessarily consecutively) and v_{a}, v_{b} have the same color and opposite to the color of v_{c} then $v_{a} v_{c} \in E(H)$ implies that $v_{b} v_{c} \in E(H)$.

Figure 1: Forbidden Patterns

There are several graph classes that can be characterized by the existence of an ordering without a number of forbidden patterns. One such class is the class of interval graphs. A graph G is an interval graph if and only if there exists an ordering $<$ of $V(G)$ such that none of the following patterns appears [5, 7].

- $v_{a}<v_{b}<v_{c}, v_{a} v_{c}, v_{b} v_{c} \in E(G)$ and $v_{a} v_{b} \notin E(G)$
- $v_{a}<v_{b}<v_{c}, v_{a} v_{c} \in E(G)$ and $v_{b} v_{c}, v_{a} v_{b} \notin E(G)$

Some of the other classes of graphs that have ordering characterizations without forbidden patterns are proper interval graphs, comparability graphs, co-comparability graphs, chordal graphs, convex bipartite graphs, co-circular arc bigraphs, and proper interval bigraphs [13]. It is possible to view the ordering problem for some of these classes in some cases (e.g. interval bigraphs and interval graphs) as an instance of the 2-SAT problem together with transitivity clauses as described below. For every pair (u, v) of vertices of H, we define a Boolean variable $X_{u v}$ which takes values zero or one only such that $X_{u v} \equiv \neg X_{v u}$. We introduce appropriate clauses with two literals expressing the forbidden patterns. Finally, we add all transitivity clauses, which are clauses of the from $\left(X_{u v} \vee X_{v w} \vee X_{w u}\right)$ where u, v, and w are distinct. If $X_{u v}=1$ then we put u before v; otherwise v comes before u in the ordering. However, we would like to consider a different approach proven to be more structural and successful in other ordering problems.

2 Basic definitions and properties

Note that a bigraph is an interval bigraph if and only if each connected component of it is an interval bigraph. In the remainder of this paper, we shall assume that H is a connected bigraph with a fixed bipartition (B, W).

We define the pair-digraph H^{+}of H, corresponding to the forbidden patterns in Figure 1, as follows. The vertex set of H^{+}consists of all pairs (u, v) such that $u, v \in V(H)$ and $u \neq v$ - for clarity, we will often refer to vertices of H^{+}as pairs (in H^{+}). Then, the arcs in H^{+}are of one of the following two types:

- $(u, v)\left(u^{\prime}, v\right)$ is an arc of H^{+}when u and v have the same color with $u u^{\prime} \in E(H)$, and $v u^{\prime} \notin E(H)$.
- $(u, v)\left(u, v^{\prime}\right)$ is an arc of $H+$ when u and v have different colors with $v v^{\prime} \in E(H)$, and $u v \notin E(H)$.

Observe that if there is an arc from (u, v) to $\left(u^{\prime}, v^{\prime}\right)$, then both $u v$ and $u^{\prime} v^{\prime}$ are non-edges of H. For two pairs $(x, y),\left(x^{\prime}, y^{\prime}\right) \in V\left(H^{+}\right)$we say (x, y) dominates $\left(x^{\prime}, y^{\prime}\right)$ (or $\left(x^{\prime}, y^{\prime}\right)$ is dominated by (x, y)) and write $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ if there exists an arc (directed edge) from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ in H^{+}. One should note that if $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ in H^{+}then $\left(y^{\prime}, x^{\prime}\right) \rightarrow(y, x)$, to which property we will refer to as skew-symmetry.
Lemma 2.1. Let < be an ordering of H without the forbidden patterns in Figure 1, and let $(u, v) \rightarrow\left(u^{\prime}, v^{\prime}\right)$ with $u<v$. Then, $u^{\prime}<v^{\prime}$.

Proof. According to the definition of H^{+}, we either have
Case (1) u, v have the same color, $v=v^{\prime}, u u^{\prime} \in E(H)$, and $v u^{\prime} \notin E(H)$; or
Case (2) u, v have different colors, $u=u^{\prime}, v v^{\prime} \in E(H)$, and $u v \notin E(H)$

In Case (1) (resp. Case (2)), if $v^{\prime}<u^{\prime}$, then vertices $v^{\prime}, u, v\left(\right.$ resp. $\left.u, v, u^{\prime}\right)$ — in that order- would induce a forbidden pattern in H, a contradiction. Hence, in both cases we will have $u^{\prime}<v^{\prime}$, as desired.

We shall generally refer to a strong component of H^{+}simply as a component of H^{+}. We shall also identify a component by its vertex (pair) set. A component in H^{+}is called non-trivial if it contains more than one pair. For any component S of H^{+}, we define its couple component, denoted S^{\prime}, to be $S^{\prime}=\{(u, v):(v, u) \in S\}$.

The skew-symmetry property of H^{+}implies the following fact.
Lemma 2.2. If S is a component of H^{+}then so is S^{\prime}.
In light of Lemma 2.2, for each component S of H^{+}, S and S^{\prime} are couple components of each other and we shall collectively refer to them as coupled components. It can be easily shown that coupled components S and S^{\prime} are either disjoint or equal - in the latter case, we say component S is self-coupled.

Definition 2.3 (circuit). A sequence $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{0}\right)$ of pairs in a set $D \subseteq V\left(H^{+}\right)$is called a circuit in D.

Lemma 2.4. If a component of H^{+}contains a circuit then H is not an interval bigraph.
Proof. Let $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{0}\right)$ be a circuit in a component S of H^{+}. Since S is strongly connected, for all non-negative integers i and j there exists a directed walk $W_{i, j}$ in H^{+}from $\left(x_{i}, x_{i+1}\right)$ to $\left(x_{j}, x_{j+1}\right)$, where indices are $\bmod n+1$. Now, for all $i, j \geq 0$, following the sequence of pairs on $W_{i, j}$ and using Lemma 2.1, we conclude that $x_{j}<x_{j+1}$ whenever $x_{i}<x_{i+1}$. Hence, we must either have $x_{i}<x_{i+1}$ for all i, or $x_{i}>x_{i+1}$ for all i. However, since $x_{n+1}=x_{0}$, either case implies $x_{0} \neq x_{0}$; a contradiction.

If H^{+}contains a self-coupled component then H is not an interval bigraph. This is because a selfcoupled component of H^{+}contains two such pairs as (u, v) and (v, u), which comprise a circuit of length 2 (corresponding to $n=1$ in the definition of a circuit). We remark that a similar result to Lemma 2.4 exists for co-circular arc bigraphs [12]. A tournament is a complete digraph with no directed cycle of length two and no self-loop. A tournament is called transitive if it is acyclic; i.e., if it does not contain a directed cycle.

Lemma 2.5. Suppose that H^{+}contains no self-coupled components, and let D be any subset of $V\left(H^{+}\right)$containing exactly one component from each pair of coupled components. Then, D is the set of arcs of a tournament on $V(H)$. Moreover, such a D can be chosen to be a transitive tournament if and only if H is an interval bigraph.

Proof. Suppose D is a transitive tournament. Then we obtain the ordering $<$, by letting $x<y$ when $(x, y) \in D$. It is clear that $<$ is a total ordering because D is transitive, and when $(x, y) \in D,(y, x) \notin D$. Observe that $<$ does not contain any of the forbidden pattern in Figure 1, and hence, H is interval bigraph. Conversely, if H is an interval bigraph then there exits ordering $<$, without forbidden patterns in Figure 1. We add (x, y) into set D whenever $x<y$ in the ordering. It is easy to see that D is a transitive tournament.

In what follows, by a component we mean a non-trivial (strong) component unless we specify otherwise. For simplicity, we shall use a set S of pairs in H^{+}to also denote the sub-digraph of H^{+}induced by S, when no confusion arises.

We shall say two edges $a b$ and $c d$ of H are independent if the subgraph of H induced by the vertices a, b, c, and d has just the two edges $a b$ and $c d$. We shall say two disjoint induced subgraph H_{1} and H_{2} of H are independent if there is no edge of H with one endpoint in H_{1} and another endpoint in H_{2}.

Lemma 2.6. If $u u^{\prime}$ and $v v^{\prime}$ are independent edges in H then the pairs $(u, v),\left(u^{\prime}, v\right),\left(u^{\prime}, v^{\prime}\right)$, and $\left(u, v^{\prime}\right)$ form a directed four-cycle of H^{+}in the given order (resp. in the reversed order) when u and v have the same color (resp. have opposite colors). In particular, $(u, v),\left(u^{\prime}, v\right),\left(u^{\prime}, v^{\prime}\right)$, and $\left(u, v^{\prime}\right)$ belong to the same component of H^{+}. Moreover, if S is a component of H^{+}containing a pair (u, v) then, there exist two independent edges $u u^{\prime}$ and $v v^{\prime}$ of H and, as such, the four pairs $(u, v),\left(u, v^{\prime}\right),\left(u^{\prime}, v\right)$, and $\left(u^{\prime}, v^{\prime}\right)$ are contained in S.

Proof. The first part follows from the definition of H^{+}and independent edges. As for the seond part, note that since S is a component, (u, v) dominates some pair of S and is dominated by some pair of S. First, suppose u and v have the same color in H. Then (u, v) dominates some $\left(u^{\prime}, v\right) \in S$ and is dominated by some $\left(u, v^{\prime}\right) \in S$. Now $u u^{\prime}$ and $v v^{\prime}$ must be edges of H, and $u v, u v^{\prime}, u^{\prime} v$, and $u^{\prime} v^{\prime}$ must be non-edges of H. Thus, $u u^{\prime}$ and $v v^{\prime}$ are independent edges in H. In this case, according to the first part of the lemma, S contains the directed cycle $(u, v) \rightarrow\left(u^{\prime}, v\right) \rightarrow\left(u^{\prime}, v^{\prime}\right) \rightarrow\left(u, v^{\prime}\right) \rightarrow(u, v)$.

Second, suppose u and v have different colors. We note that (u, v) dominates some $\left(u, v^{\prime}\right) \in S$, and hence, $u v \notin E(H)$ and $v v^{\prime}$ is an edge of H. Since $\left(u, v^{\prime}\right)$ dominates some pair $\left(u^{\prime}, v^{\prime}\right) \in S, u u^{\prime} \in E(H)$ and $u^{\prime} v^{\prime}$ $\notin E(H)$. Now $u u^{\prime}$ and $v v^{\prime}$ are edges of H, and $u v, u v^{\prime}, u^{\prime} v$, and $u^{\prime} v^{\prime}$ must be non-edges of H. Thus, $u u^{\prime}$ and $v v^{\prime}$ are independent edges in H. In this case, according to the first part of the lemma, S contains the directed cycle $(u, v) \rightarrow\left(u, v^{\prime}\right) \rightarrow\left(u^{\prime}, v^{\prime}\right) \rightarrow\left(u^{\prime}, v\right) \rightarrow(u, v)$.

2.1 Structural properties of the (strong) components of H^{+}

The structure of components of H^{+}is quite special, and the trivial components interact with them in simple ways. A trivial component will be called a source if its unique vertex has in-degree zero, and a sink if its unique vertex has out-degree zero. Herein, we further explore these properties through establishing several lemmas. To this end, we need the following definition on reachability of pairs in H^{+}.

Definition 2.7 (reachability closure). Let R be a subset of the pairs of H^{+}. Let $N^{+}[R]$ denote the set of all pairs in H^{+}that are reachable (via a directed path in H^{+}) from a pair in R. (Notice that $N^{+}[R]$ contains R.) We call $N^{+}[R]$ the reachability closure of R. We say a pair (u, v) is implied by R if $(u, v) \in N^{+}[R] \backslash R$. If $R=N^{+}[R]$, we say that R is closed under reachability.
Lemma 2.8. A pair (a, c) is implied by a component S of H^{+}if and only if H contains an induced path a, b, c, d, e, such that $N(a) \subseteq N(c)$ and S contains all of the pairs $(a, d),(a, e),(b, d)$, and (b, e).

Proof. If such a path exists, then $a b, d e$ are independent edges and so the pairs $(a, d),(a, e),(b, d)$, and (b, e) lie in a component by the remarks preceding Lemma 2.6. Moreover, $(a, d) \rightarrow(a, c)$ is in H^{+}; hence (a, c) is indeed implied by this component.

Conversely, suppose (a, c) is implied by a component S. We first observe that the colors of a and c must be the same. Otherwise, say a is black and c is white, and there exists a white vertex u such that the pair (u, c) is in S and dominates (a, c). By Lemma 2.6, there would exist two independent edges $u z$ and $c y$. Looking at the edges and non-edges between u, c and a, z, y, we see that H^{+}contains the arcs $(u, c) \rightarrow(a, c) \rightarrow(a, y) \rightarrow(u, y)$. Since both (u, c) and (u, y) are in S, the pair (a, c) must also be in S, contrary to what we assumed. Therefore, a and c must have the same color in H, say black. In this case there exists a white vertex $d \in V(H)$ such that $(a, d) \in S$ and $(a, d) \rightarrow(a, c)$. Hence $d c \in E(H)$ and $d a \notin E(H)$. If there was also a vertex t adjacent to a but not to c, then $a t$ and $c d$ would be independent edges of H, placing (a, c) in S. Thus, every neighbor of a in H is also a neighbor of c in H. Finally, since (a, d) is in component S, Lemma 2.6 yields vertices b and e such that $a b$ and $d e$ are independent edges in H. It follows that a, b, c, d, e is an induced path in H.

We emphasize that $a b$ and de from Lemma 2.8 are independent edges. The inclusion $N(a) \subseteq N(c)$ implies the following corollary.
Corollary 2.9. If there is an arc from a component S of H^{+}to a pair $(x, y) \notin S$ then (x, y) forms a trivial component of S that is a sink component. If there is an arc to a component S of H^{+}from a pair $(x, y) \notin S$ then (x, y) forms a trivial component of H^{+}that is a source. In particular, if there is a directed path in H^{+}from component S_{1} to component S_{2}, then $S_{1}=S_{2}$.

To give even more structure to the components of H^{+}, we recall the following definition. The condensation of a digraph G is a digraph obtained from G by identifying the vertices in each component and deleting loops and multiple edges.

Lemma 2.10. Every directed path in the condensation of H^{+}has at most three vertices.

