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Abstract

We consider two classical problems related to interval graphs. Let G be an input graph
with n vertices and m edges and let k be a fixed parameter. We provide a fixed parameter
algorithm that decides whether it is possible to turn G into an interval graph by deleting at
most k vertices from G. This solves an open problem posed by Marx [19]. The running time
of the algorithm is O(ckn(n + m)), c = min{18, k}.

We also provide an algorithm with running time O(ckn(n + m)), c = min{17, k} that
transforms G into an interval graph by adding at most k edges to G if such a transformation
is possible. Our algorithm improves the previous algorithm with running time O(k2kn3m)
appeared in [24].

The algorithms are based on a structural decomposition of G into smaller subgraphs when
G is free from small interval graph obstructions. The decomposition allows us to manage the
search tree more efficiently.

1 Introduction

An interval graph is a graph G which admits an interval representation, i.e., a family of intervals
Iv , v ∈ V (G), such that uv ∈ E(G) if and only if Iu and Iv intersect. Interval graphs have been
characterized in many different ways [8, 9, 12, 18].

The following theorem is the best known characterization.

Theorem 1.1 [18] G is an interval graph if and only if it contains no asteroidal triple and
no induced cycle C` , ` ≥ 4.

An asteroidal triple, AT, is an induced subgraph of G with three none adjacent vertices
a, b, c such that for every permutation x, y, z of a, b, c there is a path between x, y outside the
neighborhood of z. A graph G is chordal if it does not contain an induced cycle C`, ` ≥ 4. Cycle
C` in G is induced if it does not have any chord; an edge in G joining two non-adjacent vertices
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of the cycle. In the rest of the paper for simplicity we assume the cycles are induced and instead
of an induced cycle we say a cycle.

The k-interval deletion problem is : Given a graph G and integer k, one asks whether
there is a way of deleting at most k vertices from G such that the resulting graph is interval.

The k-interval completion (minimum interval completion) problem is : Given a
graph G and integer k, one asks whether there is a way of adding at most k edges to G such that
the resulting graph is interval.

Both k-interval deletion problem and k-interval completion problem are known to be NP-hard
[10, 16] when k is part of the input. The k-chordal completion and k-proper interval completion
problem are defined respectively. These problems arise in area such as sparse matrix computations
[11], database management [1, 23], computer vision [3], and physical mapping of DNA [11, 13].
Due to their practical applications they have been extensively studied.

A parameterized problem with parameter k and input size x that can be solved by an algorithm
with runtime f(k) · xO(1) is called a fixed parameter tractable (FPT) where f(k) is a computable
function of k (see [6] for an introduction to fixed parameter tractability and bounded search tree
algorithms). An early result related to k-interval completion problem is due to Kaplan, Shamir
and Tarjan [15]. They gave an FPT algorithm for k-chordal completion, k-strongly chordal
completion, and k-proper interval completion problem. The first FPT algorithm with runtime
O(k2kn3m) for the k-interval completion problem was developed by Villanger, Heggernes, Paul
and Telle [24].

The k-interval deletion problem was posed by D.Marx [19]. He considered the k-chordal
deletion problem as follows. Given an input graph G and a parameter k, one asks whether there
is a way of deleting at most k vertices from G such that the resulting graph becomes chordal.
Marx deployed a heavy machinery to obtain an FPT algorithm for k-chordal deletion problem.

In the approximation world, there is no constant approximation algorithm for minimum
interval completion problem. The first O(log2n)-approximation algorithm for minimum inter-
val completion was obtained by Ravi, Agrawal and Klein [21] and then it was improved to an
O(logn loglogn)- approximation by Even, Naor, Rao and Schieber [7] and finally to an O(logn)-
approximation algorithm by Rao and Richa [20]. There are polynomial time algorithms for
minimum interval completion on special classes of graphs. The minimum interval completion
is polynomial time solvable on trees. Kuo and Wang [17] gave an O(n1.77) algorithm minimum
interval completion on trees and then it was improved to O(n) algorithm by Diaz, Gibbons,
Paterson and Torn [4].

We use deep structural graph theory analysis to obtain a single exponential FPT algorithms
for the k-interval deletion problem and k-interval completion problem.

We consider simple, finite, and undirected graphs. For a graph G, V (G) is the vertex set of
G and E(G) is the edge set of G. For every edge uv ∈ E(G), vertices u and v are adjacent or
neighbors. The neighborhood of a vertex u in G is NG(u) = {v | uv ∈ E(G)}, and the closed
neighborhood of u is NG[u] = NG(u) ∪ {u}. When the context will be clear we will omit the
subscript. A set X ⊆ V (G) is called clique of G if the vertices in X are pairwise adjacent. A
maximal clique is a clique that is not a proper subset of any other clique. For U ⊆ V , the subgraph
of G induced by U is denoted by G[U ] and it is the graph with vertex set U and edge set equal

2



c

a b

c

a

c

a b

c

a b

b

Figure 1: Some small ATs

to the set of edges uv ∈ E with u, v ∈ U . For every U ⊆ V , G′ = G[U ] is an induced subgraph of
G. By G \X for X ⊆ V , we denote the graph G[V \X]. For two disjoint subsets X,Y of V (G),
S ⊂ G− (X ∪ Y ) is a (X,Y )-separator if there is no path from any vertex of X to any vertex in
Y in G \ S. Let G1, G2 be two subgraph of graph G. For simplicity, we denotes V (G1) ∩ V (G2)
by G1 ∩G2 and for subset X of V (G), X ∩G1 denotes X ∩ V (G1). For a subset P of vertices in
G, let N(P ) denote the neighborhood of P and N [P ] be the closed neighborhood of P . We do
not use many non-standard terminologies and definitions and we refer to a standard text book
in graph theory such as [5].

2 Outline

In the rest of this paper for simplicity we assume the cycles are induced and instead of an induced
cycle we say a cycle. We always refer to the cycles of length at least four unless we specify the
length. Note that according to the definition of AT, every cycle C`, ` ≥ 6 contains an AT. However
for our purpose we distinguish the AT’s and cycles. Suppose G contains a small induced subgraph
Z which is either a small AT (See Figure 1) or a cycle of length at most nine. Then we consider
all the possible ways of deleting (adding) one vertex (a few edges when Z is a cycle) from (to)
Z and hence we can follow a search tree with at most 9 branches and obtain a FPT algorithm
with run time O(9kn(m + n)). This is a standard technique in developing FPT algorithms (For
example see [2]). Thus in what follows we may assume that :
Every cycle in G has length at least 10 and G does not contain a small AT as an induced subgraph,
i.e., G does not contain small obstructions.

Under this assumption if G does not contain any cycle then either G is an interval graph or
it contains only two types of AT; so called big AT, depicted in Figure 2.

Let Sa,b,c denote an AT over the vertices a, b, c. Sa,b,c with the vertex set a, b, c, u, v1, v2, . . . , vp
and the edge set

E(Sa,b,c) = {av1, v1v2, . . . , vp−1vp, vpb, uv1, uv2, . . . , uvp, uc}

is called type 1 AT. Sa,b,c with vertex set a, b, c, u, w, v1, v2, . . . , vp and the edge set

E(Sa,b,c) = {au, bw, cu, cw, av1, bvp, uv1, wv1} ∪ {vivi+1, uvi+1, wvi+1|1 ≤ i ≤ p− 1}

is called type 2 AT. Here p ≥ 6.

Definition 2.1 For AT Sa,b,c, let G[a, b, c] be the induced subgraph of G on the vertices outside
the neighborhood of c and adjacent to some vertices in {v3, v4, . . . , vp−2}. We say Sa,b,c is ripe if
G[a, b, c] is an interval graph.
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Figure 2: Big ATs

An overview of the k-interval deletion algorithm:

There are two main steps in the algorithm.

Step 1) G is a chordal graph.

If G is not interval then according to our assumption it contains a big AT. We show that there
exists a ripe AT in G. The algorithm starts with a ripe AT Sa,b,c, and it proceeds as follows.

• Branch by deleting one of the vertices {a, b, u, c, v1, v2, v3, v4, v5, v6, vp−5, vp−4,
vp−3, vp−2, vp−1, vp}

• Branch by deleting all the vertices in X, where X is a minimum set of vertices outside the
neighborhood of c that separates v6 from vp−5 outside the neighborhood of c

For the correctness we show the following lemma.

Lemma 2.2 Let G be a chordal graph without small AT’s and let Sa,b,c be a ripe AT. Let X be
a minimum separator in G−N(c) that separates v6 from vp−5 and X contains a vj, 7 ≤ j ≤ p−6.
Then there is a minimum set of deleting vertices F such that G− F is an interval graph and at
least one of the following holds:

(i) F contains at least one vertex from

{a, b, u, c, v1, v2, v3, v4, v5, v6, vp−5, vp−4, vp−3, vp−2, vp−1, vp}

(iii) F contains all the vertices in X.

Briefly speaking we start with a chordal graph G and find a minimum big AT, Sa0,b0,c0 (
the length of the path between a0, b0 is minimum among all other AT’s). The interaction of
Sa0,b0,c0 with the rest of the graph is special. Now we look at G[a0, b0, c0] and if there is an AT in
G[a0, b0, c0] then we continue our search with that AT. Eventually we find a ripe AT Sa,b,c (the
details are in section 3).
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The none trivial part of the algorithm is the decision for deleting a vertex vj , 7 ≤ j ≤ p− 6.
We show that if vj belongs to a minimum separator X that separate v6 from vp−5 in G \ N(c)
then deleting vj is a right a decision. The intuition behind the separator is, in order to obtain an
interval graph we must break all the paths from a to b outside the neighborhood of c.

In order to prove the Lemma 2.2 we need to investigate the vertex intersection of some other
AT Sx,y,z with Sa,b,c. We show that if Sx,y,z has intersection with {v7, v8, . . . , vp−6} then X also
contains a deleting vertex (a possible solution) for Sx,y,z. The ripeness of AT Sa,b,c allows us to
show that there are three possible nice configurations (see subsection 3.1 AT and AT interaction
and Figures 4,5,6). The most important vertex intersection is shown in Figure 4 that facilitates
the proof of the Lemma 2.2. The most important vertex intersection is shown in Figure 5 that
facilitates the proof of the Lemma 2.2. The bound 6, . . . , p − 5 helps to prove that if AT Sx,y,z
has a vertex in {v7, v8, . . . , vp−6} then we must have one of the configurations depicted in Figures
4,5,6 (see Lemma 3.18) otherwise the entire Sx,y,z lies in G[a, b, c] and it contradict the ripeness
of Sa,b,c.

Step 2) G is not chordal. Let C be a shortest cycle in G. The absence of the small obstructions
allows us to partition the vertices in N [C] into two sets D(C) and N [C] \D(C), such that every
vertex x in D(C) is adjacent to every vertex in N [C]− x. We start with the following definition.

Definition 2.3 We say a shortest cycle C (10 ≤ |C|) of G is clean if for every cycle C1

(10 ≤ |C1|) in N [C]−D(C), every vertex in C1 is adjacent to at most three consecutive vertices
in C and N [C1] contains C, i.e., C1 goes around C. We say C is ripe if it is clean and it does
not contain any AT in its closed neighborhood.

Statement 1. If G is not chordal then there exists a clean cycle C in G.

In order to obtain a clean cycle we start with an arbitrary shortest cycle C0 and then we
show that for every other cycle C1 in N [C0], either V (C0) ⊆ N [C1] or V (C1) is contained in the
neighborhood of at most two consecutive vertices of C0. If the first case happens then C0 is the
desired cycle otherwise the search for a clean cycle is continued in the subgraph of G induced by
N [C1]− V (C0).

Statement 2. Consider a clean cycle C that is not ripe. Let Sa,b,c be a big AT such that
V (Sa,b,c) ⊆ N [C] (N [C] is the closed neighborhood of C). Then we can assume that Sa,b,c lies in
the union of the neighborhood of at most three consecutive vertices of C.

Step 2.1) Start with a clean cycle C. If C is not ripe then consider big AT Sa,b,c in N [C]
and let u, v, w be three consecutive vertices of C such that N [{u, v, w}] contains the vertex set
Sa,b,c. Apply the algorithm for the chordal case on the subgraph of G induced by N [{u, v, w}].
This procedure is repeated as long as C is not ripe.

Step 2.2) Start with a ripe cycle C. Find a minimum set X of vertices in N [C] − D(C)
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whose deletion break all the cycles in N [C]−D(C) .

Set X is called a minimum cycle-separator. At this point the algorithm either deletes all the
vertices in C, or it deletes all the vertices in X at once. We show that the choice of set X is
arbitrary. For the correctness of Step 2 we show the following lemma.

Lemma 2.4 Let C be a ripe cycle and let X be a minimum cycle-separator in N [C]. Then
there is a minimum set of deleting vertices F such that G − F is an interval graph and at least
one of the following holds:

(i) F contains all the vertices of the cycle C.

(ii) F contains all the vertices in X.

Let C = v0, v1, . . . , vp−1, v0. In order to find set X, for every 0 ≤ i ≤ p−1 we find a minimum
set of vertices Xi that separates vi from vi+3 in Wi = N [{vi+1, vi+2}]−D(C). X is the smallest
set Xi. Note that Wi is an interval graph since C is ripe.

In order to prove the lemma we need to analyze the interaction of ripe cycle C with the others
big AT’s. We show that if a vertex of big AT Sx,y,z belongs to C then for every vertex v in C
one of the vertices of Sx,y,z can be replaced by v to obtain a new AT (For example Sx,y,v is an
AT). This justifies the first item of the lemma (See Figure 8). If no such Sx,y,z exists then item
(ii) of the lemma is justified.

The overall complexity of the algorithm for k-interval deletion is O(ckn(m + n)) where
c = min{18, k}. By using slightly more restricted definition for ripe AT we can get a better
running time O(12kn(n + m)).

An overview of the k-interval completion algorithm :

Suppose input graph G contains cycle C of length at least 4. In order to obtain an interval
graph we must add a set of at least |C| − 3 edges into vertices of C, or equivalently we need to
triangulate cycle C. It is not difficult to see that there are at most O(4|C|−3) different ways of
triangulating cycle C. Thus we branch on all different ways of triangulating cycle C, and after
each of them the parameter k decreases by |C|−3. As explained before we handle the small AT’s
by branching on possible add edges (at most 8 possible ways).

For the sake of clarification and simplicity we just explain what we do when dealing with AT
of type 1. The algorithm treats the type 2 AT very similar to the type 1.

We need to add at least one edge e to Sa,b,c such that Sa,b,c ∪ {e} is no longer induces an
AT in G. We add one of the edges cvi, 1 ≤ i ≤ 6 or one of the edges cvi, p − 5 ≤ i ≤ p or we
add one of the edges au, bu, avp, bv1 ( and ab if of type 2 ). If we add edge avp then we need to
find a minimal triangulation of the cycle a, v1, . . . , vp, a (However we show that we can assume
that this triangulation has a special form, but considering any minimal triangulation would be
fine). The main non-trivial case is a decision for adding an edge cvj for some 7 ≤ j ≤ p− 6. We
show that we can add the edge cvj when vj belongs to a minimum (v6, vp−5)-separator outside
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the neighborhood of c. This allows us to get a single exponential FPT algorithm (see Figure 3).
We prove the following lemma.

Lemma 2.5 Let G be a chordal graph without small ATs and let Sa,b,c be a ripe AT with the
path Pa,b = a, v1, v2, . . . , vp, b. Let X be a minimum separator in G−N(c) that separates v6 from
vp−5 and it contains a vertex vi, 7 ≤ j ≤ p − 6. Then there is a minimum set of edges F such
that G ∪ F is an interval graph and at least one of the following holds:

(i) F contains at least one edge from

{bu, au, cv1, cv2, cv3, cv4, cv5, cv6, cvp−5, cvp−4, cvp−3, cvp−2, cvp−1, cvp}

(ii) F contains all the edges avi, 2 ≤ i ≤ p (and ab when Sa,b,c is of type 2)

(iii) F contains all the edges bvi, 1 ≤ i ≤ p− 1 (and ab when Sa,b,c is of type 2)

(iv) F contains all edges EX = {cx|x ∈ X}.

