C-Perfect K-Uniform Hypergraphs

Changiz Eslahchi and Arash Rafiey
Department of Mathematics
Shahid Beheshty University
Tehran, Iran
ch-eslahchi@cc.sbu.ac.ir
rafiey-ar@ipm.ir

Abstract

In this paper we define the concept of clique number of uniform hypergraph and study its relationship with circular chromatic number and clique number. For every positive integer k, p and $q, 2 q \leq p$ we construct a k-uniform hypergraph H with small clique number whose circular chromatic number equals $\frac{p}{q}$. We define the concept and study the properties of c-perfect k-uniform hypergraphs .

Keywords: Hypergraph, Circular Coloring, c-Perfect Hypergraph

1 Introduction

For the necessary definitions and notations, we refer the reader to standard texts of graph theory such as [6]. In this paper p, q, r, k, m, n, and l are positive integers such that $(2 q \leq p)$ and $k>2$. Also, we consider only finite hyperhgraphs. The hypergraph $H=(V, E)$ is called k-uniform whenever every edge e of H is of size k. The hypergraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subhypergraph of $H=(V, E)$ whenever $V^{\prime} \subset V$, and $E^{\prime} \subset E$ and it is an induced subhypergraph of H if and only if for every edge e of H with $e \subset V^{\prime}$, then $e \subset E^{\prime}$. The complement of a k-uniform hypergraph H denoted by \bar{H}, is defined to be a k-uniform hypergraph with vertex set $V(\bar{H})=V(H)$ and a k-subset of $V(H)$ is an edge of \bar{H} if and only if it is not an edge of H. A subset S of the vertices Of H is said to be independent if it does not contained any edges of H and the independent number of H, denoted by $\alpha(H)$, is defined to be the largest size of independent sets of H. Now for the sake of referencewe state some definition and result from [2].
A k-uniform hypergraph H is called complete if every k-subset of the vertices is an edge of H. A mapping $f: V(H) \longrightarrow V(K)$ is a homomorphism from hypergraphs H to hypergraphs K if for every edge e of H, there exists an edge e^{\prime} of K such that $e^{\prime} \subseteq f(e)$. And H is called vertex transitive if for every vertices x and y in H there is an bijection homomorphism $f: V(H) \longrightarrow V(H)$ such that $f(x)=y$.

A (p, q)-coloring of H is a mapping $c: V \longrightarrow\{0,1, . ., p-1\}$ such that for every
edge $e \in E$, there exist x and y in e satisfying $q \leq|c(x)-c(y)| \leq p-q$.
The circular chromatic number of H, denoted by $\chi_{c}(H)$, is defined as

$$
\chi_{c}(H)=\inf \left\{\left.\frac{p}{q} \right\rvert\, \text { there exists a }(p, q)-\text { coloring of } H\right\}
$$

We have shown that [2] the infimum in the definition of circular chromatic number can be replaced by minimum.
It is obvious that if H^{\prime} is an induced subhypergraph of H then $\chi_{c}\left(H^{\prime}\right) \leq \chi_{c}(H)$. Let $H_{q}^{p}(k)$ denote the k-uniform hypergraph with vertex set $\{0,1, . ., p-1\}$ and a k-subset $\left\{x_{1}, x_{2}, . ., x_{k}\right\}$ of $V(H)$ is an edge of $H_{q}^{p}(k)$ if and only if there exist $1 \leq i, j \leq k$ such that $q \leq\left|x_{i}-x_{j}\right| \leq p-q$.
If $k=2$ then $H_{q}^{p}(k)$ is the graph G_{q}^{p} defined by Zhu [7] . It was shown in [2] that $\chi_{c}\left(H_{q}^{p}(k)\right)=\frac{p}{q}$, and it is vertex transitive.
A mapping c from the collection S of independent sets of a hypergraph H to the interval $[0,1]$ is a fractional-coloring of H if for every vertex x of H we have $\Sigma_{s \in S, x \in s} c(s)=1$. The value of fractional-coloring c is $\Sigma_{s \in S} c(s)$. The fractional coloring number of H, denoted by $\chi_{f}(H)$, is the infimum of the values of fractional-colorings of H.
It is easy to see that $\alpha\left(H_{q}^{p}(k)\right)=q$. Since $H_{q}^{p}(k)$ is vertex transitive, by Proposition 4.b in [2] $\chi_{f}\left(H_{q}^{p}(k)\right)=\frac{p}{q}$.

