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Abstract
Let H be a connected bipartite graph with n vertices and m edges. We give an O(nm) time algorithm to

decidewhetherH is an interval bigraph. The best known algorithmhas time complexityO(nm6(m+n) logn)
and it was developed by Muller in 1997 [16]. Our approach is based on an ordering characterization of

interval bigraphs introduced by Hell and Huang in 2003 [11]. We transform the problem of finding the

desired ordering to choosing strong components of a pair-digraph without creating conflicts. We make use

of the structure of the pair-digraph as well as decomposition of bigraph H based on the special components

of the pair-digraph. This way we make explicit what the difficult cases are and gain efficiency by isolating

such situations.

1 Introduction
The vertex set of a graph H is denoted by V (H) and the edge set of H is denoted by E(H). A bigraph H is a

bipartite graph with a fixed bipartition into black and white vertices. We sometimes denote these sets as B
andW , and view the vertex set of H as partitioned into (B,W ). A bigraphH is called an interval bigraph if
there exists a family Iv, v ∈ B ∪W , of intervals (from the real line) such that, for all x ∈ B and y ∈W , the

vertices x and y are adjacent in H if and only if Ix and Iy intersect. Then, this family of intervals is called an

interval representation of bigraph H .

Interval bigraphs were introduced in [9] and have been studied in [2, 11, 16]. They are closely related to

interval digraphs introduced by Sen et al. [6]. In particular, our algorithm can be used to recognize interval

digraphs (in time O(mn)), as well.

Interval bigraphs and interval digraphs have become of interest in such new areas as graph homomor-

phisms, e.g. [8].

A co-circular arc bigraph is a bipartite graph whose complement is a circular arc graph. The class of interval

bigraphs is a subclass of co-circular arc bigraphs. Indeed, the former class consists exactly of those bigraphs

whose complement is the intersection of a family of circular arcs no two of which cover the circle [11]. There

is a linear-time recognition algorithm for co-circular arc bigraphs [15]. On the other hand, the class of interval

bigraphs is a super-class of proper interval bigraphs (also known as bipartite permutation graphs), for which

there is also a linear-time recognition algorithm [11, 17].

Interval bigraphs can be recognized in polynomial time using the algorithm developed by Muller [16].

Muller’s algorithm runs in timeO(nm6(n+m) log n). This is in sharp contrast with the recognition of interval
graphs, for which several linear time algorithms are known, e.g., [1, 3, 4, 10, 14].

In [11, 16], the authors attempted to give a forbidden structure characterization of interval bigraphs, but

fell short of the target. In this paper, some light is shed on these attempts, as we clarify which situations

are not covered by the existing forbidden structures. We believe our algorithm can be used as a tool for

producing the interval bigraph obstructions. For the time being, there are infinitely many obstructions,

which still lack a description that fit them into a finite collection of nicely defined families. However, the

main purpose of this paper is to devise an efficient algorithm for recognizing interval bigraphs.

We use the ordering characterization of interval bigraphs in [11]. A bigraph H is an interval bigraph if

and only if its vertices admit a linear ordering <without any of the forbidden patterns in Figure 1. Hence,
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we will rely on the existence of a linear ordering < such that if va < vb < vc (not necessarily consecutively)

and va, vb have the same color and opposite to the color of vc then vavc ∈ E(H) implies that vbvc ∈ E(H).
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Figure 1: Forbidden Patterns

There are several graph classes that can be characterized by the existence of an ordering without a number

of forbidden patterns. One such class is the class of interval graphs. A graph G is an interval graph if and

only if there exists an ordering < of V (G) such that none of the following patterns appears [5, 7].

• va < vb < vc, vavc, vbvc ∈ E(G) and vavb 6∈ E(G)

• va < vb < vc, vavc ∈ E(G) and vbvc, vavb 6∈ E(G)

Some of the other classes of graphs that have ordering characterizations without forbidden patterns are

proper interval graphs, comparability graphs, co-comparability graphs, chordal graphs, convex bipartite

graphs, co-circular arc bigraphs, and proper interval bigraphs [13]. It is possible to view the ordering problem

for some of these classes in some cases (e.g. interval bigraphs and interval graphs) as an instance of the

2-SAT problem together with transitivity clauses as described below. For every pair (u, v) of vertices of H ,

we define a Boolean variable Xuv which takes values zero or one only such that Xuv ≡ ¬Xvu. We introduce

appropriate clauses with two literals expressing the forbidden patterns. Finally, we add all transitivity

clauses, which are clauses of the from (Xuv ∨Xvw ∨Xwu) where u, v, and w are distinct. If Xuv = 1 then we

put u before v; otherwise v comes before u in the ordering. However, we would like to consider a different

approach proven to be more structural and successful in other ordering problems.

2 Basic definitions and properties
Note that a bigraph is an interval bigraph if and only if each connected component of it is an interval bigraph.

In the remainder of this paper, we shall assume thatH is a connected bigraph with a fixed bipartition (B,W ).
We define the pair-digraph H+

of H , corresponding to the forbidden patterns in Figure 1, as follows. The

vertex set ofH+
consists of all pairs (u, v) such that u, v ∈ V (H) and u 6= v— for clarity, we will often refer to

vertices of H+
as pairs (in H+

). Then, the arcs in H+
are of one of the following two types:

• (u, v)(u′, v) is an arc of H+
when u and v have the same color with uu′ ∈ E(H), and vu′ 6∈ E(H).

• (u, v)(u, v′) is an arc of H+when u and v have different colors with vv′ ∈ E(H), and uv 6∈ E(H).

Observe that if there is an arc from (u, v) to (u′, v′), then both uv and u′v′ are non-edges of H . For

two pairs (x, y), (x′, y′) ∈ V (H+) we say (x, y) dominates (x′, y′) (or (x′, y′) is dominated by (x, y)) and write

(x, y) → (x′, y′) if there exists an arc (directed edge) from (x, y) to (x′, y′) in H+
. One should note that if

(x, y)→ (x′, y′) in H+
then (y′, x′)→ (y, x), to which property we will refer to as skew-symmetry.

Lemma 2.1. Let < be an ordering of H without the forbidden patterns in Figure 1, and let (u, v) → (u′, v′) with
u < v. Then, u′ < v′.

Proof. According to the definition of H+
, we either have

Case (1) u, v have the same color, v = v′, uu′ ∈ E(H), and vu′ 6∈ E(H); or

Case (2) u, v have different colors, u = u′, vv′ ∈ E(H), and uv 6∈ E(H)
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In Case (1) (resp. Case (2)), if v′ < u′, then vertices v′, u, v (resp. u, v, u′)— in that order— would induce a

forbidden pattern in H , a contradiction. Hence, in both cases we will have u′ < v′, as desired.

We shall generally refer to a strong component ofH+
simply as a component ofH+

. We shall also identify

a component by its vertex (pair) set. A component inH+
is called non-trivial if it contains more than one pair.

For any component S of H+
, we define its couple component, denoted S′, to be S′ = {(u, v) : (v, u) ∈ S}.

The skew-symmetry property of H+
implies the following fact.

Lemma 2.2. If S is a component of H+ then so is S′.

In light of Lemma 2.2, for each component S of H+
, S and S′ are couple components of each other and

we shall collectively refer to them as coupled components. It can be easily shown that coupled components S
and S′ are either disjoint or equal— in the latter case, we say component S is self-coupled.

Definition 2.3 (circuit). A sequence (x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0) of pairs in a set D ⊆ V (H+) is
called a circuit in D.

Lemma 2.4. If a component of H+ contains a circuit then H is not an interval bigraph.

Proof. Let (x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0) be a circuit in a component S of H+
. Since S is strongly

connected, for all non-negative integers i and j there exists a directed walk Wi,j in H+
from (xi, xi+1) to

(xj , xj+1), where indices are mod n+ 1. Now, for all i, j ≥ 0, following the sequence of pairs on Wi,j and

using Lemma 2.1, we conclude that xj < xj+1 whenever xi < xi+1. Hence, we must either have xi < xi+1

for all i, or xi > xi+1 for all i. However, since xn+1 = x0, either case implies x0 6= x0; a contradiction.

If H+
contains a self-coupled component then H is not an interval bigraph. This is because a self-

coupled component ofH+
contains two such pairs as (u, v) and (v, u), which comprise a circuit of length 2

(corresponding to n = 1 in the definition of a circuit). We remark that a similar result to Lemma 2.4 exists for

co-circular arc bigraphs [12]. A tournament is a complete digraph with no directed cycle of length two and no

self-loop. A tournament is called transitive if it is acyclic; i.e., if it does not contain a directed cycle.

Lemma 2.5. Suppose that H+ contains no self-coupled components, and let D be any subset of V (H+) containing
exactly one component from each pair of coupled components. Then, D is the set of arcs of a tournament on V (H).
Moreover, such a D can be chosen to be a transitive tournament if and only if H is an interval bigraph.

Proof. SupposeD is a transitive tournament. Thenwe obtain the ordering<, by letting x < ywhen (x, y) ∈ D.

It is clear that < is a total ordering because D is transitive, and when (x, y) ∈ D, (y, x) 6∈ D. Observe that <
does not contain any of the forbidden pattern in Figure 1, and hence, H is interval bigraph. Conversely, if H
is an interval bigraph then there exits ordering <, without forbidden patterns in Figure 1. We add (x, y) into
set D whenever x < y in the ordering. It is easy to see that D is a transitive tournament.

In what follows, by a componentwe mean a non-trivial (strong) component unless we specify otherwise.

For simplicity, we shall use a set S of pairs in H+
to also denote the sub-digraph of H+

induced by S, when

no confusion arises.

We shall say two edges ab and cd of H are independent if the subgraph of H induced by the vertices a, b, c,
and d has just the two edges ab and cd. We shall say two disjoint induced subgraph H1 and H2 of H are

independent if there is no edge of H with one endpoint in H1 and another endpoint in H2.

