Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems

Arash Rafiey
Department of Informatics, University of Bergen, Norway
arash.rafiey@ii.uib.no *

Abstract

We consider two classical problems related to interval graphs. Let G be an input graph with n vertices and m edges and let k be a fixed parameter. We provide a fixed parameter algorithm that decides whether it is possible to turn G into an interval graph by deleting at most k vertices from G. This solves an open problem posed by Marx [19]. The running time of the algorithm is $O\left(c^{k} n(n+m)\right), c=\min \{18, k\}$.

We also provide an algorithm with running time $O\left(c^{k} n(n+m)\right), c=\min \{17, k\}$ that transforms G into an interval graph by adding at most k edges to G if such a transformation is possible. Our algorithm improves the previous algorithm with running time $O\left(k^{2 k} n^{3} m\right)$ appeared in [24].

The algorithms are based on a structural decomposition of G into smaller subgraphs when G is free from small interval graph obstructions. The decomposition allows us to manage the search tree more efficiently.

1 Introduction

An interval graph is a graph G which admits an interval representation, i.e., a family of intervals $I_{v}, v \in V(G)$, such that $u v \in E(G)$ if and only if I_{u} and I_{v} intersect. Interval graphs have been characterized in many different ways $[8,9,12,18]$.

The following theorem is the best known characterization.

Theorem 1.1 [18] G is an interval graph if and only if it contains no asteroidal triple and no induced cycle $C_{\ell}, \ell \geq 4$.

An asteroidal triple, AT, is an induced subgraph of G with three none adjacent vertices a, b, c such that for every permutation x, y, z of a, b, c there is a path between x, y outside the neighborhood of z. A graph G is chordal if it does not contain an induced cycle $C_{\ell}, \ell \geq 4$. Cycle C_{ℓ} in G is induced if it does not have any chord; an edge in G joining two non-adjacent vertices

[^0]of the cycle. In the rest of the paper for simplicity we assume the cycles are induced and instead of an induced cycle we say a cycle.

The k-interval deletion problem is : Given a graph G and integer k, one asks whether there is a way of deleting at most k vertices from G such that the resulting graph is interval.

The k-interval completion (minimum interval completion) problem is : Given a graph G and integer k, one asks whether there is a way of adding at most k edges to G such that the resulting graph is interval.

Both k-interval deletion problem and k-interval completion problem are known to be NP-hard [10,16$]$ when k is part of the input. The k-chordal completion and k-proper interval completion problem are defined respectively. These problems arise in area such as sparse matrix computations [11], database management [1, 23], computer vision [3], and physical mapping of DNA [11, 13]. Due to their practical applications they have been extensively studied.

A parameterized problem with parameter k and input size x that can be solved by an algorithm with runtime $f(k) \cdot x^{O(1)}$ is called a fixed parameter tractable (FPT) where $f(k)$ is a computable function of k (see [6] for an introduction to fixed parameter tractability and bounded search tree algorithms). An early result related to k-interval completion problem is due to Kaplan, Shamir and Tarjan [15]. They gave an FPT algorithm for k-chordal completion, k-strongly chordal completion, and k-proper interval completion problem. The first FPT algorithm with runtime $O\left(k^{2 k} n^{3} m\right)$ for the k-interval completion problem was developed by Villanger, Heggernes, Paul and Telle [24].

The k-interval deletion problem was posed by D.Marx [19]. He considered the k-chordal deletion problem as follows. Given an input graph G and a parameter k, one asks whether there is a way of deleting at most k vertices from G such that the resulting graph becomes chordal. Marx deployed a heavy machinery to obtain an FPT algorithm for k-chordal deletion problem.

In the approximation world, there is no constant approximation algorithm for minimum interval completion problem. The first $O\left(\log ^{2} n\right)$-approximation algorithm for minimum interval completion was obtained by Ravi, Agrawal and Klein [21] and then it was improved to an $O(\operatorname{logn} \log \log n)-$ approximation by Even, Naor, Rao and Schieber [7] and finally to an $O(\log n)-$ approximation algorithm by Rao and Richa [20]. There are polynomial time algorithms for minimum interval completion on special classes of graphs. The minimum interval completion is polynomial time solvable on trees. Kuo and Wang [17] gave an $O\left(n^{1.77}\right)$ algorithm minimum interval completion on trees and then it was improved to $O(n)$ algorithm by Diaz, Gibbons, Paterson and Torn [4].

We use deep structural graph theory analysis to obtain a single exponential FPT algorithms for the k-interval deletion problem and k-interval completion problem.

We consider simple, finite, and undirected graphs. For a graph $G, V(G)$ is the vertex set of G and $E(G)$ is the edge set of G. For every edge $u v \in E(G)$, vertices u and v are adjacent or neighbors. The neighborhood of a vertex u in G is $N_{G}(u)=\{v \mid u v \in E(G)\}$, and the closed neighborhood of u is $N_{G}[u]=N_{G}(u) \cup\{u\}$. When the context will be clear we will omit the subscript. A set $X \subseteq V(G)$ is called clique of G if the vertices in X are pairwise adjacent. A maximal clique is a clique that is not a proper subset of any other clique. For $U \subseteq V$, the subgraph of G induced by U is denoted by $G[U]$ and it is the graph with vertex set U and edge set equal

Figure 1: Some small ATs
to the set of edges $u v \in E$ with $u, v \in U$. For every $U \subseteq V, G^{\prime}=G[U]$ is an induced subgraph of G. By $G \backslash X$ for $X \subseteq V$, we denote the graph $G[V \backslash X]$. For two disjoint subsets X, Y of $V(G)$, $S \subset G-(X \cup Y)$ is a (X, Y)-separator if there is no path from any vertex of X to any vertex in Y in $G \backslash S$. Let G_{1}, G_{2} be two subgraph of graph G. For simplicity, we denotes $V\left(G_{1}\right) \cap V\left(G_{2}\right)$ by $G_{1} \cap G_{2}$ and for subset X of $V(G), X \cap G_{1}$ denotes $X \cap V\left(G_{1}\right)$. For a subset P of vertices in G, let $N(P)$ denote the neighborhood of P and $N[P]$ be the closed neighborhood of P. We do not use many non-standard terminologies and definitions and we refer to a standard text book in graph theory such as [5].

2 Outline

In the rest of this paper for simplicity we assume the cycles are induced and instead of an induced cycle we say a cycle. We always refer to the cycles of length at least four unless we specify the length. Note that according to the definition of AT, every cycle $C_{\ell}, \ell \geq 6$ contains an AT. However for our purpose we distinguish the AT's and cycles. Suppose G contains a small induced subgraph Z which is either a small AT (See Figure 1) or a cycle of length at most nine. Then we consider all the possible ways of deleting (adding) one vertex (a few edges when Z is a cycle) from (to) Z and hence we can follow a search tree with at most 9 branches and obtain a FPT algorithm with run time $O\left(9^{k} n(m+n)\right)$. This is a standard technique in developing FPT algorithms (For example see [2]). Thus in what follows we may assume that:
Every cycle in G has length at least 10 and G does not contain a small AT as an induced subgraph, i.e., G does not contain small obstructions.

Under this assumption if G does not contain any cycle then either G is an interval graph or it contains only two types of AT; so called big AT, depicted in Figure 2.

Let $S_{a, b, c}$ denote an AT over the vertices $a, b, c . S_{a, b, c}$ with the vertex set $a, b, c, u, v_{1}, v_{2}, \ldots, v_{p}$ and the edge set

$$
E\left(S_{a, b, c}\right)=\left\{a v_{1}, v_{1} v_{2}, \ldots, v_{p-1} v_{p}, v_{p} b, u v_{1}, u v_{2}, \ldots, u v_{p}, u c\right\}
$$

is called type 1 AT. $S_{a, b, c}$ with vertex set $a, b, c, u, w, v_{1}, v_{2}, \ldots, v_{p}$ and the edge set

$$
E\left(S_{a, b, c}\right)=\left\{a u, b w, c u, c w, a v_{1}, b v_{p}, u v_{1}, w v_{1}\right\} \cup\left\{v_{i} v_{i+1}, u v_{i+1}, w v_{i+1} \mid 1 \leq i \leq p-1\right\}
$$

is called type 2 AT. Here $p \geq 6$.
Definition 2.1 For $A T S_{a, b, c}$, let $G[a, b, c]$ be the induced subgraph of G on the vertices outside the neighborhood of c and adjacent to some vertices in $\left\{v_{3}, v_{4}, \ldots, v_{p-2}\right\}$. We say $S_{a, b, c}$ is ripe if $G[a, b, c]$ is an interval graph.

Figure 2: Big ATs

An overview of the k-interval deletion algorithm:

There are two main steps in the algorithm.

Step 1) G is a chordal graph.

If G is not interval then according to our assumption it contains a big AT. We show that there exists a ripe $A T$ in G. The algorithm starts with a ripe AT $S_{a, b, c}$, and it proceeds as follows.

- Branch by deleting one of the vertices $\left\{a, b, u, c, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p-5}, v_{p-4}\right.$,

$$
\left.v_{p-3}, v_{p-2}, v_{p-1}, v_{p}\right\}
$$

- Branch by deleting all the vertices in X, where X is a minimum set of vertices outside the neighborhood of c that separates v_{6} from v_{p-5} outside the neighborhood of c

For the correctness we show the following lemma.

Lemma 2.2 Let G be a chordal graph without small AT's and let $S_{a, b, c}$ be a ripe AT. Let X be a minimum separator in $G-N(c)$ that separates v_{6} from v_{p-5} and X contains a $v_{j}, 7 \leq j \leq p-6$. Then there is a minimum set of deleting vertices F such that $G-F$ is an interval graph and at least one of the following holds:
(i) F contains at least one vertex from

$$
\left\{a, b, u, c, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p-5}, v_{p-4}, v_{p-3}, v_{p-2}, v_{p-1}, v_{p}\right\}
$$

(iii) F contains all the vertices in X.

Briefly speaking we start with a chordal graph G and find a minimum big AT, $S_{a_{0}, b_{0}, c_{0}}$ (the length of the path between a_{0}, b_{0} is minimum among all other AT's). The interaction of $S_{a_{0}, b_{0}, c_{0}}$ with the rest of the graph is special. Now we look at $G\left[a_{0}, b_{0}, c_{0}\right]$ and if there is an AT in $G\left[a_{0}, b_{0}, c_{0}\right]$ then we continue our search with that AT. Eventually we find a ripe AT $S_{a, b, c}$ (the details are in section 3).

The none trivial part of the algorithm is the decision for deleting a vertex $v_{j}, 7 \leq j \leq p-6$. We show that if v_{j} belongs to a minimum separator X that separate v_{6} from v_{p-5} in $G \backslash N(c)$ then deleting v_{j} is a right a decision. The intuition behind the separator is, in order to obtain an interval graph we must break all the paths from a to b outside the neighborhood of c.

In order to prove the Lemma 2.2 we need to investigate the vertex intersection of some other AT $S_{x, y, z}$ with $S_{a, b, c}$. We show that if $S_{x, y, z}$ has intersection with $\left\{v_{7}, v_{8}, \ldots, v_{p-6}\right\}$ then X also contains a deleting vertex (a possible solution) for $S_{x, y, z}$. The ripeness of AT $S_{a, b, c}$ allows us to show that there are three possible nice configurations (see subsection 3.1 AT and AT interaction and Figures $4,5,6)$. The most important vertex intersection is shown in Figure 4 that facilitates the proof of the Lemma 2.2. The most important vertex intersection is shown in Figure 5 that facilitates the proof of the Lemma 2.2. The bound $6, \ldots, p-5$ helps to prove that if AT $S_{x, y, z}$ has a vertex in $\left\{v_{7}, v_{8}, \ldots, v_{p-6}\right\}$ then we must have one of the configurations depicted in Figures $4,5,6$ (see Lemma 3.18) otherwise the entire $S_{x, y, z}$ lies in $G[a, b, c]$ and it contradict the ripeness of $S_{a, b, c}$.

Step 2) G is not chordal. Let C be a shortest cycle in G. The absence of the small obstructions allows us to partition the vertices in $N[C]$ into two sets $D(C)$ and $N[C] \backslash D(C)$, such that every vertex x in $D(C)$ is adjacent to every vertex in $N[C]-x$. We start with the following definition.

Definition 2.3 We say a shortest cycle $C \quad(10 \leq|C|)$ of G is clean if for every cycle C_{1} ($10 \leq\left|C_{1}\right|$) in $N[C]-D(C)$, every vertex in C_{1} is adjacent to at most three consecutive vertices in C and $N\left[C_{1}\right]$ contains C, i.e., C_{1} goes around C. We say C is ripe if it clean and it does not contain any AT in its closed neighborhood.

Statement 1. If G is not chordal then there exists a clean cycle C in G.

In order to obtain a clean cycle we start with an arbitrary shortest cycle C_{0} and then we show that for every other cycle C_{1} in $N\left[C_{0}\right]$, either $V\left(C_{0}\right) \subseteq N\left[C_{1}\right]$ or $V\left(C_{1}\right)$ is contained in the neighborhood of at most two consecutive vertices of C_{0}. If the first case happens then C_{0} is the desired cycle otherwise the search for a clean cycle is continued in the subgraph of G induced by $N\left[C_{1}\right]-V\left(C_{0}\right)$.

Statement 2. Consider a clean cycle C that is not ripe. Let $S_{a, b, c}$ be a big AT such that $V\left(S_{a, b, c}\right) \subseteq N[C](N[C]$ is the closed neighborhood of $C)$. Then we can assume that $S_{a, b, c}$ lies in the union of the neighborhood of at most three consecutive vertices of C.

Step 2.1) Start with a clean cycle C. If C is not ripe then consider big AT $S_{a, b, c}$ in $N[C]$ and let u, v, w be three consecutive vertices of C such that $N[\{u, v, w\}]$ contains the vertex set $S_{a, b, c}$. Apply the algorithm for the chordal case on the subgraph of G induced by $N[\{u, v, w\}]$. This procedure is repeated as long as C is not ripe.

Step 2.2) Start with a ripe cycle C. Find a minimum set X of vertices in $N[C]-D(C)$
whose deletion break all the cycles in $N[C]-D(C)$.

Set X is called a minimum cycle-separator. At this point the algorithm either deletes all the vertices in C, or it deletes all the vertices in X at once. We show that the choice of set X is arbitrary. For the correctness of Step 2 we show the following lemma.

Lemma 2.4 Let C be a ripe cycle and let X be a minimum cycle-separator in $N[C]$. Then there is a minimum set of deleting vertices F such that $G-F$ is an interval graph and at least one of the following holds:
(i) F contains all the vertices of the cycle C.
(ii) F contains all the vertices in X.

Let $C=v_{0}, v_{1}, \ldots, v_{p-1}, v_{0}$. In order to find set X, for every $0 \leq i \leq p-1$ we find a minimum set of vertices X_{i} that separates v_{i} from v_{i+3} in $W_{i}=N\left[\left\{v_{i+1}, v_{i+2}\right\}\right]-D(C) . X$ is the smallest set X_{i}. Note that W_{i} is an interval graph since C is ripe.

In order to prove the lemma we need to analyze the interaction of ripe cycle C with the others big AT's. We show that if a vertex of big AT $S_{x, y, z}$ belongs to C then for every vertex v in C one of the vertices of $S_{x, y, z}$ can be replaced by v to obtain a new AT (For example $S_{x, y, v}$ is an AT). This justifies the first item of the lemma (See Figure 8). If no such $S_{x, y, z}$ exists then item (ii) of the lemma is justified.

The overall complexity of the algorithm for k-interval deletion is $O\left(c^{k} n(m+n)\right)$ where $c=\min \{18, k\}$. By using slightly more restricted definition for ripe AT we can get a better running time $O\left(12^{k} n(n+m)\right)$.

An overview of the k-interval completion algorithm :

Suppose input graph G contains cycle C of length at least 4. In order to obtain an interval graph we must add a set of at least $|C|-3$ edges into vertices of C, or equivalently we need to triangulate cycle C. It is not difficult to see that there are at most $O\left(4^{|C|-3}\right)$ different ways of triangulating cycle C. Thus we branch on all different ways of triangulating cycle C, and after each of them the parameter k decreases by $|C|-3$. As explained before we handle the small AT's by branching on possible add edges (at most 8 possible ways).

For the sake of clarification and simplicity we just explain what we do when dealing with AT of type 1 . The algorithm treats the type 2 AT very similar to the type 1 .

We need to add at least one edge e to $S_{a, b, c}$ such that $S_{a, b, c} \cup\{e\}$ is no longer induces an AT in G. We add one of the edges $c v_{i}, 1 \leq i \leq 6$ or one of the edges $c v_{i}, p-5 \leq i \leq p$ or we add one of the edges $a u, b u, a v_{p}, b v_{1}$ (and $a b$ if of type 2). If we add edge $a v_{p}$ then we need to find a minimal triangulation of the cycle $a, v_{1}, \ldots, v_{p}, a$ (However we show that we can assume that this triangulation has a special form, but considering any minimal triangulation would be fine). The main non-trivial case is a decision for adding an edge $c v_{j}$ for some $7 \leq j \leq p-6$. We show that we can add the edge $c v_{j}$ when v_{j} belongs to a minimum (v_{6}, v_{p-5})-separator outside
the neighborhood of c. This allows us to get a single exponential FPT algorithm (see Figure 3). We prove the following lemma.

Lemma 2.5 Let G be a chordal graph without small ATs and let $S_{a, b, c}$ be a ripe AT with the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$. Let X be a minimum separator in $G-N(c)$ that separates v_{6} from v_{p-5} and it contains a vertex $v_{i}, 7 \leq j \leq p-6$. Then there is a minimum set of edges F such that $G \cup F$ is an interval graph and at least one of the following holds:
(i) F contains at least one edge from

$$
\left\{b u, a u, c v_{1}, c v_{2}, c v_{3}, c v_{4}, c v_{5}, c v_{6}, c v_{p-5}, c v_{p-4}, c v_{p-3}, c v_{p-2}, c v_{p-1}, c v_{p}\right\}
$$

(ii) F contains all the edges $a v_{i}, 2 \leq i \leq p$ (and ab when $S_{a, b, c}$ is of type 2)
(iii) F contains all the edges $b v_{i}, 1 \leq i \leq p-1$ (and ab when $S_{a, b, c}$ is of type 2)
(iv) F contains all edges $E_{X}=\{c x \mid x \in X\}$.

We need to take into account two issues. There might be a situation in which the edge $c v_{r}$ $7 \leq r \leq p-6, r \neq j$ is also an add edge (part of a optimal solution) for some other AT $S_{x, y, z}$. We investigate the AT and AT (add) edge in common and we show that there are two possible configurations (see Figures 11 and 12). The most interesting configuration is when $z=c$ and v_{r} is a vertex of the path $P_{x, y}$. In this case we show that at least one edge of E_{X} is an add edge for $S_{x, y, z}$ and hence the item (iv) of the above lemma is justified. The second issue is when we add the edge $c v_{j}$ to $S_{a, b, c}$ we might create new AT's and hence the choice of $c v_{j}$ matters. Here again the ripeness of $S_{a, b, c}$ plays an important role. In fact the set X is a clique containing v_{j} and adding edges E_{X} would not yield a new AT with the vertex set $V\left(S_{a, b, c}\right) \cup V(G[a, b, c])$. We further show that the optimal solution also has to treat an AT $S_{a, b, c^{\prime}}$ (where $c c^{\prime}$ is an edge of G, and path $P_{a, b}$ is the same in both AT's) similar to $S_{a, b, c}$ and hence we conclude the lemma.

Overall the running time of the algorithm is $O\left(c^{k} n(n+m)\right), c=\min \{17, k\}$. By using slightly more restricted definition for ripe AT we can get a better running time $O\left(11^{k} n(n+m)\right)$.