Proof. If a directed path P in the condensation of H^{+}goes through a vertex corresponding to a component S in H^{+}, then P has at most three vertices by Corollary 2.9. Now suppose P contains only vertices in trivial components and let (x, y) be a vertex on P which has both a predecessor and a successor on P otherwise we are done. First suppose x and y have the same color in H. Then the successor is some pair $\left(x^{\prime}, y\right)$ and the predecessor is some pair $\left(x, y^{\prime}\right)$, and hence, $x x^{\prime}$ and $y y^{\prime}$ are independent edges of H, and hence, by Lemma $2.6(x, y),\left(x^{\prime}, y\right)$, and $\left(x, y^{\prime}\right)$ belong to the same component of H^{+}, contradicting that P goes through trivial components only. Thus, we continue by assuming that x and y have opposite colors in H, the successor of (x, y) in P is some $\left(x, y^{\prime}\right)$, and the predecessor of (x, y) in P is some $\left(x^{\prime}, y\right)$. Thus, $x y \notin E(H)$, and hence, $x^{\prime} y^{\prime} \in E(H)$, otherwise, we would have independent edges $x x^{\prime}$ and $y y^{\prime}$ and conclude as above. By the same reasoning, every vertex adjacent to x is also adjacent to y^{\prime}, and every vertex adjacent to y is also adjacent to x^{\prime}. Therefore, $\left(x^{\prime}, y\right)$ has in-degree zero, and $\left(x, y^{\prime}\right)$ has out-degree zero, and P has only three vertices.

Lemma 2.11. Suppose that H^{+}has no self-coupled components. Let u, v, and w be three vertices of H such that $S_{u v}, S_{v w}$ are components of H^{+}where $S_{u v} \neq S_{w v}$. Then, $S_{u w}$ is also a component of H^{+}. Moreover, suppose $S_{u v} \neq S_{u w}, S_{w u}$, and $S_{v w} \neq S_{u w}, S_{w u}$. Then, there exist maximal subgraphs H_{1}, H_{2}, and H_{3} of H such that :

- H_{1}, H_{2}, and H_{3} are pairwise independent (no edge between H_{i} and $H_{j}, 1 \leq i<j \leq 3$).
- Let $X \subseteq H \backslash H^{\prime}\left(H^{\prime}=H_{1} \cup H_{2} \cup H_{3}\right)$ be the vertices with at least one neighbor in H^{\prime}. Then every $x \in X$ is adjacent to all the vertices with the opposite color in $X \cup H^{\prime}$.

Proof. We assume u, v, w have the same color. The argument for other cases is similar. Since $S_{u v}, S_{v w}$ are components of H^{+}, by Lemma 2.6, there are independent edges $u a_{1}, v b_{1}$ of H and independent edges $v a_{2}, w b_{2}$ of H. Notice that by Lemma 2.6, $(u, v),\left(u, b_{1}\right),\left(a_{1}, b_{1}\right),\left(a_{1}, v\right) \in S_{u v}$ and $(v, w),\left(a_{2}, w\right),\left(a_{2}, b_{2}\right),\left(v, b_{2}\right) \in S_{v w}$. Now $a_{1} w \notin E(H)$, otherwise, $\left(a_{1}, v\right) \rightarrow\left(a_{1}, b_{2}\right) \rightarrow\left(w, a_{2}\right)$, and hence, by Corollary $2.9, S_{u v}=S_{w v}$. Similarly, $u b_{2} \notin E(H)$, otherwise, $S_{v w}=S_{v u}$, and by skew-symmetry, $S_{u v}=S_{w v}$. Now $u a_{1}, w b_{2}$ are independent edges, and hence, $S_{u w}$ is a component. Note that $a_{2} u \notin E(H)$, otherwise, $\left(a_{2}, b_{2}\right) \rightarrow\left(u, b_{2}\right) \rightarrow(u, w)$, implying a directed path from $S_{v w}$ to $S_{u w}$, and hence, $S_{v w}=S_{u w}$. Similarly $b_{1} w \notin E(H)$.

Let H_{1}, H_{2}, H_{3} be maximal subgraphs of H such that $u a_{1} \in E\left(H_{1}\right), v b_{1}, v a_{2} \in E\left(H_{2}\right)$, and $w b_{2} \in E\left(H_{3}\right)$ and H_{1}, H_{2}, H_{3} are pairwise independent. It is easy to see that for every $a \in H_{1}, b \in H_{2}, c \in H_{3}$ we have $(a, b) \in S_{u v},(a, c) \in S_{u w}$, and $(b, c) \in S_{v w}$. Let $x \in H \backslash H^{\prime}$ where $H^{\prime}=H_{1} \cup H_{2} \cup H_{3}$. W.l.o.g suppose x is adjacent to b_{2}. Since $x \notin H_{3}, x$ must be adjacent to a vertex in H_{1} or H_{2}. First suppose $x a_{2} \in E(H)$. Now $a_{1} x$ must be an edge of H, otherwise, $\left(u, a_{2}\right) \rightarrow(u, x) \rightarrow\left(a_{1}, x\right) \rightarrow\left(a_{1}, b_{2}\right)$ implying a directed path from $S_{u v}$ to $S_{u w}$, and consequently $S_{u v}=S_{u w}$; a contradiction to our assumption. Second, suppose $x a_{1} \in E(H)$. Now $a_{2} x \in E(H)$, otherwise, $\left(a_{1}, b_{1}\right) \rightarrow\left(x, a_{2}\right) \rightarrow\left(a_{2}, b_{2}\right)$, and hence, there is a directed path from $S_{u v}$ to $S_{v w}$, and consequently, $S_{u v}=S_{v w}$, a contradiction. Suppose $x b_{1}, x b_{2}, y v, y w \in E(H)$. Then $x y \in E(H)$, otherwise, $(v, w) \rightarrow\left(b_{1}, w\right) \rightarrow\left(b_{1}, y\right) \rightarrow(x, y) \rightarrow(x, v) \rightarrow\left(b_{2}, v\right) \rightarrow(w, v)$, implying $S_{v w}=S_{w v}$, a contradiction.

3 Recognition algorithm

In this section, we present our algorithm for the recognition of interval bigraphs. Firstly, to describe the algorithm, we introduce some technical definitions.

Definition 3.1 (envelope). Let R be a set of pairs of H^{+}. The envelope of R, denoted $N^{*}[R]$, is the smallest set of pairs that contains R and is closed under both reachability and transitivity (if $(u, v),(v, w) \in N^{*}[R]$ then $\left.(u, w) \in N^{*}[R]\right)$.

Remark: For the purposes of the proofs, we visualize taking the envelope of R as divided into consecutive levels, where in the zero-th level we just replace R by its reachability closure, and in each subsequent level we replace R by the rechability closure of its transitive closure. The pairs in the envelope of R can be thought of as forming the arc of a digraph on $V(H)$, and each pair can be thought of as having a label corresponding to its level. The pairs (arcs of the digraph) in R, and those implied by R have label 0 , arcs obtained by transitivity from the arcs labeled 0 , as well as all arcs implied by them have label 1, and so on. More precisely, $N^{*}[R]$
is the disjoint union of $R^{0}, R^{1}, \ldots, R^{k}$, where $R^{0}=N^{+}[R]$ (level zero), and each R^{i} (level $i \geq 1$) consists of every pair (u, v) such that either (u, v) is obtainable by transitivity in R^{i-1} (meaning that there is some sequence $\left(u, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{r-1}, u_{r}\right),\left(u_{r}, v\right)$ in $\left.R^{i-1}\right)$, or (u, v) is dominated by a pair $\left(u^{\prime}, v^{\prime}\right)$ obtainable by transitivity in R^{i-1}. Note that $R \subseteq N^{+}[R] \subseteq N^{*}[R]$.

Definition 3.2 (dictator component). Let $\mathcal{R}=\left\{R_{1}, R_{2}, \ldots, R_{k}, S\right\}$ be the set of components of H^{+}such that $N^{*}\left[\bigcup_{A \in \mathcal{R}} A\right]$ contains a circuit. We say S is a dictator if for every subset W of $\mathcal{R} \backslash\{S\}$, there exist a circuit in the envelope of $\left(\bigcup_{A \in W^{\prime}} A\right) \cup\left(\bigcup_{B \in \mathcal{R} \backslash W} B\right)$, where $W^{\prime}=\left\{R_{i}^{\prime} \mid R_{i} \in W\right\}$. In other words, S is a dictator if by replacing some of the $R_{i} \mathrm{~s}$ with $R_{i}^{\prime} \mathrm{s}$ in \mathcal{R} and taking the envelope of the union of elements we still get a circuit.

Definition 3.3 (complete set). A set $D_{1} \subseteq V\left(H^{+}\right)$is called complete if for every pair of coupled components R, R^{\prime} of H^{+}, exactly one of $R \subseteq D_{1}$ and $R^{\prime} \subseteq D_{1}$ holds.

A component S is a dictator if and only if the envelope of every complete set D_{1} containing S has a circuit.
Definition 3.4 (simple pair, complex pair). A pair $(x, y) \in H^{+}$is simple if it belongs to $N^{+}[S]$ for some component S, otherwise, we call it complex.

Before describing the algorithm, we establish the following counterpart of Lemma 2.4.
Lemma 3.5. Let S, S^{\prime} be coupled components in H^{+}, so that both $N^{*}[S]$ and $N^{*}\left[S^{\prime}\right]$ contain a circuit. Then, H is not an interval bigraph.

Proof. According to Lemma 2.5 the final set D must be a total ordering with transitivity property. Therefore, one of the S and S^{\prime} must be in D. In order to find a total ordering avoiding the patterns in Figure 1, one of the $N^{*}[S], N^{*}\left[S^{\prime}\right]$ must be in D, which is impossible.

An overview of the algorithm: The algorithm constructs H^{+}and then considers its coupled components (recall that we mean strong components that are not trivial). In the preliminary stage, if there is a self-coupled component, then the algorithm reports H is not an interval bigraph. Otherwise, the algorithm takes four main stages. During the algorithm, we maintain a sub-digraph D of H^{+}. Initially, D is empty. At each subsequent step of the algorithm, a set of pairs from H^{+}are added to D. The goal is to choose from each couple components (trivial and non-trivials) one and place into D without creating a circuit. Thus, we need to add into D the pairs that are reachable from the current pairs in D as well as the pairs that are obtained by applying transitivity on the existing pairs in D. So each pair is placed in D either by reachability or transitivity. When we say a pair (x, y) is by transitivity, we mean (x, y) is placed into D by applying transitivity on the existing pairs in D. Likewise, we say a pair is by reachability when (x, y) is implied by the existing pairs in D. Finally, at successful termination, D will be a transitive tournament as described in Lemma 2.5.

For the purpose of the algorithm once a pair (x, y) is added into D we assign a time (level) to (x, y), that is the level in which (x, y) is added into D. Each pair (x, y) carries a dictator code, say $\operatorname{Dic}(x, y)$; that shows the dictator component involved in placing (x, y) into D. The four main stages of the algorithm are as follows.

In Stage 1, an empty set D is initialized. Then, from each pair S, S^{\prime} of coupled components we select one, say S. If $D \cup N^{+}[S]$ does not have a circuit then add $N^{+}[S]$ (all the pairs in $N^{+}[S]$) into D and discard $N^{+}\left[S^{\prime}\right]$ from further consideration in this stage. Otherwise, we discard $N^{+}[S]$ in this stage and add $N^{+}\left[S^{\prime}\right]$ into D instead. Again, if D has a circuit then H is not an interval bigraph and the algorithm terminates. If we succeed in selecting exactly one of the coupled components S, S^{\prime} of H^{+}then we proceed to the next stage. Theorem 5.4 implies the correctness of this stage, and Corollary 5.2 provides the first set of obstructions if we fails to finish this stage.

In Stage $2, N^{*}[D]$ is computed level by level, and is placed into D. If by adding a pair (x, y) into D a circuit C appears for the first time, then the length of C is exactly 4 and we can identify a dictator component S associated with C by using function $\operatorname{Dictator}(x, y)$, (i.e. $(\operatorname{Dic}(x, y))$ where (x, y) is a complex pair in C. Furthermore, in that case, C has to be of the form $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$, where x_{0}, x_{3} belong to the same color class while x_{1}, x_{2} are contained in the opposite one; moreover, no pair $\left(x_{i}, x_{i+1}\right), 0 \leq i \leq 3$
has placed in D by transitivity (the sum is taken module 4). It turns out that if we keep S in D, then regardless of the selection of other components, we still will end up having a circuit in computation of $N^{*}[D]$. These facts and, hence, the correctness of Stage 2 will be established in Lemmas 6.1,6.2, and 6.3.

In Stage 3, we initialize D_{1} to be the empty set. Then, for every dictator component $S \in \mathcal{D} \mathcal{T}$ we add $N^{+}\left[S^{\prime}\right]$ into D_{1} and discard $N^{+}[S]$ (since we will encounter a circuit). Moreover, for every (non-trivial strong) component $S_{1} \in D \backslash \mathcal{D} \mathcal{T}$ we add $N^{+}\left[S_{1}\right]$ into D_{1} and discard $N^{+}\left[S_{1}^{\prime}\right]$. We then set $D=N^{*}\left[D_{1}\right]$. If there is a circuit in D, the algorithm reports H is not an interval bigraph and exit, otherwise, it proceeds to the next stage. The correctness of this stage is established in Lemma 7.1.