Lemma 2.6. If uu′ and vv′ are independent edges inH then the pairs (u, v), (u′, v), (u′, v′), and (u, v′) form a directed
four-cycle ofH+ in the given order (resp. in the reversed order) when u and v have the same color (resp. have opposite
colors). In particular, (u, v), (u′, v), (u′, v′), and (u, v′) belong to the same component of H+. Moreover, if S is a
component of H+ containing a pair (u, v) then, there exist two independent edges uu′ and vv′ of H and, as such, the
four pairs (u, v), (u, v′), (u′, v), and (u′, v′) are contained in S.
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Proof. The first part follows from the definition ofH+
and independent edges. As for the seond part, note

that since S is a component, (u, v) dominates some pair of S and is dominated by some pair of S. First,

suppose u and v have the same color inH . Then (u, v) dominates some (u′, v) ∈ S and is dominated by some

(u, v′) ∈ S. Now uu′ and vv′ must be edges of H , and uv, uv′, u′v, and u′v′ must be non-edges of H . Thus,

uu′ and vv′ are independent edges in H . In this case, according to the first part of the lemma, S contains the

directed cycle (u, v)→ (u′, v)→ (u′, v′)→ (u, v′)→ (u, v).
Second, suppose u and v have different colors. We note that (u, v) dominates some (u, v′) ∈ S, and hence,

uv 6∈ E(H) and vv′ is an edge of H . Since (u, v′) dominates some pair (u′, v′) ∈ S, uu′ ∈ E(H) and u′v′

6∈ E(H). Now uu′ and vv′ are edges of H , and uv, uv′, u′v, and u′v′ must be non-edges of H . Thus, uu′ and
vv′ are independent edges in H . In this case, according to the first part of the lemma, S contains the directed

cycle (u, v)→ (u, v′)→ (u′, v′)→ (u′, v)→ (u, v).

2.1 Structural properties of the (strong) components of H+

The structure of components ofH+
is quite special, and the trivial components interact with them in simple

ways. A trivial component will be called a source if its unique vertex has in-degree zero, and a sink if its
unique vertex has out-degree zero. Herein, we further explore these properties through establishing several

lemmas. To this end, we need the following definition on reachability of pairs in H+
.

Definition 2.7 (reachability closure). Let R be a subset of the pairs of H+
. Let N+[R] denote the set of all

pairs in H+
that are reachable (via a directed path in H+

) from a pair in R. (Notice that N+[R] contains
R.) We call N+[R] the reachability closure of R. We say a pair (u, v) is implied by R if (u, v) ∈ N+[R] \ R. If

R = N+[R], we say that R is closed under reachability.

Lemma 2.8. A pair (a, c) is implied by a component S of H+ if and only if H contains an induced path a, b, c, d, e,
such that N(a) ⊆ N(c) and S contains all of the pairs (a, d), (a, e), (b, d), and (b, e).

Proof. If such a path exists, then ab, de are independent edges and so the pairs (a, d), (a, e), (b, d), and (b, e)
lie in a component by the remarks preceding Lemma 2.6. Moreover, (a, d)→ (a, c) is inH+

; hence (a, c) is
indeed implied by this component.

Conversely, suppose (a, c) is implied by a component S. We first observe that the colors of a and c
must be the same. Otherwise, say a is black and c is white, and there exists a white vertex u such that

the pair (u, c) is in S and dominates (a, c). By Lemma 2.6, there would exist two independent edges uz
and cy. Looking at the edges and non-edges between u, c and a, z, y, we see that H+

contains the arcs

(u, c)→ (a, c)→ (a, y)→ (u, y). Since both (u, c) and (u, y) are in S, the pair (a, c)must also be in S, contrary
to what we assumed. Therefore, a and c must have the same color in H , say black. In this case there exists a

white vertex d ∈ V (H) such that (a, d) ∈ S and (a, d) → (a, c). Hence dc ∈ E(H) and da 6∈ E(H). If there
was also a vertex t adjacent to a but not to c, then at and cd would be independent edges of H , placing (a, c)
in S. Thus, every neighbor of a in H is also a neighbor of c in H . Finally, since (a, d) is in component S,
Lemma 2.6 yields vertices b and e such that ab and de are independent edges in H . It follows that a, b, c, d, e
is an induced path in H .

We emphasize that ab and de from Lemma 2.8 are independent edges. The inclusionN(a) ⊆ N(c) implies

the following corollary.

Corollary 2.9. If there is an arc from a component S of H+ to a pair (x, y) 6∈ S then (x, y) forms a trivial component
of S that is a sink component. If there is an arc to a component S ofH+ from a pair (x, y) 6∈ S then (x, y) forms a trivial
component of H+ that is a source. In particular, if there is a directed path in H+ from component S1 to component S2,
then S1 = S2.

To give even more structure to the components ofH+
, we recall the following definition. The condensation

of a digraph G is a digraph obtained from G by identifying the vertices in each component and deleting

loops and multiple edges.

Lemma 2.10. Every directed path in the condensation of H+ has at most three vertices.

4



Proof. If a directed path P in the condensation ofH+
goes through a vertex corresponding to a component S

in H+
, then P has at most three vertices by Corollary 2.9. Now suppose P contains only vertices in trivial

components and let (x, y) be a vertex on P which has both a predecessor and a successor on P otherwise we

are done. First suppose x and y have the same color in H . Then the successor is some pair (x′, y) and the

predecessor is some pair (x, y′), and hence, xx′ and yy′ are independent edges of H , and hence, by Lemma

2.6 (x, y), (x′, y), and (x, y′) belong to the same component of H+
, contradicting that P goes through trivial

components only. Thus, we continue by assuming that x and y have opposite colors in H , the successor of

(x, y) in P is some (x, y′), and the predecessor of (x, y) in P is some (x′, y). Thus, xy 6∈ E(H), and hence,

x′y′ ∈ E(H), otherwise, we would have independent edges xx′ and yy′ and conclude as above. By the same

reasoning, every vertex adjacent to x is also adjacent to y′, and every vertex adjacent to y is also adjacent to x′.
Therefore, (x′, y) has in-degree zero, and (x, y′) has out-degree zero, and P has only three vertices.

Lemma 2.11. Suppose that H+ has no self-coupled components. Let u, v, and w be three vertices of H such that
Suv, Svw are components of H+ where Suv 6= Swv. Then, Suw is also a component of H+. Moreover, suppose
Suv 6= Suw, Swu, and Svw 6= Suw, Swu. Then, there exist maximal subgraphs H1, H2, and H3 of H such that :

• H1, H2, and H3 are pairwise independent (no edge between Hi and Hj , 1 ≤ i < j ≤ 3).

• Let X ⊆ H \H ′ (H ′ = H1 ∪H2 ∪H3) be the vertices with at least one neighbor in H ′. Then every x ∈ X is
adjacent to all the vertices with the opposite color in X ∪H ′.

Proof. We assume u, v, w have the same color. The argument for other cases is similar. Since Suv, Svw are

components ofH+
, by Lemma 2.6, there are independent edges ua1, vb1 ofH and independent edges va2, wb2

ofH . Notice that by Lemma 2.6, (u, v), (u, b1), (a1, b1), (a1, v) ∈ Suv and (v, w), (a2, w), (a2, b2), (v, b2) ∈ Svw.

Now a1w 6∈ E(H), otherwise, (a1, v)→ (a1, b2)→ (w, a2), and hence, by Corollary 2.9, Suv = Swv . Similarly,

ub2 6∈ E(H), otherwise, Svw = Svu, and by skew-symmetry, Suv = Swv . Now ua1, wb2 are independent edges,
and hence, Suw is a component. Note that a2u 6∈ E(H), otherwise, (a2, b2) → (u, b2) → (u,w), implying a

directed path from Svw to Suw, and hence, Svw = Suw. Similarly b1w 6∈ E(H).
Let H1, H2, H3 be maximal subgraphs of H such that ua1 ∈ E(H1), vb1, va2 ∈ E(H2), and wb2 ∈ E(H3)

and H1, H2, H3 are pairwise independent. It is easy to see that for every a ∈ H1, b ∈ H2, c ∈ H3 we have

(a, b) ∈ Suv, (a, c) ∈ Suw, and (b, c) ∈ Svw. Let x ∈ H \H ′ where H ′ = H1 ∪H2 ∪H3. W.l.o.g suppose x is

adjacent to b2. Since x 6∈ H3, xmust be adjacent to a vertex inH1 orH2. First suppose xa2 ∈ E(H). Now a1x
must be an edge of H , otherwise, (u, a2)→ (u, x)→ (a1, x)→ (a1, b2) implying a directed path from Suv to

Suw, and consequently Suv = Suw; a contradiction to our assumption. Second, suppose xa1 ∈ E(H). Now

a2x ∈ E(H), otherwise, (a1, b1)→ (x, a2)→ (a2, b2), and hence, there is a directed path from Suv to Svw, and

consequently, Suv = Svw, a contradiction. Suppose xb1, xb2, yv, yw ∈ E(H). Then xy ∈ E(H), otherwise,

(v, w)→ (b1, w)→ (b1, y)→ (x, y)→ (x, v)→ (b2, v)→ (w, v), implying Svw = Swv , a contradiction.

3 Recognition algorithm
In this section, we present our algorithm for the recognition of interval bigraphs. Firstly, to describe the

algorithm, we introduce some technical definitions.

Definition 3.1 (envelope). Let R be a set of pairs ofH+
. The envelope of R, denoted N∗[R], is the smallest set

of pairs that contains R and is closed under both reachability and transitivity (if (u, v), (v, w) ∈ N∗[R] then
(u,w) ∈ N∗[R]).

Remark: For the purposes of the proofs, we visualize taking the envelope of R as divided into consecutive

levels, where in the zero-th level we just replace R by its reachability closure, and in each subsequent level we

replace R by the rechability closure of its transitive closure. The pairs in the envelope of R can be thought of

as forming the arc of a digraph on V (H), and each pair can be thought of as having a label corresponding to

its level. The pairs (arcs of the digraph) inR, and those implied byR have label 0, arcs obtained by transitivity

from the arcs labeled 0, as well as all arcs implied by them have label 1, and so on. More precisely, N∗[R]
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is the disjoint union of R0, R1, . . . , Rk
, where R0 = N+[R] (level zero), and each Ri

(level i ≥ 1) consists
of every pair (u, v) such that either (u, v) is obtainable by transitivity in Ri−1

(meaning that there is some

sequence (u, u1), (u1, u2), . . . , (ur−1, ur), (ur, v) in Ri−1
), or (u, v) is dominated by a pair (u′, v′) obtainable

by transitivity in Ri−1. Note that R ⊆ N+[R] ⊆ N∗[R].

Definition 3.2 (dictator component). LetR = {R1, R2, ..., Rk, S} be the set of components of H+
such that

N∗[
⋃

A∈RA] contains a circuit. We say S is a dictator if for every subset W ofR \ {S}, there exist a circuit in

the envelope of (
⋃

A∈W ′ A) ∪ (
⋃

B∈R\W B), whereW ′ = {R′i | Ri ∈W}. In other words, S is a dictator if by

replacing some of the Ris with R′is inR and taking the envelope of the union of elements we still get a circuit.

Definition 3.3 (complete set). A set D1 ⊆ V (H+) is called complete if for every pair of coupled components

R,R′ of H+
, exactly one of R ⊆ D1 and R′ ⊆ D1 holds.

A component S is a dictator if and only if the envelope of every complete setD1 containing S has a circuit.