The paper is organized as follows. In Section 3 we investigate the structure of a chordal graph G which does not contain small ATs as induced subgraphs. We start with a minimum AT, and then we obtain a ripe AT $S_{a, b, c}$. Next we consider the interaction (vertex intersection) of another minimum AT, $S_{x, y, z}$ with $S_{a, b, c}$. The $S_{a, b, c}$ and $S_{x, y, z}$ interact in a very particular way. In Section 4 we consider k-interval deletion problem. In Subsection 4.1 we consider the case when G is chordal and does not contain neither small ATs as induced subgraph. If G is chordal then the results in Section 3 with regard to the vertex interaction of $S_{a, b, c}$ and $S_{x, y, z}$ enable us to reduce the number of branches in a search tree into a constant number and hence we obtain an efficient FPT algorithm. In Subsection 4.2 we deal with the non-chordal case. We start with a shortest cycle C and we show that any other cycle (of length more than 8) in $N[C]$ interact with C in a special way due to absence of the small obstructions. The interaction between cycle C and AT $S_{a, b, c}$ is investigated and we show that either $S_{a, b, c}$ lies in the neighborhood of at most three consecutive vertices of C or the entire path $P_{a, b}$ of $S_{a, b, c}$ lies outside the neighborhood of C. Finally the main algorithm is presented at Section 4.3 and its correctness is proved. In Section 5 we consider the Interval completion problem. In Subsection 5.1 we further investigate the edge interaction of
$S_{a, b, c}$ and $S_{x, y, z}$, i.e., when $S_{a, b, c}$ and $S_{x, y, z}$ have an edge in common. The edge interaction occurs in a special way and we make a use of it to get a single exponential FPT for k-interval completion problem. In Subsection 5.2 we present the main algorithm for interval completion problem and we prove its correctness.

3 Structure when G is chordal and there are no small AT's

In this section we assume that G is chordal and it does not contain small AT's (See Figure 1). By the results of Lekkerkerker and Boland [18], every other possible minimal AT in G is one of two graphs depicted in Figure 2.

Let $S_{a, b, c}$ denote an AT with the vertices a, b, c, such that the path between a, c and the path between b, c are of length 2 and the path between a, b has length at least 7. Vertex c is called a shallow vertex.

Definition 3.1 We say $A T S_{a, b, c}$ is of type 1 if $S_{a, b, c}$ has the vertex set $\left\{a, b, c, u, v_{1}, v_{2}, \ldots, v_{p}\right\}$ and the edge set

$$
\left\{a v_{1}, c u, b v_{p}, u v_{1}\right\} \cup\left\{v_{i} v_{i+1}, u v_{i+1} \mid 1 \leq i \leq p-1\right\} .
$$

Vertex u is called a center vertex. We set $v_{0}=a$ and $v_{p+1}=b$.

Definition 3.2 We say AT $S_{a, b, c}$ is of type 2 if $S_{a, b, c}$ has the vertex set $\left\{a, b, c, u, w, v_{1}, v_{2}, \ldots, v_{p}\right\}$ and the edge set

$$
\left\{a u, b w, c u, c w, a v_{1}, b v_{p}, u v_{1}, w v_{1}\right\} \cup\left\{v_{i} v_{i+1}, u v_{i+1}, w v_{i+1} \mid 1 \leq i \leq p-1\right\} .
$$

The vertices u, w are called central vertices. We set $v_{0}=a$ and $v_{p+1}=b$.
Let G^{\prime} be an induced subgraph of G, and let $S_{a, b, c}$ be an AT in G^{\prime}. We say $S_{a, b, c}$ is minimum if among all the AT, $S_{a^{\prime}, b^{\prime}, c^{\prime}}$ in G^{\prime} the path between a, b in $S_{a, b, c}$ has the minimum number of vertices and if there is a choice we assume that $S_{a, b, c}$ is of type 1 . We denotes the path $a, v_{1}, v_{2}, \ldots, v_{p}, b$ by $P_{a, b}$.

Definition 3.3 We say a vertex x is a dominating vertex for $S_{a, b, c}$ if x is adjacent to all the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{p-1}, v_{p}$.

In the rest of this paper the set of dominating vertices for $S_{a, b, c}$ is denoted by $D(a, b, c)$. The following lemma shows the relationship of minimum $S_{a, b, c}$ with the other vertices of G.

Lemma 3.4 Let G be a chordal graph without small ATs. Let $S_{a, b, c}$ be a minimum AT with a path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$. Let x be a vertex in $G \backslash S_{a, b, c}$. Then the following hold.
(1) If $c x$ is an edge of G then $u x$ is an edge of G when $S_{a, b, c}$ is of type 1 , and $x u, x w$ are edges of G when $S_{a, b, c}$ is of type 2 .
(2) If $S_{a, b, c}$ is of type 1 and x is adjacent to v_{j}, for some $2 \leq j \leq p-1$, then x is adjacent to u.
(3) If $S_{a, b, c}$ is of type 2 and x is adjacent to v_{j}, for some $1 \leq j \leq p$, then x is adjacent to both u and w.
(4) Let vertex x be adjacent to c. If x is adjacent to v_{i}, for some $0 \leq i \leq p+1$, then x is a dominating vertex for $S_{a, b, c}$.
(5) Every vertex $x \in G \backslash N(c)$ is adjacent to at most three vertices of the path $a, v_{1}, \ldots, v_{p}, b$. Moreover, the neighbors of x are consecutive vertices in the path $a, v_{1}, \ldots, v_{p}, b$.
(6) If $x \in G \backslash N(c)$ is adjacent to $v_{i}, 3 \leq i \leq p-2$, then every vertex $y \in G \backslash N(c)$ adjacent to x, is also adjacent to at least one of the vertices $v_{j}, i-2 \leq j \leq i+2$.
(7) If x is adjacent to some $v_{i}, 2 \leq i \leq p-1$, then x is adjacent to every dominating vertex y.
(8) If $x \in G \backslash N(c)$ is adjacent to some $v_{i}, 2 \leq i \leq p-1$, and x is adjacent to some $y \in N(c)$, then y is a dominating vertex .

Proof: (1). Let us first suppose that $S_{a, b, c}$ is of type 1. If $x u$ is not an edge of G, then x should be adjacent to at least one of the vertices v_{1}, v_{p}, a, and b, because otherwise vertices $x, c, u, v_{1}, v_{p}, a, b$ induce a small AT in G. If $x a$ is an edge, then because G is chordal, the cycle induced by $\left\{x, c, u, v_{1}, a\right\}$ should have chord $x v_{1}$. Similarly, if $\{x, b\}$ are adjacent, so should be $\left\{x, v_{p}\right\}$. But neither $x v_{1}$, nor $x v_{p}$ can form an edge of G because otherwise we obtain an induced 4 -cycle x, c, u, v_{1} or x, c, v_{p}, b in chordal graph G.

Now suppose that $S_{a, b, c}$ is of type 2. Targeting towards a contradiction, let us assume that $x w$ is not an edge. Then $x b$ is not an edge because otherwise x, c, w, b would induce C_{4} in G. Furthermore, $x v_{1}$ is not an edge because otherwise C_{4} is induced by vertices x, c, w, and v_{1}. We also note that $x a$ is not an edge as otherwise x, a, v_{1}, w, c would induce C_{5} in G. Thus if x is not adjacent to w, then x cannot be adjacent to a, b and v_{1}. But then set $\left\{x, c, u, w, v_{1}, v_{p}, a, b\right\}$, even when x and u are adjacent, induces a small AT in G, which is a contradiction. Similar argument implies that $x u$ is an edge.
(2). If $x u$ is not an edge then by (1), vertices x and c are not adjacent. Then vertex x has at most three neighbors among the vertices of path $P_{a, b}$. This is because otherwise, there will be a shorter (a, b)-path in G passing through x and avoiding the closed neighborhood of c. But then vertices of this paths together with u and c induce an AT $S_{a, b, c}^{\prime}$ of size smaller than the size of $S_{a, b, c}$. This is a contradiction to the choice of $S_{a, b, c}$. Thus x has at most three neighbors in $P_{a, b}$. Let $v_{i}, i \leq j$, be the leftmost neighbor of x in $P_{a, b}$, and $v_{k}, k \leq j$, be the rightmost neighbor. We observe that $k-i \leq 2$, because otherwise we obtain cycle of length at least four in G. Because G has no small ATs and thus $n \geq 7$, we have that either $i \geq 2$, and in this case vertices $a, v_{1}, v_{2}, \ldots, v_{i}, x, c, u$ induce a smaller AT than $S_{a, b, c}$, or $k \leq p-1$, and then $x, v_{k}, v_{k+1}, \ldots, v_{p}, b, u, c$ form a smaller AT.
(3). The proof here is similar to the proof of (2).
(4). We prove the statement when $S_{a, b, c}$ is of type 1 . The argument for when $S_{a, b, c}$ is of type 2 is similar. By (1), $x u$ is an edge. If x is adjacent to v_{i} for some $0 \leq i \leq p-1$, then $x v_{i+2}$ is also an edge of G as otherwise the vertices $a, v_{1}, \ldots, v_{i+2}, c, x$ induce a smaller AT $S_{a, v_{i+2}, c}$. In this case we note that $x v_{i+1}$ is also an edge because vertices $x, v_{i}, v_{i+1}, v_{i+2}$ would induce C_{4} otherwise. Similarly if x is adjacent to $v_{j}, 2 \leq j \leq p+1$, then $x v_{j-2}$ is an edge as otherwise the vertices $b, v_{p}, v_{p-1}, \ldots, v_{i-2}, c, x$ induce smaller AT $S_{a, v_{i-2}, c}$. In this case we note that $x v_{i-1}$ is also an
edge as otherwise there would be an induced C_{4} on $x, v_{i}, v_{i-1}, v_{i-2}$. By applying these arguments inductively, we obtain that x is adjacent to every v_{i}, for $2 \leq j \leq p-1$. Now if none from the pairs $x v_{1}, x v_{p}$ is an edge, then $v_{1}, v_{2}, \ldots, v_{p}, x, c$ induce smaller AT $S_{v_{1}, v_{p}, c}$, a contradiction. Therefore we may assume that x should be adjacent either to v_{1}, or to v_{p}. Let us assume, without loss of generality, that x is adjacent to v_{1}. Now if $x v_{p}$ is not an edge, then $a, v_{1}, v_{2}, \ldots, v_{p-1}, c, x$ is a smaller AT when $a x$ is not an edge. We conclude that if $x v_{p}$ is not an edge, then $x a, x v_{1}$ are edges of G. However $c, x, u, a, v_{1}, v_{2}, \ldots, v_{p}$ induce an AT $S_{a, v_{p}, c}$ of type 2 and the path between a, v_{p} is shorter the path between a, b in $S_{a, b, c}$, this is a contradiction. Therefore $x v_{p}$ is an edge.
(5). If there was a vertex $x \in G \backslash N(c)$ adjacent to more than three vertices in the path $P_{a, b}$ then there is a shorter path between a, b using vertex x avoiding neighborhood of c. Thus we construct a smaller AT. The neighbors are consecutive vertices of the path because otherwise we obtain cycle of length at least four.
(6). If y is adjacent to none of the vertices $v_{i-2}, v_{i-1}, \ldots, v_{i+2}$, then vertices $y, x, v_{i}, v_{i-2}, v_{i-1}, v_{i+1}$, v_{i+2} induce a smaller AT unless x is adjacent to v_{i-2} or v_{i+2}. Suppose that x is adjacent to v_{i-2}. Now by (6), x is adjacent to v_{i-1}. By (5), x cannot be adjacent to more than 3 vertices of the path v_{1}, \ldots, v_{p}, and thus x is not adjacent to v_{i-3} and v_{i+1}. Vertex y is not adjacent to v_{i-3} because vertices v_{i-3}, v_{i-2}, x, y do not induce a cycle. In this case vertices $v_{i-3}, v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, x, y$ induce a small AT.
(7). If x is adjacent to c then by (4), x is a dominating vertex and hence x is adjacent to y as otherwise x, y, v_{1}, v_{3} induces a C_{4}. So we may assume that $x \notin N(c)$. By (5), y should be adjacent to c. In this case, if x is not adjacent to y, then either $c, u, x, y, v_{i}, v_{i+1}, \ldots, v_{p}, b$, or $a, v_{1}, v_{2}, \ldots, v_{i}, y, x, u, c$ induce a smaller AT.
(8). If y is adjacent to at least one vertex v_{i} for some $0 \leq i \leq p+1$, then by (4) y is a dominating vertex for $S_{a, b, c}$. Let us assume that y is non-adjacent to all vertices $v_{i}, 0 \leq i \leq p+1$. Now $S_{a, b, y}$ has exactly the same number of vertices as $S_{a, b, c}$, and thus is also a minimum AT. By applying item (4) for $S_{a, b, y}$ we conclude that x is a dominating vertex for $S_{a, b, y}$ and hence x is adjacent to more than three vertices in the path $P_{a, b}=a, v_{1}, \ldots, v_{p}, b$. This is a contradiction to (5) because by assumption $x \in G \backslash N(c)$.

The following Lemma follows from item (4) of Lemma 3.4.
Lemma 3.5 Let $S_{a, b, c}$ be a minimum AT with a path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center vertex u (central vertices u, w). Let Q be a chordless path from c to some $v_{i}, 0 \leq i \leq p+1$. Then the second vertex of Q is a dominating vertex for $S_{a, b, c}$. Moreover if $1 \leq i \leq p$ then the length of Q is 2 .

Proof: Let $Q=c, c_{1}, c_{2}, \ldots, c_{r}, v_{i}$ be a chordless path from c to $v_{i}, 0 \leq i \leq p+1$. Suppose c_{1} is adjacent to some vertex $v_{j}, 0 \leq j \leq p+1$. Then by Lemma 3.4(4), c_{1} is a dominating vertex for $S_{a, b, c}$ and hence $c_{1} v_{j}$ is an edge for every $1 \leq j \leq p$. If $j \neq 0, p+1$ then $c_{1} v_{i}$ is an edge and hence $r=1$ and lemma is proved. Thus we assume that c_{1} is not adjacent to any v_{j}, $0 \leq j \leq p+1$. By Lemma 3.4 (1), $u c_{1}$ is an edge. This implies that $S_{a, b, c_{1}}$ is an AT with the same number of vertices as $S_{a, b, c}$. Now by applying the same argument for $S_{a, b, c_{1}}$ we conclude that c_{2} is a dominating vertex for $S_{a, b, c_{1}}$. However by item (6) of Lemma 3.4 for $S_{a, b, c}, c_{2}$ is a dominating vertex for $S_{a, b, c}$ and hence by item (5) of Lemma 3.4 we conclude that c_{2} is adjacent
to c. This is a contradiction to Q being a chordless path.
Let G be a chordal graph without small ATs. Let $S_{a, b, c}$ be a minimum AT in G. Then by item (5) of Lemma 3.4, every vertex x of $G \backslash N(c)$ has at most three neighbors in the $P_{a, b}$ path, and moreover, these neighbors should be consecutive vertices of this path. Note that we assume $v_{0}=a$ and $v_{p+1}=b$. We introduce the following notations. We define the following subsets of $G \backslash N(c)$

- S_{i} vertices adjacent to v_{i} and not adjacent to any other $v_{j}, j \neq i, 1 \leq i \leq p$;
- D_{i} vertices adjacent to v_{i}, v_{i+1} and not adjacent to any other $v_{j}, j \neq i, i+1,0 \leq i \leq p$;
- T_{i} vertices adjacent to $v_{i}, v_{i+1}, v_{i+2}, 0 \leq i \leq p-1$.

The following corollary is obtained from Lemma $3.4(1,7,8)$.
Corollary 3.6 Let $S_{a, b, c}$ be a minimum AT. Then the vertices in $D(a, b, c)$ form a clique. Every vertex adjacent to c is also adjacent to every dominating vertex. Moreover every vertex in $D(a, b, c)$ is also adjacent to c.

Definition 3.7 For minimum AT, $S_{a, b, c}$ let $B[a, b]$ be the set of vertices in $D_{0} \cup T_{0} \cup D_{1} \cup$ $S_{1} \cup\left\{v_{1}\right\} \cup S_{2}$ and $E[a, b]$ be the set of the vertices in $S_{p-1} \cup D_{p-1} \cup T_{p-1} \cup D_{p} \cup S_{p} \cup\left\{v_{p}\right\}$.

Definition 3.8 For minimum AT, $S_{a, b, c}$ let $G[a, b, c]=G\left[\left\{x \mid x \in N\left[v_{i}\right] \backslash N(c) ; 3 \leq i \leq p-2\right\}\right]$.
Since every vertex in $G[a, b, c]$ is adjacent to some $v_{i}, 3 \leq i \leq p-2$ by Lemma 3.4(7) we have the following.

Corollary 3.9 Every vertex in $G[a, b, c]$ is adjacent to every vertex in $D(a, b, c)$.
Lemma 3.10 Let x be a vertex adjacent to some vertex in $G[a, b, c]$. Then x is adjacent to every vertex in $D(a, b, c)$.

Proof: If $x \in N(c)$ then by Corollary 3.6 the Lemma holds. Therefore we may assume that $x \notin N(c)$. Let $x x^{\prime}$ be an edge of G for some $x^{\prime} \in G[a, b, c]$. By definition of $G[a, b, c], x^{\prime}$ is adjacent to some $v_{i}, 3 \leq i \leq p-2$. By Lemma 3.4 (6), x is adjacent to some $v_{j}, i-2 \leq j \leq i+2$. If x is adjacent to one of the v_{i-1}, v_{i}, v_{i+1} then by Lemma 3.4(7) x is adjacent to every vertex in $D(a, b, c)$.
Therefore w.l.o.g assume that x is adjacent to v_{i-2} and not adjacent to any of v_{i-1}, v_{i}. Now we observe that x^{\prime} is adjacent to v_{i-2}, v_{i-1}, v_{i} as otherwise we obtain an induced C_{4} or induced C_{5} with the vertices $v_{i-2}, v_{i-1}, v_{i}, x^{\prime}, x$. Now by replacing v_{i-1} with x^{\prime} we obtain a minimum AT $\left(S_{a, b, c}\right)^{\prime}$ with the same number of vertices as $S_{a, b, c}$, and path $P_{a, b}^{\prime}=a, v_{1}, \ldots, v_{i-2}, x^{\prime}$, v_{i}, \ldots, v_{p}, b. Note that $2 \leq i-1 \leq p-1$. Thus the set $D(a, b, c)$ is also the set of dominating vertices for $\left(S_{a, b, c}\right)^{\prime}$. Now because $x x^{\prime}$ is an edge Lemma 3.4(7) for $\left(S_{a, b, c}\right)^{\prime}$ implies that x is adjacent to every vertex in $D(a, b, c)$.

Figure 3: $\mathrm{G}[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ and outside

Lemma 3.11 Let $S_{a, b, c}$ be a minimum AT. Then $D(a, b, c) \cup B[a, b] \cup E[a, b]$ separates $G[a, b, c]$ from the rest of the graph.

Proof: We need to show that if $x \in G \backslash\left(\left\{v_{1}, v_{p}\right\} \cup D_{0} \cup S_{1} \cup D_{1} \cup T_{0} \cup S_{p} \cup D_{p-1} \cup T_{p-1} \cup D_{p} \cup\right.$ $D(a, b, c) \cup V(G[a, b, c]))$ then there is no edge from x to $y \in G[a, b, c]$. For contradiction suppose $x y$ is an edge. We also note that $x \notin N(c)$ as otherwise by Lemma 3.5, x is a dominating vertex for $S_{a, b, c}$ and we get a contradiction. By definition of $G[a, b, c], y$ is adjacent to $v_{i}, 3 \leq i \leq p-2$. First suppose $y \in\left\{v_{2}, v_{p-1}\right\}$. Now x is adjacent to v_{2} or x is adjacent to v_{p-1}. Since x is adjacent to at most three consecutive vertices on the path $P_{a, b}, x$ lies in $\left\{v_{1}, v_{p}\right\} \cup S_{2} \cup T_{0} \cup S_{p} \cup D_{p-1} \cup T_{p-1} \cup D_{p}$. This implies that $x \in B[a, b] \cup E[a, b]$. We continue by assuming that $y \in V(G[a, b, c]) \backslash\left\{v_{2}, v_{p-1}\right\}$. Now we apply Lemma $3.4(6)$ for y and we conclude that x is adjacent to one of the vertices $v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}$. Therefore x is in $N\left[v_{r}\right], 1 \leq r \leq p$. We observe that $r \in\{1,2, p-1, p\}$ as otherwise by definition x is in $G[a, b, c]$. Therefore $x \in B[a, b] \cup E[a, b]$.