We need to take into account two issues. There might be a situation in which the edge cvr
7 ≤ r ≤ p − 6, r 6= j is also an add edge (part of a optimal solution) for some other AT Sx,y,z.
We investigate the AT and AT (add) edge in common and we show that there are two possible
configurations (see Figures 11 and 12). The most interesting configuration is when z = c and vr
is a vertex of the path Px,y. In this case we show that at least one edge of EX is an add edge
for Sx,y,z and hence the item (iv) of the above lemma is justified. The second issue is when we
add the edge cvj to Sa,b,c we might create new AT’s and hence the choice of cvj matters. Here
again the ripeness of Sa,b,c plays an important role. In fact the set X is a clique containing vj
and adding edges EX would not yield a new AT with the vertex set V (Sa,b,c) ∪ V (G[a, b, c]). We
further show that the optimal solution also has to treat an AT Sa,b,c′ (where cc′ is an edge of G,
and path Pa,b is the same in both AT’s) similar to Sa,b,c and hence we conclude the lemma.

Overall the running time of the algorithm is O(ckn(n+m)), c = min{17, k}. By using slightly
more restricted definition for ripe AT we can get a better running time O(11kn(n + m)).

The paper is organized as follows. In Section 3 we investigate the structure of a chordal graph
G which does not contain small ATs as induced subgraphs. We start with a minimum AT, and
then we obtain a ripe AT Sa,b,c. Next we consider the interaction (vertex intersection) of another
minimum AT, Sx,y,z with Sa,b,c. The Sa,b,c and Sx,y,z interact in a very particular way. In Section
4 we consider k-interval deletion problem. In Subsection 4.1 we consider the case when G is
chordal and does not contain neither small ATs as induced subgraph. If G is chordal then the
results in Section 3 with regard to the vertex interaction of Sa,b,c and Sx,y,z enable us to reduce the
number of branches in a search tree into a constant number and hence we obtain an efficient FPT
algorithm. In Subsection 4.2 we deal with the non-chordal case. We start with a shortest cycle
C and we show that any other cycle (of length more than 8) in N [C] interact with C in a special
way due to absence of the small obstructions. The interaction between cycle C and AT Sa,b,c is
investigated and we show that either Sa,b,c lies in the neighborhood of at most three consecutive
vertices of C or the entire path Pa,b of Sa,b,c lies outside the neighborhood of C. Finally the
main algorithm is presented at Section 4.3 and its correctness is proved. In Section 5 we consider
the Interval completion problem. In Subsection 5.1 we further investigate the edge interaction of
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Sa,b,c and Sx,y,z, i.e., when Sa,b,c and Sx,y,z have an edge in common. The edge interaction occurs
in a special way and we make a use of it to get a single exponential FPT for k-interval completion
problem. In Subsection 5.2 we present the main algorithm for interval completion problem and
we prove its correctness.

3 Structure when G is chordal and there are no small AT’s

In this section we assume that G is chordal and it does not contain small AT’s (See Figure 1).
By the results of Lekkerkerker and Boland [18], every other possible minimal AT in G is one of
two graphs depicted in Figure 2.

Let Sa,b,c denote an AT with the vertices a, b, c, such that the path between a, c and the path
between b, c are of length 2 and the path between a, b has length at least 7. Vertex c is called a
shallow vertex .

Definition 3.1 We say AT Sa,b,c is of type 1 if Sa,b,c has the vertex set {a, b, c, u, v1, v2, ..., vp}
and the edge set

{av1, cu, bvp, uv1} ∪ {vivi+1, uvi+1|1 ≤ i ≤ p− 1}.

Vertex u is called a center vertex. We set v0 = a and vp+1 = b.

Definition 3.2 We say AT Sa,b,c is of type 2 if Sa,b,c has the vertex set {a, b, c, u, w, v1, v2, ..., vp}
and the edge set

{au, bw, cu, cw, av1, bvp, uv1, wv1} ∪ {vivi+1, uvi+1, wvi+1|1 ≤ i ≤ p− 1}.

The vertices u,w are called central vertices. We set v0 = a and vp+1 = b.

Let G′ be an induced subgraph of G, and let Sa,b,c be an AT in G′. We say Sa,b,c is minimum if
among all the AT, Sa′,b′,c′ in G′ the path between a, b in Sa,b,c has the minimum number of vertices
and if there is a choice we assume that Sa,b,c is of type 1. We denotes the path a, v1, v2, . . . , vp, b
by Pa,b.

Definition 3.3 We say a vertex x is a dominating vertex for Sa,b,c if x is adjacent to all the
vertices v1, v2, v3, . . . , vp−1, vp.

In the rest of this paper the set of dominating vertices for Sa,b,c is denoted by D(a, b, c). The
following lemma shows the relationship of minimum Sa,b,c with the other vertices of G.

Lemma 3.4 Let G be a chordal graph without small ATs. Let Sa,b,c be a minimum AT with
a path Pa,b = a, v1, v2, . . . , vp, b. Let x be a vertex in G \ Sa,b,c. Then the following hold.

(1) If cx is an edge of G then ux is an edge of G when Sa,b,c is of type 1, and xu, xw are edges
of G when Sa,b,c is of type 2.

(2) If Sa,b,c is of type 1 and x is adjacent to vj, for some 2 ≤ j ≤ p− 1, then x is adjacent to u.

8



(3) If Sa,b,c is of type 2 and x is adjacent to vj, for some 1 ≤ j ≤ p, then x is adjacent to both
u and w.

(4) Let vertex x be adjacent to c. If x is adjacent to vi, for some 0 ≤ i ≤ p + 1, then x is a
dominating vertex for Sa,b,c.

(5) Every vertex x ∈ G \ N(c) is adjacent to at most three vertices of the path a, v1, . . . , vp, b.
Moreover, the neighbors of x are consecutive vertices in the path a, v1, . . . , vp, b.

(6) If x ∈ G \N(c) is adjacent to vi, 3 ≤ i ≤ p− 2, then every vertex y ∈ G \N(c) adjacent to
x, is also adjacent to at least one of the vertices vj, i− 2 ≤ j ≤ i + 2.

(7) If x is adjacent to some vi, 2 ≤ i ≤ p− 1, then x is adjacent to every dominating vertex y.

(8) If x ∈ G \N(c) is adjacent to some vi, 2 ≤ i ≤ p− 1, and x is adjacent to some y ∈ N(c),
then y is a dominating vertex .

Proof: (1). Let us first suppose that Sa,b,c is of type 1. If xu is not an edge of G, then
x should be adjacent to at least one of the vertices v1, vp, a, and b, because otherwise vertices
x, c, u, v1, vp, a, b induce a small AT in G. If xa is an edge, then because G is chordal, the cycle
induced by {x, c, u, v1, a} should have chord xv1. Similarly, if {x, b} are adjacent, so should be
{x, vp}. But neither xv1, nor xvp can form an edge of G because otherwise we obtain an induced
4-cycle x, c, u, v1 or x, c, vp, b in chordal graph G.

Now suppose that Sa,b,c is of type 2. Targeting towards a contradiction, let us assume that
xw is not an edge. Then xb is not an edge because otherwise x, c, w, b would induce C4 in G.
Furthermore, xv1 is not an edge because otherwise C4 is induced by vertices x, c, w, and v1. We
also note that xa is not an edge as otherwise x, a, v1, w, c would induce C5 in G. Thus if x is not
adjacent to w, then x cannot be adjacent to a, b and v1. But then set {x, c, u, w, v1, vp, a, b}, even
when x and u are adjacent, induces a small AT in G, which is a contradiction. Similar argument
implies that xu is an edge.

(2). If xu is not an edge then by (1), vertices x and c are not adjacent. Then vertex x has at most
three neighbors among the vertices of path Pa,b. This is because otherwise, there will be a shorter
(a, b)-path in G passing through x and avoiding the closed neighborhood of c. But then vertices
of this paths together with u and c induce an AT S′a,b,c of size smaller than the size of Sa,b,c. This
is a contradiction to the choice of Sa,b,c. Thus x has at most three neighbors in Pa,b. Let vi, i ≤ j,
be the leftmost neighbor of x in Pa,b, and vk, k ≤ j, be the rightmost neighbor. We observe that
k− i ≤ 2, because otherwise we obtain cycle of length at least four in G. Because G has no small
ATs and thus n ≥ 7, we have that either i ≥ 2, and in this case vertices a, v1, v2, ..., vi, x, c, u
induce a smaller AT than Sa,b,c, or k ≤ p−1, and then x, vk, vk+1, ..., vp, b, u, c form a smaller AT.

(3). The proof here is similar to the proof of (2).

(4). We prove the statement when Sa,b,c is of type 1. The argument for when Sa,b,c is of type 2 is
similar. By (1), xu is an edge. If x is adjacent to vi for some 0 ≤ i ≤ p− 1, then xvi+2 is also an
edge of G as otherwise the vertices a, v1, . . . , vi+2, c, x induce a smaller AT Sa,vi+2,c. In this case
we note that xvi+1 is also an edge because vertices x, vi, vi+1, vi+2 would induce C4 otherwise.
Similarly if x is adjacent to vj , 2 ≤ j ≤ p + 1, then xvj−2 is an edge as otherwise the vertices
b, vp, vp−1, . . . , vi−2, c, x induce smaller AT Sa,vi−2,c. In this case we note that xvi−1 is also an
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edge as otherwise there would be an induced C4 on x, vi, vi−1, vi−2. By applying these arguments
inductively, we obtain that x is adjacent to every vi, for 2 ≤ j ≤ p−1. Now if none from the pairs
xv1, xvp is an edge, then v1, v2, . . . , vp, x, c induce smaller AT Sv1,vp,c, a contradiction. Therefore
we may assume that x should be adjacent either to v1, or to vp. Let us assume, without loss
of generality, that x is adjacent to v1. Now if xvp is not an edge, then a, v1, v2, . . . , vp−1, c, x is
a smaller AT when ax is not an edge. We conclude that if xvp is not an edge, then xa, xv1 are
edges of G. However c, x, u, a, v1, v2, . . . , vp induce an AT Sa,vp,c of type 2 and the path between
a, vp is shorter the path between a, b in Sa,b,c, this is a contradiction. Therefore xvp is an edge.

(5). If there was a vertex x ∈ G \ N(c) adjacent to more than three vertices in the path Pa,b
then there is a shorter path between a, b using vertex x avoiding neighborhood of c. Thus we
construct a smaller AT. The neighbors are consecutive vertices of the path because otherwise we
obtain cycle of length at least four.

(6). If y is adjacent to none of the vertices vi−2, vi−1, . . . , vi+2, then vertices y, x, vi, vi−2, vi−1, vi+1,
vi+2 induce a smaller AT unless x is adjacent to vi−2 or vi+2. Suppose that x is adjacent to vi−2.
Now by (6), x is adjacent to vi−1. By (5), x cannot be adjacent to more than 3 vertices of the path
v1, . . . , vp, and thus x is not adjacent to vi−3 and vi+1. Vertex y is not adjacent to vi−3 because
vertices vi−3, vi−2, x, y do not induce a cycle. In this case vertices vi−3, vi−2, vi−1, vi, vi+1, x, y
induce a small AT.

(7). If x is adjacent to c then by (4), x is a dominating vertex and hence x is adjacent to y
as otherwise x, y, v1, v3 induces a C4. So we may assume that x 6∈ N(c). By (5), y should be
adjacent to c. In this case, if x is not adjacent to y, then either c, u, x, y, vi, vi+1, . . . , vp, b, or
a, v1, v2, . . . , vi, y, x, u, c induce a smaller AT.

(8). If y is adjacent to at least one vertex vi for some 0 ≤ i ≤ p+ 1, then by (4) y is a dominating
vertex for Sa,b,c. Let us assume that y is non-adjacent to all vertices vi, 0 ≤ i ≤ p+ 1. Now Sa,b,y
has exactly the same number of vertices as Sa,b,c, and thus is also a minimum AT. By applying
item (4) for Sa,b,y we conclude that x is a dominating vertex for Sa,b,y and hence x is adjacent to
more than three vertices in the path Pa,b = a, v1, . . . , vp, b. This is a contradiction to (5) because
by assumption x ∈ G \N(c).

�

The following Lemma follows from item (4) of Lemma 3.4.

Lemma 3.5 Let Sa,b,c be a minimum AT with a path Pa,b = a, v1, v2, . . . , vp, b and center
vertex u (central vertices u,w). Let Q be a chordless path from c to some vi, 0 ≤ i ≤ p+ 1. Then
the second vertex of Q is a dominating vertex for Sa,b,c. Moreover if 1 ≤ i ≤ p then the length of
Q is 2.

Proof: Let Q = c, c1, c2, . . . , cr, vi be a chordless path from c to vi, 0 ≤ i ≤ p + 1. Suppose
c1 is adjacent to some vertex vj , 0 ≤ j ≤ p + 1. Then by Lemma 3.4(4), c1 is a dominating
vertex for Sa,b,c and hence c1vj is an edge for every 1 ≤ j ≤ p. If j 6= 0, p + 1 then c1vi is an
edge and hence r = 1 and lemma is proved. Thus we assume that c1 is not adjacent to any vj ,
0 ≤ j ≤ p + 1. By Lemma 3.4 (1), uc1 is an edge. This implies that Sa,b,c1 is an AT with the
same number of vertices as Sa,b,c. Now by applying the same argument for Sa,b,c1 we conclude
that c2 is a dominating vertex for Sa,b,c1 . However by item (6) of Lemma 3.4 for Sa,b,c, c2 is a
dominating vertex for Sa,b,c and hence by item (5) of Lemma 3.4 we conclude that c2 is adjacent
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to c. This is a contradiction to Q being a chordless path. �

Let G be a chordal graph without small ATs. Let Sa,b,c be a minimum AT in G. Then by
item (5) of Lemma 3.4, every vertex x of G \N(c) has at most three neighbors in the Pa,b path,
and moreover, these neighbors should be consecutive vertices of this path. Note that we assume
v0 = a and vp+1 = b. We introduce the following notations. We define the following subsets of
G \N(c)

• Si vertices adjacent to vi and not adjacent to any other vj , j 6= i, 1 ≤ i ≤ p;

• Di vertices adjacent to vi, vi+1 and not adjacent to any other vj , j 6= i, i + 1, 0 ≤ i ≤ p;

• Ti vertices adjacent to vi, vi+1, vi+2, 0 ≤ i ≤ p− 1.

The following corollary is obtained from Lemma 3.4 (1,7,8).

Corollary 3.6 Let Sa,b,c be a minimum AT. Then the vertices in D(a, b, c) form a clique.
Every vertex adjacent to c is also adjacent to every dominating vertex. Moreover every vertex in
D(a, b, c) is also adjacent to c.

Definition 3.7 For minimum AT, Sa,b,c let B[a, b] be the set of vertices in D0 ∪ T0 ∪ D1 ∪
S1 ∪ {v1} ∪ S2 and E[a, b] be the set of the vertices in Sp−1 ∪Dp−1 ∪ Tp−1 ∪Dp ∪ Sp ∪ {vp}.

Definition 3.8 For minimum AT, Sa,b,c let G[a, b, c] = G[{x|x ∈ N [vi]\N(c); 3 ≤ i ≤ p−2}].

Since every vertex in G[a, b, c] is adjacent to some vi, 3 ≤ i ≤ p− 2 by Lemma 3.4(7) we have
the following.

Corollary 3.9 Every vertex in G[a, b, c] is adjacent to every vertex in D(a, b, c).

Lemma 3.10 Let x be a vertex adjacent to some vertex in G[a, b, c]. Then x is adjacent to
every vertex in D(a, b, c).