Theorem 1 1) Let H be a hypergraph then:
$\chi_{c}(H)=\min \left\{\left.\frac{p}{q} \right\rvert\,\right.$ there exists a homomorphism $\left.f: H \longrightarrow G_{q}^{p}\right\}$.
2) Let H and K be two hypergraphs and there exist a homomorphism from H to K then,
a) $\chi(H) \leq \chi(K)$,
b) $\chi_{c}(H) \leq \chi_{c}(K)$.
3) Let H be a k-uniform hypergraph and $\chi_{c}(H)=\frac{p}{q}$ then,
a) $\chi(H)-1<\chi_{c}(H) \leq \chi(H)$.
b) If $c: V(H) \longrightarrow\{0,1, . ., p-1\}$ be a (p, q)-coloring of H, then c is onto, and $|V(H)| \geq p$.
c) If $\frac{p}{q} \leq \frac{p^{\prime}}{q^{\prime}}$ then H has a $\left(p^{\prime}, q^{\prime}\right)$-coloring.
d) $\frac{|V(H)|}{\alpha(H)} \leq \chi_{f}(H) \leq \chi_{c}(H)$,
e) If H is vertex transitive then $\chi_{f}(H)=\frac{|V(H)|}{\alpha(H)}$.

2 Circular Coloring And Clique Number

In this section we only consider k-uniform hypergraphs.

Definition 1 Let H be a hypergraph. A subset A of $V(H)$ is called a clique of H if every k-subset of A is an edge of H. The clique number of H, denoted by $\omega(H)$, is defined as

$$
\omega(H)=\frac{\max \{|A| \mid A \text { is a clique }\}}{k-1}
$$

The above definition is a generalization of the concept of clique number of graph.

Theorem 2 For every k-uniform hypergraph H, we have $\omega(H) \leq \chi_{c}(H)$.
Proof : Let $\omega(H)=\frac{p}{k-1}$ and $A=\{0,1, . ., p-1\}$ be a clique of H. Let $V\left(H_{k-1}^{p}(k)\right)=A$. Define mapping $f: H_{k-1}^{p}(k) \longrightarrow H$ by $f(x)=x$. It is obvious that f is a homomorphism; therefore, by Theorem $1, \chi_{c}\left(H_{p}^{k-1}(k)\right)=$ $\omega(H) \leq \chi_{c}(H)$.

Theorem 3 For every $\frac{p}{q}>2$ and $k \geq 4$ there exists a k-uniform hypergraph H with $\chi_{c}(H)=\frac{p}{q}$ and $\omega(H) \leq \frac{k+1}{k-1}$.

Proof : Let r be an integer such that $q r>\left\lceil\frac{p}{q}\right\rceil(2 k-4)$. Consider the graph $G_{q r}^{p r}$ and construct a k-uniform hypergraph H as follows:
$V(H)=V\left(G_{q r}^{p r}\right)$ and a k-subset e of $V(H)$ is an edge if either e is a 1-edge or e is a $(k-1)$-edge,
where a set e is called an l-edge if the induced subgraph of $G_{q r}^{p r}$ generated by e has exactly l edges.
We show that $\omega(H) \leq \frac{k+1}{k-1}$. On the contrary let $A=\left\{a_{0}, a_{1}, . ., a_{k+1}\right\}$ be a clique in H.

