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Abstract. Clubs are generalizations of cliques. For a positive integer s,
an s-club in a graph G is a set of vertices that induces a subgraph of G
of diameter at most s. The importance and fame of cliques are evident,
whereas clubs provide more realistic models for practical applications.
Computing an s-club of maximum cardinality is an NP-hard problem for
every fixed s ≥ 1, and this problem has attracted significant attention
recently. We present new positive results for the problem on large and
important graph classes. In particular we show that for input G and
s, a maximum s-club in G can be computed in polynomial time when
G is a chordal bipartite or a strongly chordal or a distance hereditary
graph. On a superclass of these graphs, weakly chordal graphs, we obtain
a polynomial-time algorithm when s is an odd integer, which is best
possible as the problem is NP-hard on this clas for even values of s. We
complement these results by proving the NP-hardness of the problem for
every fixed s on 4-chordal graphs, a superclass of weakly chordal graphs.
Finally, if G is an AT-free graph, we prove that the problem can be solved
in polynomial time when s ≥ 2, which gives an interesting contrast to
the fact that the problem is NP-hard for s = 1 on this graph class.

1 Introduction

Max Clique is one of the most fundamental problems in graph algorithms.
Cliques model highly connected or correlated parts of networks and data sets,
and consequently they find applications in numerous diverse fields. For many real
problems, however, cliques present a too restrictive measure of connectivity (see
e.g., [1, 15, 25, 31]), and the notion of clubs were proposed to give more realistic
models [3, 26]. Given a graph G = (V,E) on n vertices and an integer s between
1 and n, a vertex subset S ⊆ V is an s-club if the subgraph of G induced by S
has diameter at most s. Hence 1-clubs are exactly cliques, and every s-club is
also an (s + 1)-club by definition. Notice the non-hereditary nature of s-clubs,
which makes their behavior different from that of cliques for s ≥ 2: although
every subset of a clique is a clique, the same is not true for an s-club. In fact,
deciding whether a given s-club is maximal, in the sense that no superset of it
is an s-club, is NP-complete for every fixed s ≥ 2 [27].

? This work is supported by the European Research Council and the Research Council
of Norway.



4−chordal

chordal distance hereditary

strongly chordal

Polynomial for all input s

split

chordal bipartite

AT−free

Polynomial for all input s

Polynomial for all input s

Polynomial for odd input s 

NP−hard for s=2

NP−hard for every even s

NP−hard for every s

weakly chordal

Polynomial for input s > 1

Fig. 1. The inclusion relationship among the mentioned graph classes, where each child
is a subset of its parent. AT-free graphs are not related to the rest. Boxes with thicker
frames contain the results proved in this paper.

Given a graph G and an integer s, the objective of the Max s-Club problem
is to compute an s-club of maximum cardinality. We are interested in the exact
solution of this problem. Note that the problem becomes trivial if G has diameter
at most s.

Max s-Club is NP-hard for every fixed s, even on graphs of diameter s + 1
[7]. It remains NP-hard on bipartite graphs for every fixed s ≥ 3, and on chordal
graphs for every even fixed s ≥ 2 [4]. On split graphs Max 2-Club in NP-
hard [4], whereas Max s-Club has a trivial solution for all input s ≥ 3. On
general graphs, the problem is fixed-parameter tractable when parameterized by
the solution size [13] or by the dual of the solution size [30], for every fixed s.
Fixed-parameter tractability of Max 2-Club has been studied also with respect
to various other parameters [20]. Furthermore, Max s-Club can be solved by
an O(1.62n)-time algorithm [13]. The problem can be solved in polynomial time
on trees and interval graphs for all input values of s, and on graphs of bounded
treewidth and graphs of bounded clique-width for every fixed s that is not a part
of the input [29].

In this paper we show that Max s-Club can be solved in polynomial time
for all odd input values of s on weakly chordal graphs. For subclasses of weakly
chordal graphs, we show that the problem can be solved in polynomial time
for all input values of s on chordal bipartite graphs, strongly chordal graphs,
and distance hereditary graphs. To complement these positive results, we show
that on 4-chordal graphs, which form a superclass of weakly chordal graphs,
the problem is NP-hard for every fixed s. In addition to these results, we show
that the problem is solvable in polynomial time for all input s ≥ 2 on AT-free
graphs. Interestingly, Max Clique is NP-hard on this graph class. The inclusion
relationship among the graph classes mentioned above is illustrated in Fig. 1,
which also summarizes our results.
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2 Definitions and first observations