The following Lemma is obtained by applying similar argument in Lemma 3.5.
Lemma 3.12 Let $S_{a, b, c}$ be a minimum AT with a path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center vertex $u(u, w)$. Then every chordless path from c to $d \in G[a, b, c]$ has length 2 and the intermediate vertex of this path is a dominating vertex for $S_{a, b, c}$.

Lemma 3.13 Let $S_{x, y, z}$ be a minimum AT in $G[a, b, c]$ with a path $P_{x, y}=x, w_{1}, w_{2}, \ldots, w_{q}, y$ ($x=w_{0}, y=w_{q+1}$) and center vertex u^{\prime} (central vertices u^{\prime}, w^{\prime} if of type 2). Then there exists $2 \leq i \leq p-1$, such that v_{i} is a dominating vertex for $S_{x, y, z}$.

Proof: If $u^{\prime} \in\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ then $u^{\prime}=v_{j} \in\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ is a dominating vertex for $S_{x, y, z}$. Note that by definition of $G[a, b, c]$ we have $2 \leq j \leq p-1$. Therefore we may assume that u^{\prime} is not on the path $P_{a, b}$.

We first show that $v_{i} \neq z$. For contradiction suppose $z=v_{i}$. Observe that the conditions of the Lemma 3.4(1) are applied for $S_{x, y, z}$ and hence v_{i-1} is adjacent to u^{\prime} and v_{i+1} is adjacent to u^{\prime}. First suppose v_{i+1} is not adjacent to any vertex $w_{j}, 0 \leq j \leq q+1$. By replacing v_{i} with v_{i+1} we get a minimum AT, $S_{x, y, v_{i+1}}$ with the same number of vertices as $S_{x, y, v_{i}}$, and hence by

Lemma 3.4(1), v_{i+2} must be adjacent to u^{\prime}. This implies that u^{\prime} is adjacent to more than three vertices of the path $P_{a, b}$. Since $u^{\prime} \notin N(c)$, we get a contradiction by Lemma 3.4(5). Therefore v_{i+1} must be adjacent to some w_{j}. Similarly we conclude that v_{i-1} must be adjacent to some $w_{j^{\prime}}$, $0 \leq j^{\prime} \leq q+1$. By applying the item (4) of Lemma 3.4 for $S_{x, y, v_{i}}, v_{i-1}$ is a dominating vertex for $S_{x, y, v_{i}}$ and similarly v_{i+1} is also a dominating vertex for $S_{x, y, v_{i+1}}$. But this is a contradiction because by Corollary $3.6 v_{i-1} v_{i+1}$ is an edge. Therefore we have the following fact.
(f) For every minimum $A T, S_{x^{\prime}, y^{\prime}, z^{\prime}} \subseteq G[a, b, c]$ we have $z^{\prime} \neq v_{i}, 2 \leq i \leq p-1$.

Now suppose $z \in S_{i} \cup D_{i} \cup T_{i}$ and $v_{i} z$ is an edge of G. Note that $v_{i} u^{\prime}$ is also an edge by Lemma 3.4(1). Now if v_{i} is not adjacent to any vertex of the path $P_{x, y}$ then $S_{x, y, v_{i}}$ is also a minimum AT with the same number of vertices as $S_{x, y, z}$ and we get a contradiction by (f). Thus we conclude that v_{i} is adjacent to some vertex $w_{j}, 0 \leq j \leq q+1$ and hence by Lemma 3.4(4), v_{i} is a dominating vertex for $S_{x, y, z}$.

Definition 3.14 We say an $A T, S_{a, b, c}$ is ripe if there is no $A T$ in $G[a, b, c]$, i.e., $G[a, b, c]$ is an interval graph.

Remark: Note that a ripe AT may not be necessary a minimum AT. But for the purpose of the algorithm we often use a minimum ripe $A T$ and by that we mean an $A T$ which is ripe and it is minimum among all the ripe $A T^{\prime}$ in a subgraph of G. In what follows when we say ripe $A T$ we mean minimum ripe AT.

Looking for a ripe AT, starting with a minimum AT $S_{a_{0}, b_{0}, c_{0}}$.

We start with minimum AT, $S_{a_{0}, b_{0}, c_{0}}$. If $G\left[a_{0}, b_{0}, c_{0}\right]$ is interval then $S_{a_{0}, b_{0}, c_{0}}$ is the answer. Otherwise we find a minimum AT, $S_{a_{1}, b_{1}, c_{1}}$ in $G\left[a_{0}, b_{0}, c_{0}\right]$. Note that according to Lemma 3.13 there is a vertex v_{i} (on the path $P_{a_{0}, b_{0}}$) that is a dominating vertex for $S_{a_{1}, b_{1}, c_{1}}$. We say $S_{a_{0}, b_{0}, c_{0}}$ dominates $S_{a_{1}, b_{1}, c_{1}}$ at v_{i}. Now we define the sets $S_{i}^{1}, D_{i}^{1}, T_{i}^{1}$ with respect to the vertices on the path $P_{a_{1}, b_{1}}=a_{1}, w_{1}, w_{2}, \ldots, w_{q}, b_{q}$ (the same way we define them for $S_{a_{0}, b_{0}, c_{0}}$). If necessary the search is continued for other AT dominated by $S_{a_{1}, b_{1}, c_{1}}$. See the Algorithm 1 for more details.

```
Algorithm 1 Looking for a ripe AT
    1. Start with an arbitrary minimum AT, \(S_{a_{0}, b_{0}, c_{0}}\), and set \(i=0, G_{0}=G\).
    2. Define \(G_{i}\left[a_{i}, b_{i}, c_{i}\right]\) in \(G_{i} \backslash N\left(c_{i}\right)\) (see definition 3.8) and set \(G_{i+1}=G_{i}\left[a_{i}, b_{i}, c_{i}\right]\).
    3. If there is no AT in \(G_{i+1}\), report \(S_{a_{i}, b_{i}, c_{i}}\) as a ripe AT and exit.
    4. If \(i>k\) then report NO solution and exit.
    5. Let \(S_{a_{i+1}, b_{i+1}, c_{i+1}}\) be a minimum AT, in \(G_{i+1}\)
    6. increase \(i\) by one and go to (2).
```

Lemma 3.15 The Algorithm 1 reports a ripe AT and terminates after at most k steps.

Figure 4: $u^{\prime} \in D(a, b, c)$ and $P_{x, y} \cap B[a, b] \neq \emptyset, P_{x, y} \cap E[a, b] \neq \emptyset$

Proof: Suppose $S_{a, b, c}$ dominates $S_{a^{1}, b^{1}, b^{1}}$ at some vertex v_{i}. Then by Lemma 3.13, v_{i} is a dominating vertex for $S_{a^{1}, b^{1}, c^{1}}$. If $S_{a^{1}, b^{1}, c^{1}}$ also dominates $S_{a^{2}, b^{2}, c^{2}}$ at some vertex w_{j} on the path $P_{a^{1}, b^{1}}$ then by Lemma 3.4 item (2) or (3) the vertices of $S_{a^{2}, b^{2}, c^{2}}$ are all adjacent to v_{i} (since v_{i} is a dominating vertex for $S_{a, b, c}$. Now it is easy to see that $S_{a^{r}, b^{r}, c^{r}}$ does not dominate $S_{a, b, c}$, as otherwise the vertices on the path $S_{a, b, c}$ must be all adjacent to some vertex in the neighborhood of v_{i} which is not possible. Therefore there is no domination from an AT at step i in the Algorithm 1 to an AT at step $j<i$. Thus the algorithm reports a ripe AT after at most k steps. Note that the number of AT's found in the Algorithm 1 can not be more than k.

3.1 AT and AT interaction

Remark: In the following three Lemmas we consider the vertex intersection of a minimum AT, $S_{x, y, z}$ with a ripe AT, $S_{a, b, c}$. There are only four possible interaction configurations for these two ATs. In two of these configurations the central vertex (vertices) of $S_{x, y, z}$ lie in dominating set of $S_{a, b, c}$. In two of these configurations the path $P_{x, y}$ has no intersection with $G[a, b, c]$ and in one situation every vertex in $P_{a, b}$ has a neighbor in $P_{x, y}$. In two situations if $V\left(S_{x, y, z}\right) \cap N\left[v_{i}\right]=T$, for some $7 \leq i \leq p-6$ then $T=\{x\}$ or $T=\{y\}$. See the Figures $4,5,6$.

Lemma 3.16 Let $S_{a, b, c}$ be a ripe AT. Let $S_{x, y, z}$ be a minimum AT with a path $P_{x, y}=$ $x, w_{1}, \ldots, w_{q}, y$, and center vertex (central vertices) $u^{\prime}\left(u^{\prime}, w^{\prime}\right)$ such that $u^{\prime} \in D(a, b, c) \quad\left(u^{\prime}, w^{\prime} \in\right.$ $D(a, b, c)$ if of type 2) and $V\left(S_{x, y, z}\right) \cap G[a, b, c] \neq \emptyset$. Then one of the following happens:

1. $P_{x, y} \cap B[a, b] \neq \emptyset$ and $P_{x, y} \cap E[a, b] \neq \emptyset$ and every $v_{i}, 1 \leq i \leq p$ has a neighbor in $P_{x, y}$ (See the Figure 4).
2. $z \in G[a, b, c]$ and $P_{x, y} \cap G[a, b, c]=\emptyset$ and for every vertex $z^{\prime} \in G[a, b, c], S_{x, y, z^{\prime}}$ is an $A T$ with the same path $x, w_{1}, w_{2}, \ldots, w_{q}, y$ (See the Figure 5).

Figure 5: $z \in G[a, b, c]$ and $P_{x, y} \cap G[a, b, c]=\emptyset$

Proof: By Corollary 3.9 every dominating vertex is adjacent to every vertex in $G[a, b, c]$. Therefore none of the x, y is in $G[a, b, c]$ as otherwise $x u^{\prime}\left(x w^{\prime}\right.$ when $S_{a, b, c}$ is of type 2) or $y u^{\prime}$ is an edge. Moreover by Corollary $3.6 x, y \notin D(a, b, c)$.

Now since $S_{x, y, z}$ has intersection with $G[a, b, c]$, we have two cases:
Case 1. $P_{x, y} \cap G[a, b, c] \neq \emptyset$. There exists some w_{j}, such that $w_{j} \in G[a, b, c]$. We show that $2 \leq j \leq q-1$. Otherwise w.l.o.g assume that $w_{1} \in G[a, b, c]$. Since $x w_{1}$ is an edge, by Lemma $3.10 x$ is adjacent to every vertex in $D(a, b, c)$ and in particular x is adjacent to $u^{\prime}\left(u^{\prime}, w^{\prime}\right)$ and hence we get a contradiction.

We continue by assuming that $w_{j} \in G[a, b, c]$ and $2 \leq j \leq p-2$. By definition of $G[a, b, c], w_{j}$ is adjacent to some vertex $v_{i}, 3 \leq i \leq p-2$.

We first show that $P_{x, y} \cap D(a, b, c)=\emptyset$. For contradiction suppose $w_{t} \in D(a, b, c), 1 \leq t \leq q$. Now by Corollary $3.9 w_{t}$ is adjacent to w_{j} and hence $t=j+1$ or $t=j-1$. W.l.o.g assume that $t=j+1$. Since $w_{j-1} w_{j}$ is an edge of G and w_{j+1} is a dominating vertex for $S_{a, b, c}$, by Lemma 3.10, $w_{j-1} w_{j+1}$ is an edge of G, a contradiction. Therefore $P_{x, y} \cap D(a, b, c)=\emptyset$.

Since $x, y \notin G[a, b, c]$ and no vertex of $P_{x, y}$ is in $D(a, b, c)$, by Lemma 3.11 we conclude $B[a, b] \cap P_{x, y} \neq \emptyset$ or $E[a, b] \cap P_{x, y} \neq \emptyset$.

Observation 1. If for some $v_{i}, N\left[v_{i+1}\right] \cap P_{x, y} \neq \emptyset$ and $N\left[v_{i-1}\right] \cap P_{x, y} \neq \emptyset$ then $N\left[v_{i}\right] \cap P_{x, y} \neq \emptyset$. Otherwise we get cycle of length at least four with the vertices v_{i-1}, v_{i}, v_{i+1} and part of $P_{x, y}$ from $N\left[v_{i+1}\right]$ to $N\left[v_{i-1}\right]$.

Now by Observation 1 if $B[a, b] \cap P_{x, y} \neq \emptyset$ and $E[a, b] \cap P_{x, y} \neq \emptyset$ we conclude (1). Therefore w.o.l.g assume that $B[a, b] \cap P_{x, y}=\emptyset$ and $E[a, b] \cap P_{x, y} \neq \emptyset$.

By Observation 1 and because $B[a, b] \cap P_{x, y}=\emptyset$ we conclude that there exists a maximum number $3 \leq r \leq p-2$ such that $N\left[v_{r}\right] \cap P_{x, y} \neq \emptyset$ and for every $1 \leq \ell \leq r-1, N\left[v_{\ell}\right] \cap P_{x, y}=\emptyset$. Now let i^{\prime} be the first index such that $w_{i^{\prime}}$ is in $N\left[v_{r}\right]$ and j^{\prime} is the last index such that $w_{j^{\prime}}$
is in $N\left[v_{r}\right]$. Recall that $2 \leq i^{\prime}, j^{\prime} \leq q-1$ (Note that j^{\prime} could be the same as i^{\prime}). However $v_{r-2}, v_{r-1}, v_{r}, w_{i^{\prime}}, w_{i^{\prime}-1}, w_{i^{\prime}-2}, w_{j^{\prime}}, w_{j^{\prime}+1}, w_{j^{\prime}+2}$ induce a small AT.

Case 2. $\quad P_{x, y} \cap G[a, b, c]=\emptyset$. Since $G[a, b, c] \cap V\left(S_{x, y, z}\right) \neq \emptyset, z \in G[a, b, c]$. By definition of $G[a, b, c] ; z$ is adjacent to some vertex $v_{i}, 3 \leq i \leq p-2$. We show that v_{i} is not adjacent to any vertex $w_{j}, 0 \leq j \leq q+1$. Otherwise by applying Lemma 3.4(4) for $S_{x, y, z} ; v_{i}$ is a dominating vertex for $S_{x, y, z}$ and now $v_{i} w_{1} \in E(G)$ implies that w_{1} is in $G[a, b, c]$ which is a contradiction. (Note that w_{j} is not in $D(a, b, c)$ since $z w_{1}$ is not an edge). Therefore $S_{x, y, v_{i}}$ is minimum AT and has the same number of vertices as $S_{x, y, z}$ and the same path $P_{x, y}$.

Now by repeating the same argument for $S_{x, y, v_{j}}$ starting from $j=i$ and vertex v_{j+1} and vertex v_{j-1} (if they are in the range, v_{3} and v_{p-2}) we conclude that:
(f) For every $3 \leq j \leq p-2, S_{x, y, v_{j}}$ is a minimum $A T$ and the same number of vertices as $S_{x, y, z}$ and the same path $P_{x, y}$.

Now by applying similar argument for $z^{\prime} \in G[a, b, c] \cap N\left(v_{i}\right) ; 3 \leq i \leq p-2$. We conclude that z^{\prime} is not adjacent to any vertex $w_{r}, 0 \leq r \leq q+1$. Otherwise by applying Lemma 3.4(4) for $S_{x, y, v_{i}}, z^{\prime}$ is a dominating vertex for $S_{x, y, v_{i}}$. We note that since $S_{x, y, v_{j}}$ is a minimum AT with the same path $P_{x, y}, z^{\prime}$ is also a dominating vertex for $S_{x, y, v_{j}}$ and hence by Corollary $3.6 z^{\prime}$ is adjacent to v_{j}. This implies that z^{\prime} is adjacent to every vertex $v_{\ell}, 3 \leq \ell \leq p-2$, contradiction to $z^{\prime} \in G[a, b, c]$. Therefore z^{\prime} is not adjacent to any vertex on the path $P_{x, y}$ and hence $S_{x, y, z^{\prime}}$ is a minimum AT with the same number of vertices as $S_{x, y, z}$. The proof of this case is complete.

Lemma 3.17 Let x_{1}, x_{2}, x_{3} be three vertices in $G \backslash N(c)$ such that $v_{i} x_{1}, x_{1} x_{2}, x_{2} x_{3} ; 7 \leq i \leq$ $p-6$ are edges of G. Then $x_{3} \in N\left[v_{j}\right], i-3 \leq j \leq i+3$

Proof: By Lemma 3.4(6), x_{2} is adjacent to one of the $v_{j}, i-2 \leq j \leq j+2$. If x_{2} is adjacent to one of the v_{i-1}, v_{i}, v_{i+1} then by applying Lemma 3.4(6) for x_{2}, x_{3} we conclude that x_{3} is adjacent to some $v_{r}, i-3 \leq r \leq i+3$ and we are done. Thus w.l.o.g we may assume that x_{2} is adjacent to v_{i-2} and not adjacent to any of v_{i-1}, v_{i}. Now x_{1} is adjacent to v_{i-2}, v_{i-1}, v_{i} as otherwise we get a cycle of length 4 or 5 with the vertices $x_{2}, x_{1}, v_{i-1}, v_{i}, v_{i-2}$. Because $x_{2} v_{i-2}, x_{2} x_{3}$ are edges of G and $5 \leq i-2 \leq p-4$ by Lemma 3.4 (6) we conclude that x_{3} is adjacent to one of the $v_{i-4}, v_{i-3}, v_{i-2}$. If x_{3} is adjacent to v_{i-3} or v_{i-2} then we are done. Thus we may assume that x_{3} is adjacent to v_{i-4} and not adjacent to any of v_{i-3}, v_{i-2}. Now in this case x_{2} must be adjacent to v_{i-4} as otherwise we obtain a small cycle with the vertices $x_{2}, x_{3}, v_{i-4}, v_{i-3}, v_{i-2}$. However $a, v_{1}, \ldots, v_{i-4}, x_{2}, x_{1}, v_{i}, \ldots, v_{p}, b$ is shorter than $P_{a, b}$, a contradiction.

Lemma 3.18 Let $S_{a, b, c}$ be a ripe AT. Let $S_{x, y, z}$ be a minimum AT, with a path $P_{x, y}=$ $x, w_{1}, w_{2}, \ldots, w_{q}, y$ and a center vertex u^{\prime} (central vertices u^{\prime}, w^{\prime} if of type 2) such that $S_{x, y, z} \cap$ $\left(N\left[v_{i}\right] \backslash N(c)\right) \neq \emptyset$ for some $7 \leq i \leq p-6$. Then one of the following happens :

1. $u^{\prime} \in D(a, b, c)\left(u^{\prime}, w^{\prime} \in D(a, b, c)\right)$ and $P_{x, y} \cap B[a, b] \neq \emptyset$ and $P_{x, y} \cap E[a, b] \neq \emptyset$ and every $v_{j}, 2 \leq j \leq p-1$ has a neighbor in $P_{x, y}$ (See Figure 4).
2. $u^{\prime} \in D(a, b, c),\left(u^{\prime}, w^{\prime} \in D(a, b, c)\right) z \in G[a, b, c]$ and $P_{x, y} \cap G[a, b, c]=\emptyset$ and for every vertex $z^{\prime} \in G[a, b, c], S_{x, y, z^{\prime}}$ is an AT with the same path $x, w_{1}, w_{2}, \ldots, w_{q}, y$ (See Figure 5).

