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ABSTRACT

In [2], [3] and [4] a procedure for the reduction of a binary image to a skeleton for the
purpose of the automated recognition and classification of images is described. In this work we
extend the construction of skeletons to grey level or color images. A hierarchy of decorated
graphs are constructed which capture the visual content of the original image to different
levels of detail. The correspondence of the decorated graphs to the image is demonstrated
by an inverse algorithm which allows the approximate reconstruction of the original image.
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1 Introduction

Pixel by pixel comparison of images does not
lead to an acceptable recognition algorithm in
computer vision. A small perturbation, a ro-
tation or translation of an image often results
in one which may appear very different on a
pixel by pixel comparison basis, but percep-
tually is identical with the original. To alle-
viate this problem, a method was developed
in [2], [3] and [4] to assign certain skeletons
or shock graphs to binary images. These ob-
jects are invariant under small perturbations,
rotations or translations, and yet may con-
tain the crucial information necessary for the
identification of an object.

In this paper we modify the algorithm in
above mentioned papers, in order to apply it
to grey level and color images. The key idea is
to replace the distance function with an en-

ergy function which not only takes into ac-
count the distance to the “edge”, but incorpo-
rates the gradient vector field of the intensity
function(s). Broadly speaking, the skeleton is
defined as the set of points where the Lapla-
cian of the energy is greater than a specified
threshold. Empirical evidence shows that the
information contained in the local maxima is
insufficient for an acceptable recognition al-
gorithm.

To evaluate the information contained in
the skeletons we introduce the refined notion
of a decorated skeleton. From the decorated
skeletons we can approximately reconstruct
the original image. The goodness of a recon-
structed image depends on the amount in-
formation stored in the decorated skeleton.
We propose a hierarchy of decorated skele-
tons which encode the original image to dif-
ferent levels of detail and fidelity. Our algo-
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rithms have linear or log times linear com-
plexity which allows for fast implementation.

2 Grey Scale Image Skele-
tons

The construction of skeletal graphs in [2], [3]
and [4] is modified here to accommodate grey
scale and color images. The modification is
based on the introduction of an energy func-
tion for a grey scale image. Let I(x, y) denote
the intensity of the image at pixel (x, y) and
d(., .) denote the standard Euclidean distance
function. Then the energy of a pixel (x, y) is
defined as

E(x, y) = min
(x′,y′)

[
d((x, y), (x′, y′)) +

α

||gradI(x′, y′)||

]
,

where α > 0 is a positive parameter. The re-
sulting skeleton is robust relative to small per-
turbations of α. Generally speaking, larger
values of α tend to increase the complexity of
the skeletal graphs.

The calculation of the energy function
by directly using its definition and seeking
the minimum through exhaustive search is
computationally intensive. A major simpli-
fication is achieved by a modified version of
the method proposed by Borgefors [1] for the
calculation of the distance of a point in an
image to the edge of the given shape. The
complexity of this method is linear in the
number N of pixels and gives a satisfactory
approximation to the actual minimum. To
describe the necessary modification we recall
that Borgefors assigns the values 0 or ∞ to
each pixel according as the point is an edge

or not. Consider the masks
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Following [1], to calculate the energy at pixel
designated 0 we make use of the forward mask
and evaluate

E(i, j) = min{E(i, j), E(i, j − 1) + 1,

E(i− 1, j − 1) +
√

2,

E(i− 1, j) + 1,

E(i− 1, j + 1) +
√

2}

The forward mask is passed over the entire
image from left to right and top to bottom
once. Then the backward mask is applied
from right to left and bottom to top by mak-
ing use of the formula

E(i, j) = min{E(i, j), E(i, j + 1) + 1,

E(i− 1, j + 1) +
√

2,

E(i− 1, j) + 1,

E(i− 1, j − 1) +
√

2}

This determines the required minimum dis-
tance (approximately). In our modification
we assign the value

α

||gradI(x, y)||

to the pixel (x, y). Note that for binary im-
ages this yields the Borgefors 0,∞ matrix.
Passing the same masks over the image yields
a satisfactory approximation for the energy
function.
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The negative of the divergence of the gra-
dient of the energy function is calculated us-
ing the expression

−div
(∂E

∂x
,
∂E

∂y

)
(x, y)

= lim
C→(x,y)

[
1

aC

∫
C

< −gradE,N > dc

]
,

where C is a small closed curve containing
(x, y) in its interior, dc is the line element
on C, and aC is the area enclosed by C. A
threshold T is introduced and a “thick skele-
ton” S̃ defined by the inequalities

(x, y) ∈ S if and only if

−div
(∂E

∂x
,
∂E

∂y

)
(x, y) ≤ T.

The thickness of the skeleton S̃ and its com-
plexity depend on the threshold T and also
affect the reconstruction which is discussed in
the next section. A thinning algorithm based
on the divergence of the energy function, simi-
lar to the procedure described in [2], is used to
convert S̃ to a skeleton S. Figures 1 through
5 demonstrate the dependence of the skeleton
on the choice of α and T (see Table of Figures
for explanation).

It is evident that the skeletons are quite
complex and it is desirable to simplify their
structure and obtain a hierarchy of skeletons
reflecting different levels of detail. This can
be achieved by different methods. One ap-
proach is by reducing the size of the image
by a factor of 4 or 16 and then applying the
algorithm to obtain the skeleton. Then a sim-
plification algorithm eliminates “irrelevant”
branches and loops. This algorithm is ad hoc
and calculates lengths of branches and loops.
A threshold determines which branches and

loops should be eliminated. A second ap-
proach reduces the images by the same fac-
tors and quantizes the levels to four or eight
and then applies the algorithm. By a similar
procedure the small loops and branches are
eliminated. Figures 8 and 9 show the skele-
tons attached to Figure 6 after the reduction
of the image and the elimination of irrelevant
branches and loops of the skeletons, while Fig-
ure 7 is the (unsimplified) skeleton.