We refer to the textbook by Diestel [17] for any undefined graph terminology. We
consider finite undirected graphs without loops or multiple edges. Such a graph
G = (V,E) is identified by its vertex set V and its edge set E. Throughout the
paper, we let n = |V | and m = |E|. The subgraph of G induced by U ⊆ V is
denoted by G[U ]. For a vertex v, we denote by NG(v) the set of vertices that are
adjacent to v in G. The distance distG(u, v) between vertices u and v of G is the
number of edges on a shortest path between them. The diameter diam(G) of G
is max{distG(u, v) | u, v ∈ V }. The complement of G is the graph G with vertex
set V , such that any two distinct vertices are adjacent in G if and only if they are
not adjacent in G. For a positive integer k, the k-th power Gk of G is the graph
with vertex set V , such that any two distinct vertices u, v are adjacent in Gk if
and only if distG(u, v) ≤ k. We say that P is a (u, v)-path if P is a path that
joins u and v. The vertices of P different from u and v are the inner vertices of
P . The chordality ch(G) of a graph G is the length of the longest induced cycle
in G; if G has no cycles, then ch(G) = 0. A set of pairwise adjacent vertices is a
clique. A clique is maximal if no proper superset of it is a clique, and maximum
if it has maximum size.

For a non-negative integer k, a graph G is k-chordal if ch(G) ≤ k. A graph G
is weakly chordal if both G and G are 4-chordal. A graph is chordal bipartite if
it is both 4-chordal and bipartite. A graph is chordal if it is 3-chordal. A graph
is a split graph if its vertex set can be partitioned in an independent set and a
clique. A chord xy in a cycle C of even length is said to be odd if the distance
in C between x and y is odd. A graph is strongly chordal if it is chordal and
every cycle of even length at least 6 has an odd chord. A graph G is a distance
hereditary if for any connected induced subgraph H of G, if u and v are in
H, then distG(u, v) = distH(u, v). An asteroidal triple (AT) is a set of three
non-adjacent vertices such that between each pair of them there is a path that
does not contain a neighbor of the third. A graph is AT-free if it contains no
AT. Each of these graph classes can be recognized in polynomial (in most cases
linear) time and they are closed under taking induced subgraphs [9, 18]. See the
monographs by Brandstädt et al. [9] and Golumbic [18] for more properties and
characterizations of these classes and their inclusion relationships.

Let s be a positive integer. A set of vertices S in G is an s-club if diam(G[S]) ≤
s. An s-club of maximum size is a maximum s-club. Given a graph G and a
positive integer s, the Max s-Club problem is to compute a maximum s-club
in G. Cliques are exactly 1-clubs, and hence Max 1-Club is equivalent to Max
Clique.

Observation 1 Let G be a graph and let s be a positive integer. If S is an s-club
in G then S is a clique in Gs.

Although Observation 1 is easy to see, it is important to note that the back-
ward implication does not hold in general: a (maximal) clique in Gs is not
necessarily an s-club. To see this, let s = 2 and consider the graphs shown in
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Fig. 2. Cliques in G2 and 2-clubs.

Fig. 2 a) and b). The set of vertices S shown in black in Fig. 2 a) is the unique
maximum clique of G2

1, but clearly S is not a 2-club in G1, as G1[S] is not even
connected. The example in Fig. 2 b) shows that it does not help to require that
G[S] is connected: the set of black vertices S is a maximal clique in G2

2, G2[S] is
connected, but S is not a 2-club in G2, because distG2[S](u, v) = 3. Observe also
that a maximum s-club in G is not necessarily a maximal clique in Gs. Further-
more, the maximum size of a clique in G2

1 is strictly greater than the maximum
size of a 2-club in G1. For the set of black vertices S in Fig. 2 b), S \ {u} and
S \ {v} are maximum 2-clubs, whereas S is a maximal clique in G2

2.
As we will show in Section 3, for some graph classes, maximal cliques in s-th

powers are in fact s-clubs. For a positive integer s, we say that a graph class G
has the s-clique-power property if for every graph G ∈ G, every maximal clique in
Gs is an s-club in G. Furthermore, we say that G has the clique-power property
if every maximal clique in Gs is an s-club in G, for every positive integer s and
every graph G ∈ G. Due to Observation 1, we see that if G belongs to a graph
class that has the clique-power property, then a vertex set S in G is a maximal
s-club if and only if S is a maximal clique in Gs. As Gs can be computed in time
O(n3) for any positive s, the following is immediate, and it will be the framework
in which we obtain our results.

Proposition 1. Let G be a graph class that has the clique-power property and
let s be a positive integer.

– If Max Clique can be solved in time O(f(n)) on {Gs | G ∈ G}, then Max
s-Club can be solved in time O(f(n) + n3) on G.

– If Max Clique is NP-hard on {Gs | G ∈ G}, then Max s-Club is NP-hard
on G.