Proof: If x ∈ N(c) then by Corollary 3.6 the Lemma holds. Therefore we may assume that
x 6∈ N(c). Let xx′ be an edge of G for some x′ ∈ G[a, b, c]. By definition of G[a, b, c], x′ is adjacent
to some vi, 3 ≤ i ≤ p − 2. By Lemma 3.4 (6), x is adjacent to some vj , i − 2 ≤ j ≤ i + 2. If
x is adjacent to one of the vi−1, vi, vi+1 then by Lemma 3.4(7) x is adjacent to every vertex in
D(a, b, c).
Therefore w.l.o.g assume that x is adjacent to vi−2 and not adjacent to any of vi−1, vi. Now we
observe that x′ is adjacent to vi−2, vi−1, vi as otherwise we obtain an induced C4 or induced C5

with the vertices vi−2, vi−1, vi, x
′, x. Now by replacing vi−1 with x′ we obtain a minimum AT

(Sa,b,c)
′ with the same number of vertices as Sa,b,c, and path P ′a,b = a, v1, . . . , vi−2, x

′,
vi, . . . , vp, b. Note that 2 ≤ i − 1 ≤ p − 1. Thus the set D(a, b, c) is also the set of dominating
vertices for (Sa,b,c)

′. Now because xx′ is an edge Lemma 3.4(7) for (Sa,b,c)
′ implies that x is

adjacent to every vertex in D(a, b, c).

11
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Figure 3: G[a,b,c] and outside

Lemma 3.11 Let Sa,b,c be a minimum AT. Then D(a, b, c)∪B[a, b]∪E[a, b] separates G[a, b, c]
from the rest of the graph.

Proof: We need to show that if x ∈ G\ ({v1, vp}∪D0∪S1∪D1∪T0∪Sp∪Dp−1∪Tp−1∪Dp∪
D(a, b, c)∪ V (G[a, b, c])) then there is no edge from x to y ∈ G[a, b, c]. For contradiction suppose
xy is an edge. We also note that x 6∈ N(c) as otherwise by Lemma 3.5, x is a dominating vertex for
Sa,b,c and we get a contradiction. By definition of G[a, b, c], y is adjacent to vi, 3 ≤ i ≤ p−2. First
suppose y ∈ {v2, vp−1}. Now x is adjacent to v2 or x is adjacent to vp−1. Since x is adjacent to at
most three consecutive vertices on the path Pa,b, x lies in {v1, vp}∪S2∪T0∪Sp∪Dp−1∪Tp−1∪Dp.
This implies that x ∈ B[a, b]∪E[a, b]. We continue by assuming that y ∈ V (G[a, b, c])\{v2, vp−1}.
Now we apply Lemma 3.4(6) for y and we conclude that x is adjacent to one of the vertices
vi−2, vi−1, vi, vi+1, vi+2. Therefore x is in N [vr], 1 ≤ r ≤ p. We observe that r ∈ {1, 2, p− 1, p} as
otherwise by definition x is in G[a, b, c]. Therefore x ∈ B[a, b] ∪ E[a, b]. �

The following Lemma is obtained by applying similar argument in Lemma 3.5.

Lemma 3.12 Let Sa,b,c be a minimum AT with a path Pa,b = a, v1, v2, . . . , vp, b and center
vertex u (u,w). Then every chordless path from c to d ∈ G[a, b, c] has length 2 and the intermediate
vertex of this path is a dominating vertex for Sa,b,c.

Lemma 3.13 Let Sx,y,z be a minimum AT in G[a, b, c] with a path Px,y = x,w1, w2, . . . , wq, y
(x = w0, y = wq+1) and center vertex u′ (central vertices u′, w′ if of type 2). Then there exists
2 ≤ i ≤ p− 1, such that vi is a dominating vertex for Sx,y,z.

Proof: If u′ ∈ {vi−1, vi, vi+1} then u′ = vj ∈ {vi−1, vi, vi+1} is a dominating vertex for Sx,y,z.
Note that by definition of G[a, b, c] we have 2 ≤ j ≤ p − 1. Therefore we may assume that u′ is
not on the path Pa,b.

We first show that vi 6= z. For contradiction suppose z = vi. Observe that the conditions
of the Lemma 3.4(1) are applied for Sx,y,z and hence vi−1 is adjacent to u′ and vi+1 is adjacent
to u′. First suppose vi+1 is not adjacent to any vertex wj , 0 ≤ j ≤ q + 1. By replacing vi with
vi+1 we get a minimum AT, Sx,y,vi+1 with the same number of vertices as Sx,y,vi , and hence by
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Lemma 3.4(1), vi+2 must be adjacent to u′. This implies that u′ is adjacent to more than three
vertices of the path Pa,b. Since u′ 6∈ N(c), we get a contradiction by Lemma 3.4(5). Therefore
vi+1 must be adjacent to some wj . Similarly we conclude that vi−1 must be adjacent to some wj′ ,
0 ≤ j′ ≤ q + 1. By applying the item (4) of Lemma 3.4 for Sx,y,vi , vi−1 is a dominating vertex
for Sx,y,vi and similarly vi+1 is also a dominating vertex for Sx,y,vi+1 . But this is a contradiction
because by Corollary 3.6 vi−1vi+1 is an edge. Therefore we have the following fact.

(f) For every minimum AT, Sx′,y′,z′ ⊆ G[a, b, c] we have z′ 6= vi, 2 ≤ i ≤ p− 1.

Now suppose z ∈ Si ∪ Di ∪ Ti and viz is an edge of G. Note that viu
′ is also an edge by

Lemma 3.4(1). Now if vi is not adjacent to any vertex of the path Px,y then Sx,y,vi is also a
minimum AT with the same number of vertices as Sx,y,z and we get a contradiction by (f). Thus
we conclude that vi is adjacent to some vertex wj , 0 ≤ j ≤ q + 1 and hence by Lemma 3.4(4), vi
is a dominating vertex for Sx,y,z.

�

Definition 3.14 We say an AT, Sa,b,c is ripe if there is no AT in G[a, b, c], i.e., G[a, b, c] is
an interval graph.

Remark : Note that a ripe AT may not be necessary a minimum AT. But for the purpose of
the algorithm we often use a minimum ripe AT and by that we mean an AT which is ripe and it
is minimum among all the ripe AT’ in a subgraph of G. In what follows when we say ripe AT we
mean minimum ripe AT.

Looking for a ripe AT, starting with a minimum AT Sa0,b0,c0.

We start with minimum AT, Sa0,b0,c0 . If G[a0, b0, c0] is interval then Sa0,b0,c0 is the answer.
Otherwise we find a minimum AT, Sa1,b1,c1 in G[a0, b0, c0]. Note that according to Lemma 3.13
there is a vertex vi (on the path Pa0,b0) that is a dominating vertex for Sa1,b1,c1 . We say Sa0,b0,c0
dominates Sa1,b1,c1 at vi. Now we define the sets S1

i , D
1
i , T

1
i with respect to the vertices on the

path Pa1,b1 = a1, w1, w2, . . . , wq, bq (the same way we define them for Sa0,b0,c0). If necessary the
search is continued for other AT dominated by Sa1,b1,c1 . See the Algorithm 1 for more details.

Algorithm 1 Looking for a ripe AT

1. Start with an arbitrary minimum AT, Sa0,b0,c0 , and set i = 0, G0 = G.

2. Define Gi[ai, bi, ci] in Gi \N(ci) (see definition 3.8) and set Gi+1 = Gi[ai, bi, ci].

3. If there is no AT in Gi+1, report Sai,bi,ci as a ripe AT and exit.

4. If i > k then report NO solution and exit.

5. Let Sai+1,bi+1,ci+1
be a minimum AT, in Gi+1

6. increase i by one and go to (2).

Lemma 3.15 The Algorithm 1 reports a ripe AT and terminates after at most k steps.
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Figure 4: u′ ∈ D(a, b, c) and Px,y ∩B[a, b] 6= ∅, Px,y ∩ E[a, b] 6= ∅

Proof: Suppose Sa,b,c dominates Sa1,b1,b1 at some vertex vi. Then by Lemma 3.13, vi is a
dominating vertex for Sa1,b1,c1 . If Sa1,b1,c1 also dominates Sa2,b2,c2 at some vertex wj on the path
Pa1,b1 then by Lemma 3.4 item (2) or (3) the vertices of Sa2,b2,c2 are all adjacent to vi (since vi
is a dominating vertex for Sa,b,c). Now it is easy to see that Sar,br,cr does not dominate Sa,b,c, as
otherwise the vertices on the path Sa,b,c must be all adjacent to some vertex in the neighborhood
of vi which is not possible. Therefore there is no domination from an AT at step i in the Algorithm
1 to an AT at step j < i. Thus the algorithm reports a ripe AT after at most k steps. Note that
the number of AT’s found in the Algorithm 1 can not be more than k. �

3.1 AT and AT interaction

Remark : In the following three Lemmas we consider the vertex intersection of a minimum AT,
Sx,y,z with a ripe AT, Sa,b,c. There are only four possible interaction configurations for these two
ATs. In two of these configurations the central vertex (vertices) of Sx,y,z lie in dominating set of
Sa,b,c. In two of these configurations the path Px,y has no intersection with G[a, b, c] and in one
situation every vertex in Pa,b has a neighbor in Px,y. In two situations if V (Sx,y,z) ∩N [vi] = T ,
for some 7 ≤ i ≤ p− 6 then T = {x} or T = {y}. See the Figures 4,5,6.

Lemma 3.16 Let Sa,b,c be a ripe AT. Let Sx,y,z be a minimum AT with a path Px,y =
x,w1, . . . , wq, y, and center vertex (central vertices) u′ (u′, w′) such that u′ ∈ D(a, b, c) (u′, w′ ∈
D(a, b, c) if of type 2) and V (Sx,y,z) ∩G[a, b, c] 6= ∅. Then one of the following happens:

1. Px,y ∩B[a, b] 6= ∅ and Px,y ∩E[a, b] 6= ∅ and every vi, 1 ≤ i ≤ p has a neighbor in Px,y (See
the Figure 4).

2. z ∈ G[a, b, c] and Px,y ∩ G[a, b, c] = ∅ and for every vertex z′ ∈ G[a, b, c], Sx,y,z′ is an AT
with the same path x,w1, w2, . . . , wq, y (See the Figure 5).

14



1v 2v pva b

c

1pv
iv

u

z

'u

x y
1w jw qw

1iv

Figure 5: z ∈ G[a, b, c] and Px,y ∩G[a, b, c] = ∅

Proof: By Corollary 3.9 every dominating vertex is adjacent to every vertex in G[a, b, c].
Therefore none of the x, y is in G[a, b, c] as otherwise xu′ (xw′ when Sa,b,c is of type 2) or yu′ is
an edge. Moreover by Corollary 3.6 x, y 6∈ D(a, b, c).

Now since Sx,y,z has intersection with G[a, b, c], we have two cases:

Case 1. Px,y ∩ G[a, b, c] 6= ∅. There exists some wj , such that wj ∈ G[a, b, c]. We show that
2 ≤ j ≤ q − 1. Otherwise w.l.o.g assume that w1 ∈ G[a, b, c]. Since xw1 is an edge, by Lemma
3.10 x is adjacent to every vertex in D(a, b, c) and in particular x is adjacent to u′ (u′, w′) and
hence we get a contradiction.

We continue by assuming that wj ∈ G[a, b, c] and 2 ≤ j ≤ p− 2. By definition of G[a, b, c], wj
is adjacent to some vertex vi, 3 ≤ i ≤ p− 2.

We first show that Px,y ∩D(a, b, c) = ∅. For contradiction suppose wt ∈ D(a, b, c), 1 ≤ t ≤ q.
Now by Corollary 3.9 wt is adjacent to wj and hence t = j + 1 or t = j − 1. W.l.o.g assume that
t = j + 1. Since wj−1wj is an edge of G and wj+1 is a dominating vertex for Sa,b,c, by Lemma
3.10, wj−1wj+1 is an edge of G, a contradiction. Therefore Px,y ∩D(a, b, c) = ∅.

Since x, y 6∈ G[a, b, c] and no vertex of Px,y is in D(a, b, c), by Lemma 3.11 we conclude
B[a, b] ∩ Px,y 6= ∅ or E[a, b] ∩ Px,y 6= ∅.

Observation 1. If for some vi, N [vi+1]∩Px,y 6= ∅ and N [vi−1]∩Px,y 6= ∅ then N [vi]∩Px,y 6= ∅.
Otherwise we get cycle of length at least four with the vertices vi−1, vi, vi+1 and part of Px,y from
N [vi+1] to N [vi−1].

Now by Observation 1 if B[a, b] ∩ Px,y 6= ∅ and E[a, b] ∩ Px,y 6= ∅ we conclude (1). Therefore
w.o.l.g assume that B[a, b] ∩ Px,y = ∅ and E[a, b] ∩ Px,y 6= ∅.

By Observation 1 and because B[a, b] ∩ Px,y = ∅ we conclude that there exists a maximum
number 3 ≤ r ≤ p − 2 such that N [vr] ∩ Px,y 6= ∅ and for every 1 ≤ ` ≤ r − 1, N [v`] ∩ Px,y = ∅.
Now let i′ be the first index such that wi′ is in N [vr] and j′ is the last index such that wj′
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is in N [vr]. Recall that 2 ≤ i′, j′ ≤ q − 1 (Note that j′ could be the same as i′). However
vr−2, vr−1, vr, wi′ , wi′−1, wi′−2, wj′ , wj′+1, wj′+2 induce a small AT.

Case 2. Px,y ∩ G[a, b, c] = ∅. Since G[a, b, c] ∩ V (Sx,y,z) 6= ∅, z ∈ G[a, b, c]. By definition of
G[a, b, c]; z is adjacent to some vertex vi, 3 ≤ i ≤ p− 2. We show that vi is not adjacent to any
vertex wj , 0 ≤ j ≤ q + 1. Otherwise by applying Lemma 3.4(4) for Sx,y,z; vi is a dominating
vertex for Sx,y,z and now viw1 ∈ E(G) implies that w1 is in G[a, b, c] which is a contradiction.
(Note that wj is not in D(a, b, c) since zw1 is not an edge). Therefore Sx,y,vi is minimum AT and
has the same number of vertices as Sx,y,z and the same path Px,y.

Now by repeating the same argument for Sx,y,vj starting from j = i and vertex vj+1 and
vertex vj−1 (if they are in the range, v3 and vp−2) we conclude that :

(f) For every 3 ≤ j ≤ p − 2, Sx,y,vj is a minimum AT and the same number of vertices as
Sx,y,z and the same path Px,y.

Now by applying similar argument for z′ ∈ G[a, b, c] ∩ N(vi); 3 ≤ i ≤ p − 2. We conclude
that z′ is not adjacent to any vertex wr, 0 ≤ r ≤ q + 1. Otherwise by applying Lemma 3.4(4)
for Sx,y,vi , z

′ is a dominating vertex for Sx,y,vi . We note that since Sx,y,vj is a minimum AT with
the same path Px,y, z′ is also a dominating vertex for Sx,y,vj and hence by Corollary 3.6 z′ is
adjacent to vj . This implies that z′ is adjacent to every vertex v`, 3 ≤ ` ≤ p− 2, contradiction to
z′ ∈ G[a, b, c]. Therefore z′ is not adjacent to any vertex on the path Px,y and hence Sx,y,z′ is a
minimum AT with the same number of vertices as Sx,y,z. The proof of this case is complete.