Case 1) Suppose a k-subset of A is a 1-edge. Without Without loss of generality assume that this k-subset is $\left\{a_{0}, a_{1}, a_{2}, . ., a_{k-1}\right\}$ and $a_{0} a_{1}$ is the only edge of $G_{q r}^{p r}$ in this set. If $\left\{a_{0}, a_{2}, . ., a_{k-1}, a_{k}\right\}$ is a $(k-1)$-edge, then a_{k} is incident to all vertices $\left\{a_{0}, a_{2}, . ., a_{k-1}\right\}$ in $G_{q r}^{p r}$. Now since $k>3$ the set $\left\{a_{1}, a_{2}, a_{3}, . ., a_{k}\right\}$ is a k-1-edge too. Therefore $a_{1} a_{k}$ is also an edge of $G_{q r}^{p r}$. Now the induce subgraph of $G_{q r}^{p r}$ generated by $\left\{a_{0}, a_{1}, a_{3}, . ., a_{k-1}, a_{k}\right\}$ has k edges which is a contradiction. Therefore $\left\{a_{0}, a_{2}, a_{3}, . ., a_{k-1}, a_{k}\right\}$ is an 1-edge. Similarly $\left\{a_{1}, a_{2}, a_{3}, . ., a_{k-1}, a_{k}\right\}$ is an 1-edge. Hence there exists $j \in\{2,3, . ., k-1\}$ such that $a_{j} a_{k}$ is not an edge of $G_{q r}^{p r}$. Now $\left\{a_{0}, a_{1}, . ., a_{k}\right\}-\left\{a_{j}\right\}$ is 2-edge, and since $k \geq 4$, we have a contradiction.

Case 2) Let every k-subsets of A be a $(k-1)$-edge. Let $T=G_{q r}^{p r}[A]$, and T has a vertex of degree at least 3 . Let $d e g_{T}^{a_{0}} \geq 3$ and a_{1}, a_{2}, and a_{3} are adjacent to a_{0}. Since $\left\{a_{1}, a_{2}, a_{3}, . ., a_{k}\right\}$ is a $(k-1)$-edge, there exists $i, 1 \leq i \leq k$ such that a_{i} is of degree 0 or 1 in the induced subgraph of $G_{q r}^{p r}$ generated by $\left\{a_{1}, . ., a_{k}\right\}$. Now the set $\left\{a_{0}, a_{1}, . ., a_{k}\right\}-\left\{a_{i}\right\}$ is a l-edge, $k \leq l$. Therefore $\Delta(T) \leq 2$, and
every component of T is a path or cycle . Let a_{i} and a_{j} be two nonadjacent vertices of degree 2 in T (it is obvious that there exist such vertices). Now the induced subgraph of $G_{q r}^{p r}$ generated by $A-\left\{a_{i}, a_{j}\right\}$ has at most $(k-2)$ edges, a contradiction. Therefore $\omega(H) \leq \frac{k+1}{k-1}$.
Now we show that $\alpha(H) \leq q r$. Suppose B is an independent set and $0 \in B$. Let $C_{0}=\{0,1, . ., q r-1\}, C_{0}^{\prime}=\{p r-q r+1, p r-q r+2, . ., 0\}, C=\{q r, q r+1, . ., p r-$ $q r\}$, and $C_{t}^{\prime}=\{t, t+1, \ldots, t+q r\}, q r \leq t \leq p r-2 q r$. For all $t, q r \leq t \leq p r-2 q r$, B has at most $k-2$ vertices of C_{t}^{\prime}. Otherwise $\left(B \bigcap C_{t}^{\prime}\right) \bigcup\{0\}$ is not independent. Therefore and $|B \bigcap C| \leq\left\lceil\frac{p-2 q+1}{q}\right\rceil(k-2)$. Let $B \cap C_{0}=\left\{a_{1}<a_{2}<. .<a_{l_{1}}\right\}$ and $B \bigcap C_{0}^{\prime}=\left\{b_{1}<b_{2}<. .<b_{l_{2}}\right\}$. Hence $a_{1}=b_{1}=0$.

Case 1) $|B \bigcap C|>0$, and $c \in B \bigcap C$. Let a_{i} be the last element of C_{0} and b_{j} be the first element of C_{1} such that $c a_{i}$ and $c b_{j}$ are edges in $G_{q r}^{p r}$. In this case each of the sets $\left\{a_{i+1}, . ., a_{l_{1}}\right\},\left\{b_{j+1}, . ., b_{l_{2}}\right\},\left\{a_{1}, . ., a_{i-1}\right\}$, and $\left\{b_{1}, . ., b_{j-1}\right\}$ has at most $k-3$ elements. Otherwise, if for example $\left|\left\{a_{i+1}, . ., a_{l_{1}}\right\}\right|>k-3$, then the set $\left\{c, a_{i+1}, . ., a_{i+k-1}\right\}$ which is an edge of H is a subset of B, a contradiction. Therefore $\left|C_{0} \bigcap B\right| \leq 2 k-5,\left|C_{0}^{\prime} \cap B\right| \leq 2 k-5$, and hence $|B|<q r$.