An important feature of the assignment of
a skeleton to an image is that small pertur-
bations or rigid motions of the latter do not
affect the former. Figures 11 show the appli-
cation of an affine transformation close to the
identity to Figure 10. The resulting skeleton,
which are almost identical, are shown in Fig-
ures 13 and 14. As the affine transformation
moves away from the identity the skeleton will
differ more from the original one. The new
skeleton may differ from the original in the
creation or annihilation of loops or connected
components. Strictly speaking the change in
the skeleton is not a continuous function since
at some transition points loops or connected
components are created or annihilated which
is not a continuous process. The meaning and
significance of transition points are not clear.

3 Reconstruction

What kind of information is stored in the
skeleton of an image? In order to gain some
understanding of this question we developed
an inverse algorithm for the reconstruction an
image from the skeleton to evaluate which fea-
tures are preserved and which are not. To ap-
preciate the difficulties involved in an inverse
algorithm note that the skeleton assigned to
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a binary image consisting of a single disc (a
circle with its interior) is point regardless of
its radius. Therefore without additional in-
formation about the size of the disc it is not
possible to reconstruct it. This suggests that
by specifying an additional parameter (e.g., a
distance function on the skeleton) we may be
able to reconstruct an approximation to the
original image. Rather than describing the al-
gorithm for the binary image we introduce a
more general algorithm for grey level or color
images with an obvious simplification in the
binary case.

The inverse algorithm for grey scale im-
ages requires the introduction of the notion
of decorated skeleton. By the decorated skele-
ton we mean a triple (S, E, I) where E and
I are the energy and intensity of the point
with coordinates (x, y) in the original image.
Points not on the skeleton are assigned zero
energy and intensity. The general idea is to
solve a heat equation

∂I

∂t
=

∂2I

∂x2
+

∂2I

∂y2
,

with initial condition determined by the dec-
orated skeleton to obtain the grey level image
when t becomes large. How large t should
be depends on the the energy function which
gives information about the distance to the
edge. The non-uniformity in t creates compli-
cations in the actual calculations. To circum-
vent this problem we make use of a simpler
procedure based on successive applications of
two “reverse” masks to obtain an approxima-
tion to the original image. The reverse masks
are

−
√

2 −1 −
√

2
−1 0

−
√

2 −1 −
√

2
0 −1

In the application of the reverse masks we
make use of the formula

E(i, j) = max{E(i, j), E(i, j − 1)− 1,

E(i− 1, j − 1)−
√

2,

E(i− 1, j)− 1,

E(i− 1, j + 1)−
√

2},

for the forward path. Now let (i′, j′) be the
point that the above maximum is attained.
Set

I(i, j) = I(i′, j′)

pass the mask over the entire decorated skele-
ton from left to right and top to bottom to
complete the forward pass. Similarly in the
backward pass we make use of

E(i, j) = max{E(i, j), E(i, j + 1)− 1,

E(i− 1, j + 1)−
√

2,

E(i− 1, j)− 1,

E(i− 1, j − 1)−
√

2},

and let (i′, j′) be the point where the max-
imum is attained. Set I(i, j) = I(i′, j′) as
before and pass the mask over the entire im-
age from right to left and top to bottom to
obtain the reconstructed image.

Simplifying the skeletons, as described
earlier, affects the information content of the
skeletons. Figures 12, 13 and 18 show skele-
tons with different complexities attached to
the same image. The reconstructed images
are shown in Figures 15, 16 and 19. Note
that while the fidelity depends on the com-
plexity of the skeleton, for the general recog-
nition problem it suffices to make use of the
simplified skeletons. In other words, the sim-
plified skeletons retain essential information
for the application to recognition problems.
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Table of Figures

Figure No. Description α T Reduction Factor Comment
1 Saturn - - 1 Original
2 Saturn 5 -9 1 Skeleton
3 Saturn 2 -9 1 Skeleton
4 Saturn 5 -15 1 Skeleton
5 Saturn 5 -5 1 Skeleton
6 Female Face - - 1 Original
7 Female Face 5 -9 1 Skeleton
8 Female Face 5 -9 1

4 Simplified Skeleton
9 Female Face 5 -9 1

16 Simplified Skeleton
10 Male Face - - 1 Original
11 Male Face - - 1

4 Distorted Image
12 Male Face 5 -9 1 Skeleton of 10
13 Male Face 5 -9 1

4 Simplified Skeleton of 10
14 Male Face 5 -9 1

4 Simplified Skeleton of 11
15 Male Face - - - Reconstruction from 12
16 Male Face - - - Reconstruction from 13
17 Male Face - - 1 4-Level Quantization
18 Male Face 5 -9 1 Simplified Skeleton of 17
19 Male Face - - - Reconstruction of 18
20 Blood Cells - - 1 Original
21 Blood Cells 5 -9 1 Simplified Skeleton of 20
22 Blood Cells - - - Reconstruction of 21

Fig. 1 Fig. 2 Fig. 3
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Fig. 4 Fig. 5 Fig. 6

Fig. 7 Fig. 8 Fig. 9 Fig. 10

Fig. 11 Fig. 12 Fig. 13

Fig. 14 Fig. 15 Fig. 16
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Fig. 17 Fig. 18 Fig. 19

Fig. 20 Fig. 21 Fig. 22
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