�

Lemma 3.17 Let x1, x2, x3 be three vertices in G \N(c) such that vix1, x1x2, x2x3; 7 ≤ i ≤
p− 6 are edges of G. Then x3 ∈ N [vj ], i− 3 ≤ j ≤ i + 3

Proof: By Lemma 3.4(6), x2 is adjacent to one of the vj , i − 2 ≤ j ≤ j + 2. If x2 is
adjacent to one of the vi−1, vi, vi+1 then by applying Lemma 3.4(6) for x2, x3 we conclude that
x3 is adjacent to some vr, i− 3 ≤ r ≤ i + 3 and we are done. Thus w.l.o.g we may assume that
x2 is adjacent to vi−2 and not adjacent to any of vi−1, vi. Now x1 is adjacent to vi−2, vi−1, vi as
otherwise we get a cycle of length 4 or 5 with the vertices x2, x1, vi−1, vi, vi−2. Because x2vi−2, x2x3
are edges of G and 5 ≤ i− 2 ≤ p− 4 by Lemma 3.4 (6) we conclude that x3 is adjacent to one of
the vi−4, vi−3, vi−2. If x3 is adjacent to vi−3 or vi−2 then we are done. Thus we may assume that
x3 is adjacent to vi−4 and not adjacent to any of vi−3, vi−2. Now in this case x2 must be adjacent
to vi−4 as otherwise we obtain a small cycle with the vertices x2, x3, vi−4, vi−3, vi−2. However
a, v1, . . . , vi−4, x2, x1, vi, . . . , vp, b is shorter than Pa,b, a contradiction. �

Lemma 3.18 Let Sa,b,c be a ripe AT. Let Sx,y,z be a minimum AT, with a path Px,y =
x,w1, w2, . . . , wq, y and a center vertex u′ (central vertices u′, w′ if of type 2) such that Sx,y,z ∩
(N [vi] \N(c)) 6= ∅ for some 7 ≤ i ≤ p− 6. Then one of the following happens :

1. u′ ∈ D(a, b, c) (u′, w′ ∈ D(a, b, c)) and Px,y ∩ B[a, b] 6= ∅ and Px,y ∩ E[a, b] 6= ∅ and every
vj, 2 ≤ j ≤ p− 1 has a neighbor in Px,y (See Figure 4).

2. u′ ∈ D(a, b, c), (u′, w′ ∈ D(a, b, c)) z ∈ G[a, b, c] and Px,y∩G[a, b, c] = ∅ and for every vertex
z′ ∈ G[a, b, c], Sx,y,z′ is an AT with the same path x,w1, w2, . . . , wq, y (See Figure 5).
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Figure 6: x ∈ N [vi], w1 ∈ D(a, b, c)

3. x ∈ N [vi], w1 ∈ D(a, b, c), (u′, w1 ∈ D(a, b, c)) and V (Sx,y,z)∩Px,y∩G[a, b, c] = {x} and for
every x′ ∈ N [vj ]\N(c); 5 ≤ j ≤ p−4, Sx′,y,z is an AT with the path Px′,y = x′, w1, . . . , wq, y
(See Figure 6).

4. y ∈ N [vi], wq ∈ D(a, b, c), (w′, wq ∈ D(a, b, c)) and V (Sx,y,z)∩G[a, b, c] = {y} and for every
y′ ∈ N [vj ] \N(c); 5 ≤ j ≤ p− 4, Sx,y′,z is an AT with the path Px,y′ = x,w1, . . . , wq, y

′.

Proof: First suppose u′ (u′, w′ if Sx,y,z is of type 2) the center vertex (central vertices) of
Sx,y,z is in D(a, b, c). Since V (Sx,y,z)∩ (N [vi]\N(c)) 6= ∅, we have G[a, b, c]∩V (Sx,y,z) 6= ∅. Thus
the conditions of the Lemma 3.16 are satisfied and hence we have (1) or (2).

Therefore we may assume that u′ 6∈ D(a, b, c) when Sx,y,z is of type 1 and w′ 6∈ D(a, b, c) when
Sx,y,z is of type 2. Recall that x = w0 and y = wq+1.

Case 1. Suppose wj , 0 ≤ j ≤ q + 1 is in N [vi] \D(a, b, c).

Claim 3.19 wj ∈ {w0, w1, wq, wq+1}.
Proof: For contradiction suppose 2 ≤ j ≤ q−1. Note that at least one of the w1, wq is not in

D(a, b, c), as otherwise w1wq is an edge by Corollary 3.9. W.l.o.g assume that w1 6∈ D(a, b, c). By
applying Lemma 3.4 (2,3) for Sx,y,z we have that vi is adjacent to u′ (to w′) as otherwise Sx,vi,z
is a smaller AT and it has the condition of the lemma. Now we have the following implications.

(f0) u′ ∈ N [vi], (w′ ∈ N [vi]) and (f1) u′ 6∈ N(c) (w′ 6∈ N(c)).
Otherwise by Lemma 3.4(4) for the edges cu′, u′vi, (cw′, w′vi) u

′ ∈ D(a, b, c) (w′ ∈ D(a, b, c)).

(f2) w1 is not in N(c).
Otherwise by applying Lemma 3.5 for c, w1, u

′, vi we conclude that w1 ∈ D(a, b, c). The
same argument is applied using w′ instead of u′ when Sx,y,z is of type 2.
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(f3) x 6∈ D(a, b, c) and x 6∈ N(c)
Note that by (f0), u

′ ∈ G[a, b, c] (w′ ∈ G[a, b, c]) and hence by Lemma 3.10 every vertex in
D(a, b, c) is adjacent to u′ (w′). Since xu′ (xw′) is not an edge, x 6∈ D(a, b, c). This implies
that x 6∈ N(c) as otherwise by considering path c, x, w1, u

′, vi (c, x, w1, w
′, vi) and applying

Lemma 3.5 we conclude that x ∈ D(a, b, c), a contradiction.

Now by Lemma 3.17 for u′, w1, x (w′, w1, x if of type (2)) we conclude that x is adjacent to
some vertex vr, 4 ≤ r ≤ p − 3 and hence x ∈ G[a, b, c]. This implies that wq is not in D(a, b, c)
as otherwise wqx is an edge by Corollary 3.9. By similar argument for (f2,f3) we conclude that
wq, y 6∈ N(c). Now by Lemma 3.17 for u′, wq, y (w′, wq, y if of type (2)) we conclude that y is
adjacent to some vertex vr, 3 ≤ r ≤ p− 2 and hence y ∈ G[a, b, c].

It remains to observe that wj−1 6∈ D(a, b, c) as otherwise wj−1y would be an edge by Corollary
3.9. Similarly wj+1 6∈ D(a, b, c). Now none of the wr, 2 ≤ r ≤ q−1 is in D(a, b, c) as otherwise by
Corollary 3.9, wrx,wry are edges of G. By similar argument in (f2) we conclude that wr 6∈ N(c).
Since u′wr (w′wr if of type (2)) is an edge, Lemma 3.4 (6) implies that wr is adjacent to some
v`, i − 2 ≤ ` ≤ i + 2 and hence wr ∈ G[a, b, c]. Therefore when Sx,y,z is of type 1 we have
V (Sx,y,z) ⊂ V (G[a, b, c]), contradicting that Sa,b,c is ripe.

Suppose Sx,y,z is of type (2). We observe that since y ∈ G[a, b, c] and yu′ 6∈ E(G), u′ 6∈
D(a, b, c) by Corollary 3.6. Because u′wj is an edge u′ ∈ G[a, b, c]. These imply that V (Sx,y,z) ⊂
V (G[a, b, c]), contradicting that Sa,b,c is ripe. �

We assume wj ∈ {w0, w1}, i.e., x ∈ N [vi] \ N(c) or w1 ∈ N [vi] \ N(c). The other case is
treated similarly.

To summarize we have the following :

(a) x ∈ N [vi] \N(c) or w1 ∈ N [vi] \N(c).

(b) u′ 6∈ D(a, b, c) when Sx,y,z is of type 1 and w′ 6∈ D(a, b, c) if Sx,y,z is of type (2).

We proceed by proving that x 6∈ D(a, b, c) and w1 ∈ D(a, b, c).

Claim 3.20 x 6∈ D(a, b, c).

Proof: If j = 0, i.e., wj = x then clearly x 6∈ D(a, b, c). If j = 1, i.e., wj = w1 then we
show that x is not in D(a, b, c). For contradiction suppose x ∈ D(a, b, c). Now Lemma 3.4(6) for
viw1, w1w2 implies that w2 is in N [vr], i − 2 ≤ r ≤ i + 2 and hence w2 ∈ G[a, b, c]. This would
imply that xw2 is an edge by Corollary 3.9, a contradiction. Therefore x 6∈ D(a, b, c). �

Claim 3.21 w1 ∈ D(a, b, c) and x ∈ N [vi] \N(c).

Proof: In what follows we may assume that Sx,y,z is of type 1. If Sx,y,z is of type 2 we consider
w′ instead of u′. For contradiction suppose w1 6∈ D(a, b, c). Recall items (a),(b) in summary of
our assumption.

u′ 6∈ N(c). Otherwise when w1 ∈ N [vi] \ N(c), Lemma 3.5 for path c, u′, w1, vi implies that
u′ ∈ D(a, b, c) and when x ∈ N [vi] \ N(c), Lemma 3.5 for path c, u′, w1, x, vi implies that
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u′ ∈ D(a, b, c).

x 6∈ N [c]. Otherwise Lemma 3.5 for path c, x, vi when x ∈ N [vi] \ N(c) or for path c, x, w1, vi
when w1 ∈ N [vi] \N(c) implies that x ∈ D(a, b, c), a contradiction to Claim 3.20.

w1 6∈ N [c]. For contradiction suppose w1 ∈ N [c]. If w1 ∈∈ N [vi] \ N(c) then by applying
Lemma 3.5 for path c, w1, vi we conclude that w1 ∈ D(a, b, c) a contradiction to our assumption.
Therefore w1 6∈ N [vi] \N(c) and hence x ∈ N [vi] \N(c), according to (b). However Lemma 3.5
for path c, w1, x, vi implies that w1 ∈ D(a, b, c), again contradiction to our assumption.

We continue by having that u′, w1, x 6∈ N(c).

We observe that z 6∈ N(c) as otherwise by Lemma 3.5 for path c, z, u′, w1, x, vi or path
c, z, u′, w1, vi we conclude that z ∈ D(a, b, c) and hence one of the zw1, zx ∈ E(G).

By Lemma 3.17 for vi, x, w1, u
′ when x ∈ N [vi] or Lemma 3.4 (6) for vi, w1, u

′ when w1 ∈ N [vi]
we conclude that u′ ∈ N [vr], i− 3 ≤ r ≤ i + 3. Since u′z is an edge and z 6∈ N(c), z is adjacent
to some vertex vr′ , i− 5 ≤ r′ ≤ i + 5. W.o.l.g assume that r′ ≤ i.

Now by considering the path z, vr′ , vr′+1, . . . , vi, wj (wj ∈ {w0, w1}) Lemma 3.5 implies that
one of the v`, r

′ ≤ ` ≤ i is a dominating vertex for Sx,y,z as otherwise we obtain a smaller AT
that satisfies the condition of the lemma (in particular wj is the same).

Now it is clear that i−3 ≤ r′ ≤ i. Otherwise we get a shorter path P ′a,b = a, v1, . . . , vr′ , wj , vi, . . . , vp, b
when j 6= 0 and we get a shorter path P ′′a,b = a, v1, . . . , vr′ , w1, w0, vi, . . . , vp, b when j = 0 (observe
that we assumed that w1 is not a dominating vertex).

Note that z is not adjacent to vi−5 as otherwise by Lemma 3.4(1) for Sx,y,z, vi−5 is adjacent
to vr′ (i − 3 ≤ r′). By applying Lemma 3.4 (7) for vr′ , wq, y we conclude that y ∈ N [v`′ ],
3 ≤ `′ ≤ p− 2 or wq is adjacent to vi−5, vi−4. However we obtain an AT, Sx,vi−5,z with the path
Px,v2 = x,w1, w2, . . . , wq, vi−5 and center vertex u′. Since 7 ≤ i ≤ p − 6, Sx,y,z ⊂ G[a, b, c], a
contradiction. The proof of the claim is complete. �

We continue by having that w1 ∈ D(a, b, c) (a dominating vertex) and consequently by (b)
x ∈ N [vi]. Since w1 is not adjacent to any of the vertices z, w3, . . . , wq, y, by Lemma 3.10 none of
these vertices is in G[a, b, c]. It is also easy to see that u′ 6∈ G[a, b, c] (w′ 6∈ G[a, b, c] when Sx,y,z
is of type 2) as otherwise because zu′ is an edge Lemma 3.10 implies that w1 is adjacent to z.

Remark : Observe that when Sx,y,z is of type 2 then u′ must be in D(a, b, c). Otherwise
because vix, xu

′, u′w3 are edges of G by Corollary 3.17 we conclude that w3 is adjacent to some
vr, 4 ≤ r ≤ p− 3 and hence w1w3 is an edge by Lemma 3.4(7).

Finally it is easy to see that for x′ ∈ N(vj) \ N(c); 5 ≤ j ≤ p − 4; Sx′,y,z is an AT with the
path Px′,y = x′, w1, . . . , wq, y. This proves (3). Analogously if wj ∈ {wq, wq+1} then for every
y′ ∈ N(vj) \ N(c); 5 ≤ j ≤ p − 4, Sx,y′,z is an AT with the path Px,y′ = x,w1, . . . , wq, y

′. This
shows (4).

Case 2. z ∈ N [vi] \ N(c). No vertex wj , 0 ≤ j ≤ q + 1 is in D(a, b, c) as otherwise wjz is an
edge by Corollary 3.9. By our assumption u′ 6∈ D(a, b, c). We note that u′ is adjacent to vi by
Lemma 3.4 (1). Now by applying Lemma 3.17 for vi, u

′, w1, x and for vi, u
′, wq, y we conclude
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that w1, wq, x, y ∈ G[a, b, c]. Moreover by applying Lemma 3.4 (6) for u′, wr where 2 ≤ r ≤ q − 1
we conclude that wr is adjacent to some vertex v`, i − 2 ≤ ` ≤ i + 2 and hence wr ∈ G[a, b, c].
Therefore entire Sx,y,z is in G[a, b, c]. This is a contradiction to Sa,b,c is ripe. When Sx,y,z is
of type (2) u′ 6∈ D(a, b, c) as otherwise u′ is adjacent to y, a contradiction. Moreover since
z ∈ N [vi] \N(c), u′ ∈ G[a, b, c] and hence V (Sx,y,z) ⊂ V (G[a, b, c]). �

4 Vertex Deletion

4.1 From Chordal to Interval

In this subsection we assume that G is chordal and it does not contain small ATs. We design an
FPT algorithm that takes G as an input and k as a parameter and turns G into interval graph
by deleting at most k vertices. Recall that Pa,b = a, v1, v2, . . . , vp, b, and c is a shallow vertex for
Sa,b,c and u is one of the central vertices for Sa,b,c.

Chordal − Interval(G, k) Algorithm
Input : Chordal graph G without small AT’s and without cycle C, 4 ≤ |C| ≤ 9.
Output : A minimum set F of G such that |F | ≤ k and G \F is interval graph OR report NOT
exists ( no such an F , more than k vertices need to be deleted).

1. If G is an interval graph then return ∅.

2. If k ≤ 0 and G is not interval then report NOT exists.

3. Let Sa,b,c be a ripe AT in G with the path Pa,b = a, v1, v2, . . . , vp, b and center vertex u (u,w
when it is of type 2).

4. Let X be a smallest set of vertices such that there is no path from v6 to vp−5 in G\(X∪N(c))
and X contains a vj , 7 ≤ j ≤ p− 6.

5. If Sa,b,c is of type 1 then find a w ∈ {a, b, c, u, v1, v2, v3, v4, v5, v6, vp
, vp−1, vp−2, vp−3, vp−4, vp−5} such that F ′ = Chordal − Interval(G − w, k − 1) exists and
return F ′ ∪ {w}.

6. If Sa,b,c is of type 2 then find a w ∈ {a, b, c, u, w, v1, v2, v3, v4, v5, v6, vp
, vp−1, vp−2, vp−3, vp−4, vp−5} such that F ′ = Chordal − Interval(G − w, k − 1) exists and
return F ′ ∪ {w}.