Case 2) $|B \bigcap C|=0$. If there is no edge $a_{i} b_{j}$ in $G_{q r}^{p r}$ then $\left\{a_{1}, a_{2}, \ldots a_{l_{1}}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{l_{2}}\right\}$ are subset of an independent set of $G_{q r}^{p r}$, and since independence number of $G_{q r}^{p r}$ is $q r$ we have $|B| \leq q r$. Assume that $a_{i} b_{j}$ be an edge of $G_{q r}^{p r}$ such that $b_{j}-a_{i}=\max \left\{b_{t}-a_{s} \mid b_{t} a_{s}\right.$ is an edge of $\left.G_{q r}^{p r}\right\}$. Therefore each of the sets $\left\{a_{i+1}, . ., a_{l_{1}}\right\}$ and $\left\{a_{1}, . ., a_{i-1}\right\}$ has at most $k-3$ elements. Therefore, $\left|C_{0} \cap B\right| \leq 2 k-5$. By the same way $\left|C_{0}^{\prime} \cap B\right| \leq 2 k-5$ and therefore, $|B| \leq q r$. But since the set $\{0,1, . ., q r-1\}$ is an independent set, then $\alpha(H)=q r$.
By Theorem 1 we have $\frac{p r}{q r}=\frac{|V(H)|}{\alpha(H)} \leq \chi_{f}(H) \leq \chi_{c}(H)$. On the other hand since the map $f: V(H) \longrightarrow G_{q r}^{p r}$ define by $f(x)=x$ is a homomorphism then Theorem 1 support that $\chi_{c}(H) \leq \chi\left(G_{q r}^{p r}\right)=\frac{p}{q}$, therefore $\chi_{c}(H)=\frac{p}{q}$ and proof is completed.

By a similar proof one can show that Theorem 3 follows for $k=3$ and $\omega(H) \leq \frac{5}{2}$.

Definition 2 A k-uniform hypergraph H is called c-perfect if for every induced subhypergraph H_{1} of H provided $\chi_{c}\left(H_{1}\right)>2$, we have $\chi_{c}\left(H_{1}\right)=\omega\left(H_{1}\right)$.

In this definition the condition $\chi_{c}(H)>2$ is necessary, because if H_{1} is an edge then $\chi_{c}\left(H_{1}\right)=\chi\left(H_{1}\right)=2$ but $\omega\left(H_{1}\right)=\frac{k}{k-1}$ and therefore we never have a c-perfect hypergraph.

An example of c-perfect hypergraph is a complete k-uniform hypergraph H because, $\omega(H)=\chi_{c}(H)=\frac{|V(H)|}{k-1}$ and since every induced subhypergraph of H is complete, H is c-perfect.

Now from every perfect graph we construct a k-uniform c-perfect hypergraph.

Theorem 4 Let G be a perfect graph, and $H=(V(H), E(H))$ be a hypergraph
such that $V(H)=V(G)$ and $e \subset V(H)$ is an edge of H if and only if $|e|=k$ and e is contained in a clique of G. Then H is c-perfect.