3 Graph classes that have the clique-power property

In this section we show that 4-chordal graphs and AT-free graphs have the clique-
power property. We start with 4-chordal graphs, and we consider the cases s = 2
and s ≥ 3 separately in the next two lemmas; the proof of the first is given in
the appendix.
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Lemma 1. 4-Chordal graphs have the 2-clique-power property.

Lemma 2. 4-Chordal graphs have the s-clique-power property for every s ≥ 3.

Proof. To obtain a contradiction, assume that there is an integer s ≥ 3 and a
4-chordal graph G such that Gs has a maximal clique S, but S is not an s-club
in G. Let u, v ∈ S be vertices at distance at least s+1 in G[S]. In particular, u, v
are not adjacent in G. Since u, v ∈ S, distG(u, v) ≤ s. Any shortest (u, v)-path
in G has at least one vertex that is at distance at least s + 1 from some vertex
of S; otherwise all inner vertices of some (u, v)-path of length at most s would
belong to maximal clique S in Gs, and u, v would be at distance at most s in
G[S]. Consider a shortest (u, v)-path P in G that has the minimum number of
vertices at distance at least s + 1 from some vertex of S. Let x be an inner
vertex of P at distance at least s + 1 from a vertex w ∈ S in G. Denote by r
and t the vertices adjacent to x in P . Since P is a shortest path, r and t are
not adjacent. For every vertex h ∈ NG(r) ∩NG(t), let Ph be the path obtained
from P by replacing subpath rxt with rht. Observe that by the choice of P , for
every h ∈ NG(r) ∩ NG(t), Ph is a shortest (u, v)-path, and h is at distance at
least s + 1 from some vertex of S. For every vertex h ∈ NG(r) ∩NG(t), let

Uh = {g ∈ S \ {u, v} | distG(g, h) = s− 1 and distG(g, r) = distG(g, t) = s}.

We may assume that |Ux| = max{|Uh| | h ∈ NG(r) ∩NG(t)}, because otherwise
we can replace rxt with rht in P . Notice that the set Ux might be empty.

Let Q1 be a shortest (u,w)-path in G, and let Q2 be a shortest (v, w)-
path in G. Note that the length of each of these paths is at most s. Since
distG(x,w) > s, x is not in Q1 or Q2, and x is not adjacent to w or any inner
vertex of Q1 or Q2. The construction of P , Q1 and Q2 is shown in Fig. 4 a) in
the appendix. Let X be the union of the vertices belonging to P , Q1, and Q2.
Observe that G[X] contains an induced cycle C that includes vertices x, r, t and
edges xr, xt, because G[X \ {x}] is connected by our construction. Since r, t are
not adjacent and x is not adjacent to any vertex of X \ {r, t}, it follows that C
has at least four vertices. Since G is 4-chordal, C has exactly four vertices. Let
y be a vertex of C different from r, x, t (see Fig. 4 b) in the appendix). Clearly,
y belongs to Q1 or Q2. It follows that distG(w, y) ≤ s− 1, distG(w, r) ≤ s, and
distG(w, t) ≤ s. As distG(w, x) > s, we conclude that distG(w, y) = s − 1, and
distG(w, r) = distG(w, t) = s.

Denote by Q a shortest (w, y)-path in G, and observe that Q has length s−1.
Vertex y belongs to NG(r)∩NG(t). Notice that w ∈ Uy, and thus Uy 6= ∅. Since
|Ux| ≥ |Uy| by our construction, and w /∈ Ux, there is a vertex z ∈ Ux\Uy. By the
definition of Ux, distG(z, r) = distG(z, t) = s. Since z /∈ Uy, distG(z, y) 6= s− 1.
The assumption that distG(z, y) ≤ s− 2 immediately implies that distG(z, r) ≤
s−1, which gives a contradiction. Hence, distG(z, y) ≥ s. Denote by R a shortest
(z, x)-path in G, and note that R has length s− 1 by the definition of Ux. The
construction of Q and R is shown in Fig. 5 in the appendix. Notice that r or t
does not belong to Q or R. Furthermore, r or t is not adjacent to any vertex of
Q or R, except y and x.
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We claim that Q and R have no common vertex and there is no edge between
a vertex of Q and a vertex of R. For contradiction, assume first that Q and R
have a common vertex h. Let R′ be the (h, x)-subpath of R, and let Q′ be
the (h, y)-subpath of Q. Denote by `1 the length of R′ and by `2 the length
of Q′, and assume that `1 ≤ `2. Then consider the following path from w to
x: first take the (w, h)-subpath of Q and then from h to x the (h, x)-subpath
of R. It follows that the length of this path is at most the length of Q, i.e.,
s− 1, which contradicts that distG(w, x) > s. Hence if Q and R have a common
vertex h then `1 > `2. Now consider the following path from z to y: first take
the (z, h)-subpath of R and then the (h, y)-subpath of Q, which has length at
most s − 1. This implies distG(z, y) ≤ s − 1, which contradicts our previous
conclusion that distG(z, y) ≥ s. Consequently P and Q cannot have a common
vertex. Suppose now that G has an edge z′w′ where z′ is in R and w′ is in
Q. We choose z′w′ in such a way that the distance between x and z′ in R is
minimum. Recall that xy /∈ E. If z′y ∈ E, then distG(z, y) ≤ s − 1. Hence,
z′y /∈ E. By the same arguments, xw′ /∈ E. Then the concatenation of xry, the
(y, w′)-subpath of Q, w′z′, and the (z′, x)-subpath of R is an induced cycle on
at least 5 vertices, contradicting that G is 4-chordal. We conclude that Q and R
have neither common vertices nor adjacent vertices.