In Stage 4, one by one, we add into D the remaining (trivial strong components) components of H^{+}that are outside D. At each step we add a sink component $S_{1} \subseteq V\left(H^{+}\right) \backslash D$ and discard its coupled component S^{\prime} from further consideration. Lemma 7.2 establishes the correctness of this step.

```
Algorithm 1 Algorithm for recognition of interval bigraphs
    function IntervalBigraph \((H)\)
        Input: A connected bigraph \(H\) with a bipartition \((B, W)\)
        Output: An ordering of the vertices of \(H\) without patterns in Figure 1 or return false
        Construct the pair-digraph \(H^{+}\)of \(H\), and compute its components; if any component is
            self-coupled report false
        Stage1: Adding (non-trivial strong) components
        Initialize \(D\) to be the empty set
        for all coupled components \(S, S^{\prime} \subseteq V\left(H^{+}\right)\)do
            if \(D \cup N^{+}[S]\) does not have a circuit then
                add \(N^{+}[S]\) into \(D\) and delete \(N^{+}\left[S^{\prime}\right]\) from further consideration in this step
                                    \(\triangleright\) add \(X\) to \(D\) means add all the pairs of \(X\) into \(D\)
                for all \((x, y) \in N^{+}[S]\) do \(\operatorname{Dic}(x, y)=S\)
        else
            if \(D \cup N^{+}\left[S^{\prime}\right]\) does not have a circuit then
                add \(N^{+}\left[S^{\prime}\right]\) into \(D\) and delete \(N^{+}[S]\) from further consideration in this step
                for all \((x, y) \in N^{+}\left[S^{\prime}\right]\) do set \(\operatorname{Dic}(x, y)=S^{\prime}\)
            else report that \(H\) is not an interval bigraph
        Stage2 : Computing the envelope of \(D\) and detecting dictator components
        Set \(E n=N^{*}[D]\), and \(\mathcal{D T}=\varnothing\)
        \(\triangleright \mathcal{D} \mathcal{T}\) is a set of components
        while \(\exists(x, y) \in E n \backslash D\) do
                                \(\triangleright\) we consider the pairs in \(E n\) level by level
            Move \((x, y)\) into \(D\) and set \(\operatorname{Dic}(x, y)=\operatorname{Dictator}(x, y, D)\)
            if \(D \cup\{(x, y)\}\) contains a circuit then add \(\operatorname{Dic}(x, y)\) into \(\mathcal{D} \mathcal{T} \quad \triangleright(x, y)\) is a complex pair
        Stage3 : Adding dual of dictator components, and other chosen components
        Let \(D_{1}=\varnothing\)
        for all components \(S \in \mathcal{D} \mathcal{T}\) do add \(N^{+}\left[S^{\prime}\right]\) into \(D_{1}\)
        for all components \(R \in D \backslash \mathcal{D} \mathcal{T}\) do add \(N^{+}[R]\) into \(D_{1}\)
        Set \(D=N^{*}\left[D_{1}\right]\)
        if there is a circuit in \(D\) then report \(H\) is not an interval bigraph
        Stage4 : Adding other remaining trivial components and returning an ordering
        while \(\exists\) trivial component \(S\) outside \(D\), and \(S\) is a sink component do
            Add \(S\) into \(D\) and remove \(S^{\prime}\) from further consideration
        Outputting the final ordering
        for all \((u, v) \in D\) do set \(u \prec v \triangleright\) yielding an ordering of \(V(H)\) without the patterns from Figure 1
        Return the ordering \(v_{1} \prec v_{2}<\cdots \prec v_{n}\) of \(V(H)\)
```

```
function \(\operatorname{Dictator}(x, y, D)\)
    if \((x, y) \in N^{+}[S]\) for some component \(S\) in \(D\) then return \(S\)
    if \(x, y\) have different colors and \((u, y) \in D\) dominates \((x, y)\) then
        return Dictator \((u, y, D)\)
    \(\triangleright\) we mean the earliest pair \((u, y)\)
    if \(x, y\) have the same color and \((x, w) \in D\) dominates \((x, y)\) then
        return \(\operatorname{Dictator}(x, w, D)\)
    if \(x, y\) have the same color and \((x, y)\) is by transitivity on
        \((x, w),(w, y) \in D\) then return \(\operatorname{Dictator}(w, y, D)\)
    if \(x, y\) have different colors and \((x, y)\) is by transitivity on
        \((x, w),(w, y) \in D\) then return \(\operatorname{Dictator}(x, w, D)\)
```

In Section 8, we discuss the implementation of the algorithm and argue that the running time of Algorithm 1 is $\mathcal{O}(m n)$ where m is the number of edges and n is the number of vertices of the input bigraph H.

Theorem 3.6 (Correctness of Algorithm 1). Let H be a bigraph with n vertices and m edges. If H is an interval bigraph then Algorithm 1 produces an ordering without forbidden patterns in Figure 1, otherwise, it outputs NOT. Moreover, the running time of Algorithm 1 is $\mathcal{O}(m n)$.

Proof. Theorem 5.4 validates Stage 1. Lemmas 6.1,6.2, 6.3 shows the correctness of Stage 2. Lemma 7.1 proves Stage 3 is valid, and Lemma 7.2 validates Stages 4 . Lemma 8.1 shows the algorithm runs in $\mathcal{O}(m n)$.

4 Example:

Figure 2: Bigraph H is not interval bigraph

We apply Algorithm 1 on the bigraph H depicted in Figure 2 whereby show that H does not admit an ordering without the forbidden patterns in Figure 1 and, hence, is not an interval bigraph. In fact, we encounter a circuit at Stage 2 as well as at Stage 3. Note that since $x_{0} y_{0}, x_{1} y_{1}$, and $w w^{\prime}$ are independent edges of H, both $S_{x_{0} x_{1}}$ and $S_{x_{1} w}$ are components of H^{+}. Likewise, since $u_{1} v_{1}, u_{2} v_{2}, z^{\prime} z$ are independent edges of H, $S_{v_{1} u_{2}}$ and $S_{u_{2} z}$ are component of H^{+}. Finally, since $x_{2} y_{2}, x_{3} y_{3}, v_{0} u_{0}$ are independent edges of $H, S_{x_{2} x_{3}}$ and $S_{x_{3} v_{0}}$ are component of H^{+}(recall that by a component we mean a non-trivial strong component). Note that $\left(x_{2}, x_{3}\right),\left(x_{3}, v_{0}\right)$ are in the same component since x_{2}, y_{3} are adjacent to w while v_{0} is not adjacent to w; and y_{3}, v_{0} are adjacent to v_{1} while $x_{2} v_{1} \notin E(H)$. Therefore, $\left(x_{2}, x_{3}\right) \rightarrow\left(x_{2}, y_{3}\right) \rightarrow\left(y_{2}, y_{3}\right) \rightarrow\left(y_{2}, v_{1}\right) \rightarrow\left(x_{2}, v_{1}\right) \rightarrow$ $\left(x_{2}, v_{0}\right) \rightarrow\left(w, v_{0}\right) \rightarrow\left(w, u_{0}\right) \rightarrow\left(y_{3}, u_{0}\right) \rightarrow\left(y_{3}, v_{0}\right) \rightarrow\left(x_{3}, v_{0}\right)$, and hence, $S_{x_{2} x_{3}}=S_{x_{3} v_{0}}$ by Corollary 2.9.

Suppose at Stage 1 the algorithm selects components $S_{x_{0} x_{1}}, S_{x_{1} w}, S_{x_{2} x_{3}}$, alongside components $S_{v_{1} u_{2}}=$ $S_{u_{1} v_{2}} ; S_{u_{2} z}=S_{v_{2} z^{\prime}}$, and adds their pairs into D. Then, $\left(x_{0}, x_{1}\right),\left(x_{1}, w\right),\left(x_{1}, x_{2}\right),\left(u_{2}, z\right),\left(x_{3}, v_{0}\right),\left(v_{1}, u_{2}\right) \in D$. In addition, note that we have $\left(x_{1}, w\right) \rightarrow\left(x_{1}, x_{2}\right) ;\left(u_{2}, z\right) \rightarrow\left(u_{2}, v\right)$; and $\left(x_{3}, v_{0}\right) \rightarrow\left(x_{3}, v_{1}\right)$ in H^{+}. Therefore, $\left(u_{2}, v\right),\left(x_{3}, v_{1}\right) \in N^{+}[D]$. Since the pairs $\left(v_{1}, u_{2}\right),\left(u_{2}, v\right)$ are in $N^{+}[D]$, we have $\left(v_{1}, v\right) \in N^{*}[D]$. Then, since $\left(x_{3}, v_{1}\right),\left(v_{1}, v\right) \in N^{*}[D]$, we also have $\left(x_{3}, v\right) \in N^{*}[D]$. Moreover, $\left(x_{3}, v\right) \rightarrow\left(x_{3}, x_{0}\right) \in N^{*}[D]$ and, hence, we have the circuit $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$ in $N^{*}[D]$.

Note that since y_{3}, v, v_{0} are all adjacent to v_{1}, v_{2}, z, selecting $S_{v_{2} u_{1}}$ instead of $S_{u_{1} v_{2}}$ or selecting $S_{z u_{2}}$ instead of $S_{u_{2} z}$ would yield a circuit in $N^{*}[D]$ as long as we select $S_{x_{2} x_{3}}$ to be placed in D. Moreover, selecting one of $S_{x_{0} x_{1}}, S_{x_{1} x_{0}}$ alongside one of $S_{x_{1} w}, S_{w x_{1}}$ at Stage 1 also yields a circuit in $N^{*}[D]$ as long as we select $S_{x_{2} x_{3}}$ at Stage 1. Note that by adding $\left(x_{3}, v\right)$ into $N^{*}[D]$ we close circuit C. Now, in order to obtain $\operatorname{Dic}\left(x_{3}, x_{0}\right)$ we need to find $\operatorname{Dic}\left(x_{3}, v\right)$. According to the rules of the algorithm, since $\left(x_{3}, v\right)$ is by transitivity on $\left(x_{3}, v_{1}\right),\left(v_{1}, v\right)$ where x_{3}, v_{1} are white and v is black, we have $\operatorname{Dic}\left(x_{3}, v\right)=\operatorname{Dic}\left(x_{3}, v_{1}\right)=S_{x_{3} v_{0}}=S_{x_{2} x_{3}}$ (dictator component). Therefore, in order to avoid a circuit at Stage 2 of the algorithm we must select $S_{x_{3} x_{2}}$ and place it into D_{1} at line 20 of the algorithm.

Suppose the algorithm selects $S_{v_{1} u_{2}}, S_{u_{2} z}, S_{x_{0} x_{1}}, S_{x_{1} w}$ at line 20. This will place the pairs (u_{2}, v_{0}), (x_{3}, x_{0}), $\left(x_{0}, v\right)$, and $\left(v_{0}, x_{3}\right)$ in $N^{*}\left[D_{1}\right]$, because $\left(u_{2}, z\right) \rightarrow\left(u_{2}, v_{0}\right) ;\left(x_{3}, x_{2}\right) \rightarrow\left(x_{3}, x_{0}\right) ;\left(x_{0}, x_{1}\right) \rightarrow\left(x_{0}, v\right)$, and $\left(v_{0}, x_{3}\right) \in S_{x_{3} x_{2}}$. Therefore, by applying transitivity, the algorithm places $\left(x_{0}, v\right)$ into $N^{*}\left[D_{1}\right]$ (line 22). But then from $\left(x_{3}, x_{0}\right),\left(x_{0}, v\right) \in N^{*}\left[D_{1}\right]$ it follows that $\left(x_{3}, v\right) \rightarrow\left(x_{3}, v_{1}\right)$. This leads to the circuit $\left(v_{1}, u_{2}\right),\left(u_{2}, v_{0}\right),\left(v_{0}, x_{3}\right),\left(x_{3}, v_{1}\right)$ in D (line 22). Notice that selecting any two components from $S_{v_{1} u_{2}}, S_{u_{2} v_{1}}, S_{u_{2} z}, S_{z u_{2}}$ instead of $S_{u_{1} v_{2}}, S_{u_{2} z}$ also yields a circuit. Therefore, in any case, the algorithm reports that H is not an interval bigraph.

5 Correctness of Stage 1: Adding the (strong) components

We start this section by defining the first set of obstructions so-called exobiclique. We say bigraph $H=(B, W)$ is an exobiclique if the following hold.

- B contains a nonempty part B_{1} and W contains a nonempty part W_{1} such that $B_{1} \cup W_{1}$ induces a biclique in H;
- $B \backslash B_{1}$ contains three vertices with incomparable neighborhood in W_{1} and $W \backslash W_{1}$ contains three vertices with incomparable neighborhoods in B_{1} (an examples given in Figure 3).

Figure 3: Exobicliques: Here, $B=\{4,5,6, d, e, f\}, W=\{1,2,3, a, b, c\}$ and $B_{1}=\{d, e, f\}, W_{1}=\{1,2,3\}$ and $B \backslash B_{1}=\{4,5,6\}, W \backslash W_{1}=\{a, b, c\}$.

Theorem 5.1. If H has an induced exobiclique then H is not an interval bigraph [11].
Theorem 5.2. Suppose at Stage 1 we have so far constructed a D without circuits, and then for the next component S we find that $D \cup N^{+}[S]$ has circuits. Let $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n}, x_{0}\right)$ be a shortest circuit in $D \cup N^{+}[S]$. Then one of the following must occur.
(i) each pair $\left(x_{i}, x_{i+1}\right)$ is in a component.
(ii) H contains an exobiclique as an induced subgraph.

Proof. Suppose (i) does not occur. Thus, at least one pair $\left(x_{i}, x_{i+1}\right)$ is implied by a component S_{i}. By Lemma 2.8 there exists vertices a_{i}, b_{i}, and c_{i} of H such that $x_{i} a_{i}$ and $b_{i} c_{i}$ are independent edges and $a_{i} x_{i+1}, c_{i} x_{i+1} \in E(H)$. Note that x_{i} and x_{i+1} have the same color and $N\left(x_{i}\right) \subseteq N\left(x_{i+1}\right)$ (see Figure 4).
Claim 5.3. x_{i+1} and x_{i+2} have different colors, and $\left(x_{i+1}, x_{i+2}\right)$ is in a component, say S_{i+1}.
Proof. If x_{i+1} and x_{i+2} have different colors then $\left(x_{i+1}, x_{i+2}\right)$ is in a component and we are done. Thus, we assume x_{i+2} have the same color as x_{i} and x_{i+1}. Now $c_{i} x_{i+2} \notin E(H)$, otherwise, $\left(x_{i}, c_{i}\right) \rightarrow\left(x_{i}, x_{i+2}\right)$ and, hence, $\left(x_{i}, x_{i+2}\right)$ is an implied pair by component S_{i}, leading to a shorter circuit. Moreover, $a_{i} x_{i+2} \notin E(H)$, otherwise, $\left(a_{i}, c_{i}\right) \rightarrow\left(x_{i+2}, c_{i}\right) \rightarrow\left(x_{i+2}, x_{i+1}\right)$; a contradiction to C having minimum length. Since $\left(x_{i+1}, x_{i+2}\right) \in N^{+}[S]$ for some component $S \in D$, there exists some c_{i+1} such that $x_{i+2} c_{i+1} \in E(H)$ and $x_{i+1} c_{i+1} \notin E(H)\left(\left(x_{i+1}, c_{i+1}\right) \in S\right)$. Notice that $c_{i+1} x_{i} \notin E(H)$, otherwise, $\left(x_{i+1}, c_{i+1}\right) \rightarrow\left(x_{i+1}, x_{i}\right)$; a contradiction to C having minimum length. Now $\left(x_{i+1}, x_{i+2}\right) \rightarrow\left(a_{i}, x_{i+2}\right) \rightarrow\left(a_{i}, c_{i+1}\right) \rightarrow\left(x_{i}, c_{i+1}\right) \rightarrow$ $\left(x_{i}, x_{i+2}\right)$, leading to a shorter circuit.