Definition 3.4 (simple pair, complex pair). A pair (x, y) ∈ H+
is simple if it belongs to N+[S] for some

component S, otherwise, we call it complex.

Before describing the algorithm, we establish the following counterpart of Lemma 2.4.

Lemma 3.5. Let S, S′ be coupled components inH+, so that bothN∗[S] andN∗[S′] contain a circuit. Then,H is not
an interval bigraph.

Proof. According to Lemma 2.5 the final set D must be a total ordering with transitivity property. Therefore,

one of the S and S′ must be in D. In order to find a total ordering avoiding the patterns in Figure 1, one of

the N∗[S], N∗[S′]must be in D, which is impossible.

An overview of the algorithm: The algorithm constructs H+
and then considers its coupled components

(recall that we mean strong components that are not trivial). In the preliminary stage, if there is a self-coupled

component, then the algorithm reports H is not an interval bigraph. Otherwise, the algorithm takes four

main stages. During the algorithm, we maintain a sub-digraph D of H+
. Initially, D is empty. At each

subsequent step of the algorithm, a set of pairs from H+
are added to D. The goal is to choose from each

couple components (trivial and non-trivials) one and place into D without creating a circuit. Thus, we need

to add into D the pairs that are reachable from the current pairs in D as well as the pairs that are obtained

by applying transitivity on the existing pairs in D. So each pair is placed in D either by reachability or

transitivity. When we say a pair (x, y) is by transitivity, we mean (x, y) is placed intoD by applying transitivity

on the existing pairs in D. Likewise, we say a pair is by reachability when (x, y) is implied by the existing

pairs in D. Finally, at successful termination, D will be a transitive tournament as described in Lemma 2.5.

For the purpose of the algorithm once a pair (x, y) is added intoD we assign a time (level) to (x, y), that is
the level in which (x, y) is added intoD. Each pair (x, y) carries a dictator code, sayDic(x, y); that shows the

dictator component involved in placing (x, y) into D. The four main stages of the algorithm are as follows.

In Stage 1, an empty set D is initialized. Then, from each pair S, S′ of coupled components we select

one, say S. If D ∪N+[S] does not have a circuit then add N+[S] (all the pairs in N+[S]) into D and discard

N+[S′] from further consideration in this stage. Otherwise, we discard N+[S] in this stage and add N+[S′]
intoD instead. Again, ifD has a circuit thenH is not an interval bigraph and the algorithm terminates. If we

succeed in selecting exactly one of the coupled components S, S′ of H+
then we proceed to the next stage.

Theorem 5.4 implies the correctness of this stage, and Corollary 5.2 provides the first set of obstructions if we

fails to finish this stage.

In Stage 2, N∗[D] is computed level by level, and is placed into D. If by adding a pair (x, y) into D a

circuit C appears for the first time, then the length of C is exactly 4 and we can identify a dictator component

S associated with C by using function Dictator(x, y), (i.e. (Dic(x, y)) where (x, y) is a complex pair in C.

Furthermore, in that case, C has to be of the form C = (x0, x1), (x1, x2), (x2, x3), (x3, x0), where x0, x3 belong

to the same color class while x1, x2 are contained in the opposite one; moreover, no pair (xi, xi+1), 0 ≤ i ≤ 3
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has placed inD by transitivity (the sum is taken module 4). It turns out that if we keep S inD, then regardless

of the selection of other components, we still will end up having a circuit in computation of N∗[D]. These
facts and, hence, the correctness of Stage 2 will be established in Lemmas 6.1,6.2, and 6.3.

In Stage 3, we initialize D1 to be the empty set. Then, for every dictator component S ∈ DT we add

N+[S′] intoD1 and discardN+[S] (since we will encounter a circuit). Moreover, for every (non-trivial strong)

component S1 ∈ D \ DT we add N+[S1] into D1 and discard N+[S′1]. We then set D = N∗[D1]. If there is a
circuit in D, the algorithm reportsH is not an interval bigraph and exit, otherwise, it proceeds to the next

stage. The correctness of this stage is established in Lemma 7.1.

In Stage 4, one by one, we add into D the remaining (trivial strong components) components of H+
that

are outside D. At each step we add a sink component S1 ⊆ V (H+) \D and discard its coupled component

S′ from further consideration. Lemma 7.2 establishes the correctness of this step.

Algorithm 1 Algorithm for recognition of interval bigraphs

1: function IntervalBigraph(H)

2: Input: A connected bigraph H with a bipartition (B,W )
3: Output: An ordering of the vertices of H without patterns in Figure 1 or return false

4: Construct the pair-digraph H+
of H , and compute its components; if any component is

self-coupled report false

Stage1 : Adding (non-trivial strong) components
5: Initialize D to be the empty set

6: for all coupled components S, S′ ⊆ V (H+) do
7: if D ∪N+[S] does not have a circuit then
8: add N+[S] into D and delete N+[S′] from further consideration in this step

. add X to D means add all the pairs of X into D
9: for all (x, y) ∈ N+[S] do Dic(x, y) = S

10: else
11: if D ∪N+[S′] does not have a circuit then
12: add N+[S′] into D and delete N+[S] from further consideration in this step

13: for all (x, y) ∈ N+[S′] do set Dic(x, y) = S′

14: else report that H is not an interval bigraph

Stage2 : Computing the envelope of D and detecting dictator components
15: Set En = N∗[D], and DT = ∅ . DT is a set of components

16: while ∃(x, y) ∈ En \D do . we consider the pairs in En level by level

17: Move (x, y) into D and set Dic(x, y) = Dictator(x, y,D)

18: if D ∪ {(x, y)} contains a circuit then add Dic(x, y) into DT . (x, y) is a complex pair

Stage3 : Adding dual of dictator components, and other chosen components
19: Let D1 = ∅
20: for all components S ∈ DT do add N+[S′] into D1

21: for all components R ∈ D \ DT do add N+[R] into D1

22: Set D = N∗[D1]
23: if there is a circuit in D then report H is not an interval bigraph

Stage4 : Adding other remaining trivial components and returning an ordering
24: while ∃ trivial component S outside D, and S is a sink component do
25: Add S into D and remove S′ from further consideration

Outputting the final ordering
26: for all (u, v) ∈ D do set u ≺ v . yielding an ordering of V (H)without the patterns from Figure 1

27: Return the ordering v1 ≺ v2 < · · · ≺ vn of V (H)

7



1: function Dictator(x, y,D)

2: if (x, y) ∈ N+[S] for some component S in D then return S

3: if x, y have different colors and (u, y) ∈ D dominates (x, y) then
return Dictator(u, y,D) . we mean the earliest pair (u, y)

4: if x, y have the same color and (x,w) ∈ D dominates (x, y) then
return Dictator(x,w,D)

5: if x, y have the same color and (x, y) is by transitivity on

(x,w), (w, y) ∈ D then return Dictator(w, y,D)

6: if x, y have different colors and (x, y) is by transitivity on

(x,w), (w, y) ∈ D then return Dictator(x,w,D)

In Section 8, we discuss the implementation of the algorithm and argue that the running time of Algorithm

1 is O(mn)wherem is the number of edges and n is the number of vertices of the input bigraph H .

Theorem 3.6 (Correctness of Algorithm 1 ). Let H be a bigraph with n vertices and m edges. If H is an

interval bigraph then Algorithm 1 produces an ordering without forbidden patterns in Figure 1, otherwise, it

outputs NOT. Moreover, the running time of Algorithm 1 is O(mn).

Proof. Theorem 5.4 validates Stage 1. Lemmas 6.1,6.2, 6.3 shows the correctness of Stage 2. Lemma 7.1 proves

Stage 3 is valid, and Lemma 7.2 validates Stages 4. Lemma 8.1 shows the algorithm runs in O(mn).

4 Example:

x0

x1

w

x2

x3y2

y3

u0

v0y0

y1

v

w′

v1

u1

v2

u2

z

z′

Figure 2: Bigraph H is not interval bigraph

We apply Algorithm 1 on the bigraph H depicted in Figure 2 whereby show that H does not admit

an ordering without the forbidden patterns in Figure 1 and, hence, is not an interval bigraph. In fact, we

encounter a circuit at Stage 2 as well as at Stage 3. Note that since x0y0, x1y1, and ww′ are independent edges
ofH , both Sx0x1

and Sx1w are components ofH+
. Likewise, since u1v1, u2v2, z

′z are independent edges ofH ,

Sv1u2
and Su2z are component of H+

. Finally, since x2y2, x3y3, v0u0 are independent edges of H , Sx2x3
and

Sx3v0 are component of H+
(recall that by a component we mean a non-trivial strong component). Note that

(x2, x3), (x3, v0) are in the same component since x2, y3 are adjacent to w while v0 is not adjacent to w; and
y3, v0 are adjacent to v1 while x2v1 6∈ E(H). Therefore, (x2, x3)→ (x2, y3)→ (y2, y3)→ (y2, v1)→ (x2, v1)→
(x2, v0)→ (w, v0)→ (w, u0)→ (y3, u0)→ (y3, v0)→ (x3, v0), and hence, Sx2x3

= Sx3v0 by Corollary 2.9.
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Suppose at Stage 1 the algorithm selects components Sx0x1 , Sx1w, Sx2x3 , alongside components Sv1u2 =
Su1v2 ; Su2z = Sv2z′ , and adds their pairs into D. Then, (x0, x1), (x1, w), (x1, x2), (u2, z), (x3, v0), (v1, u2) ∈ D.

In addition, note that we have (x1, w)→ (x1, x2); (u2, z)→ (u2, v); and (x3, v0)→ (x3, v1) in H+
. Therefore,

(u2, v), (x3, v1) ∈ N+[D]. Since the pairs (v1, u2), (u2, v) are in N+[D], we have (v1, v) ∈ N∗[D]. Then, since
(x3, v1), (v1, v) ∈ N∗[D], we also have (x3, v) ∈ N∗[D]. Moreover, (x3, v)→ (x3, x0) ∈ N∗[D] and, hence, we

have the circuit C = (x0, x1), (x1, x2), (x2, x3), (x3, x0) in N∗[D].
Note that since y3, v, v0 are all adjacent to v1, v2, z, selecting Sv2u1 instead of Su1v2 or selecting Szu2 instead

of Su2z would yield a circuit inN∗[D] as long as we select Sx2x3 to be placed inD. Moreover, selecting one of

Sx0x1
, Sx1x0

alongside one of Sx1w, Swx1
at Stage 1 also yields a circuit in N∗[D] as long as we select Sx2x3

at

Stage 1. Note that by adding (x3, v) intoN
∗[D]we close circuitC. Now, in order to obtainDic(x3, x0)we need

to find Dic(x3, v). According to the rules of the algorithm, since (x3, v) is by transitivity on (x3, v1), (v1, v)
where x3, v1 are white and v is black, we haveDic(x3, v) = Dic(x3, v1) = Sx3v0 = Sx2x3

(dictator component).