Figure 6: $x \in N\left[v_{i}\right], w_{1} \in D(a, b, c)$
3. $x \in N\left[v_{i}\right], w_{1} \in D(a, b, c)$, $\left(u^{\prime}, w_{1} \in D(a, b, c)\right)$ and $V\left(S_{x, y, z}\right) \cap P_{x, y} \cap G[a, b, c]=\{x\}$ and for every $x^{\prime} \in N\left[v_{j}\right] \backslash N(c) ; 5 \leq j \leq p-4, S_{x^{\prime}, y, z}$ is an AT with the path $P_{x^{\prime}, y}=x^{\prime}, w_{1}, \ldots, w_{q}, y$ (See Figure 6).
4. $y \in N\left[v_{i}\right], w_{q} \in D(a, b, c),\left(w^{\prime}, w_{q} \in D(a, b, c)\right)$ and $V\left(S_{x, y, z}\right) \cap G[a, b, c]=\{y\}$ and for every $y^{\prime} \in N\left[v_{j}\right] \backslash N(c) ; 5 \leq j \leq p-4, S_{x, y^{\prime}, z}$ is an AT with the path $P_{x, y^{\prime}}=x, w_{1}, \ldots, w_{q}, y^{\prime}$.
Proof: First suppose $u^{\prime}\left(u^{\prime}, w^{\prime}\right.$ if $S_{x, y, z}$ is of type 2) the center vertex (central vertices) of $S_{x, y, z}$ is in $D(a, b, c)$. Since $V\left(S_{x, y, z}\right) \cap\left(N\left[v_{i}\right] \backslash N(c)\right) \neq \emptyset$, we have $G[a, b, c] \cap V\left(S_{x, y, z}\right) \neq \emptyset$. Thus the conditions of the Lemma 3.16 are satisfied and hence we have (1) or (2).

Therefore we may assume that $u^{\prime} \notin D(a, b, c)$ when $S_{x, y, z}$ is of type 1 and $w^{\prime} \notin D(a, b, c)$ when $S_{x, y, z}$ is of type 2. Recall that $x=w_{0}$ and $y=w_{q+1}$.
Case 1. Suppose $w_{j}, 0 \leq j \leq q+1$ is in $N\left[v_{i}\right] \backslash D(a, b, c)$.
Claim 3.19 $w_{j} \in\left\{w_{0}, w_{1}, w_{q}, w_{q+1}\right\}$.
Proof: For contradiction suppose $2 \leq j \leq q-1$. Note that at least one of the w_{1}, w_{q} is not in $D(a, b, c)$, as otherwise $w_{1} w_{q}$ is an edge by Corollary 3.9. W.l.o.g assume that $w_{1} \notin D(a, b, c)$. By applying Lemma $3.4(2,3)$ for $S_{x, y, z}$ we have that v_{i} is adjacent to u^{\prime} (to w^{\prime}) as otherwise $S_{x, v_{i}, z}$ is a smaller AT and it has the condition of the lemma. Now we have the following implications.
$\left(f_{0}\right) u^{\prime} \in N\left[v_{i}\right],\left(w^{\prime} \in N\left[v_{i}\right]\right)$ and $\left(f_{1}\right) u^{\prime} \notin N(c)\left(w^{\prime} \notin N(c)\right)$.
Otherwise by Lemma 3.4(4) for the edges $c u^{\prime}, u^{\prime} v_{i},\left(c w^{\prime}, w^{\prime} v_{i}\right) u^{\prime} \in D(a, b, c)\left(w^{\prime} \in D(a, b, c)\right)$.
$\left(f_{2}\right) w_{1}$ is not in $N(c)$.
Otherwise by applying Lemma 3.5 for $c, w_{1}, u^{\prime}, v_{i}$ we conclude that $w_{1} \in D(a, b, c)$. The same argument is applied using w^{\prime} instead of u^{\prime} when $S_{x, y, z}$ is of type 2 .
$\left(f_{3}\right) x \notin D(a, b, c)$ and $x \notin N(c)$
Note that by $\left(f_{0}\right), u^{\prime} \in G[a, b, c]\left(w^{\prime} \in G[a, b, c]\right)$ and hence by Lemma 3.10 every vertex in $D(a, b, c)$ is adjacent to $u^{\prime}\left(w^{\prime}\right)$. Since $x u^{\prime}\left(x w^{\prime}\right)$ is not an edge, $x \notin D(a, b, c)$. This implies that $x \notin N(c)$ as otherwise by considering path $c, x, w_{1}, u^{\prime}, v_{i}\left(c, x, w_{1}, w^{\prime}, v_{i}\right)$ and applying Lemma 3.5 we conclude that $x \in D(a, b, c)$, a contradiction.

Now by Lemma 3.17 for $u^{\prime}, w_{1}, x\left(w^{\prime}, w_{1}, x\right.$ if of type (2)) we conclude that x is adjacent to some vertex $v_{r}, 4 \leq r \leq p-3$ and hence $x \in G[a, b, c]$. This implies that w_{q} is not in $D(a, b, c)$ as otherwise $w_{q} x$ is an edge by Corollary 3.9. By similar argument for $\left(f_{2}, f_{3}\right)$ we conclude that $w_{q}, y \notin N(c)$. Now by Lemma 3.17 for $u^{\prime}, w_{q}, y\left(w^{\prime}, w_{q}, y\right.$ if of type (2)) we conclude that y is adjacent to some vertex $v_{r}, 3 \leq r \leq p-2$ and hence $y \in G[a, b, c]$.

It remains to observe that $w_{j-1} \notin D(a, b, c)$ as otherwise $w_{j-1} y$ would be an edge by Corollary 3.9. Similarly $w_{j+1} \notin D(a, b, c)$. Now none of the $w_{r}, 2 \leq r \leq q-1$ is in $D(a, b, c)$ as otherwise by Corollary 3.9, $w_{r} x, w_{r} y$ are edges of G. By similar argument in $\left(f_{2}\right)$ we conclude that $w_{r} \notin N(c)$. Since $u^{\prime} w_{r}\left(w^{\prime} w_{r}\right.$ if of type (2)) is an edge, Lemma 3.4 (6) implies that w_{r} is adjacent to some $v_{\ell}, i-2 \leq \ell \leq i+2$ and hence $w_{r} \in G[a, b, c]$. Therefore when $S_{x, y, z}$ is of type 1 we have $V\left(S_{x, y, z}\right) \subset V(G[a, b, c])$, contradicting that $S_{a, b, c}$ is ripe.

Suppose $S_{x, y, z}$ is of type (2). We observe that since $y \in G[a, b, c]$ and $y u^{\prime} \notin E(G), u^{\prime} \notin$ $D(a, b, c)$ by Corollary 3.6. Because $u^{\prime} w_{j}$ is an edge $u^{\prime} \in G[a, b, c]$. These imply that $V\left(S_{x, y, z}\right) \subset$ $V(G[a, b, c])$, contradicting that $S_{a, b, c}$ is ripe.

We assume $w_{j} \in\left\{w_{0}, w_{1}\right\}$, i.e., $x \in N\left[v_{i}\right] \backslash N(c)$ or $w_{1} \in N\left[v_{i}\right] \backslash N(c)$. The other case is treated similarly.

To summarize we have the following :
(a) $x \in N\left[v_{i}\right] \backslash N(c)$ or $w_{1} \in N\left[v_{i}\right] \backslash N(c)$.
(b) $u^{\prime} \notin D(a, b, c)$ when $S_{x, y, z}$ is of type 1 and $w^{\prime} \notin D(a, b, c)$ if $S_{x, y, z}$ is of type (2).

We proceed by proving that $x \notin D(a, b, c)$ and $w_{1} \in D(a, b, c)$.
Claim 3.20 $x \notin D(a, b, c)$.
Proof: If $j=0$, i.e., $w_{j}=x$ then clearly $x \notin D(a, b, c)$. If $j=1$, i.e., $w_{j}=w_{1}$ then we show that x is not in $D(a, b, c)$. For contradiction suppose $x \in D(a, b, c)$. Now Lemma 3.4(6) for $v_{i} w_{1}, w_{1} w_{2}$ implies that w_{2} is in $N\left[v_{r}\right], i-2 \leq r \leq i+2$ and hence $w_{2} \in G[a, b, c]$. This would imply that $x w_{2}$ is an edge by Corollary 3.9 , a contradiction. Therefore $x \notin D(a, b, c)$.

Claim 3.21 $w_{1} \in D(a, b, c)$ and $x \in N\left[v_{i}\right] \backslash N(c)$.
Proof: In what follows we may assume that $S_{x, y, z}$ is of type 1. If $S_{x, y, z}$ is of type 2 we consider w^{\prime} instead of u^{\prime}. For contradiction suppose $w_{1} \notin D(a, b, c)$. Recall items (a),(b) in summary of our assumption.
$u^{\prime} \notin N(c)$. Otherwise when $w_{1} \in N\left[v_{i}\right] \backslash N(c)$, Lemma 3.5 for path $c, u^{\prime}, w_{1}, v_{i}$ implies that $u^{\prime} \in D(a, b, c)$ and when $x \in N\left[v_{i}\right] \backslash N(c)$, Lemma 3.5 for path $c, u^{\prime}, w_{1}, x, v_{i}$ implies that
$u^{\prime} \in D(a, b, c)$.
$x \notin N[c]$. Otherwise Lemma 3.5 for path c, x, v_{i} when $x \in N\left[v_{i}\right] \backslash N(c)$ or for path c, x, w_{1}, v_{i} when $w_{1} \in N\left[v_{i}\right] \backslash N(c)$ implies that $x \in D(a, b, c)$, a contradiction to Claim 3.20.
$w_{1} \notin N[c]$. For contradiction suppose $w_{1} \in N[c]$. If $w_{1} \in \in N\left[v_{i}\right] \backslash N(c)$ then by applying Lemma 3.5 for path c, w_{1}, v_{i} we conclude that $w_{1} \in D(a, b, c)$ a contradiction to our assumption. Therefore $w_{1} \notin N\left[v_{i}\right] \backslash N(c)$ and hence $x \in N\left[v_{i}\right] \backslash N(c)$, according to (b). However Lemma 3.5 for path c, w_{1}, x, v_{i} implies that $w_{1} \in D(a, b, c)$, again contradiction to our assumption.
We continue by having that $u^{\prime}, w_{1}, x \notin N(c)$.
We observe that $z \notin N(c)$ as otherwise by Lemma 3.5 for path $c, z, u^{\prime}, w_{1}, x, v_{i}$ or path $c, z, u^{\prime}, w_{1}, v_{i}$ we conclude that $z \in D(a, b, c)$ and hence one of the $z w_{1}, z x \in E(G)$.

By Lemma 3.17 for $v_{i}, x, w_{1}, u^{\prime}$ when $x \in N\left[v_{i}\right]$ or Lemma 3.4 (6) for v_{i}, w_{1}, u^{\prime} when $w_{1} \in N\left[v_{i}\right]$ we conclude that $u^{\prime} \in N\left[v_{r}\right], i-3 \leq r \leq i+3$. Since $u^{\prime} z$ is an edge and $z \notin N(c), z$ is adjacent to some vertex $v_{r^{\prime}}, i-5 \leq r^{\prime} \leq i+5$. W.o.l.g assume that $r^{\prime} \leq i$.

Now by considering the path $z, v_{r^{\prime}}, v_{r^{\prime}+1}, \ldots, v_{i}, w_{j}\left(w_{j} \in\left\{w_{0}, w_{1}\right\}\right)$ Lemma 3.5 implies that one of the $v_{\ell}, r^{\prime} \leq \ell \leq i$ is a dominating vertex for $S_{x, y, z}$ as otherwise we obtain a smaller AT that satisfies the condition of the lemma (in particular w_{j} is the same).

Now it is clear that $i-3 \leq r^{\prime} \leq i$. Otherwise we get a shorter path $P_{a, b}^{\prime}=a, v_{1}, \ldots, v_{r^{\prime}}, w_{j}, v_{i}, \ldots, v_{p}, b$ when $j \neq 0$ and we get a shorter path $P_{a, b}^{\prime \prime}=a, v_{1}, \ldots, v_{r^{\prime}}, w_{1}, w_{0}, v_{i}, \ldots, v_{p}, b$ when $j=0$ (observe that we assumed that w_{1} is not a dominating vertex).

Note that z is not adjacent to v_{i-5} as otherwise by Lemma 3.4(1) for $S_{x, y, z}, v_{i-5}$ is adjacent to $v_{r^{\prime}}\left(i-3 \leq r^{\prime}\right)$. By applying Lemma 3.4 (7) for $v_{r^{\prime}}, w_{q}, y$ we conclude that $y \in N\left[v_{\ell^{\prime}}\right]$, $3 \leq \ell^{\prime} \leq p-2$ or w_{q} is adjacent to v_{i-5}, v_{i-4}. However we obtain an AT, $S_{x, v_{i-5}, z}$ with the path $P_{x, v_{2}}=x, w_{1}, w_{2}, \ldots, w_{q}, v_{i-5}$ and center vertex u^{\prime}. Since $7 \leq i \leq p-6, S_{x, y, z} \subset G[a, b, c]$, a contradiction. The proof of the claim is complete.

We continue by having that $w_{1} \in D(a, b, c)$ (a dominating vertex) and consequently by (b) $x \in N\left[v_{i}\right]$. Since w_{1} is not adjacent to any of the vertices $z, w_{3}, \ldots, w_{q}, y$, by Lemma 3.10 none of these vertices is in $G[a, b, c]$. It is also easy to see that $u^{\prime} \notin G[a, b, c]\left(w^{\prime} \notin G[a, b, c]\right.$ when $S_{x, y, z}$ is of type 2) as otherwise because $z u^{\prime}$ is an edge Lemma 3.10 implies that w_{1} is adjacent to z.
Remark : Observe that when $S_{x, y, z}$ is of type 2 then u^{\prime} must be in $D(a, b, c)$. Otherwise because $v_{i} x, x u^{\prime}, u^{\prime} w_{3}$ are edges of G by Corollary 3.17 we conclude that w_{3} is adjacent to some $v_{r}, 4 \leq r \leq p-3$ and hence $w_{1} w_{3}$ is an edge by Lemma 3.4(7).

Finally it is easy to see that for $x^{\prime} \in N\left(v_{j}\right) \backslash N(c) ; 5 \leq j \leq p-4 ; S_{x^{\prime}, y, z}$ is an AT with the path $P_{x^{\prime}, y}=x^{\prime}, w_{1}, \ldots, w_{q}, y$. This proves (3). Analogously if $w_{j} \in\left\{w_{q}, w_{q+1}\right\}$ then for every $y^{\prime} \in N\left(v_{j}\right) \backslash N(c) ; 5 \leq j \leq p-4, S_{x, y^{\prime}, z}$ is an AT with the path $P_{x, y^{\prime}}=x, w_{1}, \ldots, w_{q}, y^{\prime}$. This shows (4).

Case 2. $z \in N\left[v_{i}\right] \backslash N(c)$. No vertex $w_{j}, 0 \leq j \leq q+1$ is in $D(a, b, c)$ as otherwise $w_{j} z$ is an edge by Corollary 3.9. By our assumption $u^{\prime} \notin D(a, b, c)$. We note that u^{\prime} is adjacent to v_{i} by Lemma 3.4 (1). Now by applying Lemma 3.17 for $v_{i}, u^{\prime}, w_{1}, x$ and for $v_{i}, u^{\prime}, w_{q}, y$ we conclude
that $w_{1}, w_{q}, x, y \in G[a, b, c]$. Moreover by applying Lemma 3.4 (6) for u^{\prime}, w_{r} where $2 \leq r \leq q-1$ we conclude that w_{r} is adjacent to some vertex $v_{\ell}, i-2 \leq \ell \leq i+2$ and hence $w_{r} \in G[a, b, c]$. Therefore entire $S_{x, y, z}$ is in $G[a, b, c]$. This is a contradiction to $S_{a, b, c}$ is ripe. When $S_{x, y, z}$ is of type (2) $u^{\prime} \notin D(a, b, c)$ as otherwise u^{\prime} is adjacent to y, a contradiction. Moreover since $z \in N\left[v_{i}\right] \backslash N(c), u^{\prime} \in G[a, b, c]$ and hence $V\left(S_{x, y, z}\right) \subset V(G[a, b, c])$.

4 Vertex Deletion

4.1 From Chordal to Interval

In this subsection we assume that G is chordal and it does not contain small ATs. We design an FPT algorithm that takes G as an input and k as a parameter and turns G into interval graph by deleting at most k vertices. Recall that $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$, and c is a shallow vertex for $S_{a, b, c}$ and u is one of the central vertices for $S_{a, b, c}$.

Chordal - Interval (G, k) Algorithm

Input : Chordal graph G without small AT's and without cycle $C, 4 \leq|C| \leq 9$.
Output : A minimum set F of G such that $|F| \leq k$ and $G \backslash F$ is interval graph OR report NOT exists (no such an F, more than k vertices need to be deleted).

1. If G is an interval graph then return \emptyset.
2. If $k \leq 0$ and G is not interval then report NOT exists.
3. Let $S_{a, b, c}$ be a ripe AT in G with the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center vertex $u(u, w$ when it is of type 2).
4. Let X be a smallest set of vertices such that there is no path from v_{6} to v_{p-5} in $G \backslash(X \cup N(c))$ and X contains a $v_{j}, 7 \leq j \leq p-6$.
5. If $S_{a, b, c}$ is of type 1 then find a $w \in\left\{a, b, c, u, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p}\right.$, $\left.v_{p-1}, v_{p-2}, v_{p-3}, v_{p-4}, v_{p-5}\right\}$ such that $F^{\prime}=$ Chordal $-\operatorname{Interval}(G-w, k-1)$ exists and return $F^{\prime} \cup\{w\}$.
6. If $S_{a, b, c}$ is of type 2 then find a $w \in\left\{a, b, c, u, w, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p}\right.$, $\left.v_{p-1}, v_{p-2}, v_{p-3}, v_{p-4}, v_{p-5}\right\}$ such that $F^{\prime}=\operatorname{Chordal}-\operatorname{Interval}(G-w, k-1)$ exists and return $F^{\prime} \cup\{w\}$.
7. Let $S=\left\{w^{\prime} \in N\left[v_{j}\right] \backslash N(c) ; \mid 5 \leq j \leq p-4\right\}$. If $F^{\prime}=$ Chordal - Interval $(G \backslash S, k-|S|)$ exists then return $F^{\prime} \cup S$.
8. If $F^{\prime}=$ Chordal $-\operatorname{Interval}(G \backslash X, k-|X|)$ exists then return $F^{\prime} \cup X$.

The following Lemma shows the correctness of the Algorithm Chordal-Interval(G,k).
Lemma 4.1 Let G be a chordal graph without small ATs and let $S_{a, b, c}$ be a ripe AT in G with path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}$, and a center vertex u. Let X be a minimum separator in $G \backslash N(c)$ that separates v_{6} from v_{p-5} and it contains a $v_{i}, 7 \leq i \leq p-6$. Then there is a minimum set of deleting vertices F such that $G \backslash F$ is an interval graph and at least one of the following holds:
(i) If $S_{a, b, c}$ is of type 1 then F contains at least one vertex from

$$
\left\{a, b, u, c, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p-5}, v_{p-4}, v_{p-3}, v_{p-2}, v_{p-1}, v_{p}\right\}
$$

If $S_{a, b, c}$ is of type 2 then F contains at least one vertex from

$$
\left\{a, b, u, w, c, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p-5}, v_{p-4}, v_{p-3}, v_{p-2}, v_{p-1}, v_{p}\right\}
$$

(ii) F contains all vertices of $S=\left\{x^{\prime} \in N\left(v_{j}\right) \backslash N(c) \mid 5 \leq j \leq p-4\right\}$;
(iii) F contains all the vertices in X.

Proof: Let $S_{a, b, c}$ be a ripe AT. Any optimal solution F must contains at least a vertex from $V\left(S_{a, b, c}\right)$. Let H be a minimum set of deleting vertices such that $G \backslash H$ is an interval graph. We may assume that H does not contain all the vertices in S. Otherwise we set $F=H$. Moreover we may assume that H does not contain any vertex from $\left\{a, b, u, c, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{p-5}, v_{p-4}, v_{p-3}\right.$, $\left.v_{p-2}, v_{p-1}, v_{p}\right\}$ and if $S_{a, b, c}$ is of type (2) we may assume that H does not contain w (the other center vertex of $\left.S_{a, b, c}\right)$. Otherwise we set $F=H$ and we are done. Recall that $G[a, b, c]$ is an interval graph since $S_{a, b, c}$ is a ripe AT in D.

Let $W=\{w \mid w \in H \cap G[a, b, c]\}$. Because $S_{a, b, c}$ is an AT in G there is no path from v_{6} to v_{p-5} in $G \backslash H$. Hence, set W should contain a minimal v_{6}, v_{p-5}-separator X^{\prime} that contains some vertex $v_{j}, 7 \leq j \leq p-6$ in $G \backslash N(c)$. Since $G[a, b, c]$ is an interval graph, X^{\prime} is in $N\left[v_{j}\right]$.