7. Let S = {w′ ∈ N [vj ] \ N(c); |5 ≤ j ≤ p − 4}. If F ′ = Chordal − Interval(G \ S, k − |S|)
exists then return F ′ ∪ S.

8. If F ′ = Chordal − Interval(G \X, k − |X|) exists then return F ′ ∪X.

The following Lemma shows the correctness of the Algorithm Chordal-Interval(G,k).

Lemma 4.1 Let G be a chordal graph without small ATs and let Sa,b,c be a ripe AT in G with
path Pa,b = a, v1, v2, . . . , vp, and a center vertex u. Let X be a minimum separator in G \ N(c)
that separates v6 from vp−5 and it contains a vi, 7 ≤ i ≤ p− 6. Then there is a minimum set of
deleting vertices F such that G \ F is an interval graph and at least one of the following holds:
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(i) If Sa,b,c is of type 1 then F contains at least one vertex from

{a, b, u, c, v1, v2, v3, v4, v5, v6, vp−5, vp−4, vp−3, vp−2, vp−1, vp}

If Sa,b,c is of type 2 then F contains at least one vertex from

{a, b, u, w, c, v1, v2, v3, v4, v5, v6, vp−5, vp−4, vp−3, vp−2, vp−1, vp}

(ii) F contains all vertices of S = {x′ ∈ N(vj) \N(c)|5 ≤ j ≤ p− 4};

(iii) F contains all the vertices in X.

Proof: Let Sa,b,c be a ripe AT. Any optimal solution F must contains at least a vertex from
V (Sa,b,c). Let H be a minimum set of deleting vertices such that G \H is an interval graph. We
may assume that H does not contain all the vertices in S. Otherwise we set F = H. Moreover we
may assume that H does not contain any vertex from {a, b, u, c, v1, v2, v3, v4, v5, v6, vp−5, vp−4, vp−3,
vp−2, vp−1, vp} and if Sa,b,c is of type (2) we may assume that H does not contain w (the other
center vertex of Sa,b,c). Otherwise we set F = H and we are done. Recall that G[a, b, c] is an
interval graph since Sa,b,c is a ripe AT in D.

Let W = {w|w ∈ H ∩ G[a, b, c]}. Because Sa,b,c is an AT in G there is no path from v6 to
vp−5 in G \H. Hence, set W should contain a minimal v6, vp−5-separator X ′ that contains some
vertex vj , 7 ≤ j ≤ p− 6 in G \N(c). Since G[a, b, c] is an interval graph, X ′ is in N [vj ].

We define F = (H \X ′) ∪X and we observe that |F | ≤ |H|.

In what follows, we prove that I = G \ F is an interval graph. For a sake of contradiction,
let us assume that I is not an interval graph. By Theorem 1.1, I contains either cycle of length
more than three or an AT. It is clear that by deleting vertices from G no cycle would appear,
since we have assumed that G is chordal. Therefore we consider the case that I may have an AT.
Because we delete vertices and at the beginning G does not have small AT, we conclude that I
does not have a small AT. Therefore we may assume that I contains a big AT, Sx,y,z with the
path Px,y = x,w1, w2, . . . , wq, y and a center vertex u′. We may assume that Sx,y,z is of type 1.
Similar argument is applied when Sx,y,z is of type (2).

We conclude that Sx,y,z has a vertex in X ′ and no vertex in X. Now according to the Lemma
3.18 one of the following happens:

1. u′ ∈ D(a, b, c) and Px,y ∩B[a, b] 6= ∅ and Px,y ∩ E[a, b] 6= ∅ and every vr, 2 ≤ r ≤ p− 1 has
a neighbor in Px,y.

2. u′ ∈ D(a, b, c), z ∈ G[a, b, c] and Px,y ∩ G[a, b, c] = ∅ and for every vertex z′ ∈ G[a, b, c],
Sx,y,z′ is an AT with the same path x,w1, w2, . . . , wq, y.

3. x ∈ N [vi], w1 ∈ D(a, b, c) and V (Sx,y,z) ∩ G[a, b, c] = {x} and for every x′ ∈ N [vr] \N(c);
5 ≤ r ≤ p− 4, Sx′,y,z is an AT with the path Px′,y = x′, w1, . . . , wq, y.

4. y ∈ N [vi], wq ∈ D(a, b, c) and V (Sx,y,z) ∩ G[a, b, c] = {y} and for every y′ ∈ N [vr] \ N(c);
5 ≤ r ≤ p− 4, Sx,y′,z is an AT with the path Px,y′ = x,w1, . . . , wq, y

′.
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If (1) happens then there exists a path in from v6 to vp−5 in G \X. This is a contradiction
to X being a separator and hence there exists some delete vertex w′ ∈ X, such that w′ ∈
{x,w1, w2, . . . , wq, y}.

Suppose (2) happens. Then V (Px,y) ∩ V (G[a, b, c]) = ∅ and u′ 6∈ G[a, b, c]. Therefore we may
assume that z ∈ X ′ and no other vertex of Sx,y,z is in H \X ′. However by (2) for every vertex
z′ ∈ G[a, b, c], Sx,y,z′ is an AT with the same path x,w1, w2, . . . , wq, y. Since (Px,y∪{u′})∩X ′ = ∅
and Sx,y,z′ is not an AT in G \H, we conclude that H must contain all the vertices in G[a, b, c].
This is a contradiction because S ⊂ V (G[a, b, c]) and we assumed that H does not contain entire
S.

Suppose (3) happens. Then V (Sx,y,z) ∩ V (G[a, b, c]) = {x} and w1 ∈ D(a, b, c). Since X ′ ∩
V (Sx,y,z) 6= ∅, we have x ∈ X ′. We may assume that no other vertex of Sx,y,z is in H \ X ′.
However by (3) for every vertex x′ ∈ N [vj ] \N(c), 5 ≤ j ≤ p − 4, we have that Sx′,y,z is an AT
with the path Px′,y = x′, w1, . . . , wq, y. Since Sx′,y,z is not an AT in G \H, we conclude that H
must contain all the vertices in S = {x′ ∈ N(vj) \N(c)|5 ≤ j ≤ p − 4}. This is a contradiction
because we assumed that H does not contain entire S.

Analogously if (4) happens we get a contradiction. �

4.2 When G is not Chordal, Structural Properties

In this subsection we assume that G does not contain small AT, as an induced subgraph and it
does not contain cycle of length less than 9 and more than 3.
Let C = v0, v1, .., vp−1, v0 be a shortest cycle in G, 9 ≤ p. We say a vertex of G is a dominating
vertex for C if it is adjacent to every vertex of the cycle C. Let D(C) denotes the set of all
dominating vertices of C.

Lemma 4.2 Let x be a vertex in V (G) \ V (C). Then one of the following happens :

(1) x is adjacent to all vertices of C,

(2) x is adjacent to at most three consecutive vertices of C,

(3) Any path from x 6∈ N [C] to C has intersection with D(C).

Proof: If x is adjacent to all the vertices in V (C) then (1) holds. Thus we may assume that
x is not adjacent to every vertex in C.

(2) Suppose x ∈ N(C). If x is adjacent to exactly one vertex in C then (2) holds. Therefore we
may assume there are vertices vi 6= vj of V (C) such that vix, vjx are edges of G and none of the
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vertices of C between vi and vj in the clockwise direction is adjacent to x. We get a shorter cycle,
using the portion of C (in the clockwise direction) from vi to vj and x unless up to symmetry
vj = vi+1 or vj = vi+2. If vj = vi+1 then (2) holds. If vj = vi+2 then x is also adjacent to vi+1 as
otherwise we obtain an induced 4 cycle in G which is not the case. Thus (2) is proved.

(3) For contradiction let x 6∈ N(C) be adjacent to a vertex y ∈ N(vi)\D(C). Now x, y, vi−1, vi, vi+1

induce a small AT unless yvi−1, yvi−2 or yvi+1, yvi+2 are edges of G. W.l.o.g assume that
yvi−1, yvi−2 are edges of G. Now by (2) y is not adjacent to any of vi+1, vi−3 and hence the
vertices vi−3, vi−2, vi−1, vi, vi+1, x, y induce a small AT vi−3, vi+1, x, a contradiction. �

We introduce the following notations. For every 0 ≤ i ≤ p−1, we define the following subsets
of N(C) \D(C)

• Si vertices adjacent to vi and not adjacent to any other vj , j 6= i;

• Di vertices adjacent to vi, vi+1 and not adjacent to any other vj , j 6= i, i + 1, and

• Ti vertices adjacent to vi, vi+1, vi+2 only

See Figure 7 for illustration.

Lemma 4.3 Consider the cycle C and the sets Si, Di, Ti, 0 ≤ i ≤ p− 1. Then the followings
hold.

1. If there is an edge from a vertex in Di to a vertex in Dj then vi, vj are consecutive on the
cycle.
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2. Every vertex in Ti is adjacent to every vertex in Si+1.

3. There is no edge from Si to Si+1 ∪Di+1 ∪ Ti+1.

Proof: (1) Let x ∈ Di and y ∈ Dj . Since cycle vi−1, vi, x, y, vj+1, vj+2, . . . , vi−2, vi−1 is not
shorter than C we have vj ∈ {vi+1, vi+2, vi−1, vi−2}. We show that vj 6= vi+2. For contradiction
suppose vj = vi+2. Now by definition none of the vi+1y and vi+2x is an edge of G and hence
x, y, vi+1, vi+2 induce a C4 in G. This is a contradiction because G does not have induced C4.
Similarly vj 6= vi−2. Therefore vj = vi−1 or vj = vi+1.

(2) Suppose s ∈ Si+1 is adjacent to t ∈ Ti. Then the vertices vi−1, vi, vi+1, vi+2,
vi+3, s, t induce a small AT vi−1, vi+3, s in G. This is a contradiction because G does not have
small AT as an induced subgraph.

(3) Suppose x ∈ Si is adjacent to y ∈ Si+1 ∪Di+1 ∪ Ti+1. Then the vertices x, vi, vi+1, y induce a
C4, a contradiction. �

Lemma 4.4 Every vertex x ∈ D(C) is adjacent to every vertex in N [C]− x.

Proof: Let x be a vertex in D(C) and y be a vertex in N [vi], 0 ≤ i ≤ p − 1. Note that if
y = vi then by definition of D(C), xy is an edge.

If y ∈ D(C) ∪ Ti then xy is an edge as otherwise x, y, vi, vi+2 induce a C4. Thus by Lemma
4.2 (2) we may assume that y ∈ Si ∪ Di. This implies that y is adjacent to vi and not adja-
cent to vi−1 and not adjacent to vi+2. However vi−1, vi+2, y is a small AT, with the vertices
vi−1, vi, vi+1, vi+2, x, y. �

4.2.1 Cycle-Cycle interaction

Lemma 4.5 Let C1 be cycle in N [C]. Then V (C1) ∩ D(C) = ∅ and one of the following
happens:

1. For every 0 ≤ i ≤ p− 1, N(vi) ∩ V (C1) 6= ∅.

2. V (C1) ⊂ Si or V (C1) ⊂ V (Di) (See Figure 7).

Proof: Observe that according to our assumption |V (C1)| ≥ 10. By Lemma 4.4 every vertex
x in D(C) is adjacent to every vertex in N [C] \ {x}, we conclude that D(C) ∩ V (C1) = ∅.

Suppose (1) does not hold. Thus there exists some i such that V (C1) ∩ N(vi) = ∅ but
V (C1) ∩N(vi+1) 6= ∅.

Let v ∈ V (C1) ∩ N(vi+1). Let x be the last vertex of C1 after v in the clockwise direction
such that x ∈ N(vi+1) but x′ the neighbor of x in C1 (clockwise direction) is not in N(vi+1). We
show that if x exists then we obtain a small AT. Let y′ be the first vertex after x in the clockwise
direction such that y′ ∈ N(vi+1) but y the neighbor of y′ in C1 (clockwise direction) is in N(vi+1).

Note that if x exists then y also exists. We note that none of the x′, y′ is adjacent to vi−1
as otherwise we obtain an induced small cycle with the vertices vi−1, vi, vi+1, x, x

′ or with the
vertices vi−1, vi, vi+1, y, y

′.
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Observe that x′ 6= y′ as otherwise vi+1, x, y, x
′ induce a C4. Moreover x′y′ is not an edge of G as

otherwise the vertices y′, x′, x, vi+1, y induce a C5. However we get a small AT vi−1, x
′, y′ with the

vertices x, y, vi+1, vi, vi−1, x
′, y′. Therefore x does not exist and hence V (C1) ⊆ Di+1∪Si+1∪Ti+1.

First suppose V (C1)∩Si+1 6= ∅ and V (C1)∩(Di+1∪Ti+1) 6= ∅. If |V (C1)∩Si+1| = 1 then we get
cycle x, x′, y′, vi+2 where x ∈ V (C1)∩Si+1 and x′, y′ are the neighbors of x in V (C1)∩Di+1∪Ti+1.

Similarly if |V (C1)∩Di+1∪Ti+1| = 1 we get an induced C4 in G. Thus we may assume that C1

has at least two vertices in Si+1 and two vertices in Di+1∪Ti+1. Let x 6= y be two vertices of C1 in
Di+1∪Ti+1. Now let xx′, yy′ be the edges of C1 such that x′, y′ ∈ Si+1 \Di+1∪Ti+1. If x′ = y′ we
obtain an induced 4 cycle with the vertices x′, x, y, vi+2 (xy is not an edge as otherwise |C1| ≤ 4.)
in G. If x′y′ is an edge then we obtain induced 5 cycle in G with the vertices x′, y′, x, y, vi+2

in G. Now we obtain a small AT vi+4, x
′, y′ with the vertices x′, y′, x, y, vi+2, vi+3, vi+4. This is

a contradiction and hence we have V (C1) ⊆ Si+1 or V (C1) ⊆ Di+1 ∪ Ti+1. If V (C1) ⊆ Si+1

then (2) is proved. Thus we may assume that C1 has vertices in Ti+1 and Di+1 only. Note that
|V (C1) ∩ Ti+1| ≤ 2. Again by similar argument and considering vi+3, vi+4 and part of C1 inside
Di+1 we see a small AT. Therefore V (C1) ⊆ V (Di+1) and the proof is complete. �

Definition 4.6 We say a shortest cycle C = v0, v1, . . . , vp−1, v0 in G is clean if for every
cycle C1 in N [C], every vertex of C has a neighbor in C1. We say a cycle C is ripe if it is clean
and there is no AT in N [C] \D(C).

Looking for a shortest clean cycle

We start with an arbitrary shortest cycle C and we construct Si, Di, Ti, D(C) as defined and
then we look for a shortest cycle C1 in some Si or Di. If C1 is clean we stop otherwise we consider
S1
i , D

1
i , T

1
i of C1 in Di or Si and we continue. After at most k steps we find a clean cycle C ′.

4.2.2 Cycle and AT interaction

Lemma 4.7 Let Sx,y,z be a minimum AT with a path Px,y = x,w1, w2, . . . , wq, y such that
Sx,y,z contains a vertex outside N [C] and a vertex from N [C] \D(C). Then up to symmetry one
of the following happens.

1. The center vertex u (the central vertices u′, w′ when of type 2) of Sx,y,z is a dominating vertex
for C, Px,y ∩N [C] = ∅, and z ∈ N [C] \D(C). Moreover for every vertex z′ ∈ N [C] \D(C),
Sx,y,z′ is an AT with the same number of vertices as Sx,y,z and the same path Px,y (Figure
8 left)

2. y ∈ N [C] \D(C) and wq ∈ D(C) (wq, w ∈ D(C) when of type 2) and N [C] ∩ V (Sx,y,z) =
{y, wq} ( N [C] ∩ V (Sx,y,z) = {y, wq, w} when of type 2). Moreover for every vertex y′ ∈
N [C] \D(C), Sx,y′,z is an AT with the same number of vertices as Sx,y,z (Figure 8 right).
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Figure 8: Cycle and AT outside

Proof: We note that since a vertex of Sx,y,z is outside N [C] and one vertex of Sx,y,z is in
N [C] \D(C), by Lemma 4.2 item (3) at least one vertex of Sx,y,z is in D(C).