Proof: Let H_{1} be an induced subhypergraph of H, and G_{1} be induced subgraph of G generated by $V\left(H_{1}\right)$. It is easy to see that $\omega\left(H_{1}\right)=\frac{\omega\left(G_{1}\right)}{k-1}$. Since G is perfect, $\chi\left(G_{1}\right)=\omega\left(G_{1}\right)$.
Case 1) Let $\omega\left(G_{1}\right) \geq 2(k-1)$ and c be a $\omega\left(G_{1}\right)$-coloring of G_{1}. Consider the coloring c^{\prime} define by $c^{\prime}(x)=c(x)$ of H_{1}. Since every edge e of H_{1} is a subset of a clique of G_{1}, there exists two vertices $x, y \in e$ such that $k-1 \leq$ $|c(x)-c(y)| \leq \omega\left(G_{1}\right)-k+1$ thus c^{\prime} is an $\left(\omega\left(G_{1}\right), k-1\right)$-coloring of H_{1}. Therefore $\chi_{c}\left(H_{1}\right) \leq \frac{\omega\left(\bar{G}_{1}\right)}{k-1}$, and by Theorem $5 \chi_{c}\left(H_{1}\right) \geq \omega\left(H_{1}\right)$.
Case 2) $k \leq \omega\left(G_{1}\right)<2(k-1)$. We will show that $\chi_{c}\left(H_{1}\right)=2$. Let c be a $\omega\left(G_{1}\right)$ coloring of G_{1}. Consider the mapping $c^{\prime}: V\left(H_{1}\right) \longrightarrow\{0,1\}$ by $c^{\prime}(x)=\left\lfloor\frac{c(x)}{k}\right\rfloor$ and let e be an edge of H_{1}. Since e is a k-subset of a clique of G_{1} then there exist at least two vertices $x, y \in e$ such that $c(x)<k$ and $c(y) \geq k$. Therefore $c^{\prime}(x)=0$ and $c^{\prime}(y)=1$, and c^{\prime} is a 2 -coloring of H_{1}.

In the other case H_{1} has no edge.
We know that the complement of every perfect graph is perfect but it is not true for c-perfect hypergraphs. In the following we construct a hypergraph H which is c-perfect, but \bar{H} is not c-perfect.
Let $V(H)=\{0,1,2, . ., 3 m-1\}, m>2 k$, and $e \in E(H)$ if e is a k-subset of one the sets $\{0,1,2, . ., m-1\},\{m, m+1, m+2, . ., 2 m-1\}$ or $\{2 m, 2 m+1,2 m+$ $2, . ., 3 m-1\}$. Since H is union of three copy of disjoint complete hypergraphs, H is c-perfect. Let H^{\prime} be the induced subhypergraph of \bar{H} generated by the set $\{0, m, m+1, . ., m+k-2,2 m, 2 m+1, . ., 3 m-1\}$. By definition of H, the union of $\{0, m, . ., m+k-2\}$ and every $(k-1)$-subset of $D=\{2 m, 2 m+1, . ., 3 m-1\}$ is a clique of \bar{H}, and every clique of H^{\prime} has at most $2 k-1$ vertices. Therefore $\omega\left(H^{\prime}\right)=\frac{2 k-1}{k-1}$. Now we show that H^{\prime} has no any $(2 k-1, k-1)$-coloring. Let c be a $(2 k-1, k-1)$-coloring of H^{\prime}. Since the vertices of a clique of H^{\prime} of size at least k have different colors then, $\mid c^{-1}(\{0, m, m+1, . ., m+k-2\} \mid=k$. On the other hand since every $k-1$-subset of D with $\{0, m, . ., m+k-2\}$ make a clique then $\left|c^{-1}(D)\right|=k-1$. Therefore there exist vertices $x, y \in D$ such that $c(x)=c(y)$. Since x and y appear in a clique of size $2 k-1$ they must have different colors and it is a contradiction. Thus $\chi_{c}\left(H^{\prime}\right)>\omega\left(H^{\prime}\right)$. Now since $\chi_{c}\left(H^{\prime}\right)>2$, then \bar{H} is not c-perfect.

By the above discussion it is natural to look for k-uniform c-perfect hypergraph H such that \bar{H} is also c-perfect. Also we look for k-uniform c-perfect hypergraph H, such that \bar{H} is c-perfect, and $\omega(H)$ and $\omega(\bar{H})$ are arbitrary large. First we prove that for every m and n there exists a 3-uniform c-perfect hypergraph H such that \bar{H} is c-perfect, and $\omega(H)=\frac{m+1}{2}, \omega(\bar{H})=\frac{n+1}{2}$.