We define $F=\left(H \backslash X^{\prime}\right) \cup X$ and we observe that $|F| \leq|H|$.
In what follows, we prove that $I=G \backslash F$ is an interval graph. For a sake of contradiction, let us assume that I is not an interval graph. By Theorem 1.1, I contains either cycle of length more than three or an AT. It is clear that by deleting vertices from G no cycle would appear, since we have assumed that G is chordal. Therefore we consider the case that I may have an AT. Because we delete vertices and at the beginning G does not have small AT, we conclude that I does not have a small AT. Therefore we may assume that I contains a big AT, $S_{x, y, z}$ with the path $P_{x, y}=x, w_{1}, w_{2}, \ldots, w_{q}, y$ and a center vertex u^{\prime}. We may assume that $S_{x, y, z}$ is of type 1 . Similar argument is applied when $S_{x, y, z}$ is of type (2).

We conclude that $S_{x, y, z}$ has a vertex in X^{\prime} and no vertex in X. Now according to the Lemma 3.18 one of the following happens:

1. $u^{\prime} \in D(a, b, c)$ and $P_{x, y} \cap B[a, b] \neq \emptyset$ and $P_{x, y} \cap E[a, b] \neq \emptyset$ and every $v_{r}, 2 \leq r \leq p-1$ has a neighbor in $P_{x, y}$.
2. $u^{\prime} \in D(a, b, c), z \in G[a, b, c]$ and $P_{x, y} \cap G[a, b, c]=\emptyset$ and for every vertex $z^{\prime} \in G[a, b, c]$, $S_{x, y, z^{\prime}}$ is an AT with the same path $x, w_{1}, w_{2}, \ldots, w_{q}, y$.
3. $x \in N\left[v_{i}\right], w_{1} \in D(a, b, c)$ and $V\left(S_{x, y, z}\right) \cap G[a, b, c]=\{x\}$ and for every $x^{\prime} \in N\left[v_{r}\right] \backslash N(c)$; $5 \leq r \leq p-4, S_{x^{\prime}, y, z}$ is an AT with the path $P_{x^{\prime}, y}=x^{\prime}, w_{1}, \ldots, w_{q}, y$.
4. $y \in N\left[v_{i}\right], w_{q} \in D(a, b, c)$ and $V\left(S_{x, y, z}\right) \cap G[a, b, c]=\{y\}$ and for every $y^{\prime} \in N\left[v_{r}\right] \backslash N(c)$; $5 \leq r \leq p-4, S_{x, y^{\prime}, z}$ is an AT with the path $P_{x, y^{\prime}}=x, w_{1}, \ldots, w_{q}, y^{\prime}$.

If (1) happens then there exists a path in from v_{6} to v_{p-5} in $G \backslash X$. This is a contradiction to X being a separator and hence there exists some delete vertex $w^{\prime} \in X$, such that $w^{\prime} \in$ $\left\{x, w_{1}, w_{2}, \ldots, w_{q}, y\right\}$.

Suppose (2) happens. Then $V\left(P_{x, y}\right) \cap V(G[a, b, c])=\emptyset$ and $u^{\prime} \notin G[a, b, c]$. Therefore we may assume that $z \in X^{\prime}$ and no other vertex of $S_{x, y, z}$ is in $H \backslash X^{\prime}$. However by (2) for every vertex $z^{\prime} \in G[a, b, c], S_{x, y, z^{\prime}}$ is an AT with the same path $x, w_{1}, w_{2}, \ldots, w_{q}, y$. Since $\left(P_{x, y} \cup\left\{u^{\prime}\right\}\right) \cap X^{\prime}=\emptyset$ and $S_{x, y, z^{\prime}}$ is not an AT in $G \backslash H$, we conclude that H must contain all the vertices in $G[a, b, c]$. This is a contradiction because $S \subset V(G[a, b, c])$ and we assumed that H does not contain entire S.

Suppose (3) happens. Then $V\left(S_{x, y, z}\right) \cap V(G[a, b, c])=\{x\}$ and $w_{1} \in D(a, b, c)$. Since $X^{\prime} \cap$ $V\left(S_{x, y, z}\right) \neq \emptyset$, we have $x \in X^{\prime}$. We may assume that no other vertex of $S_{x, y, z}$ is in $H \backslash X^{\prime}$. However by (3) for every vertex $x^{\prime} \in N\left[v_{j}\right] \backslash N(c), 5 \leq j \leq p-4$, we have that $S_{x^{\prime}, y, z}$ is an AT with the path $P_{x^{\prime}, y}=x^{\prime}, w_{1}, \ldots, w_{q}, y$. Since $S_{x^{\prime}, y, z}$ is not an AT in $G \backslash H$, we conclude that H must contain all the vertices in $S=\left\{x^{\prime} \in N\left(v_{j}\right) \backslash N(c) \mid 5 \leq j \leq p-4\right\}$. This is a contradiction because we assumed that H does not contain entire S.

Analogously if (4) happens we get a contradiction.

4.2 When G is not Chordal, Structural Properties

In this subsection we assume that G does not contain small AT, as an induced subgraph and it does not contain cycle of length less than 9 and more than 3 .
Let $C=v_{0}, v_{1}, . ., v_{p-1}, v_{0}$ be a shortest cycle in $G, 9 \leq p$. We say a vertex of G is a dominating vertex for C if it is adjacent to every vertex of the cycle C. Let $D(C)$ denotes the set of all dominating vertices of C.

Lemma 4.2 Let x be a vertex in $V(G) \backslash V(C)$. Then one of the following happens :
(1) x is adjacent to all vertices of C,
(2) x is adjacent to at most three consecutive vertices of C,
(3) Any path from $x \notin N[C]$ to C has intersection with $D(C)$.

Proof: If x is adjacent to all the vertices in $V(C)$ then (1) holds. Thus we may assume that x is not adjacent to every vertex in C.
(2) Suppose $x \in N(C)$. If x is adjacent to exactly one vertex in C then (2) holds. Therefore we may assume there are vertices $v_{i} \neq v_{j}$ of $V(C)$ such that $v_{i} x, v_{j} x$ are edges of G and none of the

Figure 7: Cycles
vertices of C between v_{i} and v_{j} in the clockwise direction is adjacent to x. We get a shorter cycle, using the portion of C (in the clockwise direction) from v_{i} to v_{j} and x unless up to symmetry $v_{j}=v_{i+1}$ or $v_{j}=v_{i+2}$. If $v_{j}=v_{i+1}$ then (2) holds. If $v_{j}=v_{i+2}$ then x is also adjacent to v_{i+1} as otherwise we obtain an induced 4 cycle in G which is not the case. Thus (2) is proved.
(3) For contradiction let $x \notin N(C)$ be adjacent to a vertex $y \in N\left(v_{i}\right) \backslash D(C)$. Now $x, y, v_{i-1}, v_{i}, v_{i+1}$ induce a small AT unless $y v_{i-1}, y v_{i-2}$ or $y v_{i+1}, y v_{i+2}$ are edges of G. W.l.o.g assume that $y v_{i-1}, y v_{i-2}$ are edges of G. Now by (2) y is not adjacent to any of v_{i+1}, v_{i-3} and hence the vertices $v_{i-3}, v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, x, y$ induce a small AT v_{i-3}, v_{i+1}, x, a contradiction.

We introduce the following notations. For every $0 \leq i \leq p-1$, we define the following subsets of $N(C) \backslash D(C)$

- S_{i} vertices adjacent to v_{i} and not adjacent to any other $v_{j}, j \neq i$;
- D_{i} vertices adjacent to v_{i}, v_{i+1} and not adjacent to any other $v_{j}, j \neq i, i+1$, and
- T_{i} vertices adjacent to v_{i}, v_{i+1}, v_{i+2} only

See Figure 7 for illustration.
Lemma 4.3 Consider the cycle C and the sets $S_{i}, D_{i}, T_{i}, 0 \leq i \leq p-1$. Then the followings hold.

1. If there is an edge from a vertex in D_{i} to a vertex in D_{j} then v_{i}, v_{j} are consecutive on the cycle.
2. Every vertex in T_{i} is adjacent to every vertex in S_{i+1}.
3. There is no edge from S_{i} to $S_{i+1} \cup D_{i+1} \cup T_{i+1}$.

Proof: (1) Let $x \in D_{i}$ and $y \in D_{j}$. Since cycle $v_{i-1}, v_{i}, x, y, v_{j+1}, v_{j+2}, \ldots, v_{i-2}, v_{i-1}$ is not shorter than C we have $v_{j} \in\left\{v_{i+1}, v_{i+2}, v_{i-1}, v_{i-2}\right\}$. We show that $v_{j} \neq v_{i+2}$. For contradiction suppose $v_{j}=v_{i+2}$. Now by definition none of the $v_{i+1} y$ and $v_{i+2} x$ is an edge of G and hence x, y, v_{i+1}, v_{i+2} induce a C_{4} in G. This is a contradiction because G does not have induced C_{4}. Similarly $v_{j} \neq v_{i-2}$. Therefore $v_{j}=v_{i-1}$ or $v_{j}=v_{i+1}$.
(2) Suppose $s \in S_{i+1}$ is adjacent to $t \in T_{i}$. Then the vertices $v_{i-1}, v_{i}, v_{i+1}, v_{i+2}$, v_{i+3}, s, t induce a small AT v_{i-1}, v_{i+3}, s in G. This is a contradiction because G does not have small AT as an induced subgraph.
(3) Suppose $x \in S_{i}$ is adjacent to $y \in S_{i+1} \cup D_{i+1} \cup T_{i+1}$. Then the vertices x, v_{i}, v_{i+1}, y induce a C_{4}, a contradiction.

Lemma 4.4 Every vertex $x \in D(C)$ is adjacent to every vertex in $N[C]-x$.
Proof: Let x be a vertex in $D(C)$ and y be a vertex in $N\left[v_{i}\right], 0 \leq i \leq p-1$. Note that if $y=v_{i}$ then by definition of $D(C), x y$ is an edge.

If $y \in D(C) \cup T_{i}$ then $x y$ is an edge as otherwise x, y, v_{i}, v_{i+2} induce a C_{4}. Thus by Lemma 4.2 (2) we may assume that $y \in S_{i} \cup D_{i}$. This implies that y is adjacent to v_{i} and not adjacent to v_{i-1} and not adjacent to v_{i+2}. However v_{i-1}, v_{i+2}, y is a small AT, with the vertices $v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, x, y$.

4.2.1 Cycle-Cycle interaction

Lemma 4.5 Let C_{1} be cycle in $N[C]$. Then $V\left(C_{1}\right) \cap D(C)=\emptyset$ and one of the following happens:

1. For every $0 \leq i \leq p-1, N\left(v_{i}\right) \cap V\left(C_{1}\right) \neq \emptyset$.
2. $V\left(C_{1}\right) \subset S_{i}$ or $V\left(C_{1}\right) \subset V\left(D_{i}\right)$ (See Figure 7).

Proof: Observe that according to our assumption $\left|V\left(C_{1}\right)\right| \geq 10$. By Lemma 4.4 every vertex x in $D(C)$ is adjacent to every vertex in $N[C] \backslash\{x\}$, we conclude that $D(C) \cap V\left(C_{1}\right)=\emptyset$.

Suppose (1) does not hold. Thus there exists some i such that $V\left(C_{1}\right) \cap N\left(v_{i}\right)=\emptyset$ but $V\left(C_{1}\right) \cap N\left(v_{i+1}\right) \neq \emptyset$.

Let $v \in V\left(C_{1}\right) \cap N\left(v_{i+1}\right)$. Let x be the last vertex of C_{1} after v in the clockwise direction such that $x \in N\left(v_{i+1}\right)$ but x^{\prime} the neighbor of x in C_{1} (clockwise direction) is not in $N\left(v_{i+1}\right)$. We show that if x exists then we obtain a small AT. Let y^{\prime} be the first vertex after x in the clockwise direction such that $y^{\prime} \in N\left(v_{i+1}\right)$ but y the neighbor of y^{\prime} in C_{1} (clockwise direction) is in $N\left(v_{i+1}\right)$.

Note that if x exists then y also exists. We note that none of the x^{\prime}, y^{\prime} is adjacent to v_{i-1} as otherwise we obtain an induced small cycle with the vertices $v_{i-1}, v_{i}, v_{i+1}, x, x^{\prime}$ or with the vertices $v_{i-1}, v_{i}, v_{i+1}, y, y^{\prime}$.

Observe that $x^{\prime} \neq y^{\prime}$ as otherwise $v_{i+1}, x, y, x^{\prime}$ induce a C_{4}. Moreover $x^{\prime} y^{\prime}$ is not an edge of G as otherwise the vertices $y^{\prime}, x^{\prime}, x, v_{i+1}, y$ induce a C_{5}. However we get a small AT $v_{i-1}, x^{\prime}, y^{\prime}$ with the vertices $x, y, v_{i+1}, v_{i}, v_{i-1}, x^{\prime}, y^{\prime}$. Therefore x does not exist and hence $V\left(C_{1}\right) \subseteq D_{i+1} \cup S_{i+1} \cup T_{i+1}$.

First suppose $V\left(C_{1}\right) \cap S_{i+1} \neq \emptyset$ and $V\left(C_{1}\right) \cap\left(D_{i+1} \cup T_{i+1}\right) \neq \emptyset$. If $\left|V\left(C_{1}\right) \cap S_{i+1}\right|=1$ then we get cycle $x, x^{\prime}, y^{\prime}, v_{i+2}$ where $x \in V\left(C_{1}\right) \cap S_{i+1}$ and x^{\prime}, y^{\prime} are the neighbors of x in $V\left(C_{1}\right) \cap D_{i+1} \cup T_{i+1}$.

Similarly if $\left|V\left(C_{1}\right) \cap D_{i+1} \cup T_{i+1}\right|=1$ we get an induced C_{4} in G. Thus we may assume that C_{1} has at least two vertices in S_{i+1} and two vertices in $D_{i+1} \cup T_{i+1}$. Let $x \neq y$ be two vertices of C_{1} in $D_{i+1} \cup T_{i+1}$. Now let $x x^{\prime}, y y^{\prime}$ be the edges of C_{1} such that $x^{\prime}, y^{\prime} \in S_{i+1} \backslash D_{i+1} \cup T_{i+1}$. If $x^{\prime}=y^{\prime}$ we obtain an induced 4 cycle with the vertices $x^{\prime}, x, y, v_{i+2}$ ($x y$ is not an edge as otherwise $\left|C_{1}\right| \leq 4$.) in G. If $x^{\prime} y^{\prime}$ is an edge then we obtain induced 5 cycle in G with the vertices $x^{\prime}, y^{\prime}, x, y, v_{i+2}$ in G. Now we obtain a small AT $v_{i+4}, x^{\prime}, y^{\prime}$ with the vertices $x^{\prime}, y^{\prime}, x, y, v_{i+2}, v_{i+3}, v_{i+4}$. This is a contradiction and hence we have $V\left(C_{1}\right) \subseteq S_{i+1}$ or $V\left(C_{1}\right) \subseteq D_{i+1} \cup T_{i+1}$. If $V\left(C_{1}\right) \subseteq S_{i+1}$ then (2) is proved. Thus we may assume that C_{1} has vertices in T_{i+1} and D_{i+1} only. Note that $\left|V\left(C_{1}\right) \cap T_{i+1}\right| \leq 2$. Again by similar argument and considering v_{i+3}, v_{i+4} and part of C_{1} inside D_{i+1} we see a small AT. Therefore $V\left(C_{1}\right) \subseteq V\left(D_{i+1}\right)$ and the proof is complete.

Definition 4.6 We say a shortest cycle $C=v_{0}, v_{1}, \ldots, v_{p-1}, v_{0}$ in G is clean if for every cycle C_{1} in $N[C]$, every vertex of C has a neighbor in C_{1}. We say a cycle C is ripe if it is clean and there is no $A T$ in $N[C] \backslash D(C)$.

Looking for a shortest clean cycle

We start with an arbitrary shortest cycle C and we construct $S_{i}, D_{i}, T_{i}, D(C)$ as defined and then we look for a shortest cycle C_{1} in some S_{i} or D_{i}. If C_{1} is clean we stop otherwise we consider $S_{i}^{1}, D_{i}^{1}, T_{i}^{1}$ of C_{1} in D_{i} or S_{i} and we continue. After at most k steps we find a clean cycle C^{\prime}.

4.2.2 Cycle and AT interaction

Lemma 4.7 Let $S_{x, y, z}$ be a minimum AT with a path $P_{x, y}=x, w_{1}, w_{2}, \ldots, w_{q}, y$ such that $S_{x, y, z}$ contains a vertex outside $N[C]$ and a vertex from $N[C] \backslash D(C)$. Then up to symmetry one of the following happens.

1. The center vertex u (the central vertices u^{\prime}, w^{\prime} when of type 2) of $S_{x, y, z}$ is a dominating vertex for $C, P_{x, y} \cap N[C]=\emptyset$, and $z \in N[C] \backslash D(C)$. Moreover for every vertex $z^{\prime} \in N[C] \backslash D(C)$, $S_{x, y, z^{\prime}}$ is an $A T$ with the same number of vertices as $S_{x, y, z}$ and the same path $P_{x, y}$ (Figure 8 left)
2. $y \in N[C] \backslash D(C)$ and $w_{q} \in D(C)\left(w_{q}, w \in D(C)\right.$ when of type 2) and $N[C] \cap V\left(S_{x, y, z}\right)=$ $\left\{y, w_{q}\right\} \quad\left(N[C] \cap V\left(S_{x, y, z}\right)=\left\{y, w_{q}, w\right\}\right.$ when of type 2). Moreover for every vertex $y^{\prime} \in$ $N[C] \backslash D(C), S_{x, y^{\prime}, z}$ is an $A T$ with the same number of vertices as $S_{x, y, z}$ (Figure 8 right).

Figure 8: Cycle and AT outside

Proof: We note that since a vertex of $S_{x, y, z}$ is outside $N[C]$ and one vertex of $S_{x, y, z}$ is in $N[C] \backslash D(C)$, by Lemma 4.2 item (3) at least one vertex of $S_{x, y, z}$ is in $D(C)$.

First suppose $P_{x, y} \cap N[C]=\emptyset$. Now it is easy to see that since $u(u, w)$ is (are) adjacent to $w_{1}, w_{2}, \ldots, w_{q}, z$, we have $u \in D(C)(u, w \in D(C))$ and $z \in N[C] \backslash D(C)$. Moreover for every $z^{\prime} \in(N[C] \backslash D(C)), S_{x, y, z^{\prime}}$ is a minimum AT with the same number of vertices as $S_{x, y, z}$.

Now suppose $P_{x, y} \cap N[C] \neq \emptyset$. We show that at least one of the x, y is in $N[C]$. For contradiction suppose $x, y \notin N[C]$. Let $1 \leq i \leq q$ be the first index such that $w_{i} \in N[C]$. By Lemma $4.2(3)$ it is easy to see that w_{i} is a dominating vertex for C and hence by Lemma 4.4 none of the vertices $w_{i+2}, w_{i+3}, \ldots, w_{q}, y$ is in $N[C]$. Moreover by assumption for i, none of the $x, w_{1}, \ldots, w_{i-2}$ is in $N[C]$. Now $z \notin N[C]$ as otherwise $w_{i} z$ is an edge of G which is not possible. Now since $w_{i+2} \notin N[C]$ and $w_{i+1} w_{i+2}$ is an edge we conclude that $w_{i+1} \notin N[C] \backslash D(C)$ as otherwise we get a contradiction to item (3) of Lemma 4.2.

Therefore by assumption of the lemma we conclude that u. Now since $w_{i+2} \notin N[C]$ and $w_{i+1} w_{i+2}$ is an edge we get a contradiction to item (3) of Lemma 4.2. Since u is adjacent to $z, w_{1}, w_{2}, \ldots, w_{q}$, we conclude that u (one of u^{\prime}, w^{\prime} when type 2) must be in $D(C)$ (by Lemma 4.2) and hence we get a contradiction to the assumption of the lemma because no vertex of $S_{x, y, z}$ is in $N[C] \backslash D(C)$.