1. By Claim 5.3, there exists a_{i+1} and b_{i+1} such that $x_{i+1} a_{i+1}$ and $x_{i+2} b_{i+1}$ are independent edges of H.
2. Claim 5.3 also implies that $\left(x_{i-1}, x_{i}\right)$ is in a component S_{i-1}, and vertices x_{i-1} and x_{i} have different colors.
3. $c_{i} a_{i-1} \notin E(H)$, otherwise, $\left(x_{i}, c_{i}\right) \in S_{i}$ dominates $\left(x_{i}, a_{i_{1}}\right)$ and, hence, $S_{i}=S_{i-1}^{\prime}$; a contradiction. Similarly, $x_{i-1} b_{i} \notin E(H)$.
4. There are independent edges $x_{i-1} a_{i-1}$ and $x_{i} c_{i-1}$ of H, with $\left(x_{i-1}, c_{i-1}\right) \in S_{i-1}$.
5. By Lemma 2.8, $N\left(x_{i}\right) \subseteq N\left(x_{i+1}\right)$. Thus, $x_{i+1} c_{i-1}, x_{i+1} a_{i} \in E(H)$.
6. $x_{i-1} x_{i+1} \in E(H)$, otherwise, $x_{i-1} a_{i-1}$ and $c_{i-1} x_{i+1}$ would be independent edges and, hence, $\left(x_{i-1}, x_{i+1}\right) \in S_{i-1}$, implying a shorter circuit.
7. $x_{i-1} b_{i+1} \in E(H)$, otherwise, $x_{i+1} x_{i-1}$ and $b_{i+1} x_{i+2}$ would be independent edges and, hence, $\left(x_{i-1}, x_{i+2}\right) \in S_{i+1}$, implying a shorter circuit. A similar argument implies $N\left(x_{i+2}\right) \subseteq N\left(x_{i-1}\right)$.
8. $d_{i} a_{i+2} \in E(H)$ for every $a_{i+2} \in N\left(x_{i+2}\right)$ and every $d_{i} \in N\left(x_{i}\right)$, otherwise, $\left(x_{i+1}, x_{i+2}\right) \rightarrow\left(x_{i+1}, a_{i+2}\right) \rightarrow$ $\left(d_{i}, a_{i+2}\right) \rightarrow\left(d_{i}, x_{i+2}\right) \rightarrow\left(x_{i}, x_{i+2}\right)$, implying a shorter circuit in D.

Figure 4: edges $a_{i-1} x_{i-1}, x_{i} c_{i-1}$, edges $x_{i} a_{i}, b_{i} c_{i}$, edges $x_{i+1} a_{i+1}, b_{i+1} x_{i+2}$, edges $x_{i+2} a_{i+2}, x_{i+3} b_{i+2}$ (left figure) are independent.

In what follows we show that H contains an exobiclique. First suppose (x_{i+2}, x_{i+3}) is in component S_{i+2} (Figure 4 left). Thus, $x_{i+2} a_{i+2}$ and $b_{i+2} x_{i+3}$ are independent edges of H. By (6), $x_{i-1} a_{i+2} \in E(H)$. By (7), $a_{i+2} c_{i-1}, a_{i+2} a_{i} \in E(H)$. Suppose x_{i+2} and x_{i+3} have different colors. Then, $x_{i+3} x_{i-1} \notin E(H)$, otherwise, $\left(x_{i+2}, x_{i+3}\right) \rightarrow\left(x_{i+2}, x_{i-1}\right)$, a shorter circuit in D. But then, $\left(x_{i+2}, x_{i+3}\right) \rightarrow\left(x_{i+2}, x_{i-1}\right)$; a shorter circuit in D. Therefore, x_{i-1} and x_{i+3} have to have the same color. Now, $b_{i+2} x_{i-1} \in E(H)$, otherwise, $\left(a_{i+2}, b_{i+2}\right) \rightarrow\left(x_{i-1}, b_{i+2}\right) \rightarrow\left(x_{i-1}, x_{i+3}\right)$; a shorter circuit. Moreover, $b_{i+2} c_{i-1} \in E(H)$, otherwise, $\left(x_{i-1}, c_{i-1}\right) \rightarrow\left(b_{i+2}, c_{i-1}\right) \rightarrow\left(b_{i+2}, a_{i+2}\right)$ and, hence, $S_{i+2}^{\prime} \in D$; a contradiction. By a similar argument, we conclude that c_{i} is adjacent to b_{i+2}, a_{i+2} and b_{i+1}. Similar to (3), $x_{i+1} x_{i+3}$ and $a_{i+1} b_{i+2}$ are non-edges of H.

Now we get an exobiclique, i.e., $\left\{a_{i-1}, x_{i-1}, x_{i}, c_{i-1}, a_{i}, b_{i}, c_{i}, x_{i+1}, a_{i+1}, b_{i+1}, a_{i+2}, x_{i+2}, b_{i+2}, x_{i+3}\right\}$. Note that vertices a_{i-1}, x_{i} and b_{i} have incomparable neighborhoods in $N=\left\{x_{i-1}, c_{i-1}, a_{i}, c_{i}\right\}$, vertices a_{i+1}, x_{i+2}, and x_{i+3} have incomparable neighborhoods in $M=\left\{x_{i+1}, b_{i+1}, a_{i+2}, b_{i+2}\right\}$; and $M \cup N$ induces a biclique.

When $\left(x_{i+2}, x_{i+3}\right)$ is implied, by a similar argument again we get an exobiclique (see Figure 4 right).
Theorem 5.4. If at Stage 1 of the algorithm we encounter a component S such that we cannot add either of $N^{+}[S]$ and $N^{+}\left[S^{\prime}\right]$ to the current D, then H has an exobiclique.
Proof. We cannot add $N^{+}[S]$ and $N^{+}\left[S^{\prime}\right]$ because the additions create circuits in $D \cup N^{+}[S]$ respectively $D \cup N^{+}\left[S^{\prime}\right]$.

If either circuit leads to (ii) (in Theorem 5.2) we are done by Theorem 5.1. If both lead to (i) (in Theorem 5.2), we proceed as follows. Assume $C_{1}=\left(x_{0}, x_{1}\right), \ldots,\left(x_{n}, x_{0}\right)$ is a shortest circuit created by adding $N^{+}[S]$ to the current D, and $C_{2}=\left(y_{0}, y_{1}\right), \ldots,\left(y_{m}, y_{0}\right)$ is a shortest circuit created by adding $N^{+}\left[S^{\prime}\right]$ to the current D. We may assume that $N^{+}[S]$ contributes $\left(x_{n}, x_{0}\right)$ to C_{1} and $N^{+}\left[S^{\prime}\right]$ contributes $\left(y_{m}, y_{0}\right)$ to C_{2}. By Theorem 5.2 each $\left(x_{i}, x_{i+1}\right)$ is in a component S_{i} and each $\left(y_{j}, y_{j+1}\right)$ is in a component. Since C_{1} is a shortest circuit, $S_{i} \neq S_{i+1}^{\prime}$, and hence, $S_{x_{i} x_{i+2}}$ is also a component. Thus, by Theorem 5.2 there exist maximal subgraphs H_{i}, H_{i+1}, and H_{i+2} containing x_{i}, x_{i+1}, and x_{i+2} respectively that are pairwise independent. By extending this idea we conclude, there exist pairwise independent maximal subgraphs $H_{0}, H_{1}, \ldots, H_{n}$, of H such that each $H_{i}(0 \leq i \leq n)$ contains x_{i}. By Theorem 5.2 (ii) it follows that for every $x \in X=H \backslash H^{\prime}$, where $H^{\prime}=H_{0} \cup H_{1} \cup \cdots \cup H_{n}$, and every $a \in H^{\prime}$ with the same color as $x, N(a) \subseteq N(x)$. Now it is easy to see that there is no directed path from $\left(x_{i}, x_{i+1}\right) \in S_{i}$ to $\left(x_{j}, x_{j+1}\right) \in S_{j}, i \neq j$ because such a path must have a pair $\left(x_{j}, x\right)$ for $x \in X$, but now $\left(x_{j}, x\right)$ is an implied pair and by Corollary 2.9, $S_{x_{j} x}$ is a sink component since $N\left(x_{j}\right) \subseteq N(x)$. Similarly, there is no path from $\left(y_{m}, y_{0}\right)$ to any of $\left(y_{j}, y_{j+1}\right)$. We also observe that $S_{x_{0} x_{n}}=S_{y_{m} y_{0}}$. Thus, we may assume that $\left(y_{0}, y_{m}\right)=\left(x_{n}, x_{0}\right)$. Therefore,

$$
\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, y_{0}\right),\left(y_{0}, y_{1}\right), \ldots,\left(y_{m-2}, y_{m-1}\right),\left(y_{m-1}, x_{0}\right)
$$

is a circuit in D, contrary to our assumption.

6 Correctness of Stage 2 (finding dictator components)

We consider what happens when a circuit is formed during the execution of Stage 2 (lines 15-18) of the algorithm. In what follows, we specify the length and some other properties of a circuit in D, considering level by level construction of $N^{*}[D]$. This section is divided into three subsections. In Subsection 6.1 we define a minimal circuit and prove that such a circuit should have length four. In Subsection 6.2, we further analyze the pairs in D and identify its associated dictator component. We will show that for a pair (x, y) in $D, S=\operatorname{Dic}(x, y)$ is the sole component responsible for placing pair (x, y) into D, regardless of the choice made at Stage 1 between any component not in $\left\{S, S^{\prime}\right\}$ and its dual. Finally, in Subsection 6.3 we prove the following three lemmas which collectively show the correctness of Stage 2 of the algorithm.
Lemma 6.1. Let $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$ be a minimal circuit, form at Stage 2 of the algorithm. Let $S_{0}=\operatorname{Dic}\left(x_{0}, x_{1}\right), S_{1}=\operatorname{Dic}\left(x_{1}, x_{2}\right), S_{2}=\operatorname{Dic}\left(x_{2}, x_{3}\right)$, and $S_{3}=\operatorname{Dic}\left(x_{3}, x_{0}\right)$. Then the following hold.

1. If $\left(x_{1}, x_{2}\right)$ is a complex pair and $\left(x_{2}, x_{3}\right)$ is also a complex pair then $S_{1}=S_{2}$.
2. If $\left(x_{1}, x_{2}\right)$ is a complex pair and $\left(x_{0}, x_{1}\right)$ is in a component S_{0} then $\left(x_{0}, x_{1}\right) \in S_{1}$, and hence, $S_{0}=S_{1}$.
3. If $\left(x_{2}, x_{3}\right)$ is a complex pair and $\left(x_{3}, x_{0}\right)$ is a simple pair implied by component S_{3} then $S_{3}=S_{2}$.
4. If $\left(x_{2}, x_{3}\right)$ and $\left(x_{3}, x_{0}\right)$ are complex pairs then $S_{2}=S_{3}$.
5. If $\left(x_{1}, x_{2}\right)$ and $\left(x_{3}, x_{0}\right)$ are complex pairs and $\left(x_{0}, x_{1}\right)$ and $\left(x_{2}, x_{3}\right)$ are simple pairs then $S_{1}=S_{3}$ and $\left(x_{2}, x_{3}\right),\left(x_{0}, x_{1}\right) \in S_{1}$.
Lemma 6.2. If we encounter a minimal circuit $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$ at line 18 then there is a component S such that the envelope of every complete set D_{1} where $S \subseteq D_{1}$ contains a circuit.
Lemma 6.3. The algorithm correctly computes $\operatorname{Dic}(x, y)$.

6.1 The length of a minimal circuit

We start this subsection by defining minimal chain and minimal circuit.
Definition 6.4. Let $(x, y) \in D$ by transitivity at (the earliest) level l. Then, by a minimal chain between x, y we mean a sequence $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ of minimum length (n) of pairs in D with $x_{0}=x$ and $x_{n}=y$, such that each $\left(x_{i}, x_{i+1}\right) \in D, 0 \leq i \leq n-1$, and at some level before l, and by reachability (and not by transitivity). We also say $\left(x_{0}, x_{n}\right)$ is by transitivity on the minimal chain $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)$.

Definition 6.5. Let C be a circuit in $N^{*}[D]$. We say C is a minimal circuit if first, the latest pair in C is created as early as possible (the smallest possible level) during the execution of $N^{*}[D]$; second, C has the minimum length; third, no pair in C is by transitivity.

Lemma 6.6. Let (x, y) be a pair in D after Stage 1 of the algorithm, and current D has no circuit. Suppose (x, y) is obtained by a minimal chain $C H=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{n+1}\right)\left(x_{0}=x\right.$ and $\left.x_{n+1}=y\right)$. Then the following hold.

1. x_{i} and x_{i+2} have always different colors.
2. If x and y have the same color then $n \leq 3$ and x_{n}, y have different colors.
3. If x and y have different colors then $n \leq 2$.

- If $n=2$ then x_{n}, y have the same color.
- If $n=1$ and $x y$ is not an edge of H then x and x_{1} have the same color.
- If $n=1$ and $x y$ is an edge of H then x_{1} and y have the same color.

Proof of 1. First suppose all three vertices x_{i}, x_{i+1}, and x_{i+2} have the same color, say black. Since (x_{i}, x_{i+1}) is not obtained by transitivity, there exists a white vertex a of H such that the pair $\left(x_{i}, a\right) \in D$ dominates $\left(x_{i}, x_{i+1}\right)$ in H^{+}, i.e. a is adjacent in H to x_{i+1} but not to x_{i}. For a similar reason, there exists a white vertex b of H adjacent to x_{i+1} but not to x_{i}, i.e. the pair $\left(x_{i+1}, b\right) \in D$ dominates $\left(x_{i+1}, x_{i+2}\right)$ in H^{+}.

We now argue that a is not adjacent to x_{i+2}. Otherwise, $\left(x_{i}, a\right) \in D$ also dominates the pair $\left(x_{i}, x_{i+2}\right)$, and hence, $\left(x_{i}, x_{i+2}\right)$ is also in D (at the same level as $\left(x_{i}, x_{i+1}\right)$), contradicting the minimality of CH .

Next we observe that $\left(x_{i}, a\right)$ is not by transitivity. Otherwise, $\left(x_{i}, x_{i+1}\right)$ and (x_{i+1}, x_{i+2}) can be replaced by a chain obtained from the pairs that implies $\left(x_{i}, a\right)$ together with the pair $\left(a, x_{i+2}\right)$. The pair $\left(a, x_{i+2}\right)$ lies in the same component of H^{+}as $\left(x_{i}, x_{i+2}\right) \in D$ since the edges $x_{i+1} a$ and $x_{i+2} b$ are independent. Since all pairs of a component are chosen or not chosen for D at the same time, this contradicts the minimality of $C H$. Thus, $\left(x_{i}, a\right)$ is dominated in H^{+}by some pair $(c, a) \in D$. Since a and x_{i} have different colors, this means c is a white vertex adjacent to x_{i}. Note that c is not adjacent to x_{i+2}, otherwise, $(c, a) \in D$ would dominate $\left(x_{i+2}, a\right)$, placing $\left(x_{i+2}, a\right)$ in D; and we get the circuit $\left(a, x_{i+2}\right),\left(x_{i+2}, a\right) \in D$ which is a contradiction.

Now, we claim that $b x_{i} \notin E(H)$. This is the case, otherwise, the pair $\left(x_{i+1}, b\right) \in D$ would dominates the pair $\left(x_{i+1}, x_{i}\right)$, while $\left(x_{i}, x_{i+1}\right) \in D$, a circuit in D. Finally, $c x_{i+1} \notin E(H)$, otherwise, $c x_{i+1}$ and $b x_{i+2}$ would be independent edges in H, and $c x_{i}$ and $b x_{i+2}$ would also be independent edges in H; thus, the pairs (x_{i}, x_{i+2}) and (x_{i+1}, x_{i+2}) are in the same component, contradicting again the minimality of $C H$. Now $\left(x_{i}, x_{i+1}\right),\left(x_{i+1}, x_{i+2}\right)$, and $\left(x_{i}, x_{i+2}\right)$ are in components. Since there is no circuit in D, according to the rules of the algorithm we have $\left(x_{i}, x_{i+2}\right) \in D$, contradicting the minimality of $C H$.