Therefore, in order to avoid a circuit at Stage 2 of the algorithm we must select Sx3x2 and place it into D1 at

line 20 of the algorithm.

Suppose the algorithm selects Sv1u2
, Su2z, Sx0x1

, Sx1w at line 20. This will place the pairs (u2, v0), (x3, x0),
(x0, v), and (v0, x3) in N∗[D1], because (u2, z) → (u2, v0); (x3, x2) → (x3, x0); (x0, x1) → (x0, v), and
(v0, x3) ∈ Sx3x2

. Therefore, by applying transitivity, the algorithm places (x0, v) into N∗[D1] (line

22). But then from (x3, x0), (x0, v) ∈ N∗[D1] it follows that (x3, v) → (x3, v1). This leads to the cir-

cuit (v1, u2), (u2, v0), (v0, x3), (x3, v1) in D (line 22). Notice that selecting any two components from

Sv1u2 , Su2v1 , Su2z, Szu2 instead of Su1v2 , Su2z also yields a circuit. Therefore, in any case, the algorithm

reports that H is not an interval bigraph.

5 Correctness of Stage 1: Adding the (strong) components
We start this section by defining the first set of obstructions so-called exobiclique. We say bigraphH = (B,W )
is an exobiclique if the following hold.

• B contains a nonempty part B1 and W contains a nonempty part W1 such that B1 ∪W1 induces a

biclique in H ;

• B \ B1 contains three vertices with incomparable neighborhood in W1 and W \W1 contains three

vertices with incomparable neighborhoods in B1 (an examples given in Figure 3).

1 2 3

4 5 6

a b c

d e f

Figure 3: Exobicliques: Here, B = {4, 5, 6, d, e, f}, W = {1, 2, 3, a, b, c} and B1 = {d, e, f}, W1 = {1, 2, 3} and

B \B1 = {4, 5, 6}, W \W1 = {a, b, c}.

Theorem 5.1. If H has an induced exobiclique then H is not an interval bigraph [11].

Theorem 5.2. Suppose at Stage 1 we have so far constructed a D without circuits, and then for the next

component S we find that D ∪N+[S] has circuits. Let C = (x0, x1), (x1, x2), . . . , (xn, x0) be a shortest circuit

in D ∪N+[S]. Then one of the following must occur.

(i) each pair (xi, xi+1) is in a component.

(ii) H contains an exobiclique as an induced subgraph.
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Proof. Suppose (i) does not occur. Thus, at least one pair (xi, xi+1) is implied by a component Si. By

Lemma 2.8 there exists vertices ai, bi, and ci of H such that xiai and bici are independent edges and

aixi+1, cixi+1 ∈ E(H). Note that xi and xi+1 have the same color and N(xi) ⊆ N(xi+1) (see Figure 4).

Claim 5.3. xi+1 and xi+2 have different colors, and (xi+1, xi+2) is in a component, say Si+1.

Proof. If xi+1 and xi+2 have different colors then (xi+1, xi+2) is in a component and we are done. Thus, we

assume xi+2 have the same color as xi and xi+1. Now cixi+2 6∈ E(H), otherwise, (xi, ci)→ (xi, xi+2) and,
hence, (xi, xi+2) is an implied pair by component Si, leading to a shorter circuit. Moreover, aixi+2 6∈ E(H),
otherwise, (ai, ci) → (xi+2, ci) → (xi+2, xi+1); a contradiction to C having minimum length. Since

(xi+1, xi+2) ∈ N+[S] for some component S ∈ D, there exists some ci+1 such that xi+2ci+1 ∈ E(H) and
xi+1ci+1 6∈ E(H) ((xi+1, ci+1) ∈ S). Notice that ci+1xi 6∈ E(H), otherwise, (xi+1, ci+1) → (xi+1, xi); a
contradiction to C having minimum length. Now (xi+1, xi+2) → (ai, xi+2) → (ai, ci+1) → (xi, ci+1) →
(xi, xi+2), leading to a shorter circuit.

1. By Claim 5.3, there exists ai+1 and bi+1 such that xi+1ai+1 and xi+2bi+1 are independent edges of H .

2. Claim 5.3 also implies that (xi−1, xi) is in a component Si−1, and vertices xi−1 and xi have different

colors.

3. ciai−1 6∈ E(H), otherwise, (xi, ci) ∈ Si dominates (xi, ai1) and, hence, Si = S′i−1; a contradiction.

Similarly, xi−1bi 6∈ E(H).

4. There are independent edges xi−1ai−1 and xici−1 of H , with (xi−1, ci−1) ∈ Si−1.

5. By Lemma 2.8, N(xi) ⊆ N(xi+1). Thus, xi+1ci−1, xi+1ai ∈ E(H).

6. xi−1xi+1 ∈ E(H), otherwise, xi−1ai−1 and ci−1xi+1 would be independent edges and, hence,

(xi−1, xi+1) ∈ Si−1, implying a shorter circuit.

7. xi−1bi+1 ∈ E(H), otherwise, xi+1xi−1 and bi+1xi+2 would be independent edges and, hence,

(xi−1, xi+2) ∈ Si+1, implying a shorter circuit. A similar argument implies N(xi+2) ⊆ N(xi−1).

8. diai+2 ∈ E(H) for every ai+2 ∈ N(xi+2) and every di ∈ N(xi), otherwise, (xi+1, xi+2)→ (xi+1, ai+2)→
(di, ai+2)→ (di, xi+2)→ (xi, xi+2), implying a shorter circuit in D.

xi−1 ci−1 ci

ai−1 xi bi

ai+1 xi+2 xi+3

xi+1 ai+2 bi+2

ai

bi+1

xi−1 ci−1 ci

ai−1 xi bi

ai+1 xi+2 xi+3

xi+1 ai+2 bi+2

ai

bi+1

ci+2

Figure 4: edges ai−1xi−1, xici−1, edges xiai, bici, edges xi+1ai+1, bi+1xi+2, edges xi+2ai+2, xi+3bi+2 (left

figure) are independent.

In what follows we show that H contains an exobiclique. First suppose (xi+2, xi+3) is in component

Si+2 (Figure 4 left). Thus, xi+2ai+2 and bi+2xi+3 are independent edges of H . By (6), xi−1ai+2 ∈ E(H).
By (7), ai+2ci−1, ai+2ai ∈ E(H). Suppose xi+2 and xi+3 have different colors. Then, xi+3xi−1 6∈ E(H),
otherwise, (xi+2, xi+3) → (xi+2, xi−1), a shorter circuit in D. But then, (xi+2, xi+3) → (xi+2, xi−1); a
shorter circuit in D. Therefore, xi−1 and xi+3 have to have the same color. Now, bi+2xi−1 ∈ E(H),
otherwise, (ai+2, bi+2)→ (xi−1, bi+2)→ (xi−1, xi+3); a shorter circuit. Moreover, bi+2ci−1 ∈ E(H), otherwise,

(xi−1, ci−1)→ (bi+2, ci−1)→ (bi+2, ai+2) and, hence, S
′
i+2 ∈ D; a contradiction. By a similar argument, we

conclude that ci is adjacent to bi+2, ai+2 and bi+1. Similar to (3), xi+1xi+3 and ai+1bi+2 are non-edges of H .
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Now we get an exobiclique, i.e., {ai−1, xi−1, xi, ci−1, ai, bi, ci, xi+1, ai+1, bi+1, ai+2, xi+2, bi+2, xi+3}. Note

that vertices ai−1, xi and bi have incomparable neighborhoods in N = {xi−1, ci−1, ai, ci}, vertices ai+1, xi+2,
and xi+3 have incomparable neighborhoods in M = {xi+1, bi+1, ai+2, bi+2}; and M ∪N induces a biclique.

When (xi+2, xi+3) is implied, by a similar argument again we get an exobiclique (see Figure 4 right).

Theorem 5.4. If at Stage 1 of the algorithm we encounter a component S such that we cannot add either of

N+[S] and N+[S′] to the current D, then H has an exobiclique.

Proof. We cannot add N+[S] and N+[S′] because the additions create circuits in D ∪ N+[S] respectively
D ∪N+[S′].

If either circuit leads to (ii) (in Theorem 5.2) we are done by Theorem 5.1. If both lead to (i) (in Theorem

5.2), we proceed as follows. Assume C1 = (x0, x1), . . . , (xn, x0) is a shortest circuit created by adding N+[S]
to the current D, and C2 = (y0, y1), . . . , (ym, y0) is a shortest circuit created by adding N+[S′] to the current

D. We may assume thatN+[S] contributes (xn, x0) to C1 andN+[S′] contributes (ym, y0) to C2. By Theorem

5.2 each (xi, xi+1) is in a component Si and each (yj , yj+1) is in a component. Since C1 is a shortest circuit,

Si 6= S′i+1, and hence, Sxixi+2
is also a component. Thus, by Theorem 5.2 there exist maximal subgraphs

Hi, Hi+1, andHi+2 containing xi, xi+1, and xi+2 respectively that are pairwise independent. By extending

this idea we conclude, there exist pairwise independent maximal subgraphs H0, H1, . . . ,Hn, of H such

that each Hi (0 ≤ i ≤ n) contains xi. By Theorem 5.2 (ii) it follows that for every x ∈ X = H \H ′, where

H ′ = H0 ∪H1 ∪ · · · ∪Hn, and every a ∈ H ′ with the same color as x, N(a) ⊆ N(x). Now it is easy to see

that there is no directed path from (xi, xi+1) ∈ Si to (xj , xj+1) ∈ Sj , i 6= j because such a path must have

a pair (xj , x) for x ∈ X , but now (xj , x) is an implied pair and by Corollary 2.9, Sxjx is a sink component

since N(xj) ⊆ N(x). Similarly, there is no path from (ym, y0) to any of (yj , yj+1). We also observe that

Sx0xn
= Symy0

. Thus, we may assume that (y0, ym) = (xn, x0). Therefore,

(x0, x1), (x1, x2), . . . , (xn−1, y0), (y0, y1), . . . , (ym−2, ym−1), (ym−1, x0)

is a circuit in D, contrary to our assumption.

6 Correctness of Stage 2 (finding dictator components)
We consider what happens when a circuit is formed during the execution of Stage 2 (lines 15–18) of the

algorithm. In what follows, we specify the length and some other properties of a circuit in D, considering

level by level construction of N∗[D]. This section is divided into three subsections. In Subsection 6.1 we

define a minimal circuit and prove that such a circuit should have length four. In Subsection 6.2, we further

analyze the pairs in D and identify its associated dictator component. We will show that for a pair (x, y) in
D, S = Dic(x, y) is the sole component responsible for placing pair (x, y) into D, regardless of the choice

made at Stage 1 between any component not in {S, S′} and its dual. Finally, in Subsection 6.3 we prove the

following three lemmas which collectively show the correctness of Stage 2 of the algorithm.