Therefore we conclude that at least one of the x, y is in $N[C]$. W.l.o.g. assume that $y \in N[C]$. We show that $y \in N[C] \backslash D(C)$. Otherwise none of the vertices $x, w_{1}, \ldots, w_{q-1}, z, u \in N[C]$. Now by condition of the lemma we must have $w_{1} \in N[C] \backslash D(C)$, and again because $w_{1} w_{2}$ is an edge we get a contradiction to item (3) of Lemma 4.2. We continue by having $y \in N[C] \backslash D(C)$.

We show that at least one vertex of $P_{x, y}$ is outside $N[C] \backslash D(C)$. If this is not the case then either z or u (one of the u, w) is in $D(C)$ and by Lemma 4.4, we conclude that $y z$ or $y u(y u, x w$ when $S_{x, y, z}$ is of type 2), a contradiction. Let $1 \leq i \leq q+1$ be the smallest index such that

Figure 9: Cycle and AT inside $\mathrm{N}[\mathrm{C}]$
$w_{i} \in N[C] \backslash D(C)$ and $w_{i-1} \in D(C)$. By lemma 4.4, $w_{i-1} y$ is an edge of G and hence $i=q+1$. Now clearly the vertices in $P_{x, y} \backslash\left\{y, w_{q}\right\}$ are outside $N[C]$. Because $w_{q} z \notin E(G)$ lemma 4.4 implies that $z \notin N[C]$. Now since $u z \in E(G)(u z, w z \in E(G))$, and $u y \notin E(G)$, we conclude that u is not in $N[C]$. Note that when $S_{x, y, z}$ is of type 2 then $w \in D(C)$. Now it is easy to see that for $y^{\prime} \in N[C] \backslash D(C), S_{x, y^{\prime}, z}$ is an AT with the same number of vertices as $S_{x, y, z}$.

Lemma 4.8 Let $S_{x, y, z}$ be a minimum AT with path $P_{x, y}=x, w_{1}, w_{2}, \ldots, w_{q}, y$ such that $V\left(S_{x, y, z}\right) \subset N[C]$. Then the followings happen:

1. $V\left(S_{x, y, z}\right) \subset N[C] \backslash D(C)$
2. There exists a $v_{i} \in V(C), 0 \leq i \leq p-1$ such that v_{i} is a dominating vertex for $S_{x, y, z}$
3. None of the vertices v_{i-2}, v_{i+2} is adjacent to any $w_{j}, 2 \leq j \leq q-1$ (See Figure 9)
4. If $v_{r} \in V(C)$ (only $r=i-1, i, i+1$ is possible) is adjacent to some vertex $w_{j}, 4 \leq j \leq q-3$ then v_{r} is a dominating vertex for $S_{x, y, z}$
5. Either $V\left(S_{x, y, z}\right) \subseteq N\left[\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right]$ or x, y can be replace by v_{i-2}, v_{i+2} and obtain an $A T$ with the same number of vertices as $S_{x, y, z}$
Proof: Observe that by Lemma 4.4 none of the $u, z\left(u, w, z\right.$ if $S_{x, y, z}$ is of type 2) is in $D(C)$ as otherwise one of the $x u, z x$ ($w x, z x$ if of type (2)) is an edge. Moreover none of the vertices in $P_{x, y}$ is in $D(C)$ as otherwise by Lemma 4.4 for some $w_{j} \in D(C), w_{j} z$ is an edge. Therefore $V\left(S_{x, y, z}\right) \subset N[C] \backslash D(C)$.

First suppose $u=v_{i}$ for some $0 \leq i \leq p-1$. Now v_{i-2} is not adjacent to $w_{j}, 2 \leq j \leq q-1$ as otherwise by Lemma $3.4(2,3) u v_{i-2}$ is an edge, a contradiction. Similarly v_{i+2} is not adjacent to w_{j}. In this case the proof is complete. Therefore we continue by assuming that $u \notin V(C)$.

We show that $z \notin V(C)$. For contradiction suppose $z=v_{i}, 0 \leq i \leq p-1$. Since $u \notin V(C)$, we assume that $u \in S_{i} \cup D_{i} \cup T_{i}$. By Lemma 3.4 (1) both $v_{i-1} u$ and $v_{i+1} u$ are edges of G. Now
v_{i-1} is adjacent to some vertex $w_{j}, 0 \leq j \leq q+1$. Otherwise $S_{a, b, v_{i-1}}$ is a minimum AT, with the same number of vertices as $S_{a, b, c}$ and hence by Lemma 3.4 (1) v_{i-2} must be adjacent to u; implying that u is adjacent to more than three consecutive vertices on the cycle, a contradiction to Lemma $4.2(2)$. Therefore v_{i-1} is adjacent to some $w_{j}, 0 \leq j \leq q+1$ and hence by Lemma 3.4 (4), v_{i-1} is a dominating vertex for $S_{x, y, z}$. Similarly we conclude that v_{i+1} is a dominating vertex for $S_{x, y, z}$ and hence by Corollary $3.6 v_{i-1} v_{i+1}$ must be an edge. This is a contradiction. Therefore we conclude the following :
$\left(f_{1}\right)$ For every minimum $A T, S_{x^{\prime}, y^{\prime}, z^{\prime}}$ such that $V\left(S_{x^{\prime}, y^{\prime}, z^{\prime}}\right) \subset N[C] \backslash D(C)$ we have $z^{\prime} \notin V(C)$.
We continue by assuming that $z \in N\left(v_{i}\right) \backslash V(C), 0 \leq i \leq p-1$. Now $v_{i} u$ is also an edge by Lemma $3.4(1)$. Note that v_{i} is adjacent to some vertex $w_{j}, 0 \leq j \leq q+1$ on the path $P_{x, y}$ as otherwise $S_{x, y, v_{i}}$ is a minimum AT with the same number of vertices as $S_{x, y, z}$ and we get a contradiction by $\left(f_{1}\right)$. Since $z v_{i}$ is an edge and v_{i} is adjacent to w_{j}, Lemma 3.4(4) implies that v_{i} is a dominating vertex for $S_{x, y, z}$. This proves 2 .

Now v_{i-2} is not adjacent to any $w_{r}, 2 \leq r \leq q-1$ as otherwise by Lemma 3.4(7) v_{i-2} must be adjacent to v_{i} which is not possible. Similarly v_{i+2} is not adjacent to any $w_{r}, 2 \leq r \leq q-1$. This proves (3).

Now suppose some v_{r} is adjacent to a vertex $w_{j}, 4 \leq j \leq q-3$. It is easy to see that $r=i-1, i, i+1$. We may assume that $v_{i-1} w_{j}$ is an edge. Now if $v_{i-1} z$ is an edge then by Lemma $3.4(4) v_{i-1}$ is a dominating vertex for $S_{x, y, z}$. Thus we may assume that $v_{i-1} \notin N(z)$. However by applying Lemma $3.4(6), v_{i-2}$ is adjacent to some vertex $w_{r}, 2 \leq j-2 \leq r \leq j+2 \leq q-1$. Now v_{i-2} must be adjacent to v_{i} according to Lemma 3.4 (2) for $S_{x, y, z}$, a contradiction. Thus (4) is proved.

To see that (5), we note that since v_{i} is a dominating vertex for $S_{x, y, z}$, by Lemma 3.4(1) $z v_{i}$ is an edge. We know that $x w_{1}, w_{1} v_{i}, y w_{q}, w_{q} v_{i}$ are edges of G. Now if $x \notin N\left(v_{i-1} \cup N\left(v_{i}\right) \cup N\left(v_{i+1}\right)\right.$ then $x v_{i-2}$ or $x v_{i+2}$ is an edge by Lemma 4.2. Suppose $x v_{i-2}$ is an edge. Thus $w_{1} v_{i-2}$ is an edge as otherwise we obtain a C_{4} with $x, w_{1}, v_{i-1}, v_{i-2}$ when $w_{1} v_{i-1}$ is an edge or we obtain a C_{5} with $x, w_{1}, v_{i}, v_{i-1}, v_{i-2}$ when $w_{1} v_{i-1}$ is not an edge, a contradiction. Since $v_{i} z$ is an edge, $v_{i-2} z$ is not an edge as otherwise by Lemma 3.4(1), $v_{i-2} v_{i}$ is an edge. Now by (3) we may replace v_{i-2} by x and obtain an AT.

4.3 The Main Algorithm (Putting things together)

We branch on all the deleting vertices of each small AT. We also branch on by deleting vertices of each cycle $C, 4 \leq|C| \leq 9$. After that if G is not interval we continue as follows.

Definition 4.9 Let C be a ripe cycle. We say a set X of the vertices in $N[C] \backslash D(C)$ is a cycle-separator if there is no cycle in $N[C] \backslash(D(C) \cup X)$.

In order to find set X, for every $0 \leq i \leq p-1$ we find a minimum set of vertices X_{i} that separates v_{i} from v_{i+3} in $W_{i}=N\left[\left\{v_{i+1}, v_{i+2}\right\}\right] \backslash D(C) . X$ is the smallest set X_{i}. Note that W_{i} is an interval graph since C is ripe.

Interval - Deletion(G, k) Algorithm

Input : Graph G without small AT's and without cycle $C, 4 \leq|C| \leq 9$.
Output : A minimum set F of $V(G)$ such that $|F| \leq k$ and $G \backslash F$ is an interval graph OR report NOT exists (no such F, more than k vertices need to be deleted).

1. If G is an interval graph then return \emptyset.
2. If $k \leq 0$ and G is not an interval graph then report NOT exists.
3. If G is chordal then set $F=\operatorname{Chordal}-\operatorname{Interval}(G, k)$. If F exists then return F otherwise report NOT exists.
4. Let C be a shortest ripe cycle in G. Let X be a minimum cycle-separator in $N[C] \backslash D(C)$.
5. If $F=$ Interval $-\operatorname{Deletion}(G \backslash C, k-|C|)$ exists then return $F \cup C$. Else report NOT exists.
6. If $F=$ Interval $-\operatorname{Deletion}(G \backslash X, k-|X|)$ exists then return $F \cup X$. Else report NOT exists.
7. Let $C=v_{0}, v_{1}, \ldots, v_{p-1}$ be a shortest clean cycle in G.
8. Let $S=\left\{x \mid x \in\left(N\left[v_{i-1}\right] \cup N\left[v_{i}\right] \cup N\left[v_{i+1}\right]\right) \backslash D(C)\right\}$ for some $0 \leq i \leq p-1$ such that $G[S]$, contains an AT.
9. Set $F=$ Chordal $-\operatorname{Interval}(G[S], k)$. Set $F^{\prime}=\operatorname{Interval}-\operatorname{Deletion}(G \backslash F, k-|F|)$. If $\left|F^{\prime} \cup F\right| \leq k$ then return $F \cup F^{\prime}$. Else report NOT exists.

If there is no cycle in G then we apply the Chordal-to-Interval Algorithm and as we argued in Lemma 4.1 there is an optimal solution that contains the solution of the Chordal-to-Interval Algorithm. Otherwise let C be a clean cycle in G. If C is ripe then we argue in Lemma 4.10 that there exists a minimum set X of the vertices in $N[C] \backslash D(C)$ and there is a minimum set of deleting vertices F such that $G \backslash F$ is an interval graphs and $X \subseteq F$. Therefore the steps 4,5 are justified.

Lemma 4.10 Let $C=v_{0}, v_{1}, \ldots, v_{p-1}, v_{0}$ be a ripe cycle and let X be a minimum cycleseparator in $N[C] \backslash D(C)$. Then there is a minimum set of deleting vertices F such that $G \backslash F$ is an interval graph and at least one of the following holds:
(i) F contains all the vertices of the cycle C.
(ii) F contains all vertices in X.

Proof: Let H be a minimum set of deleting vertices such that $G \backslash H$ is an interval graph. If H contains all the vertices in C then we set $F=H$ and we are done. Thus we suppose H does not contain all the vertices of C. Let $W=\{w \mid w \in H \cap(N[C] \backslash D(C))\}$.

Since H does not contain all the vertices of C, set W should contain a minimal cycle-separator X^{\prime} in $N[C] \backslash D(C)$. Now define $F=\left(H \backslash X^{\prime}\right) \cup X$. We observe that $|F| \leq|H|$. We prove that $I=G \backslash F$ is an interval graph.

First suppose I contains cycle C_{1}. We note that $V\left(C_{1}\right) \cap X^{\prime} \neq \emptyset$ and $V\left(C_{1}\right) \cap X=\emptyset$. Since C is ripe, by Lemma 4.5 (1) for every $0 \leq i \leq p-1, N\left[v_{i}\right] \cap V\left(C_{1}\right) \neq \emptyset$. But this a contradiction to X being a cycle-separator.

Therefore we may assume that I contains an AT. Since $G \backslash F$ has less vertices than G and G does not have small ATs, I does not have small ATs. Thus we may assume that I contains a big AT. Consider a minimum big AT, $S_{x, y, z}$ with path $P_{x, y}=x, z_{1}, z_{2} \ldots, z_{m}, y$ in I. We note that $S_{x, y, z}$ must have some vertices in $X^{\prime} \backslash X$ and none of the vertices of $S_{x, y, z}$ is in $F \backslash X^{\prime}$. Since $X^{\prime} \subset N[C] \backslash D(C)$ and cycle C is ripe, $V\left(S_{x, y, z}\right)$ does not lie entirely in $N[C]$ and hence the conditions of the Lemma 4.7 in G are satisfied. According to Lemma 4.7 (up to symmetry) one of the following happens.

1 The center vertex u (the central vertices u, w when of type 2) of $S_{x, y, z}$ is a dominating vertex for $C, P_{x, y} \cap N[C]=\emptyset$, and $z \in N[C] \backslash D(C)$. Moreover for every vertex $z^{\prime} \in N[C] \backslash D(C)$, $S_{x, y, z^{\prime}}$ is an AT with the same number of vertices as $S_{x, y, z}$ and the same path $P_{x, y}$.
$2 y \in N[C] \backslash D(C)$ and $w_{q} \in D(C)\left(w_{q}, w \in D(C)\right.$ when of type 2) and $N[C] \cap V\left(S_{x, y, z}\right)=$ $\left\{y, w_{q}\right\}\left(N[C] \cap V\left(S_{x, y, z}\right)=\left\{y, w_{q}, w\right\}\right.$ when of type 2$)$. Moreover for every vertex $y^{\prime} \in$ $N[C] \backslash D(C), S_{x, y^{\prime}, z}$ is an AT with the same number of vertices as $S_{x, y, z}$.

If 1 happens then $z \in X^{\prime}$ and for every vertex $v_{i}, 0 \leq i \leq p-1$ of $C, S_{x, y, v_{i}}$ is a minimum AT with the same number of vertices as $S_{x, y, z}$. Since $S_{x, y, v_{i}}$ is no longer an AT in $G \backslash H$ and $u \notin H$, $\left.V\left(S_{x, y, v_{i}}\right) \backslash\left\{v_{i}\right\}\right) \cap(N[C] \backslash D(C))=\emptyset$, we conclude that H must contain v_{i}. Therefore H must contain all the vertices in $V(C)$, a contradiction.

If 2 happens then $y \in X^{\prime}$ and for every vertex $v_{i}, 0 \leq i \leq p-1$ of $C, S_{x, v_{i}, z}$ is an AT with the same number of vertices as $S_{x, y, z}$. Since $S_{x, v_{i}, z}$ is no longer an AT in $G \backslash H$ and $u \notin H$, $\left.V\left(S_{x, v_{i}, z}\right) \backslash\left\{v_{i}\right\}\right) \cap(N[C] \backslash D(C))=\emptyset$, we conclude that H must contain v_{i}. Therefore H must contain all the vertices in $V(C)$, a contradiction.

When C is not ripe then there is a minimum AT, $S_{x, y, z}$ such that $V\left(S_{x, y, z}\right) \subseteq(N[C] \backslash D(C)) \neq$ Ø. According to item (5) of Lemma 4.8 we may assume that $V\left(S_{x, y, z}\right) \subseteq W=N\left[\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right]$ for three consecutive vertices v_{i-1}, v_{i}, v_{i+1} in C. We apply the Algorithm Chordal-to-Interval on the subgraph induced by W and hence we ripen the cycle C. We need to argue that we can apply the Lemma 4.1 when G is not chordal. Let $P_{x, y}=x, w_{1}, w_{2}, \ldots, w_{q}, y$. Let X^{\prime} be a minimum separator in $G \backslash N(z)$ that separates w_{6} from w_{q-5} and it contains a vertex $w_{j}, 7 \leq j \leq q-6$. According to Lemma 4.8 (2) v_{i} is a dominating vertex for $S_{x, y, z}$ and according to items $(2,3,4)$ of Lemma 4.8 no vertex v_{r} of cycle C belongs to X^{\prime}. In other words none of the vertices in X^{\prime} are used to break cycle C. These allow us to apply the Lemma 4.1 for subgraph $G[W]$.

Overall the running time of the algorithm is $O\left(c^{k} n(m+n)\right.$ where $c=\min \{18, k\}$. In order to find an AT we apply the algorithm in [14]. Now we focus on the correctness of the IntervalDeletion(G,k) algorithm.

5 Interval Completion

5.1 AT and AT Edge Interaction

In this subsection we may assume that G is chordal and G does not contain any small AT.
Lemma 5.1 Let $S_{a, b, c}$ be a minimum AT with path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center vertex u (central vertices u, w). Let $Q=u, x_{1}, x_{2}, \ldots, x_{r}$, a be a chordless path from u to a (not including v_{1}) (from w to a if $S_{a, b, c}$ is of type 2). Then for every vertex $x_{i}, 2 \leq i \leq r, S_{x_{i}, b, c}$ is a minimum $A T$ with the same number of vertices as $S_{a, b, c}$, and path $P_{x_{i}, b}=x_{i}, v_{1}, v_{2}, \ldots, v_{p}, b$

Proof: Since there is no cycle of length more than 3 in G, v_{1} must be adjacent to $x_{i}, 1 \leq i \leq r$. Now c is not adjacent to any $x_{i}, 2 \leq i \leq r$. Otherwise by item (4) of Lemma 3.4 ($c x_{i}, x_{i} v_{1}$ are edges) x_{i} is a dominating vertex for $S_{a, b, c}$ and hence by Corollary $3.6 x_{i}$ would be adjacent to u (w) contradiction to Q being chordless. We note that x_{i} is not adjacent to $v_{j}, 2 \leq j \leq p+1$ as otherwise we get a smaller AT $S_{x_{i}, b, c}$ with the path $x_{i}, v_{j}, v_{j+1}, \ldots, v_{p}, b$. If $S_{x, y, z}$ is of type (2) we note that u is adjacent to x_{i} as otherwise we get an AT with the vertices $c, u, x_{i}, v_{1}, v_{2}, \ldots, v_{p}, b$ and has fewer vertices than $S_{a, b, c}$. Thus $c u$ is an edge when $S_{a, b, c}$ is of type (2). Now regardless of type of $S_{a, b, c}$ we conclude that $S_{x_{i}, b, c}$ is also a minimum AT with path $P_{x_{i}, b}=x_{i}, v_{1}, \ldots, v_{p}, b$. \diamond

Analogous to the Lemma 5.1 we have the following Lemma.

Lemma 5.2 Let $S_{a, b, c}$ be a minimum AT with path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center vertex u (central vertices u, w). Let $Q=u, x_{1}, x_{2}, \ldots, x_{r}, b$ be a chordless path from u to b (not including v_{p}) (from u to b if $S_{a, b, c}$ is of type 2). Then for every vertex $x_{i}, 2 \leq i \leq r, S_{a, x_{i}, c}$ is a minimum $A T$ with the same number of vertices as $S_{a, b, c}$, and path $P_{a, x_{i}}=a, v_{1}, v_{2}, \ldots, v_{p}, x_{i}$.

Definition 5.3 Let $S_{a, b, c}$ be a minimum AT in graph G. We refer to a fill-in edge cv ${ }_{i}$, $0 \leq i \leq p+1$, as a long fill-in edge and we refer to a fill-in edge $v_{i} v_{j}, 0 \leq i, j \leq p+1$, as a bottom fill-in edge of $S_{a, b, c}$. Note that ac, bc are long fill-in edges when $S_{a, b, c}$ is of type 2 and that ab is a bottom fill-in edge.