We now consider the case where x_{i} and x_{i+2} are black and x_{i+1} is white. As before, there must exist a white vertex a and a black vertex b such that the pair (a, x_{i+1}) dominates (x_{i}, x_{i+1}) and the pair (b, x_{i+2}) dominates (x_{i+1}, x_{i+2}); thus, $a x_{i}$ is an edge of H and so is $b x_{i+1}$. Note that the pair (a, x_{i+1}) dominates the pair (x_{i}, x_{i+1}), which dominates the pair $\left(x_{i}, b\right)$. Therefore, we can replace x_{i+1} by b and obtain a chain which is also minimal. Now, $\left(b, x_{i+2}\right)$ is by transitivity which contradict the minimality of $C H$.

Claim 6.7. $n \leq 4$.

Proof of the claim. Set $x_{0}=x$ and $x_{n+1}=y$. Let i be the minimum number such that x_{i} and x_{i+1} have color, say, black; and x_{i+2} and x_{i+3} are white. Let x^{\prime} be a vertex such that $\left(x_{i}, x^{\prime}\right) \in D$ dominates $\left(x_{i}, x_{i+1}\right)$. Note that if x_{i+4} exists then it is black. If x_{i+4} exists and $n \geq 5$ then x_{i+4} is white, and $x^{\prime} x_{i+4}$ is not an edge, otherwise, $\left(x_{i}, x^{\prime}\right) \rightarrow\left(x_{i}, x_{i+4}\right)$ and we get a shorter chain. Now let y^{\prime} be a vertex such that $\left(x_{i+4}, y^{\prime}\right) \in D$ dominates $\left(x_{i+4}, x_{i+5}\right)$. Now $y^{\prime} x_{i+1} \notin E(H)$, otherwise, $\left(x_{i+4}, y^{\prime}\right) \rightarrow\left(x_{i+4}, x_{i+1}\right)$ and we get a circuit $\left(x_{i+1}, x_{i+2}\right),\left(x_{i+2}, x_{i+3}\right),\left(x_{i+3}, x_{i+4}\right),\left(x_{i+4}, x_{i+1}\right)$ in D. Now $x^{\prime} x_{i+1}$ and $y^{\prime} x_{i+4}$ are independent edges, and hence, $\left(x_{i+1}, x_{i+4}\right)$ is in a component. Note that each component or its coupled is in $D .\left(x_{i+4}, x_{i+1}\right)$ is not in D, otherwise, we get a circuit in D, and hence, $\left(x_{i+1}, x_{i+4}\right) \in D$, and we get a shorter chain. Thus, we may assume that x_{i+4} does not exist, and hence, $x_{i+4}=y$. Now by minimality assumption for $i, x_{i-1}=x_{0}$, and hence, $n \leq 4$.

Proof of 2. Suppose x and y have the same color. We show that $n \leq 3$. Toward a contradiction, suppose $n=4$. Now according to (1) x, x_{1}, x_{4}, and y have the same color which is opposite to the color of x_{2} and x_{3}. Let y^{\prime} be a vertex such that $\left(x_{4}, y^{\prime}\right)$ dominates $\left(x_{4}, y\right)$, and let x^{\prime} be a vertex such that $\left(x_{0}, x^{\prime}\right) \in D$ dominates $\left(x_{0}, x_{1}\right)$. Note that $y^{\prime} x \notin E(H)$, otherwise, $\left(x_{4}, y^{\prime}\right) \rightarrow\left(x_{4}, x_{0}\right)$, implying a circuit in D. Similarly, $x_{1} y$ is not an edge of H. Finally, $x^{\prime} y$ is not an edge of H, otherwise, $\left(x, x^{\prime}\right) \rightarrow(x, y)$, contradiction to the minimality of $C H$. Now, $x_{1} x^{\prime}$ and $y^{\prime} y$ are independent edges and, hence, $\left(x_{1}, y\right)$ is in a component; thereby, $\left(x_{1}, y\right) \in D$, contradicting the minimality of $C H$. Therefore, $n \leq 3$.

We continue by assuming $n=3$. We first show that x_{3} and y have different colors. On the contrary, suppose x_{3} and y have the same color. According to (1), x_{1} and x_{2} have the same color opposite to the color of x, y, and x_{3}. Let $\left(x_{1}, x^{\prime}\right) \in D$ be a pair that dominates $\left(x_{1}, x_{2}\right)$, and $y^{\prime \prime}$ be a vertex such that $\left(x_{3}, y^{\prime \prime}\right)$ dominates $\left(x_{3}, y\right) . y^{\prime \prime} x \notin E(H)$, otherwise, $\left(x_{3}, y^{\prime \prime}\right) \rightarrow\left(x_{3}, x\right)$ and we would get a circuit. Let $x^{\prime \prime}$ be a vertex such that $\left(x^{\prime \prime}, x_{1}\right) \in D$ dominates $\left(x, x_{1}\right)$. Now, $x^{\prime} x^{\prime \prime} \notin E(H)$, otherwise, (x_{1}, x^{\prime}) would dominate ($x^{\prime \prime}, x_{1}$) and we would get a circuit in D. We continue by having $x_{2} x \in E(H)$, otherwise, $x_{2} x^{\prime}$ and $x x^{\prime \prime}$ would be independent edges and, hence, $\left(x, x_{2}\right)$ would be in a component that has already been placed in D, contradicting the minimality of $C H$. Then, the chain $\left(x_{2}, x_{3}\right),\left(x_{3}, y^{\prime \prime}\right)$ would imply the pair $\left(x_{2}, y^{\prime \prime}\right)$, and that $\left(x_{2}, y^{\prime \prime}\right) \rightarrow\left(x, y^{\prime \prime}\right) \rightarrow(x, y)$. The latter is a contradiction to the minimality of $C H$.
Proof of 3 . Suppose x and y have different colors. We show that $n \leq 3$. For contradiction suppose $n=4$. Now, according to (1), x, x_{3}, and x_{4} have the same color and opposite to the color of x_{1}, x_{2}, and y. We observe that $x y \notin E(H)$, otherwise, $\left(x_{4}, y\right)$ would dominate $\left(x_{4}, x\right)$ and, hence, we would get a circuit in D. Let x^{\prime} be a vertex such that $\left(x_{1}, x^{\prime}\right) \in D$ dominates $\left(x_{1}, x_{2}\right)$ and $x^{\prime \prime}$ be a vertex such that $\left(x^{\prime \prime}, x_{1}\right) \in D$ dominates $\left(x, x_{1}\right)$. Now, $x^{\prime} x^{\prime \prime}$ is not an edge, otherwise, $\left(x_{1}, x^{\prime}\right)$ would dominate ($x^{\prime \prime}, x_{1}$) and we would get a circuit in D. Moreover, $x_{2} x \in E(H)$, otherwise, $x_{2} x^{\prime}$ and $x x^{\prime \prime}$ would be independent edges and, hence, $\left(x, x_{2}\right)$ would be in a component that has already been placed in D; contradicting the minimality of CH . Now, the chain $\left(x_{2}, x_{3}\right),\left(x_{3}, x_{4}\right),\left(x_{4}, y\right)$ implies $\left(x_{2}, y\right)$ and that $\left(x_{2}, y\right)$ dominates (x, y). This is a contradiction to the minimality of $C H$. In fact, we would obtain (x, y) in fewer steps of transitivity. Therefore, $n \leq 3$. Now it is not difficult to see that either $n=1$ or, otherwise, $n=2$ and vertices x and x_{1} have the same color opposite to the color of x_{2} and y.

Suppose $n=1$. First assume $x y$ is an edge. Now, x_{1} and y have the same color, otherwise, $\left(x_{1}, y\right) \rightarrow\left(x_{1}, x\right)$; a contradiction. Thus, we continue by assuming $x y$ is not an edge. We show that x_{1} and x have the same color. Toward a contradiction, suppose x_{1} and y have the same color. Let $\left(x^{\prime}, x\right) \in D$ be a pair that dominates $\left(x, x_{1}\right)$ and let $\left(x_{1}, y^{\prime}\right) \in D$ be a pair that dominates $\left(x_{1}, y\right)$. Now, $x^{\prime} y^{\prime}$ is not an edge and, hence, $y y^{\prime}$ and $x x^{\prime}$ are independent edges. This shows that (x, y) is in a component, contradicting the minimality of CH .

Corollary 6.8. Let (x, y) be a pair in D after Stage 1 of the algorithm, and assume the current D has no circuit.

- Suppose x and y have the same color and $(x, w) \rightarrow(x, y)$ such that (x, w) is by transitivity with a minimal chain $\left(x, w_{1}\right),\left(w_{1}, w_{2}\right), \ldots,\left(w_{m}, w\right)$. Then $m=2$ and vertices x and w_{1} have the same color and opposite to the color of w_{2} and w.
- Suppose x and y have different colors and $(w, y) \rightarrow(x, y)$ such that (w, y) is in a trivial component. Then (w, y) is by transitivity with a minimal chain $\left(w, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, y\right)$ where w_{1} and w_{2} have the same color opposite to the color of w and y.

Proof. If x and y have the same color then by Lemma 6.6 we have $m=2$ or $m=1$. If $m=2$ then x and x_{1} have the same color and opposite to the color of x_{2} and w. If $m=1$ then, by Lemma 6.6 (3), w_{1} and y have the same color. Note that $\left(w_{1}, w\right)$ dominates $\left(w_{1}, y\right)$ and $\left(w_{1}, y\right)$ is in $N^{*}[D]$ at the same time $\left(w_{1}, w\right)$ is placed in D. Therefore, we can use the chain $\left(x, w_{1}\right),\left(w_{1}, y\right)$ in order to obtain (x, y); a contradiction. If x and y have different colors then by Lemma 6.6 either $m=2$ or $m=3$. If $m=3$ then w, w_{1}, and y have the same color and opposite to the color of w_{2} ans w_{3}. Let w^{\prime} be a vertex such that $\left(w, w^{\prime}\right) \in D$ dominates $\left(w, w_{1}\right)$. We observe that $w_{1}, x \notin E(H)$, otherwise, $\left(w_{1}, y\right) \rightarrow(x, y)$ and, hence, we obtain (x, y) in an earlier level or in fewer steps of transitivity application because $\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right)$, and $\left(w_{3}, y\right)$ are in $N^{*}[D]$. Now, $w x$, and $w_{1} w^{\prime}$ are independent edges and, hence, $\left(x, w_{1}\right)$ is already in D. In this situation, we can use the chain $C H=\left(x, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right),\left(w_{3}, y\right)$ to obtain (x, y) in some earlier step since w_{1} and w_{2} have different colors; a contradiction by Lemma 6.6 (1). Therefore, $n=2$ and Lemma 6.6 is applied.

Now by Lemma 6.6 and Corollary 6.8 we have the following.
Corollary 6.9. Let $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{0}\right)$ be a minimal circuit, formed at Stage 2 of the algorithm. Then $n=3$. Moreover, x_{0} and x_{3} have the same color and opposite to the color of x_{1} and x_{2}.

Lemma 6.10. Suppose the current D is circuit-free. Let $\left(x_{1}, x_{3}\right) \in D$ be by transitivity on a minimal chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ in D where x_{1} and x_{2} have the same color and different from the color of x_{3}, and $\left(x_{1}, x_{3}\right)$ is not dominated by any other pair $\left(y, x_{3}\right)$. Then there are u_{1} and w_{1} with the same color as x_{3} such that:
(1) If $\left(x_{1}, x_{2}\right)$ is complex then there exists $\left(x_{1}, w_{1}\right) \in D$ such that $\left(x_{1}, w_{1}\right) \rightarrow\left(x_{1}, x_{2}\right)$, and $\left(x_{1}, w_{1}\right)$ is place in D by transitivity.
(2) If $\left(x_{2}, x_{3}\right)$ is complex then there exists $\left(u_{1}, x_{3}\right) \in D$ such that $\left(u_{1}, x_{3}\right) \rightarrow\left(x_{2}, x_{3}\right)$, and $\left(u_{1}, x_{3}\right)$ is placed in D by transitivity.

Proof. Suppose $\left(x_{1}, w_{1}\right)$ is not by transitivity and there is $\left(w^{\prime}, w_{1}\right) \in D$ such that $\left(w^{\prime}, w_{1}\right) \rightarrow\left(x_{1}, w_{1}\right)$. Notice that $x_{1} x_{3} \notin E(H)$, otherwise, $\left(x_{2}, x_{3}\right) \rightarrow\left(x_{2}, x_{1}\right) \in D$, and, hence, we get a circuit in D.

Now, by Corollary 6.8, there are vertices w_{1}^{\prime} and w_{2}^{\prime} so that (w^{\prime}, w_{1}) is by transitivity on the minimal chain $\mathcal{M}=\left(w^{\prime}, w_{1}^{\prime}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right),\left(w_{2}^{\prime}, w_{1}\right)$. Let $\left(w_{1}^{\prime}, v\right) \in D$ where $\left(w_{1}^{\prime}, v\right) \rightarrow\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$. Note that $v x_{2} \notin E(H)$, otherwise, $\left(w_{1}^{\prime}, v\right) \rightarrow\left(w_{1}^{\prime}, x_{2}\right) \in D$ and, hence, we would get the chain $\left(w^{\prime}, w_{1}^{\prime}\right),\left(w_{1}^{\prime}, x_{2}\right),\left(x_{2}, x_{3}\right)$ in D. In this situation, $\left(w^{\prime}, x_{3}\right) \rightarrow\left(x_{1}, x_{3}\right)$; contradicting that $\left(x_{1}, x_{3}\right)$ is by transitivity. Hence, $v x_{2} \notin E(H)$. Next, note that $w_{2}^{\prime} v$ and $x_{2} w_{1}$ are independent edges, and $\left(w_{2}^{\prime}, w_{1}\right)$ and $\left(w_{2}^{\prime}, x_{2}\right)$ are in the same component. Therefore, we have the chain $\left(w^{\prime}, w_{1}^{\prime}\right),\left(w_{1}^{\prime}, v\right),\left(v, x_{2}\right),\left(x_{2}, x_{3}\right)$ in D and, hence, $\left(w^{\prime}, x_{3}\right) \in D$. Now $\left(w^{\prime}, x_{3}\right) \rightarrow\left(x_{1}, x_{3}\right)$, contradicting that $\left(x_{1}, x_{3}\right)$ is by transitivity. Number (2) follows from Corollary 6.8.

Lemma 6.11. Let $\left(x_{0}, x_{3}\right) \in D$ where D is circuit-free. Suppose $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ is a minimal chain in D between x_{0}, x_{3} where x_{0} and x_{3} have the same color and opposite to the color of x_{1} and x_{2}. Then $x_{0} x_{2} \in E(H)$.