First suppose Px,y ∩N [C] = ∅. Now it is easy to see that since u (u,w) is (are) adjacent to
w1, w2, . . . , wq, z, we have u ∈ D(C) (u,w ∈ D(C)) and z ∈ N [C] \ D(C). Moreover for every
z′ ∈ (N [C] \D(C)), Sx,y,z′ is a minimum AT with the same number of vertices as Sx,y,z.

Now suppose Px,y ∩ N [C] 6= ∅. We show that at least one of the x, y is in N [C]. For
contradiction suppose x, y 6∈ N [C]. Let 1 ≤ i ≤ q be the first index such that wi ∈ N [C].
By Lemma 4.2 (3) it is easy to see that wi is a dominating vertex for C and hence by Lemma
4.4 none of the vertices wi+2, wi+3, . . . , wq, y is in N [C]. Moreover by assumption for i, none of
the x,w1, . . . , wi−2 is in N [C]. Now z 6∈ N [C] as otherwise wiz is an edge of G which is not
possible. Now since wi+2 6∈ N [C] and wi+1wi+2 is an edge we conclude that wi+1 6∈ N [C] \D(C)
as otherwise we get a contradiction to item (3) of Lemma 4.2.

Therefore by assumption of the lemma we conclude that u. Now since wi+2 6∈ N [C] and
wi+1wi+2 is an edge we get a contradiction to item (3) of Lemma 4.2. Since u is adjacent to
z, w1, w2, . . . , wq, we conclude that u (one of u′, w′ when type 2) must be in D(C) (by Lemma
4.2) and hence we get a contradiction to the assumption of the lemma because no vertex of Sx,y,z
is in N [C] \D(C).

Therefore we conclude that at least one of the x, y is in N [C]. W.l.o.g. assume that y ∈ N [C].
We show that y ∈ N [C]\D(C). Otherwise none of the vertices x,w1, . . . , wq−1, z, u ∈ N [C]. Now
by condition of the lemma we must have w1 ∈ N [C] \D(C), and again because w1w2 is an edge
we get a contradiction to item (3) of Lemma 4.2. We continue by having y ∈ N [C] \D(C).

We show that at least one vertex of Px,y is outside N [C] \D(C). If this is not the case then
either z or u (one of the u,w) is in D(C) and by Lemma 4.4, we conclude that yz or yu (yu, xw
when Sx,y,z is of type 2), a contradiction. Let 1 ≤ i ≤ q + 1 be the smallest index such that
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wi ∈ N [C] \D(C) and wi−1 ∈ D(C). By lemma 4.4, wi−1y is an edge of G and hence i = q + 1.
Now clearly the vertices in Px,y \ {y, wq} are outside N [C]. Because wqz 6∈ E(G) lemma 4.4
implies that z 6∈ N [C]. Now since uz ∈ E(G) (uz,wz ∈ E(G)), and uy 6∈ E(G), we conclude that
u is not in N [C]. Note that when Sx,y,z is of type 2 then w ∈ D(C). Now it is easy to see that
for y′ ∈ N [C] \D(C), Sx,y′,z is an AT with the same number of vertices as Sx,y,z. �

Lemma 4.8 Let Sx,y,z be a minimum AT with path Px,y = x,w1, w2, . . . , wq, y such that
V (Sx,y,z) ⊂ N [C]. Then the followings happen:

1. V (Sx,y,z) ⊂ N [C] \D(C)

2. There exists a vi ∈ V (C), 0 ≤ i ≤ p− 1 such that vi is a dominating vertex for Sx,y,z

3. None of the vertices vi−2, vi+2 is adjacent to any wj, 2 ≤ j ≤ q − 1 (See Figure 9)

4. If vr ∈ V (C) (only r = i−1, i, i+ 1 is possible) is adjacent to some vertex wj, 4 ≤ j ≤ q−3
then vr is a dominating vertex for Sx,y,z

5. Either V (Sx,y,z) ⊆ N [{vi−1, vi, vi+1}] or x, y can be replace by vi−2, vi+2 and obtain an AT
with the same number of vertices as Sx,y,z

Proof: Observe that by Lemma 4.4 none of the u, z (u,w, z if Sx,y,z is of type 2) is in D(C)
as otherwise one of the xu, zx (wx, zx if of type (2)) is an edge. Moreover none of the vertices
in Px,y is in D(C) as otherwise by Lemma 4.4 for some wj ∈ D(C), wjz is an edge. Therefore
V (Sx,y,z) ⊂ N [C] \D(C).

First suppose u = vi for some 0 ≤ i ≤ p− 1. Now vi−2 is not adjacent to wj , 2 ≤ j ≤ q− 1 as
otherwise by Lemma 3.4(2,3) uvi−2 is an edge, a contradiction. Similarly vi+2 is not adjacent to
wj . In this case the proof is complete. Therefore we continue by assuming that u 6∈ V (C).

We show that z 6∈ V (C). For contradiction suppose z = vi, 0 ≤ i ≤ p − 1. Since u 6∈ V (C),
we assume that u ∈ Si ∪Di ∪ Ti. By Lemma 3.4 (1) both vi−1u and vi+1u are edges of G. Now
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vi−1 is adjacent to some vertex wj , 0 ≤ j ≤ q + 1. Otherwise Sa,b,vi−1
is a minimum AT, with

the same number of vertices as Sa,b,c and hence by Lemma 3.4 (1) vi−2 must be adjacent to u;
implying that u is adjacent to more than three consecutive vertices on the cycle, a contradiction
to Lemma 4.2(2). Therefore vi−1 is adjacent to some wj , 0 ≤ j ≤ q + 1 and hence by Lemma
3.4 (4), vi−1 is a dominating vertex for Sx,y,z. Similarly we conclude that vi+1 is a dominating
vertex for Sx,y,z and hence by Corollary 3.6 vi−1vi+1 must be an edge. This is a contradiction.
Therefore we conclude the following :

(f1) For every minimum AT, Sx′,y′,z′ such that V (Sx′,y′,z′) ⊂ N [C]\D(C) we have z′ 6∈ V (C).

We continue by assuming that z ∈ N(vi) \ V (C), 0 ≤ i ≤ p − 1. Now viu is also an edge
by Lemma 3.4(1). Note that vi is adjacent to some vertex wj , 0 ≤ j ≤ q + 1 on the path Px,y
as otherwise Sx,y,vi is a minimum AT with the same number of vertices as Sx,y,z and we get a
contradiction by (f1). Since zvi is an edge and vi is adjacent to wj , Lemma 3.4(4) implies that
vi is a dominating vertex for Sx,y,z. This proves 2.

Now vi−2 is not adjacent to any wr, 2 ≤ r ≤ q − 1 as otherwise by Lemma 3.4(7) vi−2 must
be adjacent to vi which is not possible. Similarly vi+2 is not adjacent to any wr, 2 ≤ r ≤ q − 1.
This proves (3).

Now suppose some vr is adjacent to a vertex wj , 4 ≤ j ≤ q − 3. It is easy to see that
r = i−1, i, i+1. We may assume that vi−1wj is an edge. Now if vi−1z is an edge then by Lemma
3.4(4) vi−1 is a dominating vertex for Sx,y,z. Thus we may assume that vi−1 6∈ N(z). However by
applying Lemma 3.4(6), vi−2 is adjacent to some vertex wr, 2 ≤ j − 2 ≤ r ≤ j + 2 ≤ q − 1. Now
vi−2 must be adjacent to vi according to Lemma 3.4 (2) for Sx,y,z, a contradiction. Thus (4) is
proved.

To see that (5), we note that since vi is a dominating vertex for Sx,y,z, by Lemma 3.4(1) zvi is
an edge. We know that xw1, w1vi, ywq, wqvi are edges of G. Now if x 6∈ N(vi−1 ∪N(vi)∪N(vi+1)
then xvi−2 or xvi+2 is an edge by Lemma 4.2. Suppose xvi−2 is an edge. Thus w1vi−2 is an edge
as otherwise we obtain a C4 with x,w1, vi−1, vi−2 when w1vi−1 is an edge or we obtain a C5 with
x,w1, vi, vi−1, vi−2 when w1vi−1 is not an edge, a contradiction. Since viz is an edge, vi−2z is not
an edge as otherwise by Lemma 3.4(1), vi−2vi is an edge. Now by (3) we may replace vi−2 by x
and obtain an AT.

�

4.3 The Main Algorithm (Putting things together)

We branch on all the deleting vertices of each small AT. We also branch on by deleting vertices
of each cycle C, 4 ≤ |C| ≤ 9. After that if G is not interval we continue as follows.

Definition 4.9 Let C be a ripe cycle. We say a set X of the vertices in N [C] \ D(C) is a
cycle-separator if there is no cycle in N [C] \ (D(C) ∪X).

In order to find set X, for every 0 ≤ i ≤ p − 1 we find a minimum set of vertices Xi that
separates vi from vi+3 in Wi = N [{vi+1, vi+2}] \D(C). X is the smallest set Xi. Note that Wi is
an interval graph since C is ripe.
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Interval −Deletion(G, k) Algorithm
Input : Graph G without small AT’s and without cycle C, 4 ≤ |C| ≤ 9.
Output : A minimum set F of V (G) such that |F | ≤ k and G\F is an interval graph OR report
NOT exists (no such F , more than k vertices need to be deleted).

1. If G is an interval graph then return ∅.

2. If k ≤ 0 and G is not an interval graph then report NOT exists.

3. If G is chordal then set F = Chordal− Interval(G, k). If F exists then return F otherwise
report NOT exists.

4. Let C be a shortest ripe cycle in G. Let X be a minimum cycle-separator in N [C] \D(C).

5. If F = Interval − Deletion(G \ C, k − |C|) exists then return F ∪ C. Else report NOT
exists.

6. If F = Interval − Deletion(G \ X, k − |X|) exists then return F ∪ X. Else report NOT
exists.

7. Let C = v0, v1, . . . , vp−1 be a shortest clean cycle in G.

8. Let S = {x|x ∈ (N [vi−1] ∪N [vi] ∪N [vi+1]) \D(C)} for some 0 ≤ i ≤ p− 1 such that G[S],
contains an AT.

9. Set F = Chordal − Interval(G[S], k). Set F ′ = Interval − Deletion(G \ F, k − |F |). If
|F ′ ∪ F | ≤ k then return F ∪ F ′. Else report NOT exists.

If there is no cycle in G then we apply the Chordal-to-Interval Algorithm and as we argued
in Lemma 4.1 there is an optimal solution that contains the solution of the Chordal-to-Interval
Algorithm. Otherwise let C be a clean cycle in G. If C is ripe then we argue in Lemma 4.10
that there exists a minimum set X of the vertices in N [C] \D(C) and there is a minimum set of
deleting vertices F such that G \F is an interval graphs and X ⊆ F . Therefore the steps 4,5 are
justified.

Lemma 4.10 Let C = v0, v1, . . . , vp−1, v0 be a ripe cycle and let X be a minimum cycle-
separator in N [C] \D(C). Then there is a minimum set of deleting vertices F such that G \F is
an interval graph and at least one of the following holds:

(i) F contains all the vertices of the cycle C.

(ii) F contains all vertices in X.

Proof: Let H be a minimum set of deleting vertices such that G \H is an interval graph. If
H contains all the vertices in C then we set F = H and we are done. Thus we suppose H does
not contain all the vertices of C. Let W = {w|w ∈ H ∩ (N [C] \D(C))}.

Since H does not contain all the vertices of C, set W should contain a minimal cycle-separator
X ′ in N [C] \D(C). Now define F = (H \X ′) ∪X. We observe that |F | ≤ |H|. We prove that
I = G \ F is an interval graph.
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First suppose I contains cycle C1. We note that V (C1) ∩X ′ 6= ∅ and V (C1) ∩X = ∅. Since
C is ripe, by Lemma 4.5 (1) for every 0 ≤ i ≤ p− 1, N [vi] ∩ V (C1) 6= ∅. But this a contradiction
to X being a cycle-separator.

Therefore we may assume that I contains an AT. Since G \ F has less vertices than G and G
does not have small ATs, I does not have small ATs. Thus we may assume that I contains a big
AT. Consider a minimum big AT, Sx,y,z with path Px,y = x, z1, z2 . . . , zm, y in I. We note that
Sx,y,z must have some vertices in X ′ \ X and none of the vertices of Sx,y,z is in F \ X ′. Since
X ′ ⊂ N [C] \ D(C) and cycle C is ripe, V (Sx,y,z) does not lie entirely in N [C] and hence the
conditions of the Lemma 4.7 in G are satisfied. According to Lemma 4.7 (up to symmetry) one
of the following happens.

1 The center vertex u (the central vertices u,w when of type 2) of Sx,y,z is a dominating vertex
for C, Px,y ∩N [C] = ∅, and z ∈ N [C] \D(C). Moreover for every vertex z′ ∈ N [C] \D(C),
Sx,y,z′ is an AT with the same number of vertices as Sx,y,z and the same path Px,y.

2 y ∈ N [C] \D(C) and wq ∈ D(C) (wq, w ∈ D(C) when of type 2) and N [C] ∩ V (Sx,y,z) =
{y, wq} ( N [C] ∩ V (Sx,y,z) = {y, wq, w} when of type 2). Moreover for every vertex y′ ∈
N [C] \D(C), Sx,y′,z is an AT with the same number of vertices as Sx,y,z.

If 1 happens then z ∈ X ′ and for every vertex vi, 0 ≤ i ≤ p− 1 of C, Sx,y,vi is a minimum AT
with the same number of vertices as Sx,y,z. Since Sx,y,vi is no longer an AT in G \H and u 6∈ H,
V (Sx,y,vi) \ {vi}) ∩ (N [C] \D(C)) = ∅, we conclude that H must contain vi. Therefore H must
contain all the vertices in V (C), a contradiction.

If 2 happens then y ∈ X ′ and for every vertex vi , 0 ≤ i ≤ p − 1 of C, Sx,vi,z is an AT with
the same number of vertices as Sx,y,z. Since Sx,vi,z is no longer an AT in G \ H and u 6∈ H,
V (Sx,vi,z) \ {vi}) ∩ (N [C] \D(C)) = ∅, we conclude that H must contain vi. Therefore H must
contain all the vertices in V (C), a contradiction.

�

When C is not ripe then there is a minimum AT, Sx,y,z such that V (Sx,y,z) ⊆ (N [C]\D(C)) 6=
∅. According to item (5) of Lemma 4.8 we may assume that V (Sx,y,z) ⊆W = N [{vi−1, vi, vi+1}]
for three consecutive vertices vi−1, vi, vi+1 in C. We apply the Algorithm Chordal-to-Interval on
the subgraph induced by W and hence we ripen the cycle C. We need to argue that we can apply
the Lemma 4.1 when G is not chordal. Let Px,y = x,w1, w2, . . . , wq, y. Let X ′ be a minimum
separator in G \ N(z) that separates w6 from wq−5 and it contains a vertex wj , 7 ≤ j ≤ q − 6.
According to Lemma 4.8 (2) vi is a dominating vertex for Sx,y,z and according to items (2,3,4) of
Lemma 4.8 no vertex vr of cycle C belongs to X ′. In other words none of the vertices in X ′ are
used to break cycle C. These allow us to apply the Lemma 4.1 for subgraph G[W ].

Overall the running time of the algorithm is O(ckn(m + n) where c = min{18, k}. In order
to find an AT we apply the algorithm in [14]. Now we focus on the correctness of the Interval-
Deletion(G,k) algorithm.
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5 Interval Completion

5.1 AT and AT Edge Interaction

In this subsection we may assume that G is chordal and G does not contain any small AT.