By cross fill-in edges of $S_{a, b, c}$, we call fill-in edges au,bu when $S_{a, b, c}$ is of type 1 and aw, bu, when $S_{a, b, c}$ is of type 2.

Let us remark that in a graph G^{\prime} obtained from G by adding either long or cross fill-in edge, subgraph $S_{a, b, c}$ does not induce a cycle of length more than 3 and it does not induce an AT.

Lemma 5.4 Let $S_{a, b, c}$ be a ripe AT. Let $S_{x, y, z}$ be a minimum AT, with path $P_{x, y}=x, w_{1}, \ldots, w_{q}, y$ such that a long fill-in edge $c d, d \in G[a, b, c]$ is a fill-in edge of $S_{x, y, z}$. Then $c d$ is a long fill-in edge of $S_{x, y, z}$ and one of the following happens :

1. $z=c, P_{x, y} \cap B[a, b] \neq \emptyset, P_{x, y} \cap E[a, b] \neq \emptyset$, and every $v_{i}, 2 \leq i \leq p-1$ has a neighbor on $P_{x, y}$ (See Figure 10).

Figure 10: $u^{\prime} \in D(a, b, c)$ and $P_{x, y} \cap B[a, b] \neq \emptyset, P_{x, y} \cap E[a, b] \neq \emptyset$

Figure 11: $z \in G[a, b, c]$ and $P_{x, y} \cap G[a, b, c]=\emptyset$
2. $z=d$, and for every vertex $z^{\prime} \in G[a, b, c], S_{x, y, z^{\prime}}$ is an AT with the same path $P_{x, y}=$ $x, w_{1}, w_{2}, \ldots, w_{q}, y$ (See Figure 11).

Proof: By definition of $G[a, b, c], d$ is adjacent to some $v_{i}, 3 \leq i \leq p-2$. We first show that $c d$ is not a bottom fill-in edge for $S_{x, y, z}$. Otherwise up to symmetry we may assume that $x=c$ and $w_{q}=d$ when $S_{x, y, z}$ is of type 1 and $y=d$ when $S_{x, y, z}$ is of type 2 . Now by Lemma 3.12 for the path $c, w_{1}, w_{2}, \ldots, w_{q}\left(c w_{1}, w_{2}, \ldots, w_{q}, y\right.$ when of type 2$)$, we conclude that w_{1} is a dominating vertex for $S_{a, b, c}$ and hence by Lemma 3.4 (7) $w_{1} w_{q}\left(w_{1} y\right.$ when $S_{x, y, z}$ is of type 2) is an edge of G, yielding a contradiction.

We show that $c d$ is not a cross fill-in edge for $S_{x, y, z}$. For contradiction suppose $c d$ is a cross fill-in edge for $S_{x, y, z}$. Let u^{\prime} be one of the center vertices of $S_{x, y, z}$. Now consider the path c, x^{\prime}, d that is corresponding to one the paths x, w_{1}, u^{\prime} and y, w_{q}, u^{\prime} and u^{\prime}, w_{1}, x and u^{\prime}, w_{1}, y in $S_{x, y, z}$. By Lemma 3.12 for the path c, x^{\prime}, d we conclude that x^{\prime} is a dominating vertex for $S_{a, b, c}$. W.l.o.g assume that c, x^{\prime}, d is corresponding to path u^{\prime}, w_{1}, x or path x, w_{1}, u^{\prime}. Thus w_{1} is a dominating vertex for $S_{a, b, c}$. We observe that $u^{\prime} \neq c$ as otherwise because $u^{\prime} z=c z$ is an edge, Corollary 3.6 implies that $z w_{1}$ is an edge, a contradiction. Therefore we have $c=x$ and $u^{\prime}=d\left(w^{\prime}=d\right.$ when $S_{x, y, z}$ is of type 2). Because $u^{\prime} \in G[a, b, c]$ and $u^{\prime} w_{3}$ is an edge by Lemma $3.10 w_{3}$ is adjacent to every vertex in $D(a, b, c)$ and in particular $w_{3} w_{1}$ is an edge; a contradiction. Therefore $c d$ is not a cross fill-in edge for $S_{x, y, z}$.

We conclude that $c d$ is a long fill-in edge. By considering the path c, u^{\prime}, d and applying the Lemma 3.12 we conclude that u^{\prime} is a dominating vertex for $S_{a, b, c}$. Now the conditions of the Lemma 3.16 are satisfied and hence one of the (1),(2) holds.

Lemma 5.5 Let $S_{a, b, c}$ be a ripe $A T$ with path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$. Let $S_{x, y, z}$ be a minimum $A T$, with center vertex u^{\prime} (central vertices u^{\prime}, w^{\prime} is of type 2). If bottom fill-in edge $a b$ (when $S_{a, b, c}$ is of type 2) (avp when $S_{a, b, c}$ is of type 1) is a fill-in edge of $S_{x, y, z}$ with path $P_{x, y}=x, w_{1}, \ldots, w_{q}, y$ then one of the following happens:

1. $a b$ (when $S_{a, b, c}$ is of type 2) ($a v_{p}$ when $S_{a, b, c}$ is of type 1) is a cross fill-in edge, $a=x, b=u^{\prime}$ ($a=x$ and $v_{p}=u^{\prime}$ when type 1) and for every $v_{i}, 1 \leq i \leq p,(1 \leq i \leq p-1$ when type 1$)$ $S_{v_{i}, y, z}$ is an AT with the same number of vertices as $S_{x, y, z}$ and the same center vertex u^{\prime}.
2. $a b$ (when $S_{a, b, c}$ is of type 2) ($a v_{p}$ when $S_{a, b, c}$ is of type 1), $b=y, a=u^{\prime}\left(b=y\right.$ and $v_{1}=u^{\prime}$ when type 1) and for every $v_{i}, 1 \leq i \leq p,\left(2 \leq i \leq p\right.$ when type 1) $S_{x, v_{i}, z}$ is an AT with the same number of vertices as $S_{x, y, z}$ and the same center vertex u^{\prime}.

3 up to symmetry for $a v_{p}, b v_{1}$ we have the followings:
3.1 $S_{x, y, z}$ is of type (2) and $a=x, b=z\left(a=x, v_{p}=z\right.$ when $S_{a, b, c}$ is type 1) and for every $v_{i}, 1 \leq i \leq p,\left(1 \leq i \leq p-1\right.$ when type 1) $S_{v_{i}, y, z}$ is an AT with the same number of vertices as $S_{x, y, z}$ and the same central vertices u^{\prime}, w^{\prime}.
3.2 $S_{x, y, z}$ is of type (2) and $a=z, b=y$ ($v_{p}=x, a=z$ when $S_{a, b, c}$ is type 1) and for every v_{i}, $1 \leq i \leq p,\left(1 \leq i \leq p-1\right.$ when type 1) $S_{x, v_{i}, z}$ is an AT with the same number of vertices as $S_{x, y, z}$ and the same central vertices u^{\prime}, w^{\prime}.

Proof: We prove the theorem when $S_{a, b, c}$ is of type 2 . The proof when $S_{a, b, c}$ is of type 1 is similar.

First suppose $a b$ is a cross fill-in edge of $S_{x, y, z}$. Therefore up to symmetry we are left with the case $a=x$ and $b=u^{\prime}$. By Lemma 5.1 for $S_{x, y, z}$ we conclude that for every $v_{i}, S_{v_{i}, y, z}$ is an AT with the same number of vertices as $S_{x, y, z}$.

Now suppose that $a b$ is a long fill-in edge for $S_{x, y, z}$. If $a=w_{j}$ for some $1 \leq j \leq q$ and $b=z$ then by Lemma 3.5 for $S_{x, y, z}$ and path $z, v_{p}, v_{p-1}, \ldots, v_{1}, a$ we conclude that v_{p} is a dominating vertex for $S_{x, y, z}$ and hence $v_{p} v_{1}$ is an edge. This is a contradiction. Thus up to symmetry we may assume that $a=x$ and $b=z$. We note that in this case $S_{x, y, z}$ is of type (2). Now again by Lemma 3.5, v_{p} is a dominating vertex for $S_{x, y, z}$. We note that v_{p} is not adjacent to a and hence v_{p} must be adjacent to y otherwise we obtain a smaller AT with the vertices $z, v_{p}, x, w_{1}, \ldots, w_{q}, y$, contradicting the minimality of $S_{x, y, z}$. Observe that by replacing w^{\prime} with v_{p} we obtain an AT $\left(S_{x, y, z}\right)^{\prime}$ with the same number of vertices as $S_{x, y, z}$. However by applying Lemma 5.2 for $\left(S_{x, y, z}\right)^{\prime}$ with the path $v_{p}, v_{p-1}, \ldots v_{1}, x$ we conclude that for every $v_{i}, S_{v_{i}, y, z}$ is an AT with the same number of vertices as $S_{x, y, z}$.

5.2 Algorithm For Interval Completion

Interval - Completion (G, K) Algorithm

Input : Graph G, and parameter k.
Output : A minimum set F of edges such that $|F| \leq k$ and $G \cup F$ is an interval graph OR report NOT exists.

1. If G is an interval graph then return \emptyset.
2. If $k \leq 0$ and G is not interval graph then report NOT exists.
3. Let C be cycle with $|C| \geq 4$. For every minimal triangulation F of C set $F^{\prime}=$ Interval Completion $(G \cup F, k-|C|+3)$. If F^{\prime} exists then return $F \cup F^{\prime}$.
4. Let S be a small AT in G. For every edge e (at most 9 ways) such that $S \cup\{e\}$ is not an AT in G set $F=$ Interval - Completion $(G \cup\{e\}, k-1)$. If F exists then return $F \cup\{e\}$.
5. Let $S_{a_{0}, b_{0}, c_{0}}$ be a minimum AT in G. Apply the Algorithm 1 to obtain a ripe AT, $S_{a, b, c}$ with the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center vertex u (u, w when is of type 2).
6. Let X be a smallest set of vertices in $G \backslash N(c)$ such that X contains a vertex $v_{i} \in X$, $7 \leq i \leq p-6$, and there is no path from v_{6} to v_{p-5} in $G \backslash(X \cup N(c))$.
7. Let $S=\{a u, b u\}$ when $S_{a, b, c}$ is of type 1 otherwise let $S=\{a w, b u\}$. Set $F=$ Interval Completion $(G \cup\{e\}, k-1)$. If F exists then return $F \cup\{e\}$.
8. If $S_{a, b, c}$ is of type 1 then for each of the long fill edge $e=c v_{i}, i \in\{1,2,3,4,5,6, p-5, p-$ $4, p-3, p-2, p-1, p\}$ set $F=$ Interval - Completion $(G \cup\{e\}, k-1)$. If F exists then return $F \cup\{e\}$.
9. If $S_{a, b, c}$ is of type 2 then for each of the long fill edge $e \in c a, c v_{i}, c b, i \in\{1,2,3,4,5,6, p-$ $5, p-4, p-3, p-2, p-1, p\}$ set $F=$ Interval $-\operatorname{Completion}(G \cup\{e\}, k-1)$. If F exists then return $F \cup\{e\}$.
10. Let $S=\left\{a v_{i} \mid 2 \leq i \leq p\right\} \cup\{a b\}$. Set $S_{1}=S$ when $S_{a, b, c}$ is of type 2 otherwise $S_{1}=S \backslash\{a b\}$. Set $F=$ Interval - Completion $\left(G \cup S_{1}, k-\left|S_{1}\right|\right)$. If F exists then return $F \cup S_{1}$.
11. Let $S=\left\{b v_{i} \mid 1 \leq i \leq p-1\right\} \cup\{a b\}$. Set $S_{1}=S$ when $S_{a, b, c}$ is of type 2 otherwise $S_{1}=S \backslash\{a b\}$. Set $F=$ Interval - Completion $\left(G \cup S_{1}, k-\left|S_{1}\right|\right)$. If F exists then return $F \cup S_{1}$.
12. Let U be the set of vertices adjacent to u and not adjacent to any vertex on the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$. Let C be a connected component of $G[U]$, containing c
13. Let S_{3} be the set of all edge $c^{\prime} x$ for some $c^{\prime} \in C$ and $x \in X$. Set $F=$ Interval Completion $\left(G \cup S_{3}, k-\left|S_{3}\right|\right)$. If F exists then return $F \cup S_{3}$.

We now focus on the correctness of the Interval-Completion algorithm. In what follows we consider the ripe AT, $S_{a, b, c}$ with the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$ and center (central vertices) u (u, w if of type 2).

Definition 5.6 For center vertex u in $S_{a, b, c}$ let U be the set of vertices adjacent to u and not adjacent to any vertex on the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$. Let C be a connected component of $G[U]$, containing c (by Lemma 3.4 (4) for every $c^{\prime} \in C, S_{a, b, c^{\prime}}$ is a minimum AT, with the same number of vertices as $S_{a, b, c}$).

Now we are ready to prove the following Lemma.
Lemma 5.7 Let X^{\prime} be a minimal separator in $G[a, b, c]$ such that $v_{i} \in X^{\prime}, 7 \leq i \leq p-6$. Set $E_{X}^{\prime}=\left\{c^{\prime} x^{\prime} \mid c^{\prime} \in C, x^{\prime} \in X^{\prime}\right\}$. Then $G \cup E_{X}^{\prime}$ does not contain a minimum AT, S (small or big) containing some edges of E_{X}^{\prime}.

Proof:

For contradiction we assume there exists a minimum AT, that uses one edge from E_{X}^{\prime} and it is not contained in some other AT. We show that there exists an AT in G such that it has a vertex from $N\left[v_{i}\right], 7 \leq i \leq p-6$ but none of the items ($1,2,3,4$) of the Lemma 3.18 holds for this AT and consequently $G[a, b, c]$ is not an interval graph, i.e., $S_{a, b, c}$ is not ripe.

Observation 1. Since $G[a, b, c]$ is an interval graph X^{\prime} is a clique and $G[a, b, c] \cup\left\{c x^{\prime} \mid x^{\prime} \in X^{\prime}\right\}$ induce interval graph in G.

Let S be a minimum AT with the vertices $x^{\prime}, y^{\prime}, z^{\prime}$ such that $c d, c \in C$ and $d \in X^{\prime}$ is an edge of S. We assume that $d \in N\left[v_{i}\right], 7 \leq i \leq p-6$. W.l.o.g assume that $c d$ is an edge of the shortest path P_{1} from x^{\prime} to y^{\prime} outside the neighborhood of z^{\prime}. We observe that $z^{\prime} \notin C$ as otherwise $z^{\prime} d$ is an edge. Since d is adjacent to every vertex $c^{\prime} \in C$, we conclude that P_{1} has only one vertex c in C.

Let d_{1} be the neighbor of d in P_{1} and d_{2} be the neighbor of c in P_{1}. First suppose $c \neq y^{\prime}$. Now d_{2} is not in $D(a, b, c)$ as otherwise by Corollary $3.6 d d_{2}$ is an edge, a contradiction to the minimality of the length of $P_{1} . d_{2} \notin C$ as otherwise $d d_{2}$ is an edge in $E_{X^{\prime}}$ and we get a shorter path. Thus we conclude that $d_{2} \in X^{\prime}$ and since X^{\prime} is a clique, $d d_{2}$ is an edge and hence we replace $d c, c d_{2}$ by $d d_{2}$ in P_{1} and we get a shorter path. This contradicts the minimality of the AT. Therefore we assume that $c=y^{\prime}$.

We note that $P_{1} \cap D(a, b, c)=\emptyset$ as otherwise we get a shorter path from x^{\prime} to y^{\prime}. Let P_{2} be the shortest path from y^{\prime} to z^{\prime} that avoids the neighborhood of x^{\prime} and P_{3} be the shortest path from z^{\prime} to x^{\prime} that avoids the neighborhood of y^{\prime}. Let $c d_{2}$ be the first edge of P_{2}. By Corollary $3.6 P_{3} \cap D(a, b, c)=\emptyset$ as otherwise P_{3} does not avoid $y^{\prime}=c$. We also note that P_{3} does not uses any edge $z_{1} z_{2}, z_{2} \in X^{\prime}$ as otherwise $y^{\prime} z_{2}$ is an edge in $E_{X^{\prime}}$.

We show that P_{2} goes through some vertex in $D(a, b, c)$. For contradiction suppose $P_{2} \cap$ $D(a, b, c)=\emptyset$. If P_{2} does not use any of the edges in E_{X}^{\prime} then $P_{2} P_{3} P_{1}$ contains an induce shortest path Q from $c=y^{\prime}$ to vertex $d \in G[a, b, c]$. Thus lemma 3.12 implies that d_{2} is a dominating vertex for $S_{a, b, c}$, a contradiction.

Therefore we assume that P_{2} uses some edge $y_{1} y_{2} \in E_{X}^{\prime}, y_{2} \in X^{\prime}$. Note that there is only one edge of P_{2} in E_{X}^{\prime} as otherwise we get a shorter path because $c=y^{\prime}$ is adjacent to all the vertices in X^{\prime}. Now consider part of path P_{2} from y_{2} to z^{\prime} and part of P_{1} from x^{\prime} to d and the path P_{3} and edge $d y_{2}$ (both $d, y_{2} \in X^{\prime}$) we get cycle of length more than three or an AT S^{\prime} in G. None of the vertices of this AT is in $D(a, b, c)$ and none of the edges of S^{\prime} in E_{X}^{\prime}. This means we get an AT in G such that it contains a vertex from $N\left[v_{i}\right], 7 \leq i \leq p-6$. Now we get a contradiction by Lemma 3.18 because at least one vertex of the AT, S^{\prime} must be in $D(a, b, c)$ or S^{\prime} is in $G[a, b, c]$, implying that $G[a, b, c]$ is not ripe.

We conclude that P_{2} contains a vertex from $D(a, b, c)$.
Before we proceed we summarize the followings.
(1) $d_{2} \in D(a, b, c)$. Since every vertex in $D(a, b, c)$ is adjacent to $c=y^{\prime}$ and P_{2} is the shortest path.
(2) x^{\prime} is not adjacent to any vertex in $G[a, b, c]$. Otherwise by Lemma $3.10 x^{\prime} d_{2}$ is an edge.
(3) $P_{1} \cap D(a, b, c)=\emptyset$.
(4) We may assume that $B[a, b] \cap P_{1} \neq \emptyset$. Note that P_{1} is a path from $x^{\prime} \notin G[a, b, c]$ to vertex $d \in G[a, b, c]$. Therefore by Lemma 3 we may assume that $B[a, b] \cap P_{1} \neq \emptyset$.

Let P_{2}^{\prime} be a path from d to d_{2} and then following P_{2} to z^{\prime}.
Case 1. z^{\prime} is adjacent to some $v_{j}, 0 \leq j \leq p+1$.
We show that $j \leq i$. For contradiction suppose $j>i$. Now P_{3} from z^{\prime} to x^{\prime} must contain a vertex from X^{\prime}. Otherwise we would have a path $v_{j} P_{3} Q$ outside the neighborhood of $y^{\prime}=c$ where Q is part of P_{1} from x^{\prime} to v_{1}. But this would be a contradiction to X^{\prime} is a separator.