Proof. For contrary, suppose $x_{0} x_{2} \notin E(H)$. Let $\left(p, x_{1}\right)$ be a pair in D that dominates $\left(x_{0}, x_{1}\right)\left(\left(x_{0}, x_{1}\right)\right.$ is not by transitivity). Let w be a vertex of H such that $\left(x_{1}, w\right) \rightarrow\left(x_{1}, x_{2}\right)$. Now $w p \notin E(H)$, otherwise, $\left(x_{1}, w\right)$ would dominate $\left(x_{1}, p\right)$, implying an earlier circuit in D. Now, $p x_{0}$ and $w x_{2}$ are independent edges and, hence, $\left(x_{0}, x_{2}\right)$ would be in a component; consequently, $\left(x_{0}, x_{2}\right)$ would have been already placed in D (if $\left(x_{2}, x_{0}\right)$ was in D then we would have an earlier circuit), implying a shorter chain. Therefore, $x_{0} x_{2} \in E(H)$.

In what follows, we often use a similar argument to the one for Lemma 6.11 and, hence, we do not repeat the details of it again.

6.2 Relationship between dictator components of the pairs in D

In this subsection, we trace back the creation of a complex pair, say, $\left(x_{1}, x_{2}\right)$. For pairs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in H^{+}, we say $\left(x^{\prime}, y^{\prime}\right)$ is reachable from (x, y) and write $(x, y) \rightsquigarrow\left(x^{\prime}, y^{\prime}\right)$ when there is a directed path in H^{+} from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$. For a component S and pair (x, y) we write $S \rightsquigarrow(x, y)$ if (x, y) is reachable from a pair
in S. Notice that if $(x, y) \rightsquigarrow\left(x^{\prime}, y^{\prime}\right)$, then $\left(y^{\prime}, x^{\prime}\right) \rightsquigarrow(y, x)$, due to the skew-symmetry property.
Remark : In all of the following lemmas in this subsection, we assume that the current D is circuit-free.
In the next two lemmas we consider the process of obtaining a complex pair. In other words, we unravel the consecutive the rechability and transitivity operations in placing a pair in D.

Lemma 6.12 (decomposition of same-color pairs). Let $\left(x_{1}, x_{3}\right) \in D$ be by transitivity on a minimal chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ in D where x_{1} and x_{2} have the same color and opposite to color of x_{3}. Suppose $\left(x_{1}, x_{2}\right)$ is a complex pair. Then, there exists the smallest m, and vertices $y_{1}, z_{1}, w_{1}, v_{1}, \ldots, y_{m-1}, z_{m-1}, w_{m-1}, v_{m-1}, a, b, w_{m} \in V(H)$ such that for $1 \leq i \leq m-1$ the following hold:
(1) $\left(x_{1}, w_{1}\right),\left(x_{1}, w_{i+1}\right) \in D$ where $\left(x_{1}, w_{1}\right) \rightarrow\left(x_{1}, x_{2}\right)$ and $\left(x_{1}, w_{i+1}\right) \rightarrow\left(x_{1}, y_{i}\right)$
(2) $\left(x_{1}, w_{i}\right)$ is obtained by transitivity on $\left(x_{1}, y_{i}\right),\left(y_{i}, z_{i}\right),\left(z_{i}, w_{i}\right) \in D$ where w_{i}, z_{i} have the same color as x_{1};
(3) $\left(z_{i}, v_{i}\right) \in D$, and $\left(z_{i}, v_{i}\right) \rightarrow\left(z_{i}, w_{i}\right)$ where x_{1}, v_{i}, z_{i} have the same color.
(4) $w_{i+1} y_{i-1} \notin E(H), i \geq 2$;
(5) $y_{i} w_{i} \in E(H)$;
(6) $v_{i+1} w_{i} \notin E(H)$;
(7) $w_{i+1} v_{i} \in E(H)$;
(8) $a y_{m-1}, a x_{2} \in E(H)$; and
(9) $x_{1} a$ and $w_{m} b$ are independent edges of H.

Moreover, $\left(x_{1}, w_{m}\right) \rightsquigarrow\left(x_{2}, v_{1}\right)$, and $\left(x_{1}, w_{m}\right),\left(x_{2}, v_{1}\right) \in \operatorname{Dic}\left(x_{1}, x_{2}\right)$.
Proof. Since $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ is a minimal chain, by Lemma 6.10 there exists $\left(x_{1}, w_{1}\right) \in D$ so that $\left(x_{1}, w_{1}\right) \rightarrow$ $\left(x_{1}, x_{2}\right)$ and $\left(x_{1}, w_{1}\right)$ is by transitivity. Now, by Corollary 6.8, there are y_{1} and z_{1} such that $\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right)$, $\left(z_{1}, w_{1}\right) \in D$, and x_{1} and y_{1} have the same color and opposite to the color of z_{1} and w_{1}. Notice that $x_{1} w_{1} \notin E(H)$. Let v_{1} be a vertex such that $\left(z_{1}, v_{1}\right) \in D$ and $\left(z_{1}, v_{1}\right) \rightarrow\left(z_{1}, w_{1}\right)$. Observe that x_{1}, v_{1}, and v_{2} have the same color. By applying the above argument for pair $\left(x_{1}, y_{1}\right)$ (when $\left(x_{1}, y_{1}\right)$ is a complex pair) we conclude that there exists a smallest m and vertices $w_{1}, y_{1}, z_{1}, v_{1}, w_{1}, \ldots, y_{m-1}, z_{m-1}, v_{m-1}, w_{m-1}, a, b, w_{m} \in V(H)$, satisfying $(1,2,3)$.
Proof of (4) Otherwise, $\left(x_{1}, w_{i+1}\right)$ - which is in D - dominates $\left(x_{1}, y_{i-1}\right)$ and, hence, we obtain the chain $\left(x_{1}, y_{i-1}\right),\left(y_{i-1}, z_{i-1}\right),\left(z_{i-1}, w_{i-1}\right)$ in D. Consequently, $\left(x_{1}, w_{i-1}\right) \rightarrow\left(x_{1}, y_{i-2}\right)$. The latter implies $\left(x_{1}, w_{1}\right)$ was obtained at some earlier step; a contradiction.
Proof of (5) Otherwise, by $(3,4), y_{i} w_{i+1}$ and $y_{i-1} w_{i}$ are independent edges and, hence, $\left(y_{i}, w_{i}\right)$ is in a component. Since $\left(y_{i}, z_{i}\right),\left(z_{i}, w_{i}\right) \in D$, we conclude that $\left(y_{i}, w_{i}\right)$ is in D and, hence, so are $\left(x_{1}, y_{i}\right)$ and $\left(y_{i}, w_{i}\right)$. Therefore, by transitivity, $\left(x_{1}, w_{i}\right) \in D$; a contradiction to Corollary 6.8.
Proof of (6) Otherwise, $\left(z_{i+1}, v_{i+1}\right) \in D$ dominates $\left(z_{i+1}, w_{i}\right)$ and, hence, we get the chain $\left(x_{1}, y_{i+1}\right),\left(z_{i+1}, w_{i}\right)$ in D, which implies (x_{1}, x_{2}) has been placed in D in fewer than m steps; a contradiction.
Proof of (7) Otherwise, by (6) $w_{i+1} v_{i+1}$ and $w_{i} v_{i}$ are independent edges and, hence, $\left(w_{i+1}, w_{i}\right),\left(y_{i}, v_{i}\right)$, and $\left(w_{i+1}, v_{i}\right)$ are in the same component. Since $\left(y_{i}, z_{i}\right),\left(z_{i}, v_{i}\right) \in D$, we conclude that $\left(y_{i}, v_{i}\right) \in D$, and consequently, since $\left(y_{i}, v_{i}\right) \rightarrow\left(w_{i+1}, v_{i}\right)$, we have $\left(v_{i+1}, w_{i}\right) \in D$. Now the chain $\left(x_{i}, w_{i+1}\right),\left(w_{i+1}, w_{i}\right)$ in D places $\left(x_{1}, x_{2}\right)$ in D in fewer than m steps; a contradiction.
Proof of (8) Suppose $a y_{m-1} \notin E(H)$. Then $a x_{1}$ and $w_{m-1} y_{m-2}$ are independent, thereby, $\left(x_{1}, w_{m-1}\right)$ is in a component and $\left(x_{1}, x_{2}\right)$ is placed in D in fewer steps than m; a contradiction. Notice that by the same logic we have $a x_{2} \in E(H)$.
Proof of (9) Finally, since (x, w_{m}) is in a component, we have independent edges $x_{1} a$ and $w_{m} b$.
Notice that $\left(x_{1}, w_{1}\right)$ is by transitivity on $\left(x_{1}, y_{1}\right),\left(y_{1}, w_{1}\right)$ and, hence, by definition of a dictator, $\operatorname{Dic}\left(x_{1}, x_{2}\right)=\operatorname{Dic}\left(x_{1}, w_{1}\right)=\operatorname{Dic}\left(x_{1}, y_{1}\right)$ (see Line 6 of Dictator function). Observe that $\left(x_{1}, w_{m}\right)$ and $\left(a, w_{m}\right)$ are in component S_{1} and, by definition, $S_{1}=\operatorname{Dic}\left(x_{1}, x_{2}\right)$. First suppose $m>2$. By $(8,9)$ we have $\left(a, w_{m}\right) \rightarrow\left(y_{m-2}, w_{m}\right) \rightarrow\left(y_{m-2}, v_{m-1}\right)$. Moreover, $\left(x_{1}, w_{m}\right) \rightarrow\left(a, w_{m}\right)$. Thus, $\left(x_{1}, w_{m}\right) \rightsquigarrow\left(y_{m-2}, v_{m-1}\right)$. By (6), $\left(y_{i}, v_{i+1}\right) \rightarrow\left(w_{i}, v_{i+1}\right)$ and, by (2), $\left(w_{i}, v_{i+1}\right) \rightarrow\left(w_{i}, w_{i+1}\right)$. Therefore, $\left(y_{i}, v_{i+1}\right) \rightsquigarrow\left(w_{i}, w_{i+1}\right)$. Moreover, by $(6,5)\left(w_{i}, w_{i+1}\right) \rightarrow\left(y_{i-1}, w_{i+1}\right) \rightarrow\left(y_{i-1}, v_{i}\right)$. Thus, $\left(w_{i}, w_{i+1}\right) \rightsquigarrow\left(y_{i-1}, v_{i}\right)$. Now, we have
$\left(x, w_{m}\right) \rightsquigarrow\left(y_{m-2}, w_{m-1}\right) \rightsquigarrow\left(w_{m-2}, w_{m-1}\right) \rightsquigarrow\left(y_{m-3}, v_{m-2}\right) \rightsquigarrow \cdots \rightsquigarrow\left(w_{1}, w_{2}\right)$. Notice that $w_{2} x_{2} \notin E(H)$ and $v_{1} w_{2} \in E(H)$. These imply that $\left(w_{1}, w_{2}\right) \rightsquigarrow\left(x_{2}, v_{1}\right)$ and, consequently, $\left(x, w_{m}\right) \rightsquigarrow\left(x_{2}, v_{1}\right)$.
When $m=2$, we have $\left(a, w_{2}\right) \rightarrow\left(x_{2}, w_{2}\right) \rightarrow\left(x_{2}, v_{1}\right)$; hence, again we get $\left(x_{1}, w_{2}\right) \rightsquigarrow\left(x_{2}, v_{1}\right)$.
Analogous to Lemma 6.12 we have the following lemma.
Lemma 6.13 (decomposition of different-color pairs). Let $\left(x_{1}, x_{3}\right) \in D$ be by transitivity on a minimal chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ in D where x_{1} and x_{2} have the same color, and opposite to the color of x_{3}. Suppose $\left(x_{2}, x_{3}\right)$ is a complex pair. Then there is a minimum number t, and $p_{1}, q_{1}, u_{1}, s_{1}, \ldots, p_{t-1}, q_{t-1}, s_{t-1}, u_{t-1}, c, d, q_{t} \in V(H)$ such that for $1 \leq i \leq t-1$ the following hold:
(1) $\left(u_{1}, x_{3}\right),\left(u_{i+1}, x_{3}\right) \in D$ where $\left(u_{1}, x_{3}\right) \rightarrow\left(x_{2}, x_{3}\right)$ and $\left(u_{i+1}, x_{3}\right) \rightarrow\left(q_{i}, x_{3}\right)$
(2) $\left(u_{i}, x_{3}\right)$ is by transitivity on pairs $\left(u_{i}, p_{i}\right),\left(p_{i}, q_{i}\right),\left(q_{i}, x_{3}\right) \in D$ where u_{i} and q_{i} have the same color as x_{3}
(3) $\left(p_{i}, s_{i}\right) \in D$ and $\left(p_{i}, s_{i}\right) \rightarrow\left(p_{i}, q_{i}\right)$ where x_{3} and s_{i} have the same color
(4) $u_{i+1} q_{i-1} \notin E(H), 2 \leq i$
(5) $u_{i} q_{i} \in E(H)$
(6) $s_{i} q_{i+1} \notin E(H)$
(7) $q_{i} s_{i+1} \in E(H)$
(8) $d s_{t-1}, d u_{1} \in E(H)$
(9) $x_{3} d$ and $q_{t} c$ are independent edges of H.

Moreover, $\left(q_{1}, x_{2}\right) \rightsquigarrow\left(q_{t}, x_{3}\right)$ and $\left(q_{1}, x_{2}\right),\left(q_{t}, x_{3}\right) \in \operatorname{Dic}\left(x_{2}, x_{3}\right)$.
In the next five lemmas we investigate the relationships between the dictators of two consecutive pairs $(x, y),(y, z)$ in D.

Lemma 6.14. Let $\left(x_{1}, x_{3}\right) \in D$ be by transitivity on a minimal chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ in D where x_{1} and x_{2} have the same color and different from x_{3} color. Suppose $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ both are complex pairs. Then, $\operatorname{Dic}\left(x_{1}, x_{2}\right)=\operatorname{Dic}\left(x_{2}, x_{3}\right)$.

Proof. Let $y_{1}, z_{1}, w_{1}, v_{1}$, and w_{m} be the vertices in the decomposition of (x_{1}, x_{2}) according to Lemma 6.12. It follows from the lemma that $\left(x_{1}, w_{m}\right) \rightsquigarrow\left(x_{2}, v_{1}\right)$. Let u_{1}, q_{1}, and q_{t} be the vertices in the decomposition of $\left(x_{2}, x_{3}\right)$ according to Lemma 6.13. Then, we have $\left(x_{2}, q_{1}\right) \rightsquigarrow\left(q_{t}, x_{3}\right)$.