Since z, w ∈ S, we know that distG(z, w) ≤ s. Let F be a shortest (z, w)-path
in G (see Fig. 5 in the appendix). We claim that vertices x, y, r do not belong
to F , and neither x nor r is adjacent to any vertex of F . If x is in F , then the
(z, x)-subpath of F has length at least the length of R, namely s− 1. But since
xw /∈ E, this contradicts that distG(z, w) ≤ s. Symmetrically, we observe that
y is not in F either. If r is in F , since distG(z, r) = s, then the (z, r)-subpath
of F has length at least s, which contradicts either distG(z, w) ≤ s or F is a
shortest (z, w)-path. Now assume that x is adjacent to some vertex h of F . Since
distG(w, x) ≥ s + 1 ≥ 4, the (z, h)-subpath of F has length at most s − 3, but
then distG(z, x) ≤ s− 2; again a contradiction. Let r be adjacent to a vertex h
of F . Then because distG(r, w) = s, the (w, h)-subpath of F has length at least
s − 1, but then distG(r, z) ≤ 2 < s, and we again obtain a contradiction. To
complete the proof, it remains to notice that the union of the vertices of Q, R,
and F , together with r, induces a subgraph of G with an induced cycle on at
least 5 vertices, but this contradicts our assumption that G is 4-chordal. ut

Theorem 1. 4-Chordal graphs have the clique-power property.

Theorem 1 immediately follows from Lemmas 1 and 2. The example shown
in Fig. 2 b) shows that this result is tight in the sense that 5-chordal graphs do
not have the clique-power property.

Now we turn to AT-free graphs, and we show that they also have the clique-
power property. In the following proof, we use additional terminology: Let u, v
be vertices of G, and let P be a (u, v)-path in G. We say that P sees a vertex x
of G if x belongs to P or x is adjacent to an inner vertex of P .

Theorem 2. AT-free graphs have the clique-power property.
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Proof. To obtain a contradiction, assume that there is an integer s ≥ 2 and an
AT-free graph G = (V,E), such that Gs has a maximal clique S, but S is not
an s-club in G. Let u, v ∈ S be vertices at distance at least s + 1 in G[S]. In
particular, u and v are not adjacent in G.

Since u, v ∈ S, G has a (u, v)-path of length at most s. Let P be a (u, v)-path
of length at most s in G that sees the maximum number of pairwise non-adjacent
vertices of S. Let U ⊆ S be that maximum size set of pairwise non-adjacent
vertices of S that are seen by P . Clearly, u, v ∈ U . The path P has an inner
vertex x at distance at least s+1 from a vertex w ∈ S in G. Otherwise, all inner
vertices of P would be included in the maximal clique S in Gs, and u, v would
be at distance at most s in G[S]. It follows that w is not adjacent to any vertex
of U , because the distance between x and z in the subgraph of G induced by the
vertices of P and U is at most s−1 for any z ∈ U . Furthermore, by construction,
P does not see w. Since u,w ∈ S, G has a (u,w)-path of length at most s. Let Q
be a (u,w)-path of length at most s that sees the maximum number of vertices
of U . By the choice of P , there is at least one vertex r ∈ U such that Q does
not see r. Let W ⊆ U be the set of vertices of U seen by Q; hence r /∈ W . Now
there is a (r, w)-path R of length at most s in G, and by the choice of Q, there
is at least one vertex t ∈W such that R does not see t. The construction of the
paths P , Q and R is shown in Fig. 6 in the appendix.

We claim that {r, t, w} is an AT, contradicting that G is AT-free. Observe
that r, t ∈ U , the vertices of P together with U induce a connected subgraph of
G, and w is not adjacent to any vertex of P or U . Thus G has an (r, t)-path that
does not contain a neighbor of w. Similarly, G has a (t, w)-path each of whose
vertices belongs to Q or W , that does not contain a neighbor of r. Finally, R is
an (r, w)-path that contains no neighbor of t. ut

4 Algorithmic consequences

In this section we obtain tractability and intractability results by combining the
results of Section 3 with Proposition 1.