Let $V(H)=\{1,2, . ., m+n\}$ and $e \in E(H)$ either $e \subset\{1,2, . ., m\}$ or $\mid e \cap$ $\{m+1, . . m+n\} \mid=1$. By the construction of H we have, $\omega(H)=\frac{m+1}{2}$ and $\omega(\bar{H})=\frac{n+1}{2}$ and $\{1,2, . ., m, m+1\}$ is a maximum clique, and $\{m, m+1, . ., m+$
$n\}$ is a maximum independent set of H. On the other hand every induced subhypergraph of H and \bar{H} has the same structure and therefore it is enough to prove that $\chi_{c}(H)=\omega(H)$. If $\omega(H) \leq 2$ color the vertices $1,2, . ., m$ by 1 and the vertices $m+1, m+2, . ., m+n$ by 2 ; it is a 2 -coloring for H. Let $\omega(H)>2$. Define the map c by:

$$
\begin{gathered}
c: V(H) \longrightarrow\{0,1, . ., m\} \\
c(i)= \begin{cases}i-1 & 1 \leq i \leq m \\
m & \text { otherwise }\end{cases}
\end{gathered}
$$

Reader can check that c is a $(m+1,2)$-coloring. Therefore $\omega(H)=\chi_{c}(H)$, and proof is complete.

Theorem 5 For every $k>3$ there exists a k-uniform hypergraphs H, such that H and \bar{H} are c-perfect, $\omega(H)$ is arbitrary large and $\omega(\bar{H})>2$.

At first we prove the following lemma:

Lemma 6 Suppose G^{\prime} be a graph with vertex set $V(G)=\{m, m+1, \ldots, m+$ $2 k-1\}$, and ij is an edge of G if one of the following occurs :

1) $1 \leq|i-j| \leq k-2$.
2) $m+2 \leq i, j \leq m+2 k-2$ and $|i-j|>k$.

Then G is perfect.

Proof: It is enough to prove that $\overline{G^{\prime}}$ is perfect. By the construction of G^{\prime}, the sets $\{m+1, . ., m+k-1\}$ and $\{m+k+1, . ., m+2 k-1\}$ are independent in $\overline{G^{\prime}}$ and the vertices of the set $\{m+1, m+k, m+2 k-1\}$ are adjacent in $\overline{G^{\prime}}$ and $\operatorname{deg}_{\bar{G}^{\prime}}(m+k)=2$. On the other hand every odd cycle of $\overline{G^{\prime}}$ has vertices $m+1, m+k, m+2 k-1$. Consider the mapping $c: V\left(\overline{G^{\prime}}\right) \Rightarrow\{1,2,3\}$ defined by:

$$
c(x)= \begin{cases}1 & m+1 \leq x \leq m+k-1 \\ 2 & m+k+1 \leq x \leq m+2 k-1 \\ 3 & x=m+k\end{cases}
$$

c is a 3 -coloring of $\overline{G^{\prime}}$ and since $\omega\left(G^{\prime}\right)=3$ we have $\omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$. Let G_{1} be an induced subgraph of $\overline{G^{\prime}}$. If one of the vertices $m+1, m+k$ or $m+2 k-1$ is not in $V\left(G_{1}\right)$ then G_{1} is bipartite graph and $\omega\left(G_{1}\right)=\chi\left(G_{1}\right)$, otherwise $\omega\left(G_{1}\right)=\chi\left(G_{1}\right)=3$. Therefore $\overline{G^{\prime}}$ is perfect.

Now since join of a complete graph to a perfect graph is perfect we have the following lemma.

Lemma 7 Suppose G^{\prime} is the graph in Lemma 6 and $G=K_{m} * G^{\prime}$ then G is perfect..

Proof of Theorem 5 Let H be the k-uniform c-perfect hypergraph constructed from the graph G of Lemma 7 by using Theorem 4. Let $V(G)=\{1,2, \ldots, m+$ $2 k-1\}$ where the vertex set of K_{m} is label by $\{1,2, \ldots, m\}$. We show that \bar{H} is c-perfect too. First we prove that $A=\{m+1, m+2, . ., m+2 k-1\}$ is a clique of \bar{H}. Let $e=\left\{m+i_{1}, m+i_{2}, \ldots, m+i_{k}\right\}, 1 \leq i_{j} \leq 2 k-1$, is a subset of A. If $i_{1}=1$ then since $m+1$ is only adjecent to $m+k+1$ in G^{\prime} then e is not subset of a cliqe in G^{\prime} and therefore it is not an edge of H. Similarly if $i_{k}=2 k-1$ since $m_{2 k-1}$ is only adjecent to $m+k-1$ then e is not an edge of H. Let for each $2 \leq j \leq k$, we have $2 \leq i_{j} \leq 2 k-2$. Since $k>3$ there exist at least two integer $i_{j_{1}}$ and $i_{j_{2}}$ such that $\left|i_{j_{1}}-i_{j_{2}}\right| \leq k$ therefore e is not a subset of a clique of G^{\prime} and e is an edge of \bar{H}. On the other hand, A is a clique of \bar{H} imply $\omega(\bar{H}) \geq \frac{2 k-1}{k-1}$. Now consider the map