Notice that $v_{1} u_{1} \notin E(H)$, otherwise, we would have $\left(z_{1}, v_{1}\right) \rightarrow\left(z_{1}, u_{1}\right)$ and, hence, there would exist a chain $\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, u_{1}\right),\left(u_{1}, x_{3}\right)$; contradicting the minimality of the chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$. Now, $\left(x_{2}, v_{1}\right) \rightarrow\left(u_{1}, v_{1}\right) \rightarrow\left(u_{1}, w_{1}\right)$ and, hence, $\left(x_{2}, v_{1}\right) \rightsquigarrow\left(u_{1}, w_{1}\right)$. On the other hand, $w_{1} q_{1} \notin E(H)$, otherwise, $\left(x_{1}, w_{1}\right) \rightarrow\left(x_{1}, q_{1}\right)$ and we would obtain the chain $\left(x_{1}, q_{1}\right),\left(q_{1}, x_{3}\right)$; a contradiction to minimality of the chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$. Thus, $\left(u_{1}, w_{1}\right) \rightarrow\left(q_{1}, w_{1}\right) \rightarrow\left(q_{1}, x_{2}\right)$ and, hence, $\left(u_{1}, w_{1}\right) \rightsquigarrow\left(q_{1}, x_{2}\right)$. From above, we conclude that $\left(x_{2}, v_{1}\right) \rightsquigarrow\left(x_{2}, q_{1}\right)$. By Lemma 6.13 and the skew-symmetry property we have $\left(q_{1}, x_{2}\right) \rightsquigarrow\left(q_{t}, x_{3}\right)$. Therefore, $\left(x_{1}, w_{m}\right) \rightsquigarrow\left(x_{2}, v_{1}\right) \rightsquigarrow\left(q_{1}, x_{2}\right) \rightsquigarrow\left(q_{t}, x_{3}\right)$, and by Corollary 2.9 $\operatorname{Dic}\left(x_{1}, x_{2}\right)=\operatorname{Dic}\left(x_{2}, x_{3}\right)$.

Lemma 6.15. Let $\left(x_{0}, x_{2}\right) \in D$ be by transitivity on a minimal chain $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right)$ in D where x_{1} and x_{2} have the same color and different from x_{0}. Suppose $\left(x_{0}, x_{1}\right)$ is a simple pair and $\left(x_{1}, x_{2}\right)$ is a complex pair. Then, $\operatorname{Dic}\left(x_{0}, x_{1}\right)=\operatorname{Dic}\left(x_{1}, x_{2}\right)$.

Proof. Since $\left(x_{0}, x_{1}\right)$ is simple and x_{0} and x_{1} have different colors, by Lemma 2.6, there exist independent edges $x_{0} e$ and $x_{1} f$ of H. Let $y_{1}, z_{1}, w_{1}, v_{1}$, and w_{m} be the vertices in the decomposition of $\left(x_{1}, x_{2}\right)$ according to Lemma 6.12. Note that, according to Lemma $6.12, x_{1} w_{1} \notin E(H)$. Then, $w_{1} e \notin E(H)$, otherwise, we would get $\left(x_{0}, x_{1}\right) \rightarrow\left(e, x_{1}\right) \rightarrow\left(w_{1}, x_{1}\right)$; contradicting $\left(x_{1}, w_{1}\right) \in D$. Furthermore, $x_{0} x_{2} \in E(H)$, otherwise, $x_{0} e$ and $w_{1} x_{2}$ would be independent edges; thereby, $\left(x_{0}, x_{2}\right)$ would be in a component. The latter contradicts the assumption that $\left(x_{0}, x_{2}\right)$ is by transitivity. Likewise, observe that $f x_{2} \in E(H)$, otherwise, $x_{1} f$ and $x_{1} w_{1}$ would be independent edges; a contradiction with the assumption that $\left(x_{1}, x_{2}\right)$ is a complex pair. Finally, $x_{0} v_{1} \notin E(H)$, otherwise, $\left(z_{1}, v_{1}\right) \rightarrow\left(z_{1}, x_{0}\right)$, resulting in a circuit $\left(x_{0}, x_{1}\right),\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, x_{0}\right)$ in D; a contradiction with the assumption that the current D is circuit-free. Now, we have $\left(x_{2}, v_{1}\right) \rightarrow\left(x_{0}, v_{1}\right) \rightarrow$ $\left(x_{0}, f\right) \rightarrow\left(x_{0}, x_{2}\right)$ and, hence, $\left(x_{2}, v_{1}\right) \rightsquigarrow\left(x_{0}, x_{1}\right)$. Therefore, by Lemma 6.12, $\left(x_{1}, w_{m}\right) \rightsquigarrow\left(x_{2}, v_{1}\right)$. Thus, $\left(x_{1}, w_{m}\right) \rightsquigarrow\left(x_{0}, x_{1}\right)$, implying that $\operatorname{Dist}\left(x_{1}, x_{2}\right)=\operatorname{Dist}\left(x_{0}, x_{1}\right)$.

Analogous to Lemma 6.15 we have the following lemma.
Lemma 6.16. Let $\left(x_{2}, x_{4}\right) \in D$ be by transitivity on a minimal chain $\left(x_{2}, x_{3}\right),\left(x_{3}, x_{4}\right)$ in D where x_{2} and x_{4} have the same color and opposite to the color of x_{3}. Suppose $\left(x_{2}, x_{3}\right)$ is complex and $\left(x_{3}, x_{4}\right)$ is implied by a component. Then, $\operatorname{Dic}\left(x_{2}, x_{3}\right)=\operatorname{Dic}\left(x_{3}, x_{4}\right)$.

Lemma 6.17. Let $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ be a minimal chain in D between x_{1} and x_{3}. Let $\left(x_{1}, x_{2}\right)$ be a complex pair in D where x_{1} and x_{2} have the same color. Let $\left(x_{1}, w_{1}\right) \in D$ where $\left(x_{1}, w_{1}\right) \rightarrow\left(x_{1}, x_{2}\right)$. Moreover, suppose $\left(x_{1}, w_{1}\right)$ is by transitivity on the minimal chain $\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, w_{1}\right)$ where $\left(z_{1}, w_{1}\right)$ is a complex pair. Then, $\operatorname{Dic}\left(x_{1}, y_{1}\right)=\operatorname{Dic}\left(y_{1}, z_{1}\right)=\operatorname{Dic}\left(z_{1}, w_{1}\right)$.
Proof. By Corollary 6.8, x_{1} and y_{1} have the same color and opposite to the color of z_{1} and w_{1}. Let $\left(z_{1}, v_{1}\right) \in D$ such that $\left(z_{1}, v_{1}\right) \rightarrow\left(z_{1}, w_{1}\right)$. Let $\left(u_{1}, x_{3}\right) \in D$ so that $\left(u_{1}, x_{3}\right) \rightarrow\left(x_{2}, x_{3}\right)$. Notice that $v_{1} u_{1} \notin E(H)$, otherwise, we would have $\left(z_{1}, v_{1}\right) \rightarrow\left(z_{1}, u_{1}\right)$, resulting in the chain $\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, u_{1}\right),\left(u_{1}, x_{3}\right)$ in D; contradicting the minimality of the chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$.

By Lemma 6.12 we have $S_{1} \rightsquigarrow\left(x_{2}, v_{1}\right)$, where $S_{1}=\operatorname{Dic}\left(x_{1}, w_{1}\right)$. According to the definition of dictator components, we have $\operatorname{Dis}\left(x_{1}, w_{1}\right)=\operatorname{Dis}\left(x_{1}, y_{1}\right)$. Now, since $\left(z_{1}, w_{1}\right)$ is a complex pair, by Lemma 6.12 for pair $\left(z_{1}, w_{1}\right)$, we conclude that there exists p_{1}, q_{1}, and s_{1} such that z_{1}, p_{1}, and s_{1} have the same color and opposite to the color q_{1} and v_{1}; the pairs $\left(z_{1}, p_{1}\right),\left(p_{1}, q_{1}\right),\left(q_{1}, v_{1}\right),\left(q_{1}, s_{1}\right)$ are in D; and $\left(q_{1}, s_{1}\right) \rightsquigarrow\left(q_{1}, v_{1}\right)$. By Lemma 6.12 for $\left(w_{1}, z_{1}\right)$, we have $S_{2} \rightsquigarrow\left(w_{1}, s_{1}\right)$. Notice that $s_{1} x_{2} \notin E(H)$, otherwise, we would have $\left(q_{1}, s_{1}\right) \rightarrow\left(q_{1}, x_{2}\right)$ resulting in the chain $\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, p_{1}\right),\left(p_{1}, q_{1}\right),\left(q_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ with pairs in D; contradicting the minimality of the chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$. Therefore, $\left(w_{1}, s_{1}\right) \rightarrow\left(x_{2}, s_{1}\right) \rightarrow\left(x_{2}, v_{1}\right)$, implying that $S_{2} \rightsquigarrow\left(x_{2}, v_{1}\right)$. Since $u_{1} x_{2}$ and $v_{1} s_{1}$ are independent edges, $\left(x_{2}, v_{1}\right)$ is in a component. We then have $S_{1} \rightsquigarrow\left(x_{2}, v_{1}\right)$ and $S_{2} \rightsquigarrow\left(x_{2}, v_{1}\right)$. Since $\left(x_{2}, v_{1}\right)$ is in a component, by Corollary 2.9 , we conclude that $S_{1}=S_{2}=S_{x_{2} v_{1}}$.

Now, it follows from lemmas 6.15 and 6.14 that $\operatorname{Dis}\left(y_{1}, z_{1}\right)=S_{2}$ and, hence, $\operatorname{Dis}\left(x_{1}, y_{1}\right)=\operatorname{Dis}\left(y_{1}, z_{1}\right)=$ $\operatorname{Dis}\left(z_{1}, w_{1}\right)$.

Analogous to Lemma 6.17 we have the following lemma.
Lemma 6.18. Let $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ be a minimal chain in D between x_{1} and x_{3}. Let $\left(x_{2}, x_{3}\right)$ be a complex pair in D where x_{1} and x_{2} have different colors. Let $\left(u_{1}, x_{2}\right) \in D$, where $\left(u_{1}, x_{3}\right) \rightarrow\left(x_{2}, x_{3}\right)$. Moreover, suppose $\left(u_{1}, x_{3}\right)$ is by transitivity on the minimal chain $\left(u_{1}, p_{1}\right),\left(p_{1}, q_{1}\right),\left(q_{1}, x_{3}\right)$ where $\left(q_{1}, x_{3}\right)$ is a complex pair. Then $\operatorname{Dic}\left(u_{1}, p_{1}\right)=\operatorname{Dic}\left(q_{1}, x_{3}\right)=\operatorname{Dic}\left(p_{1}, q_{1}\right)$.

The following lemma shows the role of a dictator component in placing a pair in D, alongside its independence from selection of other components.

Lemma 6.19. Let $\left(x_{1}, x_{3}\right) \in D$ be by transitivity on a minimal chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right) \in D$ where x_{1} and x_{2} have the same color and opposite to the color of x_{3}. Suppose $\left(x_{1}, x_{2}\right)$ is a complex pair, and let $S_{1}, S_{2}, \ldots, S_{k}$ be the distinct components involving in the creation of $\left(x_{1}, x_{2}\right)$. Suppose Dic $\left(x_{1}, x_{2}\right)=S_{1}$. Let D_{1} be a set of pairs which contains S_{1} and exactly one of S_{i}, S_{i}^{\prime} for every $2 \leq i \leq k$. Then, $\left(x_{1}, x_{2}\right) \in N^{*}\left[D_{1}\right]$.

Proof. We use induction on the number of steps in the decomposition of $\left(x_{1}, x_{2}\right)$ according to Lemmas 6.12 and 6.13. Since x_{1} and x_{2} have different colors, it follows by Lemma 6.12 that there exists $\left(x_{1}, w_{1}\right) \in D$ such that $\left(x_{1}, w_{1}\right) \rightarrow\left(x_{1}, x_{2}\right)$ and $\left(x_{1}, w_{1}\right)$ is by transitivity on the minimal chain $C H=\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, w_{1}\right)$. By definition of a dictator, $\operatorname{Dic}\left(x_{1}, y_{1}\right)=\operatorname{Dic}\left(x_{1}, x_{2}\right)$. Let $\left(z_{1}, v_{1}\right) \in D$ such that $\left(z_{1}, v_{1}\right) \rightarrow\left(z_{1}, w_{1}\right)$. Observe that $v_{1} w_{2} \in E(H)$, otherwise, we would have $\left(y_{1}, z_{1}\right),\left(z_{1}, v_{1}\right) \in D$, implying that $\left(y_{1}, v_{1}\right) \rightarrow\left(w_{2}, v_{1}\right) \rightarrow\left(w_{2}, w_{1}\right)$ and, hence, we get the earlier chain $\left(x_{1}, w_{2}\right),\left(w_{2}, w_{1}\right)$ in D - the latter contradicts the minimality of $C H$.