We continue by having $j \leq i$. If $j \leq 3$ then we get an AT S with the vertices $d, z^{\prime}, x^{\prime}$ as follows: x^{\prime} is joined with z^{\prime} via part of P_{3} from x^{\prime} to the first time P_{3} reaches to v_{j} and then to z^{\prime} (note that since $d \in N\left[v_{i}\right], 7 \leq i \leq p-6$ then $d v_{j}$ is not an edge). d is joined with z^{\prime} via P_{2}^{\prime} and finally d is joined with x^{\prime} via path P_{1}. We note that none of the edges S belongs to
$E_{X^{\prime}}$. However since $d_{2} \in D(a, b, c)$ and $d \in N\left[v_{i}\right], 7 \leq i \leq p-6$ the conditions of the Lemma 3.18 are met while none of the $(1,2,3,4)$ consequences of Lemma 3.18 holds and hence we get a contradiction to $S_{a, b, c}$ is ripe. If $j>3$ then we get an AT, v_{2}, c, z^{\prime} as follows: v_{2} is joined with c via part of P_{1} from the neighborhood of v_{2} to c. There is a path from v_{2} to z^{\prime} using the vertices of $P_{1} v_{2}, v_{3}, \ldots, v_{j}, z^{\prime}$ and then z^{\prime} to c via the vertices $v_{j}, v_{j+1}, \ldots, v_{i}, d, c$ yielding an AT, inside $G[a, b, c] \cup\left\{c x^{\prime} \mid x^{\prime} \in X^{\prime}\right\}$. This is a contradiction according to Observation 1.
Case 2. z^{\prime} has no neighbor in the path $P_{a, b}$.
If the path $P_{3} \cap G[a, b, c]=\emptyset$ then we obtain a smaller AT S with the vertices $d, x^{\prime}, z^{\prime}$ as follows. x^{\prime} is joined with d via part of P_{1} from x to d and P_{3} joins x^{\prime} to z^{\prime} and P_{2}^{\prime} joins d_{2} and z^{\prime}. We note that none of the edges of S belongs to $E_{X^{\prime}}$ and S contains a vertex d from $N\left[v_{i}\right], 7 \leq i \leq p-6$. Now the conditions of the Lemma 3.18 are met while none of the ($1,2,3,4$) consequences of Lemma 3.18 holds and hence we get a contradiction to $G[a, b, c]$ is an interval, i.e., $S_{a, b, c}$ is ripe. Therefore $P_{3} \cap G[a, b, c] \neq \emptyset$.

Since $P_{3} \cap D(a, b, c)=\emptyset$ and $P_{3} \cap G[a, b, c] \neq \emptyset$, by Lemma $3 P_{3} \cap(B[a, b] \cup E[a, b]) \neq \emptyset$. Consider the first time that P_{3} visits a vertex in $P_{a, b}$. Either we have $P_{3} \cap E[a, b] \neq \emptyset$ or $P_{3} \cap B[a, b] \neq \emptyset$. Recall that by our assumption $B[a, b] \cap P_{1} \neq \emptyset$. If $B[a, b] \cap P_{3}=\emptyset$ and $E[a, b] \cap P_{3} \neq \emptyset$ then P_{3} must contain a vertex from X^{\prime}. Otherwise we would have a path $v_{p} P_{3}^{\prime} P_{1}^{\prime} v_{1}$ outside the neighborhood of $y^{\prime}=c$ where P_{3}^{\prime} is part of P_{3} from a vertex in the neighborhood of v_{1} to x^{\prime} and P_{1}^{\prime} is part of P_{1} from x^{\prime} to a vertex in the neighborhood of v_{p}. But this would be a contradiction to X^{\prime} is a separator.

We continue by having $P_{3} \cap B[a, b] \neq \emptyset$. Now consider the first time P_{3} has a vertex from $N\left[v_{1}\right]$, and the first time P_{1} contains a vertex from $N\left[v_{1}\right]$. We obtain a path from x^{\prime} to z^{\prime} that avoids the neighborhood of d. Now we get an AT $d, x^{\prime}, z^{\prime}$, and similarly we get a contradiction.

Lemma 5.8 Let G be a chordal graph without small ATs and let $S_{a, b, c}$ be a ripe AT with the path $P_{a, b}=a, v_{1}, v_{2}, \ldots, v_{p}, b$. Let X be a minimum separator in $G \backslash N(c)$ that separates v_{6} from v_{p-5} and it contains a vertex $v_{i}, 7 \leq i \leq p-6$. Then there is a minimum set of fill-in edges F such that $G \cup F$ is an interval graph and at least one of the following holds:
(i) If $S_{a, b, c}$ is of type 1 then F contains at least one fill-in edge from

$$
\left\{b u, a u, c v_{1}, c v_{2}, c v_{3}, c v_{4}, c v_{5}, c v_{6}, c v_{p-5}, c v_{p-4}, c v_{p-3}, c v_{p-2}, c v_{p-1}, c v_{p}\right\}
$$

If $S_{a, b, c}$ is of type (2) then F contains at least one fill-in edge from

$$
\left\{b u, a w, c a, c b, c v_{1}, c v_{2}, c v_{3}, c v_{4}, c v_{5}, c v_{6}, c v_{p-5}, c v_{p-4}, c v_{p-3}, c v_{p-2}, c v_{p-1}, c v_{p}\right\}
$$

(ii) F contains all the edges $a v_{i}, 2 \leq i \leq p$ and ab when $S_{a, b, c}$ is of type 2.
(iii) F contains all the edges $b v_{i}, 1 \leq i \leq p-1$ and ab when $S_{a, b, c}$ is of type 2.
(iv) F contains all the edges $c f, f \in G[a, b, c]$
(v) F contains all edges $E_{X}=\left\{c^{\prime} x \mid c^{\prime} \in C, x \in X\right\}$.

Proof: Let H be a minimum set of fill-in edges such that $G \cup H$ is an interval graph. If $S_{a, b, c}$ is of type 1 and H contains an edge from

$$
\left\{b u, a u, c v_{1}, c v_{2}, c v_{3}, c v_{4}, c v_{5}, c v_{6}, c v_{p-5}, c v_{p-4}, c v_{p-3}, c v_{p-2}, c v_{p-1}, c v_{p}\right\}
$$

or when $S_{a, b, c}$ is of type (2) and H contains an edge from

$$
\left\{b u, a w, c a, c b, c v_{1}, c v_{2}, c v_{3}, c v_{4}, c v_{5}, c v_{6}, c v_{p-5}, c v_{p-4}, c v_{p-3}, c v_{p-2}, c v_{p-1}, c v_{p}\right\}
$$

then we set $F=H$.
Suppose H contains edge $a b$ when $S_{a, b, c}$ is of type 2 and without loss of generality H contains edge $a v_{p}$ if $S_{a, b, c}$ is of type 1 . We argue that H also contains all the edges $a v_{i}, 2 \leq i \leq p(i \leq p-2$ when $S_{a, b, c}$ is of type 1) or all the edges $b v_{i}, 1 \leq i \leq p-1$ when $S_{a, b, c}$ is of type 2 . Mow we may assume that there exists a minimum AT, $S_{x, y, z}$ such that $a b$ ($a v_{p}$ when $S_{a, b, c}$ is of type 1) is a fill-in edge for $S_{x, y, z}$. By Lemma $5.5(1,2) a b\left(a v_{p}\right)$ is a cross fill-in edge for $S_{x, y, z}$ and up to symmetry we have $a=x$ and $b=u^{\prime}\left(a_{p}=u^{\prime}\right)$ and for every $x^{\prime} \in G[a, b, c], S_{x^{\prime}, y, z}$ is an AT with the same number of vertices as $S_{x, y, z}$. This implies that every optimal solution must also add the edges $u^{\prime} v_{1}, u^{\prime} v_{2}, \ldots, u^{\prime} v_{p-1}$ and in particular H contains all the edges $b v_{i}, 1 \leq i \leq p-1$ and $a b$ (when $S_{a, b, c}$ is of type 2) this case we also set $F=H$. If one if the items (3) and (4) of the Lemma 5.5 holds again we conclude that H must contains all the edges $b v_{i}, 1 \leq i \leq p-1$ and $a b$ (when of type 2) or H must contain all the edges $a v_{i}, 2 \leq i \leq p$ and $a b$ (when of type 2).

We will proceed by assuming that H does not contain any of the edges $a u, b u(a w, b u$ if of type 2), ab, $c v_{r}, 0 \leq r \leq 6$, and $c v_{r}, p-5 \leq r \leq p+1$. Moreover we assume that H does not contain all the edges $c f, f \in G[a, b, c]$ as otherwise we set $F=H$.

Let $W=\{w \mid c w \in H\}$ be the set of vertices adjacent to c via fill-in edges. Because $S_{a, b, c}$ is an AT there is no path from v_{6} to v_{p-5} in $(G \cup H) \backslash N(c)$. Hence, set W should contain a minimal v_{6}, v_{p-5}-separator X^{\prime} in $G \backslash N(c)$, containing a vertex $v_{i}, 7 \leq i \leq p-6$.

Claim 5.9 Let c^{\prime} is a vertex adjacent to c and not adjacent to any vertex on the path $P_{a, b}$ in G. Then H contains all the edges $c^{\prime} x^{\prime}, x^{\prime} \in X^{\prime}$.

Proof: Indeed, by Lemma 3.4, c^{\prime} is adjacent to u, and thus $S_{a, b, c^{\prime}}$ is also a minimum AT with the same number of vertices as $S_{a, b, c}$. Since $S_{a, b, c^{\prime}}$ is no longer an AT in $G \cup H$ and none of the $a u, b u$ is an edge in H and $a b\left(a v_{p}, b v_{1}\right.$ when $S_{a, b, c}$ is of type 2) is not an edge in H we have that H contains at least one edge $c^{\prime} v_{j}$. Let us assume that $v_{j} \neq v_{i}$ is the closest vertex to v_{i} such that $c v_{j}$ is not in H. (Observe that we assumed that the H is a minimal set of fill edges such that $G \cup H$ is an interval graph and $c v_{i}$ is in H since $S_{a, b, c}$ is an AT in G). Let P be part of $P_{a, b}$ from v_{i} to v_{j}. By our assumption for H, P has no chords. No vertex of P except v_{j} and v_{i} is adjacent to c or c^{\prime}. Thus the cycle $c, P, c^{\prime}, c^{\prime}$ is a chordless cycle in $G \cup H$, which is a contradiction. Therefore we conclude that $c^{\prime} v_{i}$ is an edge. No let $W^{\prime}=\left\{w^{\prime} \mid c^{\prime} w^{\prime} \in H\right\}$. Since $S_{a, b, c^{\prime}}$ is an AT and none of the $a u, b u, c v_{r}, v_{r} \in\left\{v_{1}, \ldots, v_{6}, v_{p-5}, \ldots, v_{p}\right\}$ is in H (note that $7 \leq i \leq p-6$) and there is no path from v_{6} to v_{p-5} in $(G \cup H) \backslash N(c)$, set W^{\prime} should contain a minimal v_{6}, v_{p-5}-separator $X^{\prime \prime}$ containing $v_{i}=v_{j}$ in $G \backslash N(c)$. Because $G[a, b, c]$ is an interval graphs and both X^{\prime} and $X^{\prime \prime}$ contain v_{i} we have $X^{\prime}=X^{\prime \prime}$.

Now by applying the Claim 5.9 for every $c^{\prime \prime} \in C$ we conclude that $c^{\prime \prime} x^{\prime}, x^{\prime} \in X^{\prime}$ is in H. Let $E_{X}^{\prime}=\left\{c^{\prime} x^{\prime} \mid c^{\prime} \in C, x^{\prime} \in X^{\prime}\right\}$. We observe that X^{\prime} is a clique because $G[a, b, c]$ is an interval graph.

We define $F=\left(H \backslash E_{X}^{\prime}\right) \cup E_{X}$. Let us note that because none of the sets E_{X} and E_{X}^{\prime} contains edges of G and because X is a minimum separator, we have that $|F| \leq|H|$. In what follows, we prove that $I=G \cup F$ is an interval graph. For a sake of contradiction, let us assume that I is not an interval graph. We note that by Lemma 5.7 adding the edges $c^{\prime} x^{\prime}, c^{\prime} \in C$ and $x^{\prime} \in X^{\prime}$ would not add new AT in G. Therefore by Theorem 1.1 we may assume that I contains cycle of length more than three or a big AT with the edges in G.
Case 1. I contains big AT.
Let $S_{x, y, z}$ be an AT in I. We assume that vertices x and y are connected in $S_{x, y, z}$ by an induced path $x, w_{1}, w_{2}, \ldots, w_{q}, y$, where $q \geq 6$. Because $S_{x, y, z}$ is not an AT in $G \cup H$, set $E_{X}^{\prime} \backslash E_{X}$ must contain some fill-in edge $c d$, for $S_{x, y, z}$. By definition of $G[a, b, c], d$ is adjacent to some v_{i}, $3 \leq i \leq p-2$. Every fill-in edge of $S_{x, y, z}$ is either long, cross, or bottom, see Definition 5.3.

Claim A. cd is not a cross fill-in edges of $S_{x, y, z}$.
By Lemma 5.4 the fill-in edge $c d$ is a long fill-in edge of $S_{x, y, z}$ and not a cross fill-in edge.
Claim B. cd is not a bottom fill-in edge of $S_{x, y, z}$.
For contradiction suppose $c d$ is a bottom fill-in edge for $S_{x, y, z}$. Thus we have $c=x$ and $y=d$ or $c=y$ and $x=d$. W.l.o.g assume that $c=x$ and $y=d$. Now there is a path $Q=$ $c, w_{1}, w_{2}, \ldots, w_{q}, d$ from c to d. Since Q is chordless, by Lemma $3.12 w_{1}$ is a dominating vertex for $S_{a, b, c}$ and by Corollary $3.9 w_{1} d$ is an edge. This is a contradiction because $q>2$.

We conclude that $c d$ is a long fill-in edge for $S_{x, y, z}$. Now we have $z=c$ or $z=d$. If $z=d$ then by Lemma 5.4 (2) for every vertex $f \in G[a, b, c], S_{x, y, f}$ is an AT with the same path $x, w_{1}, w_{2}, \ldots, w_{q}, y$. Since H does not contain any of the edge $a u, b u, c v_{i}, i \in\{1, \ldots, 6, p-5, \ldots, p\}$, and $S_{a, b, f}$ is an AT, H must contain the edge $c f$. But this is a contradiction as we assumed that H does not contain all the edges $c f, f \in G[a, b, c]$.

Therefore we suppose $z=c$. We argue that there exists a fill-in edge $c d^{\prime} \in E_{X}$, such that $d^{\prime} \in\left\{x, w_{1}, w_{2}, \ldots, w_{q}, y\right\}$. Since $z=c$, Lemma 5.4 (1) implies that $P_{x, y} \cap B[a, b] \neq \emptyset$ and $P_{x, y} \cap E[a, b] \neq \emptyset$ and every $v_{i}, 2 \leq i \leq p-1$ has a neighbor in $P_{x, y}$. Therefore there would be a path from v_{2} to v_{p-1}. This is a contradiction to X being a v_{6}, v_{p-5} separator and hence there exists some fill-in edge $c d^{\prime} \in E_{X}$, such that $d^{\prime} \in\left\{x, w_{1}, w_{2}, \ldots, w_{q}, y\right\}$.
Case 2. I contains a cordless cycle of length more than three. This implies that there exists a path Q from c to $d \in G[a, b, c]$. However by Lemma 3.12 the second vertex of Q say d^{\prime} is a dominating vertex for $S_{a, b, c}$ and since $d \in G[a, b, c]$ by Corollary $3.9 d^{\prime} d$ is an edge. This implies that the length of Q is 2 , a contradiction.

In the following Lemma we address the correctness and complexity of the Algorithm.
Theorem 5.10 The Branching Algorithm is optimal and its running time is $O\left(c^{k} n(n+m)\right)$, $c \in \min \{17, k\}$ for parameter k.

Proof: The correctness of the Branching Algorithm is justified by Lemma 5.8. By Lemma $5.8(1,2)$ there are five ways of adding one fill in edge for AT $S_{a, b, c}$ of type 1 (type 2). Either we add one of the edges $a u, b u, c v_{i}, 1 \leq i \leq 6$ or $p-5 \leq i \leq p$ or we add at least one edge from c
to set X or we add edge $a b$ and hence the Algorithm needs to add $p-2$ other fill in edges. Note that once we add $a b$ then the parameter k decrease by at least 5 . In order to get the maximum number of branching we may assume that no bottom fill-in edge $a b$ is added. By looking at the small AT, together with the AT's of type 1 and type 2 there are at most max $\{17, k\}$ possible ways to add a fill in edge to $S_{a, b, c}$ and at each step the parameter k is decreased by at least one. We may deploy the algorithms developed in [14] with the running time $O(n(n+m))$ to find ATs. Therefore the running time of the algorithm is $O\left(c^{k} n(n+m)\right), c \in \min \{17, k\}$.

6 Conclusion and future work

We have shown that there exist single exponential FPT algorithms for k-interval deletion problem. The obstruction for the class of interval graphs is not finite but the obstructions can be partitioned into a constant number of families.

Let Π be a class of graphs. We say Π has family bounded property if the forbidden subgraphs for this class can be partitioned into a constant number of families. Let $\Pi+k v$ denotes the problem of deleting k vertices (edges) from (into) input graph G such that the resulting graphs becomes a member of Π. It would be interesting to study the following problem.

Problem 6.1 For which classes Π of graphs with family bounded property, the problem $\Pi+k v$ is FPT ?

Remark : We have heard that Cao and Marx have solved the k-interval deletion problem. They start by branching on small interval graph obstructions and then start breaking the cycles first and then deleting the big AT's. They have made some comments about an earlier version of this paper and they had some concerns for the cycle breaking procedure. I have said that the structure of the subgraph induced by $N[C] \backslash D(C)$ is simple and it is a circular arc graph. This statement led them to a confusion and I make it clear in this version. I also would like to thank Yixin Cao for a useful comment in the k-interval completion algorithm.

Acknowledgements: I would like to thank Fedor Fomin, Yngve Villanger and Saket Saurabh for many helpful discussions and their help.

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database systems. J. Assoc. Comput. Mach., 30:479513 (1983).
[2] L.Cai. Fixed-parameter tractability of graph modification problems for hereditary properties, Inform. Process. Lett., 58 , pp. 171-176. 1, 2 (1996).
[3] F. R. K. Chung and D. Mumford. Chordal completions of planar graphs. J.Comb. Theory, 31:96106, (1994).
[4] J. Diaz, A.M. Gibbons, M.S. Paterson, and J. Torn. The minsumcut problem. In Proceedings WADS 65-79 (1991).
[5] R.Diestel. Graph Theory. Springer Verlag, New York, 2005.
[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, New York, 1999.
[7] G. Even, J. Naor, S. Rao, and B. Scheiber. Divide-and-conquer approximation algorithms via spreading metrics, In Proceedings FOCS 62-71 (1995).
[8] T. Feder, P. Hell, J.Huang and A. Rafiey. Interval Graphs, Adjusted Interval Digraphs, and Reflexive List Homomorphisms. Discrete Applied Math 160(6) 697-707 (2012).
[9] P.C. Fishburn, Interval orders and interval graphs, Wiley,1985.
[10] M. Garey and D. Johnson. Computers and intractability: a guide to the theory of NP- completeness W.H.Freeman and co, San Fransisco, 1979.
[11] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.
[12] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Second edition. Annals of Discrete Mathematics 57. Elsevier, 2004.
[13] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir, Four strikes against physical mapping of DNA. J. Comput. Bio., 2(1) 139-152 (1995).
$[14]$ D. Kratsch, J. Spinrad, Between $O(n m)$ and $O\left(n^{\alpha}\right)$. In Proceedings of SODA, 709-716 (2003).
[15] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping. In Proceedings FOCS 780-791 (1994).
[16] T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval graphs. IEEE Symp. of Circuits and Systems, pages 82-83, (1979).
[17] D. Kuo, and G.J. Chang. The profile minimization problem in trees, SIAM J. Comput. 23, 71-81, (1994).
[18] C.G. Lekkerkerker and J.C. Boland, Representation of a finite graph by a set of intervals on the real line, Fundamenta Math. 51: 45-64 (1962).
[19] D.Marx. Chordal deletion is fixed-parameter tractable, Algorithmica, 57(4), 747-768, (2010).
[20] S. Rao and A. Richa. New approximation techniques for some linear ordering problems, SIAM J. Comput. 34(2):388-404 (2004).
[21] R. Ravi, A. Agrawal, and P. Klein. Ordering problems approximated: single processor scheduling and interval graph completion, In Proceedings ICALP , 751-762 (1991).
[22] R. McConnell. Linear-time recognition of circular-arc graphs, Algorithmica 37 (2): 93147
[23] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13:566579 (1984).
[24] Y. Villanger, P. Heggernes, Ch.Paul J.A. Telle. Interval Completion is Fixed Parameter Tractable, In Proceedings STOC (2007).

[^0]: *supported by European Research Council advanced grant PREPROCESSING, 267959.