Lemma 6.1. Let C = (x0, x1), (x1, x2), (x2, x3), (x3, x0) be a minimal circuit, form at Stage 2 of the algorithm. Let
S0 = Dic(x0, x1), S1 = Dic(x1, x2), S2 = Dic(x2, x3), and S3 = Dic(x3, x0). Then the following hold.

1. If (x1, x2) is a complex pair and (x2, x3) is also a complex pair then S1 = S2.

2. If (x1, x2) is a complex pair and (x0, x1) is in a component S0 then (x0, x1) ∈ S1, and hence, S0 = S1.

3. If (x2, x3) is a complex pair and (x3, x0) is a simple pair implied by component S3 then S3 = S2.

4. If (x2, x3) and (x3, x0) are complex pairs then S2 = S3.

5. If (x1, x2) and (x3, x0) are complex pairs and (x0, x1) and (x2, x3) are simple pairs then S1 = S3 and
(x2, x3), (x0, x1) ∈ S1.

Lemma 6.2. If we encounter a minimal circuit C = (x0, x1), (x1, x2), (x2, x3), (x3, x0) at line 18 then there is a
component S such that the envelope of every complete set D1 where S ⊆ D1 contains a circuit.
Lemma 6.3. The algorithm correctly computes Dic(x, y).
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6.1 The length of a minimal circuit
We start this subsection by defining minimal chain and minimal circuit.

Definition 6.4. Let (x, y) ∈ D by transitivity at (the earliest) level l. Then, by a minimal chain between x, y
we mean a sequence (x0, x1), (x1, x2), ..., (xn−1, xn) of minimum length (n) of pairs in D with x0 = x and

xn = y, such that each (xi, xi+1) ∈ D, 0 ≤ i ≤ n− 1, and at some level before l, and by reachability (and not

by transitivity). We also say (x0, xn) is by transitivity on the minimal chain (x0, x1), (x1, x2), ..., (xn−1, xn).

Definition 6.5. Let C be a circuit inN∗[D]. We say C is a minimal circuit if first, the latest pair in C is created

as early as possible (the smallest possible level) during the execution of N∗[D]; second, C has the minimum

length; third, no pair in C is by transitivity.

Lemma 6.6. Let (x, y) be a pair in D after Stage 1 of the algorithm, and current D has no circuit. Suppose (x, y) is
obtained by a minimal chain CH = (x0, x1), (x1, x2), ..., (xn−1, xn), (xn, xn+1) (x0 = x and xn+1 = y). Then the
following hold.

1. xi and xi+2 have always different colors.

2. If x and y have the same color then n ≤ 3 and xn, y have different colors.

3. If x and y have different colors then n ≤ 2.

• If n = 2 then xn, y have the same color.
• If n = 1 and xy is not an edge of H then x and x1 have the same color.
• If n = 1 and xy is an edge of H then x1 and y have the same color.

Proof of 1. First suppose all three vertices xi, xi+1, and xi+2 have the same color, say black. Since (xi, xi+1)
is not obtained by transitivity, there exists a white vertex a of H such that the pair (xi, a) ∈ D dominates

(xi, xi+1) in H+
, i.e. a is adjacent in H to xi+1 but not to xi. For a similar reason, there exists a white vertex b

of H adjacent to xi+1 but not to xi, i.e. the pair (xi+1, b) ∈ D dominates (xi+1, xi+2) in H+
.

We now argue that a is not adjacent to xi+2. Otherwise, (xi, a) ∈ D also dominates the pair (xi, xi+2),
and hence, (xi, xi+2) is also in D (at the same level as (xi, xi+1)), contradicting the minimality of CH .

Next we observe that (xi, a) is not by transitivity. Otherwise, (xi, xi+1) and (xi+1, xi+2) can be replaced

by a chain obtained from the pairs that implies (xi, a) together with the pair (a, xi+2). The pair (a, xi+2) lies
in the same component of H+

as (xi, xi+2) ∈ D since the edges xi+1a and xi+2b are independent. Since all
pairs of a component are chosen or not chosen for D at the same time, this contradicts the minimality of CH .

Thus, (xi, a) is dominated in H+
by some pair (c, a) ∈ D. Since a and xi have different colors, this means c

is a white vertex adjacent to xi. Note that c is not adjacent to xi+2, otherwise, (c, a) ∈ D would dominate

(xi+2, a), placing (xi+2, a) in D; and we get the circuit (a, xi+2), (xi+2, a) ∈ D which is a contradiction.

Now, we claim that bxi 6∈ E(H). This is the case, otherwise, the pair (xi+1, b) ∈ D would dominates

the pair (xi+1, xi), while (xi, xi+1) ∈ D, a circuit in D. Finally, cxi+1 6∈ E(H), otherwise, cxi+1 and bxi+2

would be independent edges in H , and cxi and bxi+2 would also be independent edges in H ; thus, the

pairs (xi, xi+2) and (xi+1, xi+2) are in the same component, contradicting again the minimality of CH . Now

(xi, xi+1), (xi+1, xi+2), and (xi, xi+2) are in components. Since there is no circuit in D, according to the rules

of the algorithm we have (xi, xi+2) ∈ D, contradicting the minimality of CH .

We now consider the case where xi and xi+2 are black and xi+1 is white. As before, there must exist

a white vertex a and a black vertex b such that the pair (a, xi+1) dominates (xi, xi+1) and the pair (b, xi+2)
dominates (xi+1, xi+2); thus, axi is an edge ofH and so is bxi+1. Note that the pair (a, xi+1) dominates the

pair (xi, xi+1), which dominates the pair (xi, b). Therefore, we can replace xi+1 by b and obtain a chain which

is also minimal. Now, (b, xi+2) is by transitivity which contradict the minimality of CH .

Claim 6.7. n ≤ 4.
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Proof of the claim. Set x0 = x and xn+1 = y. Let i be the minimum number such that xi and xi+1 have color,

say, black; and xi+2 and xi+3 are white. Let x′ be a vertex such that (xi, x
′) ∈ D dominates (xi, xi+1). Note

that if xi+4 exists then it is black. If xi+4 exists and n ≥ 5 then xi+4 is white, and x′xi+4 is not an edge,

otherwise, (xi, x
′) → (xi, xi+4) and we get a shorter chain. Now let y′ be a vertex such that (xi+4, y

′) ∈ D
dominates (xi+4, xi+5). Now y′xi+1 6∈ E(H), otherwise, (xi+4, y

′) → (xi+4, xi+1) and we get a circuit

(xi+1, xi+2), (xi+2, xi+3), (xi+3, xi+4), (xi+4, xi+1) in D. Now x′xi+1 and y′xi+4 are independent edges, and

hence, (xi+1, xi+4) is in a component. Note that each component or its coupled is in D. (xi+4, xi+1) is not in
D, otherwise, we get a circuit in D, and hence, (xi+1, xi+4) ∈ D, and we get a shorter chain. Thus, we may

assume that xi+4 does not exist, and hence, xi+4 = y. Now by minimality assumption for i, xi−1 = x0, and

hence, n ≤ 4.

Proof of 2. Suppose x and y have the same color. We show that n ≤ 3. Toward a contradiction, suppose n = 4.
Now according to (1) x, x1, x4, and y have the same color which is opposite to the color of x2 and x3. Let y

′
be

a vertex such that (x4, y
′) dominates (x4, y), and let x′ be a vertex such that (x0, x

′) ∈ D dominates (x0, x1).
Note that y′x 6∈ E(H), otherwise, (x4, y

′)→ (x4, x0), implying a circuit in D. Similarly, x1y is not an edge of

H . Finally, x′y is not an edge ofH , otherwise, (x, x′)→ (x, y), contradiction to the minimality of CH . Now,

x1x
′
and y′y are independent edges and, hence, (x1, y) is in a component; thereby, (x1, y) ∈ D, contradicting

the minimality of CH . Therefore, n ≤ 3.
We continue by assuming n = 3. We first show that x3 and y have different colors. On the contrary,

suppose x3 and y have the same color. According to (1), x1 and x2 have the same color opposite to the

color of x, y, and x3. Let (x1, x
′) ∈ D be a pair that dominates (x1, x2), and y′′ be a vertex such that (x3, y

′′)
dominates (x3, y). y

′′x 6∈ E(H), otherwise, (x3, y
′′)→ (x3, x) and we would get a circuit. Let x′′ be a vertex

such that (x′′, x1) ∈ D dominates (x, x1). Now, x′x′′ 6∈ E(H), otherwise, (x1, x
′) would dominate (x′′, x1)

and we would get a circuit in D. We continue by having x2x ∈ E(H), otherwise, x2x
′
and xx′′ would

be independent edges and, hence, (x, x2) would be in a component that has already been placed in D,

contradicting the minimality of CH . Then, the chain (x2, x3), (x3, y
′′)would imply the pair (x2, y

′′), and that

(x2, y
′′)→ (x, y′′)→ (x, y). The latter is a contradiction to the minimality of CH .

Proof of 3. Suppose x and y have different colors. We show that n ≤ 3. For contradiction suppose n = 4. Now,

according to (1), x, x3, and x4 have the same color and opposite to the color of x1, x2, and y. We observe

that xy 6∈ E(H), otherwise, (x4, y) would dominate (x4, x) and, hence, we would get a circuit in D. Let x′

be a vertex such that (x1, x
′) ∈ D dominates (x1, x2) and x′′ be a vertex such that (x′′, x1) ∈ D dominates

(x, x1). Now, x′x′′ is not an edge, otherwise, (x1, x
′) would dominate (x′′, x1) and we would get a circuit

in D. Moreover, x2x ∈ E(H), otherwise, x2x
′
and xx′′ would be independent edges and, hence, (x, x2)

would be in a component that has already been placed in D; contradicting the minimality of CH . Now, the

chain (x2, x3), (x3, x4), (x4, y) implies (x2, y) and that (x2, y) dominates (x, y). This is a contradiction to the

minimality of CH . In fact, we would obtain (x, y) in fewer steps of transitivity. Therefore, n ≤ 3. Now it is

not difficult to see that either n = 1 or, otherwise, n = 2 and vertices x and x1 have the same color opposite

to the color of x2 and y.
Suppose n = 1. First assume xy is an edge. Now, x1 and y have the same color, otherwise, (x1, y)→ (x1, x);

a contradiction. Thus, we continue by assuming xy is not an edge. We show that x1 and x have the same

color. Toward a contradiction, suppose x1 and y have the same color. Let (x′, x) ∈ D be a pair that dominates

(x, x1) and let (x1, y
′) ∈ D be a pair that dominates (x1, y). Now, x′y′ is not an edge and, hence, yy′ and xx′

are independent edges. This shows that (x, y) is in a component, contradicting the minimality of CH .