We will consider two possible cases. First, consider the case where $\left(y_{1}, z_{1}\right)$ and $\left(z_{1}, w_{1}\right)$ are simple. According to Lemma 2.6 there exist independent edges $y_{1} y_{1}^{\prime}$ and $z_{1} z_{1}^{\prime}$ and independent edges $z_{1} e$ and $v_{1} f$ so that $w_{1} e, w_{1} z_{1}^{\prime} \in E(H)$. According to the argument for Lemma 6.11, $y_{1} w_{1}$ is an edge of H. Note that $\left(y_{1}, z_{1}^{\prime}\right),\left(y_{1}, e\right) \in N^{+}\left[S_{y_{1} z_{1}}\right]$. Also, note that $w_{2} z_{1}^{\prime} \in E(H)$, otherwise, we would have $\left(y_{1}, z_{1}^{\prime}\right) \rightarrow$ $\left(w_{1}^{\prime}, z_{1}^{\prime}\right) \rightarrow\left(w_{2}, w_{1}\right)$ and, consequently, $\left(w_{2}, w_{1}\right)$ would be simple. But then we would get an earlier chain $\left(x_{1}, w_{2}\right),\left(w_{2}, w_{1}\right)$ with pairs in D; a contradiction to the minimality of $C H$. Likewise, we conclude that
$w_{2} e \in E(H)$. Notice that by definition, $\operatorname{Dic}\left(x_{1}, w_{2}\right)=S_{1}$, and observe that $\left(x_{1}, w_{2}\right)$ dominates every pair in $\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, v_{1}\right),\left(x_{1}, z_{1}\right),\left(x_{1}, e\right)\right\}$. By induction hypothesis, if S_{1} is in D then $\operatorname{Dic}\left(x_{1}, w_{2}\right)=S_{1}$. If we place into D components $S_{y_{1} z_{1}}$ and $S_{z_{1} v_{1}}$ at Stage 1, then $\left(y_{1}, z_{1}\right),\left(z_{1}, w_{1}\right) \in D$. Thus, $C H$ will have its pairs in D and, consequently, we get $\left(x_{1}, w_{1}\right),\left(x_{1}, x_{2}\right) \in D$. If we place into D components $S_{v_{1} z_{1}}$ and $S_{z_{1}, y_{1}}$ then $\left(v_{1}, z_{1}\right),\left(z_{1}, w_{1}\right) \in D$ (since $\left.\left(z_{1}, y_{1}\right) \rightarrow\left(z_{1}, w_{1}\right)\right)$ and, hence, $\left(x_{1}, v_{1}\right),\left(v_{1}, z_{1}\right),\left(z_{1}, w_{1}\right) \in D$. Consequently, in this case we get $\left(x_{1}, w_{1}\right),\left(x_{1}, x_{2}\right) \in D$. So, we may assume that $S_{y_{1} z_{1}}$ and $S_{v_{1} z_{1}}$ are selected to be placed in D at Stage 1 of the algorithm. Now, $y_{1}^{\prime} v_{1} \notin E(H)$, otherwise, $\left(y_{1}^{\prime}, z_{1}\right) \rightarrow\left(v_{1}, z_{1}\right)$ and, hence, $S_{z_{1} v_{1}} \in D$; a contradiction. Similarly, we get $y_{1} f \notin E(H)$. Therefore, $y_{1} y_{1}^{\prime}$ and $v_{1} f$ are independent edges and, hence, $S_{y_{1} v_{1}}, S_{v_{1} y_{1}}$ are components. Now, without loss of generality we may assume the algorithm selects $S_{v_{1} y_{1}}$ at Stage 1. Then, $\left(v_{1}, y_{1}^{\prime}\right) \in D$ and $\left(y_{1}^{\prime}, v_{1}\right) \rightarrow\left(y_{1}^{\prime}, w_{1}\right) \in D$. Moreover, $\left(x_{1}, w_{2}\right) \rightarrow\left(x_{1}, v_{1}\right)$. Therefore, $\left(x_{1}, v_{1}\right),\left(v_{1}, y_{1}^{\prime}\right),\left(y_{1}^{\prime}, w_{1}\right) \in D$ and, hence, $\left(x_{1}, w_{1}\right) \in D$.

Finally, consider the case where $\left(z_{1}, w_{1}\right)$ is complex. By Lemma 6.17, we conclude that $\operatorname{Dis}\left(x_{1}, y_{1}\right)=$ $\operatorname{Dis}\left(y_{1}, z_{1}\right)=\operatorname{Dis}\left(z_{1}, w_{1}\right)$ and, hence, by induction hypothesis, if $\operatorname{Dis}\left(x_{1}, y_{1}\right)$ is selected at Stage 1 of the algorithm then each of the pair $\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right)$ and $\left(z_{1}, w_{1}\right)$ is placed in D; hence, $\left(x_{1}, x_{2}\right)$ is placed in D.

6.3 Proofs of Lemmas 6.1, 6.2, and 6.3

Proof of Lemma 6.1: (1) follows from Lemma 6.14 on the minimal chain $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$. (4) follows from Lemma 6.14 on the minimal chain $\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$. (2) follows from Lemma 6.15. (3) follows from Lemma 6.16. Finally, (5) follows from the arguments in Lemma 6.17(considering the $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$ instead of the chain $\left.\left(x_{1}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, w_{1}\right)\right)$, and Lemma 6.18.

Proof of Lemma 6.2: This follows from lemmas 6.1 and 6.19.
Proof of Lemma 6.3: The purpose of computing $\operatorname{Dic}(x, y)$ is to identify a component that is responsible for creating a circuit in D. Therefore, we may assume that a minimal circuit C in D is created once (x, y) is added into D. By Corollary 6.9, C is on four pairs. Suppose $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{0}\right)$ and assume, without loss of generality, that x_{0} and x_{3} are white vertices, and x_{1} and x_{2} are black vertices. Recall that the following determine the dictator of a pair (x, y).
(a) If $(x, y) \in N^{+}[S]$ for some component S then $\operatorname{Dic}(x, y)=S$.
(b) If x and y have different colors and $(u, y) \rightarrow(x, y)$ then $\operatorname{Dic}(x, y)=\operatorname{Dic}(u, y)$.
(c) If x and y have the same color and $(x, w) \rightarrow(x, y)$ then $\operatorname{Dic}(x, y)=\operatorname{Dic}(x, w)$.
(d) If x and y have the same color and (x, y) is by transitivity on $(x, w),(w, y)$ then $\operatorname{Dic}(x, y)=\operatorname{Dic}(w, y)$.
(e) If x and y have different colors and (x, y) is by transitivity on $(x, w),(w, y)$ then $\operatorname{Dic}(x, y)=\operatorname{Dic}(x, w)$.

In what follows, we assume (x, y) is one of the pairs on C.
Let $\left(u_{1}, x_{3}\right)$ be a pair in (the current) D and $\left(u_{1}, x_{3}\right) \rightarrow\left(x_{2}, x_{3}\right)$. According to definition, $\operatorname{Dic}\left(u_{1}, x_{3}\right)=$ $\operatorname{Dic}\left(x_{2}, x_{3}\right)$. By Corollary 6.8, $\left(u_{1}, x_{3}\right)$ is by transitivity on a minimal chain $\left(u_{1}, p_{1}\right),\left(p_{1}, q_{1}\right),\left(q_{1}, x_{3}\right)$ in D.

When we compute $N^{*}[D],\left(u_{1}, x_{3}\right)$ appears in D at some earlier level,i.e., when pairs of the forms $\left(u_{1}, f\right)$ and $\left(f, x_{3}\right)$ appear in $N^{*}[D]$ at some earlier level. According to the minimality of the chain between u_{1} and x_{3} we must have either $f=q_{1}$ or $f=p_{1}$. First suppose $f=q_{1}$. Then, according to (d), we have $\operatorname{Dic}\left(x_{2}, x_{3}\right)=\operatorname{Dic}\left(q_{1}, x_{3}\right)$. By induction hypothesis, we also have $\operatorname{Dic}\left(q_{1}, x_{3}\right)=S_{2}$, where S_{2} is the component obtained after decomposing the pair $\left(x_{2}, x_{3}\right)$ in accordance with Lemma 6.13. Therefore, $\operatorname{Dic}\left(x_{2}, x_{3}\right)=\operatorname{Dic}\left(u_{1}, x_{3}\right)=\operatorname{Dic}\left(q_{1}, x_{3}\right)$. Now, consider the case where $f=p_{1}$. Then, according to (d), we have $\operatorname{Dic}\left(u_{1}, x_{3}\right)=\operatorname{Dic}\left(p_{1}, x_{3}\right)$. Thus, using (e), we obtain $\operatorname{Dic}\left(p_{1}, x_{3}\right)=\operatorname{Dic}\left(q_{1}, x_{3}\right)$ because the chain $\left(p_{1}, q_{1}\right),\left(q_{1}, x_{3}\right)$ implies $\left(p_{1}, x_{3}\right)$ where p_{1} and x_{3} have different colors. A similar argument can be applied to the pair $\left(x_{1}, x_{2}\right)$, where x_{1} and x_{2} have the same color.

7 Correctness of Stages 3 and 4 (lines 19-25)

If we encounter a circuit C in D in Stage 2 then, according to Lemma 6.2 , there is a component S that is a dictator for C. By Lemma 6.2, it is clear that we should not add S to D, otherwise, we would not get the desired ordering. Therefore, we must take the coupled component of every dictator component of a circuit appearing at Stage 2. With this consideration, we continue to show the correctness of Stages 3.
Lemma 7.1 (correctness of Stage 3). If the algorithm encounters a circuit at Stage 3 (line 20) then H is not an interval bigraph.
Proof. According to line 22 of the algorithm, D_{1} contains components $S_{1}, S_{2}, \ldots, S_{j}$ chosen at Stage 1, alongside components $S_{j+1}^{\prime}, \ldots, S_{t}^{\prime}$ where S_{j+1}, \ldots, S_{t} are dictator components. Suppose we encounter a minimal circuit $C=\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{0}\right)$ in line 22. If all the pairs in C are simple then, according to Theorem 5.4, we find an exobiclique and, hence, H is not an interval bigraph. Therefore, we may assume at least one pair, say, $\left(x_{i}, x_{i+1}\right)$ is a complex pair. Let $S=\operatorname{Dic}\left(x_{i}, x_{i+1}\right)$. Notice that S is not among $S_{1}, S_{2}, \ldots, S_{j}$, otherwise, we would have detected S as a dictator component at Stage 2, according to Lemma 6.2. Thus, S belongs to $\left\{S_{i+1}^{\prime}, S_{i+2}^{\prime}, \ldots, S_{t}^{\prime}\right\}$. But the latter means H is not an interval bigraph because we can not select either of S, S^{\prime} at Stage 1; a contradiction in light of Lemma 3.5.
Lemma 7.2 (correctness of Stage 4). The algorithm does not create a circuit by choosing a sink component $S \in H^{+} \backslash D$ (satisfying $N^{+}[S]=S$) and adding it to D after taking its transitive closure.
Proof. Suppose adding— according to the algorithm - a sink trivial component $\{(x, y)\}$ into D creates a circuit. By definition, there is no arc from (x, y) to any pair in $H^{+} \backslash D$-i.e., (x, y) is a terminal pair. According to the algorithm, neither of $(x, y),(y, x)$ is presently in D. Moreover, (x, y) is not by transitivity on any of the pairs presently in D (otherwise (x, y) would have been placed in D, since D is closed under transitivity).

Now, since (x, y) is a terminal pair at the current step of the algorithm, (x, y) can only dominate pairs in D. Therefore, the only way that adding (x, y) into D creates a circuit is when (x, y) dominates a pair (u, v) while there is a chain $\left(v, y_{1}\right),\left(y_{1}, y_{2}\right), \ldots,\left(y_{k}, u\right) \in D$; in which case we have $(v, u) \in D$. However, since D is closed under reachability and transitivity, by the skew-symmetry $(u, v) \rightarrow(y, x) \in D$; a contradiction.

8 Implementation and complexity

In this section we prove the following lemma.
Lemma 8.1. Let H be a bigraph with n vertices and m edges. Then, Algorithm 1 runs in $\mathcal{O}(m n)$ time and produces an interval vertex ordering when H is an interval bigraph; otherwise, reports H is not an interval bigraph.
Proof. In this proof, we denote the degree of a vertex z of H by d_{z}. In order to construct digraph H^{+}, we need to list all the neighbors of each pair in H^{+}. If vertices x and y in H have different colors then the pair (x, y) of H^{+}has d_{y} out-neighbors; and if x and y have the same color then the pair (x, y) has d_{x} out-neighbors in H^{+}. For simplicity-without affecting the generality of the argument- we assume that $|W|=|B|=n$. For a fixed black vertex x, the number of all pairs which are neighbors of all pairs $(x, z), z \in V(H)$, is $n d_{x}+d_{y_{1}}+d_{y_{2}}+\cdots+d_{y_{n}}$, where $y_{1}, y_{2}, \ldots, y_{n}$ are all of the white vertices. We can use a linked list structure to represent H^{+}, therefore, overall, it takes time $\mathcal{O}(m n)$ to construct H^{+}. Notice that in order to check whether a component S is self-coupled, it is enough to pick any pair (a, b) in S and check if (b, a) is in S, as well. The latter task can be done in time $\mathcal{O}(m n)$, using Tarjan's strongly-connected component algorithm. Since we maintain a partial order on D, once we add a new pair into D we can decide whether that pair closes a circuit or not. Computing $N^{*}[D]$ also takes time $\mathcal{O}(n(n+m))=\mathcal{O}(m n)$ since there are $\mathcal{O}(m n)$ edges in H^{+}and $\mathcal{O}\left(n^{2}\right)$ vertices in H^{+}. Note that the envelope of D is computed at most twice (at lines 15 and 22).

Once a pair (x, y) is added into D, we put an arc from x to y in the partial order and give the arc $x y$ a time label (also called level). Once a circuit is formed at Stage 2, we can find a dictator component S by using Dictator function, and store S into set $\mathcal{D} \mathcal{T}$. Therefore, we spend at most $\mathcal{O}(n m)$ time to find all the dictator components. Stage 4 , in which we add the remaining pairs, takes time at most $\mathcal{O}\left(n^{2}\right)$. Therefore, the overall running time of the algorithm is $\mathcal{O}(n m)$.

References

[1] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. System Sci, 13(3):335-379, 1976.
[2] David E. Brown and J. Richard Lundgren. Characterizations of interval bigraphs and unit interval bigraphs. Congressus Num, 157:79-93, 2002.
[3] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The ultimate interval graph recognition algorithm? (extended abstract). In SODA, pages 175-180, 1998.
[4] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and recognition of interval graphs. SIAM J. Discret. Math., 23(4):1905-1953, 2009.
[5] Peter Damaschke. Forbidden ordered subgraphs. Topics in Combinatorics and Graph Theory, pages 219-229, 1990.
[6] Sandip Das, Malay K. Sen, A. B. Roy, and Douglas B. West. Interval digraphs: An analogue of interval graphs. J. Graph Theory, 13(2):189-202, 1989.
[7] Dwight Duffus, Mark Ginn, and Vojtech Rödl. On the computational complexity of ordered subgraph recognition. Random Struct. Algorithms, 7(3):223-268, 1995.
[8] Tomás Feder, Pavol Hell, Jing Huang, and Arash Rafiey. Interval graphs, adjusted interval digraphs, and reflexive list homomorphisms. Discret. Appl. Math., 160(6):697-707, 2012.
[9] Jerald A. Kabell Frank Harary and Frederick R. McMorris. Bipartite intersection graphs. Comment, Math Universitatis Carolinae, 23:739-745, 1982.
[10] Michel Habib, Ross M. McConnell, Christophe Paul, and Laurent Viennot. Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci., 234(1-2):59-84, 2000.
[11] Pavol Hell and Jing Huang. Interval bigraphs and circular arc graphs. J. Graph Theory, 46(4):313-327, 2004.
[12] Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. Approximation of minimum cost homomorphisms. In ESA, pages 587-598. Springer, 2012.
[13] Pavol Hell, Bojan Mohar, and Arash Rafiey. Ordering without forbidden patterns. In ESA, volume 8737 of Lecture Notes in Computer Science, pages 554-565. Springer, 2014.
[14] Norbert Korte and Rolf H. Möhring. An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput., 18(1):68-81, 1989.
[15] Ross M. McConnell. Linear-time recognition of circular-arc graphs. In FOCS, pages 386-394. IEEE Computer Society, 2001.
[16] Haiko Müller. Recognizing interval digraphs and interval bigraphs in polynomial time. Discret. Appl. Math., 78(1-3):189-205, 1997.
[17] Jeremy P. Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs. Discret. Appl. Math., 18(3):279-292, 1987.

[^0]: *Indiana State University, IN, USA, arash.rafiey@indstate.edu supported by NSF (No. 1751765)