Lemma 5.1 Let Sa,b,c be a minimum AT with path Pa,b = a, v1, v2, . . . , vp, b and center vertex
u (central vertices u,w). Let Q = u, x1, x2, . . . , xr, a be a chordless path from u to a (not including
v1) (from w to a if Sa,b,c is of type 2). Then for every vertex xi, 2 ≤ i ≤ r, Sxi,b,c is a minimum
AT with the same number of vertices as Sa,b,c, and path Pxi,b = xi, v1, v2, . . . , vp, b

Proof: Since there is no cycle of length more than 3 in G, v1 must be adjacent to xi, 1 ≤ i ≤ r.
Now c is not adjacent to any xi, 2 ≤ i ≤ r. Otherwise by item (4) of Lemma 3.4 (cxi, xiv1 are
edges ) xi is a dominating vertex for Sa,b,c and hence by Corollary 3.6 xi would be adjacent to u
(w) contradiction to Q being chordless. We note that xi is not adjacent to vj , 2 ≤ j ≤ p + 1 as
otherwise we get a smaller AT Sxi,b,c with the path xi, vj , vj+1, . . . , vp, b. If Sx,y,z is of type (2) we
note that u is adjacent to xi as otherwise we get an AT with the vertices c, u, xi, v1, v2, . . . , vp, b
and has fewer vertices than Sa,b,c. Thus cu is an edge when Sa,b,c is of type (2). Now regardless
of type of Sa,b,c we conclude that Sxi,b,c is also a minimum AT with path Pxi,b = xi, v1, . . . , vp, b.
�

Analogous to the Lemma 5.1 we have the following Lemma.

Lemma 5.2 Let Sa,b,c be a minimum AT with path Pa,b = a, v1, v2, . . . , vp, b and center vertex
u (central vertices u,w). Let Q = u, x1, x2, . . . , xr, b be a chordless path from u to b (not including
vp) (from u to b if Sa,b,c is of type 2). Then for every vertex xi, 2 ≤ i ≤ r, Sa,xi,c is a minimum
AT with the same number of vertices as Sa,b,c, and path Pa,xi = a, v1, v2, . . . , vp, xi.

Definition 5.3 Let Sa,b,c be a minimum AT in graph G. We refer to a fill-in edge cvi,
0 ≤ i ≤ p + 1, as a long fill-in edge and we refer to a fill-in edge vivj, 0 ≤ i, j ≤ p + 1, as a
bottom fill-in edge of Sa,b,c. Note that ac, bc are long fill-in edges when Sa,b,c is of type 2 and
that ab is a bottom fill-in edge.

By cross fill-in edges of Sa,b,c, we call fill-in edges au, bu when Sa,b,c is of type 1 and aw, bu,
when Sa,b,c is of type 2.

Let us remark that in a graph G′ obtained from G by adding either long or cross fill-in edge,
subgraph Sa,b,c does not induce a cycle of length more than 3 and it does not induce an AT.

Lemma 5.4 Let Sa,b,c be a ripe AT. Let Sx,y,z be a minimum AT, with path Px,y = x,w1, . . . , wq, y
such that a long fill-in edge cd, d ∈ G[a, b, c] is a fill-in edge of Sx,y,z. Then cd is a long fill-in
edge of Sx,y,z and one of the following happens :

1. z = c, Px,y ∩ B[a, b] 6= ∅, Px,y ∩ E[a, b] 6= ∅, and every vi, 2 ≤ i ≤ p − 1 has a neighbor on
Px,y (See Figure 10).
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Figure 11: z ∈ G[a, b, c] and Px,y ∩G[a, b, c] = ∅
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2. z = d, and for every vertex z′ ∈ G[a, b, c], Sx,y,z′ is an AT with the same path Px,y =
x,w1, w2, . . . , wq, y (See Figure 11).

Proof: By definition of G[a, b, c], d is adjacent to some vi, 3 ≤ i ≤ p − 2. We first show
that cd is not a bottom fill-in edge for Sx,y,z. Otherwise up to symmetry we may assume that
x = c and wq = d when Sx,y,z is of type 1 and y = d when Sx,y,z is of type 2. Now by Lemma
3.12 for the path c, w1, w2, . . . , wq (cw1, w2, . . . , wq, y when of type 2) ,we conclude that w1 is a
dominating vertex for Sa,b,c and hence by Lemma 3.4 (7) w1wq (w1y when Sx,y,z is of type 2) is
an edge of G, yielding a contradiction.

We show that cd is not a cross fill-in edge for Sx,y,z. For contradiction suppose cd is a cross
fill-in edge for Sx,y,z. Let u′ be one of the center vertices of Sx,y,z. Now consider the path c, x′, d
that is corresponding to one the paths x,w1, u

′ and y, wq, u
′ and u′, w1, x and u′, w1, y in Sx,y,z.

By Lemma 3.12 for the path c, x′, d we conclude that x′ is a dominating vertex for Sa,b,c. W.l.o.g
assume that c, x′, d is corresponding to path u′, w1, x or path x,w1, u

′. Thus w1 is a dominating
vertex for Sa,b,c. We observe that u′ 6= c as otherwise because u′z = cz is an edge, Corollary 3.6
implies that zw1 is an edge, a contradiction. Therefore we have c = x and u′ = d (w′ = d when
Sx,y,z is of type 2). Because u′ ∈ G[a, b, c] and u′w3 is an edge by Lemma 3.10 w3 is adjacent to
every vertex in D(a, b, c) and in particular w3w1 is an edge; a contradiction. Therefore cd is not
a cross fill-in edge for Sx,y,z.

We conclude that cd is a long fill-in edge. By considering the path c, u′, d and applying the
Lemma 3.12 we conclude that u′ is a dominating vertex for Sa,b,c. Now the conditions of the
Lemma 3.16 are satisfied and hence one of the (1),(2) holds.

�

Lemma 5.5 Let Sa,b,c be a ripe AT with path Pa,b = a, v1, v2, . . . , vp, b. Let Sx,y,z be a
minimum AT, with center vertex u′ (central vertices u′, w′ is of type 2). If bottom fill-in edge
ab (when Sa,b,c is of type 2) (avp when Sa,b,c is of type 1) is a fill-in edge of Sx,y,z with path
Px,y = x,w1, . . . , wq, y then one of the following happens :

1. ab (when Sa,b,c is of type 2) (avp when Sa,b,c is of type 1) is a cross fill-in edge, a = x, b = u′

(a = x and vp = u′ when type 1) and for every vi, 1 ≤ i ≤ p, ( 1 ≤ i ≤ p− 1 when type 1)
Svi,y,z is an AT with the same number of vertices as Sx,y,z and the same center vertex u′.

2. ab (when Sa,b,c is of type 2) (avp when Sa,b,c is of type 1), b = y, a = u′ (b = y and v1 = u′

when type 1) and for every vi, 1 ≤ i ≤ p, ( 2 ≤ i ≤ p when type 1) Sx,vi,z is an AT with the
same number of vertices as Sx,y,z and the same center vertex u′.

3 up to symmetry for avp, bv1 we have the followings :

3.1 Sx,y,z is of type (2) and a = x, b = z ( a = x, vp = z when Sa,b,c is type 1) and for every
vi, 1 ≤ i ≤ p, (1 ≤ i ≤ p− 1 when type 1) Svi,y,z is an AT with the same number of vertices
as Sx,y,z and the same central vertices u′, w′.

3.2 Sx,y,z is of type (2) and a = z, b = y ( vp = x, a = z when Sa,b,c is type 1) and for every vi,
1 ≤ i ≤ p, (1 ≤ i ≤ p− 1 when type 1) Sx,vi,z is an AT with the same number of vertices as
Sx,y,z and the same central vertices u′, w′.
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Proof: We prove the theorem when Sa,b,c is of type 2. The proof when Sa,b,c is of type 1 is
similar.

First suppose ab is a cross fill-in edge of Sx,y,z. Therefore up to symmetry we are left with
the case a = x and b = u′. By Lemma 5.1 for Sx,y,z we conclude that for every vi, Svi,y,z is an
AT with the same number of vertices as Sx,y,z.

Now suppose that ab is a long fill-in edge for Sx,y,z. If a = wj for some 1 ≤ j ≤ q and b = z
then by Lemma 3.5 for Sx,y,z and path z, vp, vp−1, . . . , v1, a we conclude that vp is a dominating
vertex for Sx,y,z and hence vpv1 is an edge. This is a contradiction. Thus up to symmetry we
may assume that a = x and b = z. We note that in this case Sx,y,z is of type (2). Now again by
Lemma 3.5, vp is a dominating vertex for Sx,y,z. We note that vp is not adjacent to a and hence
vp must be adjacent to y otherwise we obtain a smaller AT with the vertices z, vp, x, w1, . . . , wq, y,
contradicting the minimality of Sx,y,z. Observe that by replacing w′ with vp we obtain an AT
(Sx,y,z)

′ with the same number of vertices as Sx,y,z. However by applying Lemma 5.2 for (Sx,y,z)
′

with the path vp, vp−1, ...v1, x we conclude that for every vi, Svi,y,z is an AT with the same number
of vertices as Sx,y,z.

�

5.2 Algorithm For Interval Completion

Interval − Completion(G,K) Algorithm
Input : Graph G, and parameter k.
Output : A minimum set F of edges such that |F | ≤ k and G∪F is an interval graph OR report
NOT exists.

1. If G is an interval graph then return ∅.

2. If k ≤ 0 and G is not interval graph then report NOT exists.

3. Let C be cycle with |C| ≥ 4. For every minimal triangulation F of C set F ′ = Interval −
Completion(G ∪ F, k − |C|+ 3). If F ′ exists then return F ∪ F ′.

4. Let S be a small AT in G. For every edge e (at most 9 ways) such that S ∪ {e} is not an
AT in G set F = Interval − Completion(G ∪ {e}, k − 1). If F exists then return F ∪ {e}.

5. Let Sa0,b0,c0 be a minimum AT in G. Apply the Algorithm 1 to obtain a ripe AT, Sa,b,c
with the path Pa,b = a, v1, v2, . . . , vp, b and center vertex u (u,w when is of type 2).

6. Let X be a smallest set of vertices in G \ N(c) such that X contains a vertex vi ∈ X,
7 ≤ i ≤ p− 6, and there is no path from v6 to vp−5 in G \ (X ∪N(c)).

7. Let S = {au, bu} when Sa,b,c is of type 1 otherwise let S = {aw, bu}. Set F = Interval −
Completion(G ∪ {e}, k − 1). If F exists then return F ∪ {e}.

8. If Sa,b,c is of type 1 then for each of the long fill edge e = cvi, i ∈ {1, 2, 3, 4, 5, 6, p− 5, p−
4, p − 3, p − 2, p − 1, p} set F = Interval − Completion(G ∪ {e}, k − 1). If F exists then
return F ∪ {e}.
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9. If Sa,b,c is of type 2 then for each of the long fill edge e ∈ ca, cvi, cb, i ∈ {1, 2, 3, 4, 5, 6, p−
5, p − 4, p − 3, p − 2, p − 1, p} set F = Interval − Completion(G ∪ {e}, k − 1). If F exists
then return F ∪ {e}.

10. Let S = {avi|2 ≤ i ≤ p}∪{ab}. Set S1 = S when Sa,b,c is of type 2 otherwise S1 = S \{ab}.
Set F = Interval − Completion(G ∪ S1, k − |S1|). If F exists then return F ∪ S1.

11. Let S = {bvi|1 ≤ i ≤ p − 1} ∪ {ab}. Set S1 = S when Sa,b,c is of type 2 otherwise
S1 = S \ {ab}. Set F = Interval − Completion(G ∪ S1, k − |S1|). If F exists then return
F ∪ S1.

12. Let U be the set of vertices adjacent to u and not adjacent to any vertex on the path
Pa,b = a, v1, v2, . . . , vp, b. Let C be a connected component of G[U ], containing c

13. Let S3 be the set of all edge c′x for some c′ ∈ C and x ∈ X. Set F = Interval −
Completion(G ∪ S3, k − |S3|). If F exists then return F ∪ S3.

We now focus on the correctness of the Interval-Completion algorithm. In what follows we
consider the ripe AT, Sa,b,c with the path Pa,b = a, v1, v2, . . . , vp, b and center (central vertices) u
(u,w if of type 2).

Definition 5.6 For center vertex u in Sa,b,c let U be the set of vertices adjacent to u and not
adjacent to any vertex on the path Pa,b = a, v1, v2, . . . , vp, b. Let C be a connected component of
G[U ], containing c (by Lemma 3.4 (4) for every c′ ∈ C, Sa,b,c′ is a minimum AT, with the same
number of vertices as Sa,b,c).

Now we are ready to prove the following Lemma.

Lemma 5.7 Let X ′ be a minimal separator in G[a, b, c] such that vi ∈ X ′, 7 ≤ i ≤ p− 6. Set
E′X = {c′x′|c′ ∈ C, x′ ∈ X ′}. Then G ∪ E′X does not contain a minimum AT, S (small or big)
containing some edges of E′X .

Proof:

For contradiction we assume there exists a minimum AT, that uses one edge from E′X and
it is not contained in some other AT. We show that there exists an AT in G such that it has a
vertex from N [vi], 7 ≤ i ≤ p− 6 but none of the items (1,2,3,4) of the Lemma 3.18 holds for this
AT and consequently G[a, b, c] is not an interval graph, i.e., Sa,b,c is not ripe.

Observation 1. Since G[a, b, c] is an interval graph X ′ is a clique and G[a, b, c]∪{cx′|x′ ∈ X ′}
induce interval graph in G.

Let S be a minimum AT with the vertices x′, y′, z′ such that cd, c ∈ C and d ∈ X ′ is an edge
of S. We assume that d ∈ N [vi], 7 ≤ i ≤ p− 6. W.l.o.g assume that cd is an edge of the shortest
path P1 from x′ to y′ outside the neighborhood of z′. We observe that z′ 6∈ C as otherwise z′d is
an edge. Since d is adjacent to every vertex c′ ∈ C, we conclude that P1 has only one vertex c in
C.
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Let d1 be the neighbor of d in P1 and d2 be the neighbor of c in P1. First suppose c 6= y′.
Now d2 is not in D(a, b, c) as otherwise by Corollary 3.6 dd2 is an edge , a contradiction to the
minimality of the length of P1. d2 6∈ C as otherwise dd2 is an edge in EX′ and we get a shorter
path. Thus we conclude that d2 ∈ X ′ and since X ′ is a clique, dd2 is an edge and hence we
replace dc, cd2 by dd2 in P1 and we get a shorter path. This contradicts the minimality of the
AT. Therefore we assume that c = y′.

We note that P1 ∩D(a, b, c) = ∅ as otherwise we get a shorter path from x′ to y′. Let P2 be
the shortest path from y′ to z′ that avoids the neighborhood of x′ and P3 be the shortest path
from z′ to x′ that avoids the neighborhood of y′. Let cd2 be the first edge of P2. By Corollary
3.6 P3 ∩D(a, b, c) = ∅ as otherwise P3 does not avoid y′ = c. We also note that P3 does not uses
any edge z1z2, z2 ∈ X ′ as otherwise y′z2 is an edge in EX′ .

We show that P2 goes through some vertex in D(a, b, c). For contradiction suppose P2 ∩
D(a, b, c) = ∅. If P2 does not use any of the edges in E′X then P2P3P1 contains an induce shortest
path Q from c = y′ to vertex d ∈ G[a, b, c]. Thus lemma 3.12 implies that d2 is a dominating
vertex for Sa,b,c, a contradiction.