Corollary 6.8. Let (x, y) be a pair in D after Stage 1 of the algorithm, and assume the current D has no circuit.

• Suppose x and y have the same color and (x,w)→ (x, y) such that (x,w) is by transitivity with a minimal chain
(x,w1), (w1, w2), . . . , (wm, w). Thenm = 2 and vertices x and w1 have the same color and opposite to the color
of w2 and w.

• Suppose x and y have different colors and (w, y)→ (x, y) such that (w, y) is in a trivial component. Then (w, y)
is by transitivity with a minimal chain (w,w1), (w1, w2), (w2, y) where w1 and w2 have the same color opposite
to the color of w and y.
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Proof. If x and y have the same color then by Lemma 6.6 we have m = 2 or m = 1. If m = 2 then x and x1

have the same color and opposite to the color of x2 and w. Ifm = 1 then, by Lemma 6.6 (3), w1 and y have

the same color. Note that (w1, w) dominates (w1, y) and (w1, y) is inN∗[D] at the same time (w1, w) is placed
in D. Therefore, we can use the chain (x,w1), (w1, y) in order to obtain (x, y); a contradiction. If x and y
have different colors then by Lemma 6.6 either m = 2 or m = 3. If m = 3 then w,w1, and y have the same

color and opposite to the color of w2 ans w3. Let w
′
be a vertex such that (w,w′) ∈ D dominates (w,w1).

We observe that w1, x 6∈ E(H), otherwise, (w1, y) → (x, y) and, hence, we obtain (x, y) in an earlier level

or in fewer steps of transitivity application because (w1, w2), (w2, w3), and (w3, y) are in N∗[D]. Now, wx,
and w1w

′
are independent edges and, hence, (x,w1) is already in D. In this situation, we can use the chain

CH = (x,w1), (w1, w2), (w2, w3), (w3, y) to obtain (x, y) in some earlier step since w1 and w2 have different

colors; a contradiction by Lemma 6.6 (1). Therefore, n = 2 and Lemma 6.6 is applied.

Now by Lemma 6.6 and Corollary 6.8 we have the following.

Corollary 6.9. Let C = (x0, x1), (x1, x2), ..., (xn−1, xn), (xn, x0) be a minimal circuit, formed at Stage 2 of the
algorithm. Then n = 3. Moreover, x0 and x3 have the same color and opposite to the color of x1 and x2.

Lemma 6.10. Suppose the current D is circuit-free. Let (x1, x3) ∈ D be by transitivity on a minimal chain
(x1, x2), (x2, x3) in D where x1 and x2 have the same color and different from the color of x3, and (x1, x3) is not
dominated by any other pair (y, x3). Then there are u1 and w1 with the same color as x3 such that :

(1) If (x1, x2) is complex then there exists (x1, w1) ∈ D such that (x1, w1)→ (x1, x2), and (x1, w1) is place in D
by transitivity.

(2) If (x2, x3) is complex then there exists (u1, x3) ∈ D such that (u1, x3)→ (x2, x3), and (u1, x3) is placed in D
by transitivity.

Proof. Suppose (x1, w1) is not by transitivity and there is (w′, w1) ∈ D such that (w′, w1)→ (x1, w1). Notice

that x1x3 6∈ E(H), otherwise, (x2, x3)→ (x2, x1) ∈ D, and, hence, we get a circuit in D.

Now, by Corollary 6.8, there are vertices w′1 and w′2 so that (w′, w1) is by transitivity on the minimal

chainM = (w′, w′1), (w
′
1, w

′
2), (w

′
2, w1). Let (w′1, v) ∈ D where (w′1, v) → (w′1, w

′
2). Note that vx2 6∈ E(H),

otherwise, (w′1, v)→ (w′1, x2) ∈ D and, hence, we would get the chain (w′, w′1), (w
′
1, x2), (x2, x3) inD. In this

situation, (w′, x3) → (x1, x3); contradicting that (x1, x3) is by transitivity. Hence, vx2 6∈ E(H). Next, note

that w′2v and x2w1 are independent edges, and (w′2, w1) and (w′2, x2) are in the same component. Therefore,

we have the chain (w′, w′1), (w
′
1, v), (v, x2), (x2, x3) in D and, hence, (w′, x3) ∈ D. Now (w′, x3) → (x1, x3),

contradicting that (x1, x3) is by transitivity. Number (2) follows from Corollary 6.8.

Lemma 6.11. Let (x0, x3) ∈ D where D is circuit-free. Suppose (x0, x1), (x1, x2), (x2, x3) is a minimal chain in D
between x0, x3 where x0 and x3 have the same color and opposite to the color of x1 and x2. Then x0x2 ∈ E(H).

Proof. For contrary, suppose x0x2 6∈ E(H). Let (p, x1) be a pair inD that dominates (x0, x1) ((x0, x1) is not by
transitivity). Let w be a vertex of H such that (x1, w)→ (x1, x2). Now wp 6∈ E(H), otherwise, (x1, w) would

dominate (x1, p), implying an earlier circuit in D. Now, px0 and wx2 are independent edges and, hence,

(x0, x2) would be in a component; consequently, (x0, x2) would have been already placed in D (if (x2, x0)
was in D then we would have an earlier circuit), implying a shorter chain. Therefore, x0x2 ∈ E(H).

In what follows, we often use a similar argument to the one for Lemma 6.11 and, hence, we do not repeat

the details of it again.

6.2 Relationship between dictator components of the pairs in D
In this subsection, we trace back the creation of a complex pair, say, (x1, x2). For pairs (x, y) and (x′, y′) in
H+

, we say (x′, y′) is reachable from (x, y) and write (x, y)  (x′, y′) when there is a directed path in H+

from (x, y) to (x′, y′). For a component S and pair (x, y) we write S  (x, y) if (x, y) is reachable from a pair
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in S. Notice that if (x, y) (x′, y′), then (y′, x′) (y, x), due to the skew-symmetry property.

Remark : In all of the following lemmas in this subsection, we assume that the current D is circuit-free.

In the next two lemmas we consider the process of obtaining a complex pair. In other words, we unravel

the consecutive the rechability and transitivity operations in placing a pair in D.

Lemma 6.12 (decomposition of same-color pairs). Let (x1, x3) ∈ D be by transitivity on a minimal chain
(x1, x2), (x2, x3) in D where x1 and x2 have the same color and opposite to color of x3. Suppose (x1, x2) is a complex
pair. Then, there exists the smallest m, and vertices y1, z1, w1, v1, . . . , ym−1, zm−1, wm−1, vm−1, a, b, wm ∈ V (H)
such that for 1 ≤ i ≤ m− 1 the following hold :

(1) (x1, w1), (x1, wi+1) ∈ D where (x1, w1)→ (x1, x2) and (x1, wi+1)→ (x1, yi)

(2) (x1, wi) is obtained by transitivity on (x1, yi), (yi, zi), (zi, wi) ∈ D where wi, zi have the same color as x1;

(3) (zi, vi) ∈ D, and (zi, vi)→ (zi, wi) where x1, vi, zi have the same color.

(4) wi+1yi−1 6∈ E(H), i ≥ 2; (5) yiwi ∈ E(H);

(6) vi+1wi 6∈ E(H); (7) wi+1vi ∈ E(H);

(8) aym−1, ax2 ∈ E(H); and (9) x1a and wmb are independent edges of H .

Moreover, (x1, wm) (x2, v1), and (x1, wm), (x2, v1) ∈ Dic(x1, x2).

Proof. Since (x1, x2), (x2, x3) is a minimal chain, by Lemma 6.10 there exists (x1, w1) ∈ D so that (x1, w1)→
(x1, x2) and (x1, w1) is by transitivity. Now, by Corollary 6.8, there are y1 and z1 such that (x1, y1), (y1, z1),
(z1, w1) ∈ D, andx1 and y1 have the same color andopposite to the color of z1 andw1. Notice thatx1w1 6∈ E(H).
Let v1 be a vertex such that (z1, v1) ∈ D and (z1, v1)→ (z1, w1). Observe that x1, v1, and v2 have the same

color. By applying the above argument for pair (x1, y1) (when (x1, y1) is a complex pair) we conclude

that there exists a smallest m and vertices w1, y1, z1, v1, w1, . . . , ym−1, zm−1, vm−1, wm−1, a, b, wm ∈ V (H),
satisfying (1,2,3).

Proof of (4) Otherwise, (x1, wi+1)— which is in D— dominates (x1, yi−1) and, hence, we obtain the chain

(x1, yi−1), (yi−1, zi−1), (zi−1, wi−1) in D. Consequently, (x1, wi−1) → (x1, yi−2). The latter implies (x1, w1)
was obtained at some earlier step; a contradiction.

Proof of (5)Otherwise, by (3,4), yiwi+1 and yi−1wi are independent edges and, hence, (yi, wi) is in a component.

Since (yi, zi), (zi, wi) ∈ D, we conclude that (yi, wi) is in D and, hence, so are (x1, yi) and (yi, wi). Therefore,
by transitivity, (x1, wi) ∈ D; a contradiction to Corollary 6.8.

Proof of (6) Otherwise, (zi+1, vi+1) ∈ D dominates (zi+1, wi) and, hence, we get the chain (x1, yi+1), (zi+1, wi)
in D, which implies (x1, x2) has been placed in D in fewer than m steps; a contradiction.

Proof of (7) Otherwise, by (6) wi+1vi+1 and wivi are independent edges and, hence, (wi+1, wi), (yi, vi),
and (wi+1, vi) are in the same component. Since (yi, zi), (zi, vi) ∈ D, we conclude that (yi, vi) ∈ D, and

consequently, since (yi, vi) → (wi+1, vi), we have (vi+1, wi) ∈ D. Now the chain (xi, wi+1), (wi+1, wi) in D
places (x1, x2) in D in fewer than m steps; a contradiction.

Proof of (8) Suppose aym−1 6∈ E(H). Then ax1 and wm−1ym−2 are independent, thereby, (x1, wm−1) is in a

component and (x1, x2) is placed in D in fewer steps thanm; a contradiction. Notice that by the same logic

we have ax2 ∈ E(H).
Proof of (9) Finally, since (x,wm) is in a component, we have independent edges x1a and wmb.