4.1 Polynomial cases

Max s-Club has been studied on chordal graphs by Asahiro et al. [4]. Their
results assume that chordal graphs have the clique-power property, but the prop-
erty is neither stated nor proved in [4]. Balakrishnan and Paulraja [5, 6] (see
also [2]) showed that odd powers of chordal graphs are chordal. Consequently,
Proposition 1 and Theorem 1 immediately imply that Max s-Club can be
solved in polynomial time on chordal graphs. We can now generalize this re-
sult to weakly chordal graphs using Theorem 1, since weakly chordal graphs
are 4-chordal. Brandstädt et al. [10] proved that odd powers of weakly chordal
graphs are weakly chordal. Hayward et al. [21, 22] showed that Max Clique
can be solved in time O(nm) on weakly chordal graphs. As a consequence of
these results, Proposition 1, and Theorem 1, we obtain the following result.
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Theorem 3. Max s-Club can be solved in time O(n3) on weakly chordal graphs,
for all positive odd input integers s.

Recall that for every even integer s, Max s-Club is NP-hard on chordal
graphs [4], and thus also on weakly chordal graphs and on 4-chordal graphs. For
the strongly chordal subclass of chordal graphs we are able to show polynomial-
time solvability for all values of s. Lubiw [24] showed that any power of a strongly
chordal graph is strongly chordal. With this result, Proposition 1 and Theorem 1
immediately give the following.

Theorem 4. Max s-Club can be solved in time O(n3) on strongly chordal
graphs, for all positive input integers s.

We move to distance hereditary graphs. Recall that they are 4-chordal, and
consequently we can apply Theorem 1. Bandelt et al. [8] proved that even pow-
ers of distance hereditary graphs are chordal, and thus weakly chordal. It also
follows from their results that odd powers of distance hereditary graphs are
weakly chordal. Combining this with Proposition 1 and Theorem 1, we obtain
the following result.

Theorem 5. Max s-Club can be solved in time O(n3) on distance hereditary
graphs, for all positive input integers s.

Notice that if s is a fixed integer and not a part of the input, then the
problem can be solved in linear time on distance hereditary graphs [29] because
these graphs have clique-width at most 3 [19].

Chordal bipartite graphs form another subclass of 4-chordal graphs and of
weakly chordal graphs. By Theorem 3, Max s-Club can be solved in polynomial
time on chordal bipartite graphs, for odd values of s. For even values of s, s-th
powers of chordal bipartite graphs are not necessary weakly chordal. In fact they
are not even perfect, as illustrated in Fig. 7, which is given in the appendix. A
graph is perfect if neither the graph nor its complement contains an induced cycle
of odd length [14]. Perfect graphs form a superclass of weakly chordal graphs, and
Max Clique is solvable in polynomial time on them. Unfortunately, we cannot
use this, due to the above. Still, we are able to solve Max s-Club on chordal
bipartite graphs in polynomial time for even s using the following structural
result that we find interesting also on its own.

Lemma 3. Let G = (X,Y,E) be a chordal bipartite graph and let s be any
positive integer. Then Gs[X] and Gs[Y ] are chordal graphs.

Proof. By symmetry, it is sufficient to prove the lemma for Gs[X]. Since the
lemma is trivially true for s = 1, let us assume that s ≥ 2 for the rest of the proof.
For contradiction suppose there is an induced cycle C = x0, x1, . . . , xk−1, x0 of
length at least 4 in Gs[X]. For ease of notation, let xk = x0, and read all indices
modulo k throughout the proof. It follows that for every i between 0 and k − 1,
there is a shortest (xi, xi+1)-path Pi of length at most s in G.
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For every i, we first show that there is no edge xy ∈ E with x ∈ Pi and y ∈ Pj ,
for j /∈ {i − 1, i, i + 1}. For contradiction suppose there is such an edge xy for
some i. Without loss of generality we may assume that k > j > i+ 1. Since C is
an induced cycle, xixj is not an edge of Gs and xi+1xj+1 is not an edge of Gs.
Let P be the path obtained by the concatenation of the (xi, x)-subpath of Pi and
edge xy and the (y, xj)-subpath of Pj (see Fig. 8 a) in the appendix). Similarly,
let Q be the path obtained by the concatenation of the (xi+1, x)-subpath Pi

and edge xy and the (y, xj+1)-subpath of Pj . Observe that both P and Q have
length at least s + 1, because otherwise xixj or xi+1xj+1 would be an edge of
Gs. Let `1 be the length of the (xi, x)-subpath of P , and let `2 be the length of
the (y, xj)-subpath of P . Thus the length of P is `1 + `2 + 1, and consequently
`1 + `2 ≥ s. Observe that the length of Q is at most 2s− `1 − `2 + 1, and since
the length of Q is at least s + 1, we have 2s − `1 − `2 ≥ s. Combining this
inequality with `1 + `2 ≥ s, we conclude that `1 + `2 = s. This implies that both
P and Q have length exactly s + 1. We can further conclude that both Pi and
Pj have length exactly s. However, since xi, xi+1, xj , xj+1 are all in X, and G
is a bipartite graph, there cannot be paths of length both s and s + 1 between
pairs of these vertices in G, which gives the desired contradiction.