Therefore we assume that P2 uses some edge y1y2 ∈ E′X , y2 ∈ X ′. Note that there is only one
edge of P2 in E′X as otherwise we get a shorter path because c = y′ is adjacent to all the vertices
in X ′. Now consider part of path P2 from y2 to z′ and part of P1 from x′ to d and the path P3

and edge dy2 (both d, y2 ∈ X ′) we get cycle of length more than three or an AT S′ in G. None of
the vertices of this AT is in D(a, b, c) and none of the edges of S′ in E′X . This means we get an
AT in G such that it contains a vertex from N [vi], 7 ≤ i ≤ p− 6. Now we get a contradiction by
Lemma 3.18 because at least one vertex of the AT, S′ must be in D(a, b, c) or S′ is in G[a, b, c],
implying that G[a, b, c] is not ripe.

We conclude that P2 contains a vertex from D(a, b, c).

Before we proceed we summarize the followings.

(1) d2 ∈ D(a, b, c). Since every vertex in D(a, b, c) is adjacent to c = y′ and P2 is the shortest
path.

(2) x′ is not adjacent to any vertex in G[a, b, c]. Otherwise by Lemma 3.10 x′d2 is an edge.

(3) P1 ∩D(a, b, c) = ∅.

(4) We may assume that B[a, b] ∩ P1 6= ∅. Note that P1 is a path from x′ 6∈ G[a, b, c] to vertex
d ∈ G[a, b, c]. Therefore by Lemma 3 we may assume that B[a, b] ∩ P1 6= ∅.

Let P ′2 be a path from d to d2 and then following P2 to z′.

Case 1. z′ is adjacent to some vj , 0 ≤ j ≤ p + 1.

We show that j ≤ i. For contradiction suppose j > i. Now P3 from z′ to x′ must contain
a vertex from X ′. Otherwise we would have a path vjP3Q outside the neighborhood of y′ = c
where Q is part of P1 from x′ to v1. But this would be a contradiction to X ′ is a separator.

We continue by having j ≤ i. If j ≤ 3 then we get an AT S with the vertices d, z′, x′ as
follows: x′ is joined with z′ via part of P3 from x′ to the first time P3 reaches to vj and then
to z′ (note that since d ∈ N [vi], 7 ≤ i ≤ p − 6 then dvj is not an edge). d is joined with z′

via P ′2 and finally d is joined with x′ via path P1. We note that none of the edges S belongs to
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EX′ . However since d2 ∈ D(a, b, c) and d ∈ N [vi], 7 ≤ i ≤ p − 6 the conditions of the Lemma
3.18 are met while none of the (1,2,3,4) consequences of Lemma 3.18 holds and hence we get a
contradiction to Sa,b,c is ripe. If j > 3 then we get an AT, v2, c, z

′ as follows: v2 is joined with c
via part of P1 from the neighborhood of v2 to c. There is a path from v2 to z′ using the vertices
of P1 v2, v3, . . . , vj , z

′ and then z′ to c via the vertices vj , vj+1, . . . , vi, d, c yielding an AT, inside
G[a, b, c] ∪ {cx′|x′ ∈ X ′}. This is a contradiction according to Observation 1.

Case 2. z′ has no neighbor in the path Pa,b.
If the path P3 ∩G[a, b, c] = ∅ then we obtain a smaller AT S with the vertices d, x′, z′ as follows.
x′ is joined with d via part of P1 from x to d and P3 joins x′ to z′ and P ′2 joins d2 and z′. We note
that none of the edges of S belongs to EX′ and S contains a vertex d from N [vi], 7 ≤ i ≤ p− 6.
Now the conditions of the Lemma 3.18 are met while none of the (1,2,3,4) consequences of Lemma
3.18 holds and hence we get a contradiction to G[a, b, c] is an interval, i.e., Sa,b,c is ripe. Therefore
P3 ∩G[a, b, c] 6= ∅.

Since P3∩D(a, b, c) = ∅ and P3∩G[a, b, c] 6= ∅, by Lemma 3 P3∩(B[a, b]∪E[a, b]) 6= ∅. Consider
the first time that P3 visits a vertex in Pa,b. Either we have P3 ∩ E[a, b] 6= ∅ or P3 ∩ B[a, b] 6= ∅.
Recall that by our assumption B[a, b]∩P1 6= ∅. If B[a, b]∩P3 = ∅ and E[a, b]∩P3 6= ∅ then P3 must
contain a vertex from X ′. Otherwise we would have a path vpP

′
3P
′
1v1 outside the neighborhood

of y′ = c where P ′3 is part of P3 from a vertex in the neighborhood of v1 to x′ and P ′1 is part of
P1 from x′ to a vertex in the neighborhood of vp. But this would be a contradiction to X ′ is a
separator.

We continue by having P3 ∩ B[a, b] 6= ∅. Now consider the first time P3 has a vertex from
N [v1], and the first time P1 contains a vertex from N [v1]. We obtain a path from x′ to z′ that
avoids the neighborhood of d. Now we get an AT d, x′, z′, and similarly we get a contradiction.

�

Lemma 5.8 Let G be a chordal graph without small ATs and let Sa,b,c be a ripe AT with the
path Pa,b = a, v1, v2, . . . , vp, b. Let X be a minimum separator in G \N(c) that separates v6 from
vp−5 and it contains a vertex vi, 7 ≤ i ≤ p − 6. Then there is a minimum set of fill-in edges F
such that G ∪ F is an interval graph and at least one of the following holds:

(i) If Sa,b,c is of type 1 then F contains at least one fill-in edge from

{bu, au, cv1, cv2, cv3, cv4, cv5, cv6, cvp−5, cvp−4, cvp−3, cvp−2, cvp−1, cvp}

If Sa,b,c is of type (2) then F contains at least one fill-in edge from

{bu, aw, ca, cb, cv1, cv2, cv3, cv4, cv5, cv6, cvp−5, cvp−4, cvp−3, cvp−2, cvp−1, cvp}

(ii) F contains all the edges avi, 2 ≤ i ≤ p and ab when Sa,b,c is of type 2.

(iii) F contains all the edges bvi, 1 ≤ i ≤ p− 1 and ab when Sa,b,c is of type 2.

(iv) F contains all the edges cf , f ∈ G[a, b, c]

(v) F contains all edges EX = {c′x|c′ ∈ C, x ∈ X}.
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Proof: Let H be a minimum set of fill-in edges such that G∪H is an interval graph. If Sa,b,c
is of type 1 and H contains an edge from

{bu, au, cv1, cv2, cv3, cv4, cv5, cv6, cvp−5, cvp−4, cvp−3, cvp−2, cvp−1, cvp}

or when Sa,b,c is of type (2) and H contains an edge from

{bu, aw, ca, cb, cv1, cv2, cv3, cv4, cv5, cv6, cvp−5, cvp−4, cvp−3, cvp−2, cvp−1, cvp}

then we set F = H.

Suppose H contains edge ab when Sa,b,c is of type 2 and without loss of generality H contains
edge avp if Sa,b,c is of type 1. We argue that H also contains all the edges avi, 2 ≤ i ≤ p (i ≤ p−2
when Sa,b,c is of type 1) or all the edges bvi, 1 ≤ i ≤ p − 1 when Sa,b,c is of type 2. Mow we
may assume that there exists a minimum AT, Sx,y,z such that ab (avp when Sa,b,c is of type 1)
is a fill-in edge for Sx,y,z. By Lemma 5.5 (1,2) ab (avp) is a cross fill-in edge for Sx,y,z and up to
symmetry we have a = x and b = u′ (ap = u′) and for every x′ ∈ G[a, b, c], Sx′,y,z is an AT with
the same number of vertices as Sx,y,z. This implies that every optimal solution must also add
the edges u′v1, u

′v2, . . . , u
′vp−1 and in particular H contains all the edges bvi, 1 ≤ i ≤ p− 1 and

ab (when Sa,b,c is of type 2) this case we also set F = H. If one if the items (3) and (4) of the
Lemma 5.5 holds again we conclude that H must contains all the edges bvi, 1 ≤ i ≤ p− 1 and ab
(when of type 2) or H must contain all the edges avi, 2 ≤ i ≤ p and ab (when of type 2).

We will proceed by assuming that H does not contain any of the edges au, bu (aw, bu if of
type 2), ab, cvr, 0 ≤ r ≤ 6, and cvr, p − 5 ≤ r ≤ p + 1. Moreover we assume that H does not
contain all the edges cf , f ∈ G[a, b, c] as otherwise we set F = H.

Let W = {w|cw ∈ H} be the set of vertices adjacent to c via fill-in edges. Because Sa,b,c is an
AT there is no path from v6 to vp−5 in (G ∪H) \N(c). Hence, set W should contain a minimal
v6, vp−5-separator X ′ in G \N(c), containing a vertex vi, 7 ≤ i ≤ p− 6.

Claim 5.9 Let c′ is a vertex adjacent to c and not adjacent to any vertex on the path Pa,b in
G. Then H contains all the edges c′x′, x′ ∈ X ′.

Proof: Indeed, by Lemma 3.4, c′ is adjacent to u, and thus Sa,b,c′ is also a minimum AT with
the same number of vertices as Sa,b,c. Since Sa,b,c′ is no longer an AT in G ∪H and none of the
au, bu is an edge in H and ab (avp, bv1 when Sa,b,c is of type 2) is not an edge in H we have that
H contains at least one edge c′vj . Let us assume that vj 6= vi is the closest vertex to vi such that
cvj is not in H. (Observe that we assumed that the H is a minimal set of fill edges such that
G∪H is an interval graph and cvi is in H since Sa,b,c is an AT in G). Let P be part of Pa,b from vi
to vj . By our assumption for H, P has no chords. No vertex of P except vj and vi is adjacent to
c or c′. Thus the cycle c, P, c′, c′ is a chordless cycle in G∪H, which is a contradiction. Therefore
we conclude that c′vi is an edge. No let W ′ = {w′|c′w′ ∈ H}. Since Sa,b,c′ is an AT and none
of the au, bu, cvr, vr ∈ {v1, . . . , v6, vp−5, . . . , vp} is in H (note that 7 ≤ i ≤ p − 6) and there is
no path from v6 to vp−5 in (G ∪H) \N(c), set W ′ should contain a minimal v6, vp−5-separator
X ′′ containing vi = vj in G \N(c). Because G[a, b, c] is an interval graphs and both X ′ and X ′′

contain vi we have X ′ = X ′′. �

Now by applying the Claim 5.9 for every c′′ ∈ C we conclude that c′′x′, x′ ∈ X ′ is in H. Let
E′X = {c′x′|c′ ∈ C, x′ ∈ X ′}. We observe that X ′ is a clique because G[a, b, c] is an interval graph.
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We define F = (H \E′X)∪EX . Let us note that because none of the sets EX and E′X contains
edges of G and because X is a minimum separator, we have that |F | ≤ |H|. In what follows, we
prove that I = G∪F is an interval graph. For a sake of contradiction, let us assume that I is not
an interval graph. We note that by Lemma 5.7 adding the edges c′x′, c′ ∈ C and x′ ∈ X ′ would
not add new AT in G. Therefore by Theorem 1.1 we may assume that I contains cycle of length
more than three or a big AT with the edges in G.

Case 1. I contains big AT.

Let Sx,y,z be an AT in I. We assume that vertices x and y are connected in Sx,y,z by an
induced path x,w1, w2, . . . , wq, y, where q ≥ 6. Because Sx,y,z is not an AT in G∪H, set E′X \EX
must contain some fill-in edge cd, for Sx,y,z. By definition of G[a, b, c], d is adjacent to some vi,
3 ≤ i ≤ p− 2. Every fill-in edge of Sx,y,z is either long, cross, or bottom, see Definition 5.3.

Claim A. cd is not a cross fill-in edges of Sx,y,z.
By Lemma 5.4 the fill-in edge cd is a long fill-in edge of Sx,y,z and not a cross fill-in edge.

Claim B. cd is not a bottom fill-in edge of Sx,y,z.
For contradiction suppose cd is a bottom fill-in edge for Sx,y,z. Thus we have c = x and y = d
or c = y and x = d. W.l.o.g assume that c = x and y = d. Now there is a path Q =
c, w1, w2, . . . , wq, d from c to d. Since Q is chordless, by Lemma 3.12 w1 is a dominating vertex
for Sa,b,c and by Corollary 3.9 w1d is an edge. This is a contradiction because q > 2.

We conclude that cd is a long fill-in edge for Sx,y,z. Now we have z = c or z = d. If
z = d then by Lemma 5.4 (2) for every vertex f ∈ G[a, b, c], Sx,y,f is an AT with the same path
x,w1, w2, . . . , wq, y. Since H does not contain any of the edge au, bu, cvi, i ∈ {1, . . . , 6, p−5, . . . , p},
and Sa,b,f is an AT, H must contain the edge cf . But this is a contradiction as we assumed that
H does not contain all the edges cf , f ∈ G[a, b, c].

Therefore we suppose z = c. We argue that there exists a fill-in edge cd′ ∈ EX , such that
d′ ∈ {x,w1, w2, . . . , wq, y}. Since z = c, Lemma 5.4 (1) implies that Px,y ∩ B[a, b] 6= ∅ and
Px,y ∩ E[a, b] 6= ∅ and every vi, 2 ≤ i ≤ p − 1 has a neighbor in Px,y. Therefore there would be
a path from v2 to vp−1. This is a contradiction to X being a v6, vp−5 separator and hence there
exists some fill-in edge cd′ ∈ EX , such that d′ ∈ {x,w1, w2, . . . , wq, y}.

Case 2. I contains a cordless cycle of length more than three. This implies that there exists
a path Q from c to d ∈ G[a, b, c]. However by Lemma 3.12 the second vertex of Q say d′ is a
dominating vertex for Sa,b,c and since d ∈ G[a, b, c] by Corollary 3.9 d′d is an edge. This implies
that the length of Q is 2, a contradiction.

�

In the following Lemma we address the correctness and complexity of the Algorithm.

Theorem 5.10 The Branching Algorithm is optimal and its running time is O(ckn(n+m)),
c ∈ min{17, k} for parameter k.

Proof: The correctness of the Branching Algorithm is justified by Lemma 5.8. By Lemma
5.8(1,2) there are five ways of adding one fill in edge for AT Sa,b,c of type 1 (type 2). Either we
add one of the edges au, bu, cvi, 1 ≤ i ≤ 6 or p − 5 ≤ i ≤ p or we add at least one edge from c
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to set X or we add edge ab and hence the Algorithm needs to add p− 2 other fill in edges. Note
that once we add ab then the parameter k decrease by at least 5. In order to get the maximum
number of branching we may assume that no bottom fill-in edge ab is added. By looking at the
small AT, together with the AT’s of type 1 and type 2 there are at most max{17, k} possible
ways to add a fill in edge to Sa,b,c and at each step the parameter k is decreased by at least one.
We may deploy the algorithms developed in [14] with the running time O(n(n+m)) to find ATs.
Therefore the running time of the algorithm is O(ckn(n + m)), c ∈ min{17, k}. �

6 Conclusion and future work

We have shown that there exist single exponential FPT algorithms for k-interval deletion problem.
The obstruction for the class of interval graphs is not finite but the obstructions can be partitioned
into a constant number of families.

Let Π be a class of graphs. We say Π has family bounded property if the forbidden subgraphs
for this class can be partitioned into a constant number of families. Let Π + kv denotes the
problem of deleting k vertices (edges) from (into ) input graph G such that the resulting graphs
becomes a member of Π. It would be interesting to study the following problem.

Problem 6.1 For which classes Π of graphs with family bounded property, the problem Π+kv
is FPT ?

Remark : We have heard that Cao and Marx have solved the k-interval deletion problem.
They start by branching on small interval graph obstructions and then start breaking the cycles
first and then deleting the big AT’s. They have made some comments about an earlier version
of this paper and they had some concerns for the cycle breaking procedure. I have said that the
structure of the subgraph induced by N [C] \D(C) is simple and it is a circular arc graph. This
statement led them to a confusion and I make it clear in this version. I also would like to thank
Yixin Cao for a useful comment in the k-interval completion algorithm.

Acknowledgements: I would like to thank Fedor Fomin, Yngve Villanger and Saket Saurabh
for many helpful discussions and their help.
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