$$
\begin{aligned}
& c: V(\bar{H}) \Rightarrow\{0,1, \ldots, 2 k-1\} \\
& c(x)= \begin{cases}k-1 & x \leq m \\
x-m-1 & x>m\end{cases}
\end{aligned}
$$

If we show that c is a $(2 k-1, k-1)$ - coloring of \bar{H} then $\chi(\bar{H}) \leq \frac{2 k-1}{k-1}$ and since $\chi_{c}(\bar{H}) \geq \omega(\bar{H})$ we have $\chi_{c}(\bar{H})=\omega(\bar{H})=\frac{2 k-1}{k-1}$. Let e be an edge of \bar{H}.
Case 1) e is a subset of A. Since A has $2 k-1$ elements then e has at least two vertices x and y such that $|x-y|=k$ and therefore $|c(x)-c(y)|=k$.
Case 2) Let $e \cap\{1,2, \ldots, m\} \neq \emptyset$ and $x \in e \cap\{1,2, \ldots, m\}$. If $m+1$ or $m+2 k-1$ are in e then $c(x)-c(m+1)=k-1$ or $c(m+2 k-1)-c(x)=k-1$. Let $m+1$ and $m+2 k-1$ are not in e. Since e is not an edge of \bar{H}, there exist at least two vertices a and $b, m+2 \leq a, b \leq m+2 k-1$ such that $k-1 \leq|a-b| \leq k$ and therefore $k-1 \leq|c(a)-c(b)| \leq k$. Thus for every edge of \bar{H} we find at least two vertices such that distance between their colors is between $k-1$ and k. Hence c is a $(2 k-1, k-1)$-coloring of \bar{H}.

Now suppose H^{\prime} be an induced subhypergraph of \bar{H}. If $A \subset V\left(H^{\prime}\right)$ there is nothing to proof. Let there exists $i, 0 \leq i \leq k-1$ such that $m+k+i \notin v\left(H^{\prime}\right)$. Define map

$$
\begin{gathered}
c: V\left(H^{\prime}\right) \Rightarrow\{0,1\} \\
c(i)= \begin{cases}0 & 1 \leq i \leq m+k-1 \\
1 & \text { otherwise }\end{cases}
\end{gathered}
$$

c is a 2- coloring of H^{\prime}. Therefore \bar{H} is c-perfect. Now since $\omega(H) \geq \frac{m}{k-1}$ and $\omega(\bar{H})=\frac{2 k-1}{k-1}$ proof is complete.

Conjecture 1 For every k, n and m there exists a k-uniform c-perfect hypergraph H such that $\omega(H) \geq m, \omega(\bar{H}) \geq n$ and \bar{H} is c-perfect.

References

[1] J.A. Bondy and P. Hell, A Note on the Star Chromatic Number, J. Graph Theory, Vol.14, No.4(1990),479-482.
[2] CH.Eslahchi and A.Rafiey, Circular Chromatic Number Of Hypergraph, Submitted
[3] R. Diestel, Graph Theory, Springer-Verlag New York, Inc.
[4] E. Steffen and X. Zhu, On the star chromatic numbers of graphs, Combinatorica, 16(1996), 439-448.
[5] A. Vince, Star chromatic number, J. Graph Theory, 12(1988), 551-559.
[6] B. West, Introduction to Graph Theory, Prentice Hall, 1998.
[7] X. Zhu, Circular chromatic number, a survey, Discrete Math, No.1-3, Vol.229(2001), 371-410.