Notice that (x1, w1) is by transitivity on (x1, y1), (y1, w1) and, hence, by definition of a dictator,

Dic(x1, x2) = Dic(x1, w1) = Dic(x1, y1) (see Line 6 of Dictator function ). Observe that (x1, wm) and
(a,wm) are in component S1 and, by definition, S1 = Dic(x1, x2). First suppose m > 2. By (8,9) we have

(a,wm) → (ym−2, wm) → (ym−2, vm−1). Moreover, (x1, wm) → (a,wm). Thus, (x1, wm)  (ym−2, vm−1).
By (6), (yi, vi+1) → (wi, vi+1) and, by (2), (wi, vi+1) → (wi, wi+1). Therefore, (yi, vi+1)  (wi, wi+1).
Moreover, by (6,5) (wi, wi+1) → (yi−1, wi+1) → (yi−1, vi). Thus, (wi, wi+1)  (yi−1, vi). Now, we have
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(x,wm) (ym−2, wm−1) (wm−2, wm−1) (ym−3, vm−2) · · · (w1, w2). Notice that w2x2 6∈ E(H) and
v1w2 ∈ E(H). These imply that (w1, w2) (x2, v1) and, consequently, (x,wm) (x2, v1).
When m = 2, we have (a,w2)→ (x2, w2)→ (x2, v1); hence, again we get (x1, w2) (x2, v1).

Analogous to Lemma 6.12 we have the following lemma.

Lemma 6.13 (decomposition of different-color pairs). Let (x1, x3) ∈ D be by transitivity on a minimal chain
(x1, x2), (x2, x3) in D where x1 and x2 have the same color, and opposite to the color of x3. Suppose (x2, x3) is a
complex pair. Then there is a minimum number t, and p1, q1, u1, s1, . . . , pt−1, qt−1, st−1, ut−1, c, d, qt ∈ V (H) such
that for 1 ≤ i ≤ t− 1 the following hold:

(1) (u1, x3), (ui+1, x3) ∈ D where (u1, x3)→ (x2, x3) and (ui+1, x3)→ (qi, x3)

(2) (ui, x3) is by transitivity on pairs (ui, pi), (pi, qi), (qi, x3) ∈ D where ui and qi have the same color as x3

(3) (pi, si) ∈ D and (pi, si)→ (pi, qi) where x3 and si have the same color

(4) ui+1qi−1 6∈ E(H), 2 ≤ i (5) uiqi ∈ E(H)

(6) siqi+1 6∈ E(H) (7) qisi+1 ∈ E(H)

(8) dst−1, du1 ∈ E(H) (9) x3d and qtc are independent edges of H .

Moreover, (q1, x2) (qt, x3) and (q1, x2), (qt, x3) ∈ Dic(x2, x3).

In the next five lemmas we investigate the relationships between the dictators of two consecutive pairs

(x, y), (y, z) in D.

Lemma 6.14. Let (x1, x3) ∈ D be by transitivity on a minimal chain (x1, x2), (x2, x3) in D where x1 and
x2 have the same color and different from x3 color. Suppose (x1, x2), (x2, x3) both are complex pairs. Then,
Dic(x1, x2) = Dic(x2, x3).

Proof. Let y1, z1, w1, v1, and wm be the vertices in the decomposition of (x1, x2) according to Lemma 6.12. It

follows from the lemma that (x1, wm) (x2, v1). Let u1, q1, and qt be the vertices in the decomposition of

(x2, x3) according to Lemma 6.13. Then, we have (x2, q1) (qt, x3).
Notice that v1u1 6∈ E(H), otherwise, we would have (z1, v1) → (z1, u1) and, hence, there would exist

a chain (x1, y1), (y1, z1), (z1, u1), (u1, x3); contradicting the minimality of the chain (x1, x2), (x2, x3). Now,

(x2, v1)→ (u1, v1)→ (u1, w1) and, hence, (x2, v1) (u1, w1). On the other hand, w1q1 6∈ E(H), otherwise,

(x1, w1) → (x1, q1) and we would obtain the chain (x1, q1), (q1, x3); a contradiction to minimality of the

chain (x1, x2), (x2, x3). Thus, (u1, w1)→ (q1, w1)→ (q1, x2) and, hence, (u1, w1) (q1, x2). From above, we

conclude that (x2, v1) (x2, q1). By Lemma 6.13 and the skew-symmetry propertywe have (q1, x2) (qt, x3).
Therefore, (x1, wm) (x2, v1) (q1, x2) (qt, x3), and by Corollary 2.9 Dic(x1, x2) = Dic(x2, x3).

Lemma 6.15. Let (x0, x2) ∈ D be by transitivity on a minimal chain (x0, x1), (x1, x2) in D where x1 and x2

have the same color and different from x0. Suppose (x0, x1) is a simple pair and (x1, x2) is a complex pair. Then,
Dic(x0, x1) = Dic(x1, x2).

Proof. Since (x0, x1) is simple and x0 and x1 have different colors, by Lemma 2.6, there exist independent

edges x0e and x1f of H . Let y1, z1, w1, v1, and wm be the vertices in the decomposition of (x1, x2) according
to Lemma 6.12. Note that, according to Lemma 6.12, x1w1 6∈ E(H). Then, w1e 6∈ E(H), otherwise, we would

get (x0, x1) → (e, x1) → (w1, x1); contradicting (x1, w1) ∈ D. Furthermore, x0x2 ∈ E(H), otherwise, x0e
and w1x2 would be independent edges; thereby, (x0, x2) would be in a component. The latter contradicts

the assumption that (x0, x2) is by transitivity. Likewise, observe that fx2 ∈ E(H), otherwise, x1f and x1w1

would be independent edges; a contradiction with the assumption that (x1, x2) is a complex pair. Finally,

x0v1 6∈ E(H), otherwise, (z1, v1) → (z1, x0), resulting in a circuit (x0, x1), (x1, y1), (y1, z1), (z1, x0) in D; a

contradiction with the assumption that the current D is circuit-free. Now, we have (x2, v1) → (x0, v1) →
(x0, f) → (x0, x2) and, hence, (x2, v1)  (x0, x1). Therefore, by Lemma 6.12, (x1, wm)  (x2, v1). Thus,

(x1, wm) (x0, x1), implying that Dist(x1, x2) = Dist(x0, x1).
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Analogous to Lemma 6.15 we have the following lemma.

Lemma 6.16. Let (x2, x4) ∈ D be by transitivity on a minimal chain (x2, x3), (x3, x4) in D where x2 and x4 have
the same color and opposite to the color of x3. Suppose (x2, x3) is complex and (x3, x4) is implied by a component.
Then, Dic(x2, x3) = Dic(x3, x4).

Lemma 6.17. Let (x1, x2), (x2, x3) be a minimal chain in D between x1 and x3. Let (x1, x2) be a complex pair
in D where x1 and x2 have the same color. Let (x1, w1) ∈ D where (x1, w1) → (x1, x2). Moreover, suppose
(x1, w1) is by transitivity on the minimal chain (x1, y1), (y1, z1), (z1, w1) where (z1, w1) is a complex pair. Then,
Dic(x1, y1) = Dic(y1, z1) = Dic(z1, w1).

Proof. By Corollary 6.8, x1 and y1 have the same color and opposite to the color of z1 and w1. Let (z1, v1) ∈ D
such that (z1, v1)→ (z1, w1). Let (u1, x3) ∈ D so that (u1, x3)→ (x2, x3). Notice that v1u1 6∈ E(H), otherwise,

we would have (z1, v1)→ (z1, u1), resulting in the chain (x1, y1), (y1, z1), (z1, u1), (u1, x3) in D; contradicting

the minimality of the chain (x1, x2), (x2, x3).
By Lemma 6.12 we have S1  (x2, v1), where S1 = Dic(x1, w1). According to the definition of dictator

components, we have Dis(x1, w1) = Dis(x1, y1). Now, since (z1, w1) is a complex pair, by Lemma 6.12 for

pair (z1, w1), we conclude that there exists p1, q1, and s1 such that z1, p1, and s1 have the same color and

opposite to the color q1 and v1; the pairs (z1, p1), (p1, q1), (q1, v1), (q1, s1) are in D; and (q1, s1)  (q1, v1).
By Lemma 6.12 for (w1, z1), we have S2  (w1, s1). Notice that s1x2 6∈ E(H), otherwise, we would have

(q1, s1) → (q1, x2) resulting in the chain (x1, y1), (y1, z1), (z1, p1), (p1, q1), (q1, x2), (x2, x3) with pairs in D;

contradicting theminimality of the chain (x1, x2), (x2, x3). Therefore, (w1, s1)→ (x2, s1)→ (x2, v1), implying

that S2  (x2, v1). Since u1x2 and v1s1 are independent edges, (x2, v1) is in a component. We then have

S1  (x2, v1) and S2  (x2, v1). Since (x2, v1) is in a component, by Corollary 2.9, we conclude that

S1 = S2 = Sx2v1 .

Now, it follows from lemmas 6.15 and 6.14 that Dis(y1, z1) = S2 and, hence, Dis(x1, y1) = Dis(y1, z1) =
Dis(z1, w1).

Analogous to Lemma 6.17 we have the following lemma.

Lemma 6.18. Let (x1, x2), (x2, x3) be a minimal chain in D between x1 and x3. Let (x2, x3) be a complex pair
in D where x1 and x2 have different colors. Let (u1, x2) ∈ D, where (u1, x3) → (x2, x3). Moreover, suppose
(u1, x3) is by transitivity on the minimal chain (u1, p1), (p1, q1), (q1, x3) where (q1, x3) is a complex pair. Then
Dic(u1, p1) = Dic(q1, x3) = Dic(p1, q1).

The following lemma shows the role of a dictator component in placing a pair in D, alongside its

independence from selection of other components.

Lemma 6.19. Let (x1, x3) ∈ D be by transitivity on a minimal chain (x1, x2), (x2, x3) ∈ D where x1 and x2 have
the same color and opposite to the color of x3. Suppose (x1, x2) is a complex pair, and let S1, S2, . . . , Sk be the distinct
components involving in the creation of (x1, x2). Suppose Dic(x1, x2) = S1. Let D1 be a set of pairs which contains
S1 and exactly one of Si, S

′
i for every 2 ≤ i ≤ k. Then, (x1, x2) ∈ N∗[D1].

Proof. Weuse induction on the number of steps in the decomposition of (x1, x2) according to Lemmas 6.12 and

6.13. Since x1 and x2 have different colors, it follows by Lemma 6.12 that there exists (x1, w1) ∈ D such that

(x1, w1) → (x1, x2) and (x1, w1) is by transitivity on the minimal chain CH = (x1, y1), (y1, z1), (z1, w1). By
definition of a dictator,Dic(x1, y1) = Dic(x1, x2). Let (z1, v1) ∈ D such that (z1, v1)→ (z1, w1) . Observe that

v1w2 ∈ E(H), otherwise, we would have (y1, z1), (z1, v1) ∈ D, implying that (y1, v1)→ (w2, v1)→ (w2, w1)
and, hence, we get the earlier chain (x1, w2), (w2, w1) in D— the latter contradicts the minimality of CH .