The above also implies that Pi and Pj do not have common vertices for
j /∈ {i− 1, i, i+ 1}, since this would imply an edge between a vertex of Pi and a
vertex of Pj , under the above assumptions.

As a consequence of the above, if there is an edge in G between a vertex of
Pi and a vertex of Pj , then we can assume that j = i + 1. Observe that there is
always an edge between every pair of consecutive paths Pi and Pi+1, and they
might also share some vertices. For every i, we will call an edge xy ∈ E with
x ∈ Pi and y ∈ Pi+1 a long chord with respect to x if there is no other vertex
y′ in the (y, xi+2)-subpath of Pi+1 such that xy′ ∈ E. Observe that xi is not
adjacent to any vertex of Pi+1 except possibly xi+1, since C is an induced cycle
in Gs and thus xixi+2 is not an edge in Gs. We will now follow the long chords
between consecutive paths, and construct an induced cycle C ′ in G as follows.
Start with any vertex x ∈ P1. Pick a vertex y in P0 such that yx ∈ E and the
(y, x1)-subpath of P0 is longest. We traverse P1 from x to x2, and as soon as
we come to a vertex that is adjacent to a vertex in P2, we take the first long
chord and go to P2. For each i from 2 to k − 1, we continue in this manner
from Pi to Pi+1: once we are on Pi we continue on Pi towards xi+1 and we take
the first long chord to Pi+1. At the end once we are in Pk−1, we take the first
edge y′y′′ such that y′ ∈ Pk−1 and y′′ ∈ P0 and y′′ is not an inner vertex of the
(y, x1)-subpath of P0. If y′ has other neighbors that are on the (y′′, y)-subpath of
P0 then we take as y′′ such a neighbor that is closest to y. We continue from y′′

to y on P0 and use the edge yx to close the cycle. Observe that, by the choices
we made, the (y′′, y)-subpath of P0 is the only portion on P0 that contributes
to C ′, and no vertex on this subpath is adjacent to y′ or x′, except y′′ that is
adjacent to y′, and y that is adjacent to x. All other edges of C ′ are long chords
or portions of Pi that do not contain any neighbor of Pi+1, and hence C ′ is an
induced cycle. Since there is no induced cycle of length more than 4 in G, and C ′
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contains distinct vertices from each Pi for 0 ≤ i ≤ k−1, we conclude that k = 4.
Consequently, C ′ consists of y0, y1, y2, y3, such that yi ∈ Pi and yiyi+1 ∈ E, for
i = 0, 1, 2, 3. A possible way these paths can interact is depicted in Fig. 8 b) in
the appendix. Let `i be the length of the (xi, yi)-subpath of Pi, and let `′i be
the length of the (yi, xi+1)-subpath of Pi, for i = 0, 1, 2, 3. Since C is an induced
cycle in Gs, xixi+2 is not an edge of Gs, and we can conclude that `i + `′i ≤ s
and `i + `′i+1 ≥ s, for i = 0, 1, 2, 3. Adding up all four pairs of inequalities, we
obtain that `i + `′i = s and `i + `′i+1 = s, for i = 0, 1, 2, 3. Consequently, we
have a path between xi and xi+2 of length s+ 1 using the (xi, yi)-subpath of Pi,
the edge yiyi+1, and the (yi+1, xi+2)-subpath of Pi+1, whereas the length of Pi

is s. Since x0, . . . xk−1 ∈ X and G is bipartite, we cannot have paths of length
both s and s + 1 between pairs of them. Therefore our initial assumption that
Gs[X] contained an induced cycle of length at least 4 is wrong, and Gs[X] is
chordal. ut

The following theorem now follows from Lemma 3, and its proof is given in
the appendix.

Theorem 6. Max s-Club can be solved in time O(n4) on chordal bipartite
graphs, for all positive input integers s.