We will consider two possible cases. First, consider the case where (y1, z1) and (z1, w1) are simple.

According to Lemma 2.6 there exist independent edges y1y
′
1 and z1z

′
1 and independent edges z1e and

v1f so that w1e, w1z
′
1 ∈ E(H). According to the argument for Lemma 6.11, y1w1 is an edge of H . Note

that (y1, z
′
1), (y1, e) ∈ N+[Sy1z1 ]. Also, note that w2z

′
1 ∈ E(H), otherwise, we would have (y1, z

′
1) →

(w′1, z
′
1) → (w2, w1) and, consequently, (w2, w1) would be simple. But then we would get an earlier chain

(x1, w2), (w2, w1) with pairs in D; a contradiction to the minimality of CH . Likewise, we conclude that
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w2e ∈ E(H). Notice that by definition, Dic(x1, w2) = S1, and observe that (x1, w2) dominates every pair in

{(x1, y1), (x1, v1), (x1, z1), (x1, e)}. By induction hypothesis, if S1 is in D then Dic(x1, w2) = S1. If we place

into D components Sy1z1 and Sz1v1
at Stage 1, then (y1, z1), (z1, w1) ∈ D. Thus, CH will have its pairs in

D and, consequently, we get (x1, w1), (x1, x2) ∈ D. If we place into D components Sv1z1 and Sz1,y1
then

(v1, z1), (z1, w1) ∈ D (since (z1, y1) → (z1, w1)) and, hence, (x1, v1), (v1, z1), (z1, w1) ∈ D. Consequently, in

this case we get (x1, w1), (x1, x2) ∈ D. So, we may assume that Sy1z1 and Sv1z1 are selected to be placed in

D at Stage 1 of the algorithm. Now, y′1v1 6∈ E(H), otherwise, (y′1, z1) → (v1, z1) and, hence, Sz1v1 ∈ D; a

contradiction. Similarly, we get y1f 6∈ E(H). Therefore, y1y
′
1 and v1f are independent edges and, hence,

Sy1v1 , Sv1y1
are components. Now, without loss of generality we may assume the algorithm selects Sv1y1

at Stage 1. Then, (v1, y
′
1) ∈ D and (y′1, v1) → (y′1, w1) ∈ D. Moreover, (x1, w2) → (x1, v1). Therefore,

(x1, v1), (v1, y
′
1), (y

′
1, w1) ∈ D and, hence, (x1, w1) ∈ D.

Finally, consider the case where (z1, w1) is complex. By Lemma 6.17, we conclude that Dis(x1, y1) =
Dis(y1, z1) = Dis(z1, w1) and, hence, by induction hypothesis, if Dis(x1, y1) is selected at Stage 1 of the

algorithm then each of the pair (x1, y1), (y1, z1) and (z1, w1) is placed inD; hence, (x1, x2) is placed inD.

6.3 Proofs of Lemmas 6.1, 6.2, and 6.3
Proof of Lemma 6.1: (1) follows from Lemma 6.14 on the minimal chain (x1, x2), (x2, x3). (4) follows from

Lemma 6.14 on the minimal chain (x2, x3), (x3, x0). (2) follows from Lemma 6.15. (3) follows from Lemma

6.16. Finally, (5) follows from the arguments in Lemma 6.17(considering the (x1, x2), (x2, x3), (x3, x0) instead
of the chain (x1, y1), (y1, z1), (z1, w1)), and Lemma 6.18.

Proof of Lemma 6.2: This follows from lemmas 6.1 and 6.19.

Proof of Lemma 6.3: The purpose of computing Dic(x, y) is to identify a component that is responsible for

creating a circuit inD. Therefore, we may assume that a minimal circuit C inD is created once (x, y) is added
into D. By Corollary 6.9, C is on four pairs. Suppose C = (x0, x1), (x1, x2), (x2, x3), (x3, x0) and assume,

without loss of generality, that x0 and x3 are white vertices, and x1 and x2 are black vertices. Recall that the

following determine the dictator of a pair (x, y).

(a) If (x, y) ∈ N+[S] for some component S then Dic(x, y) = S.

(b) If x and y have different colors and (u, y)→ (x, y) then Dic(x, y) = Dic(u, y).

(c) If x and y have the same color and (x,w)→ (x, y) then Dic(x, y) = Dic(x,w).

(d) If x and y have the same color and (x, y) is by transitivity on (x,w), (w, y) then Dic(x, y) = Dic(w, y).

(e) If x and y have different colors and (x, y) is by transitivity on (x,w), (w, y) then Dic(x, y) = Dic(x,w).

In what follows, we assume (x, y) is one of the pairs on C.

Let (u1, x3) be a pair in (the current) D and (u1, x3) → (x2, x3). According to definition, Dic(u1, x3) =
Dic(x2, x3). By Corollary 6.8, (u1, x3) is by transitivity on a minimal chain (u1, p1), (p1, q1), (q1, x3) in D.

When we compute N∗[D], (u1, x3) appears in D at some earlier level,i.e., when pairs of the forms

(u1, f) and (f, x3) appear in N∗[D] at some earlier level. According to the minimality of the chain between

u1 and x3 we must have either f = q1 or f = p1. First suppose f = q1. Then, according to (d), we

have Dic(x2, x3) = Dic(q1, x3). By induction hypothesis, we also have Dic(q1, x3) = S2, where S2 is

the component obtained after decomposing the pair (x2, x3) in accordance with Lemma 6.13. Therefore,

Dic(x2, x3) = Dic(u1, x3) = Dic(q1, x3). Now, consider the case where f = p1. Then, according to (d),

we have Dic(u1, x3) = Dic(p1, x3). Thus, using (e), we obtain Dic(p1, x3) = Dic(q1, x3) because the chain
(p1, q1), (q1, x3) implies (p1, x3) where p1 and x3 have different colors. A similar argument can be applied to

the pair (x1, x2), where x1 and x2 have the same color.
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7 Correctness of Stages 3 and 4 (lines 19–25)
If we encounter a circuit C in D in Stage 2 then, according to Lemma 6.2, there is a component S that is a

dictator for C. By Lemma 6.2, it is clear that we should not add S to D, otherwise, we would not get the

desired ordering. Therefore, we must take the coupled component of every dictator component of a circuit

appearing at Stage 2. With this consideration, we continue to show the correctness of Stages 3.

Lemma 7.1 (correctness of Stage 3). If the algorithm encounters a circuit at Stage 3 (line 20) then H is not an
interval bigraph.
Proof. According to line 22 of the algorithm , D1 contains components S1, S2, . . . , Sj chosen at Stage 1,

alongside components S′j+1, . . . , S
′
t where Sj+1, . . . , St are dictator components. Suppose we encounter a

minimal circuit C = (x0, x1), (x1, x2), ..., (xn−1, xn), (xn, x0) in line 22. If all the pairs in C are simple then,

according to Theorem 5.4, we find an exobiclique and, hence,H is not an interval bigraph. Therefore, we may

assume at least one pair, say, (xi, xi+1) is a complex pair. Let S = Dic(xi, xi+1). Notice that S is not among

S1, S2, . . . , Sj , otherwise, we would have detected S as a dictator component at Stage 2, according to Lemma

6.2. Thus, S belongs to {S′i+1, S
′
i+2, . . . , S

′
t}. But the latter meansH is not an interval bigraph because we can

not select either of S, S′ at Stage 1; a contradiction in light of Lemma 3.5.

Lemma 7.2 (correctness of Stage 4). The algorithm does not create a circuit by choosing a sink component S ∈ H+\D
(satisfying N+[S] = S) and adding it to D after taking its transitive closure.
Proof. Suppose adding— according to the algorithm— a sink trivial component {(x, y)} into D creates a

circuit. By definition, there is no arc from (x, y) to any pair inH+ \D— i.e., (x, y) is a terminal pair. According

to the algorithm, neither of (x, y), (y, x) is presently in D. Moreover, (x, y) is not by transitivity on any of the

pairs presently in D (otherwise (x, y)would have been placed in D, since D is closed under transitivity).

Now, since (x, y) is a terminal pair at the current step of the algorithm, (x, y) can only dominate pairs in

D. Therefore, the only way that adding (x, y) into D creates a circuit is when (x, y) dominates a pair (u, v)
while there is a chain (v, y1), (y1, y2), ..., (yk, u) ∈ D; in which case we have (v, u) ∈ D. However, since D is

closed under reachability and transitivity, by the skew-symmetry (u, v)→ (y, x) ∈ D; a contradiction.

8 Implementation and complexity
In this section we prove the following lemma.

Lemma 8.1. Let H be a bigraph with n vertices andm edges. Then, Algorithm 1 runs in O(mn) time and produces
an interval vertex ordering when H is an interval bigraph; otherwise, reports H is not an interval bigraph.
Proof. In this proof, we denote the degree of a vertex z ofH by dz . In order to construct digraphH+

, we need

to list all the neighbors of each pair in H+
. If vertices x and y in H have different colors then the pair (x, y)

of H+
has dy out-neighbors; and if x and y have the same color then the pair (x, y) has dx out-neighbors

in H+
. For simplicity— without affecting the generality of the argument— we assume that |W | = |B| = n.

For a fixed black vertex x, the number of all pairs which are neighbors of all pairs (x, z), z ∈ V (H), is
ndx+dy1

+dy2
+ · · ·+dyn

, where y1, y2, ..., yn are all of the white vertices. We can use a linked list structure to

represent H+
, therefore, overall, it takes time O(mn) to construct H+

. Notice that in order to check whether

a component S is self-coupled, it is enough to pick any pair (a, b) in S and check if (b, a) is in S, as well. The

latter task can be done in time O(mn), using Tarjan’s strongly-connected component algorithm. Since we

maintain a partial order onD, once we add a new pair intoD we can decide whether that pair closes a circuit

or not. Computing N∗[D] also takes time O(n(n+m)) = O(mn) since there are O(mn) edges in H+
and

O(n2) vertices in H+
. Note that the envelope of D is computed at most twice (at lines 15 and 22).

Once a pair (x, y) is added intoD, we put an arc from x to y in the partial order and give the arc xy a time

label (also called level). Once a circuit is formed at Stage 2, we can find a dictator component S by using

Dictator function, and store S into set DT . Therefore, we spend at most O(nm) time to find all the dictator

components. Stage 4, in which we add the remaining pairs, takes time at most O(n2). Therefore, the overall
running time of the algorithm is O(nm).
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