Finally we move to AT-free graphs. Max Clique is NP-hard on AT-free
graphs [28], and hence Max 1-Club is NP-hard on AT-free graphs. Chang et
al. [12] showed that for every s ≥ 2 and every AT-free graph G, Gs is a cocom-
parability graph. Cocomparability graphs form a subclass of AT-free graphs.
Fortunately Max Clique can be solved in polynomial time on cocomparability
graphs [18]. This, combined with Proposition 1 and Theorem 2, gives the next
result.

Theorem 7. Max s-Club can be solved in time O(n3) on AT-free graphs, for
all positive input integers s ≥ 2.

4.2 Hardness on 4-chordal graphs

In Section 4.1 we proved that Max s-Club can be solved in polynomial time
on several subclasses of 4-chordal graphs. Here we complement these results by
showing that the problem is NP-hard on 4-chordal graphs. By Proposition 1, it is
sufficient to show that Max Clique is NP-hard on powers of 4-chordal graphs.

A 2-subdivision of a graph is obtained by replacing every edge with a path
of length three. A graph is a 2-subdivision if it is a 2-subdivision of some graph.
Given a graph G and an integer k, the decision problem Clique asks whether
G has a clique of size at least k, and the decision problem Independent Set
whether G has an independent set of size at least k. Clearly, X is a clique in G
if and only if X is an independent set in G. We use this duality to obtain the
following lemma whose proof is given in the appendix.

Lemma 4. Clique is NP-complete on 4-chordal graphs of diameter at most 2.
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Theorem 8. Clique is NP-complete on {Gs | G is 4-chordal }, for every posi-
tive integer s.

Proof. Asahiro et al. [4] proved that Clique is NP-complete on even powers of
chordal graphs, and consequently on even powers of 4-chordal graphs. For s = 1,
the statement of Theorem 8 follows immediately from Lemma 4. Hence, it is
sufficient to prove the theorem for odd s > 1. Let s = 2r + 1 for r ≥ 1. We give
a reduction from Clique on 4-chordal graphs of diameter at most 2, which is
NP-complete by Lemma 4.

Let G = (V,E) be a 4-chordal graph of diameter at most 2, which is input
to Clique together with an integer k. Let V = {u1, . . . , un}, and let H be the
graph obtained from G as follows: for each i ∈ {1, . . . , n}, we add r new vertices
v1i , . . . , v

r
i and r new edges uiv

1
i , v1i v

2
i , . . ., vr−1i vri to G. In other words, we attach

a path v1i , v
2
i ; . . . , vri to every vertex ui of G, via edge uiv

1
i . Let us denote by

U the set of vertices {u1, . . . , un} ∪ (∪r−1i=1 {vi1, . . . vin}). Since diam(G) ≤ 2 and
s = 2r + 1, we can observe the following:

– U is a clique in Hs,
– for every i ∈ {1, . . . n}, vri is adjacent to every vertex of U in Hs,
– for every pair i, j ∈ {1, . . . , n}, vri and vrj are adjacent in Hs is and only if

ui and uj are adjacent in G.

Consequently, every maximal clique in Hs contains U as a subset. Further-
more, any set {ui1 , . . . , uik} of k vertices in G is a clique of G if and only if
{vri1 , . . . , v

r
ik
} ∪ U is a clique in Hs. Since |U | = rn, we conclude that G has a

clique of size at least k if and only if Hs has a clique of size at least k + rn,
which completes the reduction. ut

Theorem 8 and Proposition 1 immediately give the following result.

Theorem 9. Max s-Club is NP-hard on 4-chordal graphs, for every positive
integer s.
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29. Schäfer, A.: Exact algorithms for s-club finding and related problems (2009), diplomarbeit,

Institut für Informatik, Friedrich-Schiller-Universität Jena
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Appendix: Proofs and figures omitted in the main part

Lemma 1. 4-Chordal graphs have the 2-clique-power property.

Proof. To obtain a contradiction, assume that there is a 4-chordal graph G =
(V,E) such that G2 has a maximal clique S, but S is not a 2-club in G. Let
u, v ∈ S be vertices at distance at least 3 in G[S]. This means in particular that
u, v are not adjacent in G.

w

Ut

x

y z

W
u

r v

Fig. 3. Construction of P,Q,R in the proof of Lemma 1.

Since u, v ∈ S, there is a (u, v)-path of length at most 2 in G. As u and v are
not adjacent, every such a path has length 2. Let P be a (u, v)-path of length
2 in G such that the middle vertex x of P is adjacent to the maximum number
of pairwise non-adjacent vertices of S. Denote by U ⊆ S a maximum size set
of pairwise non-adjacent vertices of S that are adjacent to x. Clearly, u, v ∈ U .
Vertex x is at distance at least 3 from a vertex w ∈ S in G. Otherwise x would
belong to maximal clique S in G2, and u, v would be at distance at most 2 in
G[S]. It follows that w is not adjacent to the vertices of U , because G has no
(x,w)-path of length 2. Clearly, xw /∈ E. Since u,w ∈ S, there is a (u,w)-path
of length at most 2. Since uw /∈ E, any such a path has length 2. Let Q be a
(u,w)-path of length 2 such that the middle vertex y of Q is adjacent to the
maximum number of vertices of U . By the choice of P , vertex y is not adjacent
to at all vertices of U , say yr /∈ E for some r ∈ U . Let W ⊆ U be the set of
vertices of U adjacent to y. Now there is a (r, w)-path R of length at most 2 in
G. We observe that R has length 2 and denote by z the middle vertex of R. By
the choice of Q, z is not adjacent to at least one vertex t ∈ W , and y 6= z. The
construction of the paths P , Q and R is shown in Fig. 3.

Observe that xy, xz /∈ E, because distG(x,w) ≥ 3. Recall also that r, t, w are
pairwise non-adjacent and ry, tz /∈ E. If yz /∈ E, then {r, x, t, y, w, z} induces a
chordless cycle of length 6 in G; contradicting that G is 4-chordal. If yz ∈ E,
then {r, x, t, y, z} induces a chordless cycle of length 5 in G, and we again get a
contradiction. ut
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y
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a)

Fig. 4. Construction of P,Q1, Q2 in the proof of Lemma 2.
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Q w
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F

Fig. 5. Construction of Q,R, F in the proof of Lemma 2.
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P

v wr

Q

R

UWu

Fig. 6. Construction of P,Q,R in the proof of Theorem 2.

G

v1

u1

v2

u2

u3

v3

u4

v4

u5

v5

Fig. 7. A chordal bipartite graph G is shown. For a positive even integer s and i =
1, . . . , 5, the vertices ui and vi are joined by a path of length (s − 2)/2 (ui = vi for
s = 2) in G. Then the vertices v1, . . . , v5 induce a cycle of length 5 in Gs.
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a)

Fig. 8. The paths described in the proof of Lemma 3.

Theorem 6. Max s-Club can be solved in time O(n4) on chordal bipartite
graphs, for all positive input integers s.

Proof. For a chordal bipartite graph G = (X,Y,E), denote by Gs
bip[X,Y ] the

bipartite graph obtained from Gs by removing the edges of Gs whose both
endpoints are either in X or in Y . Any maximal clique S in Gs can be partitioned
into S1 and S2 such that S1 is a clique in Gs[X], S2 is a clique in Gs[Y ], and
Gs

bip[S1, S2] is a complete bipartite graph (biclique). We can thus generate all
maximal cliques of Gs and pick a maximum one as follows. For every maximal
clique X ′ of Gs[X] and every maximal clique Y ′ of Gs[Y ], find a maximum
biclique of Gs

bip[X ′, Y ′]. By Lemma 3, the disjoint union of Gs[X] and Gs[Y ] is
a chordal graph on n vertices. Every such chordal graph has at most n maximal
cliques, and these can be generated in O(n2) time [32]. After this, in at most
n2 bipartite graphs we need to find a maximum biclique. Maximum bicliques in
bipartite graphs can be found in polynomial time [16], and hence we can find a
maximum clique in Gs in polynomial time. From Proposition 1 and Theorem 1,
it then follows that Max s-Club can be solved in polynomial time on chordal
bipartite graphs for all s. Using arguments similar to those in the proof of Lemma
3, it can be shown that Gs

bip[X,Y ] is a chordal bipartite graph, for every positive
s; this also follows from the results of Chandran and Mathew [11]. A maximum
biclique can be computed in time O(n2) on chordal bipartite graphs [23], and
hence the claimed running time follows. ut
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Lemma 4. Clique is NP-complete on 4-chordal graphs of diameter at most 2.

Proof. Let G = (V,E) be a 2-subdivision on at least 5 vertices. We show that
G is a 4-chordal graph of diameter at most 2. First, G cannot have an induced
cycle on 5 vertices, as it would imply that G has an induced cycle on 5 vertices,
but every induced cycle in G has length at least 9. If C is an induced cycle on
at least 6 vertices in G, then the vertices of C induce a subgraph with a triangle
in G, but G has no triangles. Hence, G is 4-chordal. Let x and y be any pair
of distinct vertices of G. If they are not adjacent in G, then xy ∈ E. Because
G is a 2-subdivision with at least 5 vertices, there is a vertex z in G such that
z 6= x, y, and z is not adjacent to x or y. It follows that z is adjacent to both x
and y in G, and hence distG(x, y) ≤ 2. Therefore, diam(G) ≤ 2.

To conclude the proof of the lemma, it is sufficient to observe that Indepen-
dent Set is known to be NP-complete for 2-subdivisions [18, 28]. ut
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