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Abstract

This paper studies the inapproximability of Hypergraph Coloring, HC. We are given two hypergraphs
G and H (assume the hyperedges are ordered) together with a cost function c, specifying the cost of
coloring a given vertex of G with a given vertex of H. The goal is to find a homomorphism, a.k.a. coloring,
from V (G) to V (H) so that it preserves adjacency (the image of every hyperedge in G is a hyperedge in H)
and its cost (sum over individual cost) is minimized. When H is a fixed target hypergraph, we denote this
problem by MHC(H). Some prominent problems that this framework captures are (Hypergraph) Vertex
Cover, Min Sum k-Coloring, Multiway Cut, Min Ones, and others.

We present the first general hardness of the approximation for MHC. More precisely, we prove that every
instance of MHC(H), H being a digraph, is either polynomial-time solvable or APX-complete. Moreover,
we show the existence of a universal constant 0 < δ < 1 such that it is NP-hard to approximate MHC(H)
within a factor of (2− δ) for all digraphs H where MHC(H) is NP-complete. We use structural properties
of digraph H where MHC(H) is NP-complete and develop an array of gap-preserving approximation
reductions. The underlying structural properties used in our results can be extended to hypergraphs
by considering the obstruction of MHC(H) for digraphs to hypergraphs, yielding hardness results for
hypergraphs.
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1 Introduction

Let G be a hypergraph. We denote the vertex set and the edge set of G by V (G) and E(G), respectively.
However, we assume the hyperedges of G are ordered, and hence, we refer to them as arcs of G. Thus, (x, y, z)
and (z, x, y) are considered two different arcs of G. G is called k-uniform hypergraph if all the arcs have size
k. A digraph is a 2-uniform hypergraph.

A homomorphism of hypergraph D to a hypergraph H, also known as an H-Coloring of D, is a mapping
f : V (D) → V (H), such that for each arc (x1, x2, . . . , xk) ∈ D, (f(x1), f(x2), . . . , f(xk)) is an arc of H. We
say a mapping f does not satisfy arc (x1, x2, . . . , xk), if (f(x1), f(x2), . . . , f(xk)) is not an arc of H. The
homomorphism problem parameterized by target hypergraphs, denoted HC(H), takes a hypergraph D as
input and asks whether there is a homomorphism from D to H. Therefore, by fixing the hypergraph H
we obtain a class of problems, one for each hypergraph H. For instance, HC(H), when H is an edge, is
exactly the problem of determining whether the input graph G is bipartite, known as the 2-Coloring problem.
Similarly, if H is a clique on k vertices, then HC(H) is the classical k-Coloring problem.

There are several optimization versions of HC(H) problem, two of which have attracted a lot of attention.
One is to find a mapping f : V (D) → V (H) that maximizes (minimizes) the number of satisfied (unsatisfied)
arcs in D. This problem is known under the name of Max CSP (Min CSP); an example is the Max Cut
problem where the target graph H is an edge. This line of research has received a lot of attention in the
literature and there are very strong results concerning various aspects of approximability of Max CSP and
Min CSP [2, 12, 16, 28, 34, 36]. A beautiful result of [36] established optimal (in)approximability for the Max
CSP problem where the goal is to find an assignment which maximizes a weighted fraction of satisfied arcs.
The author of [36] showed how to use the basic SDP relaxation to obtain a constant factor approximation.
Moreover, he proved that the approximation ratio can not be improved under the Unique Games Conjecture
(UGC) [27]. It was noted in the same paper [36] that the techniques do no apply to CSPs where all the arcs
must be satisfied such as Vertex Cover and 3-Coloring problems. This type of problems are known as strict
CSPs [33].

The focus of this paper is on an optimization version of the HC problem where we can express problems
such as Vertex Cover and 3-Coloring. In this optimization version of HC(H) problem, we are not only interested
in the existence of a homomorphism (i.e., satisfying all the arcs), but want to find the “best homomorphism”.
The Minimum Hypergraph Coloring problem to H, denoted by MHC(H), for a given input hypergraph D, and
a cost function c(x, i), x ∈ V (D), i ∈ V (H), seeks a homomorphism f of D to H that minimizes the total cost∑

x∈V (D) c(x, f(x)). The cost function c can take non-negative rational values.

MHC(H):

Input: Hypergraph D, and a cost function c : V (D) × V (H) → Q≥0.
Objective: Find a homomorphism f : V (D) → V (H) that minimizes

∑
x∈V (D) c(x, f(x)).

The MHC problem offers a natural way to model and generalizes many optimization problems.

Example 1.1 (Vertex Cover). This problem can be seen as MHC(H) where V (H) = {0, 1}, E(H) = {11, 01},
and c(u, 0) = 0, c(u, 1) = 1 for every u ∈ V (G) where G is the input graph.

For k-Hypergraph Vertex Cover, when the input is a hypergraph G, the target hypergraph H consists of
all the arcs {{0, 1}t − (0, . . . , 0), t ≤ k}, and c(u, 0) = 0, c(u, 1) = 1 for every u ∈ V (G) where G is the input
hypergraph.

Example 1.2 (Chromatic Sum). In this problem, we are given a graph G, and the objective is to find a
proper coloring of G with colors {1, . . . , k} with minimum color sum. This can be seen as MHC(H) where
H is a clique of size k with V (H) = {1, . . . , k} and the cost function is defined as c(u, i) = i. The problem
Chromatic Sum appears in many applications, such as resource allocation problems [4].

Example 1.3 (Multiway Cut). Let G be a graph where each edge e has a non-negative weight w(e). There
are also k specific (terminal) vertices, s1, s2, . . . , sk of G. The goal is to partition the vertices of G into k
parts so that each part i ∈ {1, 2, . . . , k}, contains si and the sum of the weights of the edges between different
parts is minimized. Let H be a graph with vertex set {a1, a2, . . . , ak} ∪ {bi,j | 1 ≤ i < j ≤ k}. The edge set
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of H is {aiai, aibi,j , bi,jaj , ajaj | 1 ≤ i < j ≤ k}. Now obtain the graph G′ from G by replacing every edge
e = uv of G with the edges uxe, xev where xe is a new vertex. The cost function c is as follows. c(si, ai) = 0,
else c(si, d) = |G| for d ̸= ai. For every u ∈ G \ {s1, s2, . . . , sk}, set c(u, si) = 0. Set c(xe, bi,j) = w(e). Now,
finding a minimum multiway cut in G is equivalent to solving MHC(H) for G′ and c.

Example 1.4 (Min-Ones for 3LIN). We are given a set of equations of type xi1 ⊕ xi2 ⊕ xi3 = 0/1. The goal
is to solve this system of equations so that the number of variables assigned to 1 is minimized. This is an
instance of MHC(H) where H = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and with the cost function c(xi, 0) = 0,
and c(xi, 1) = 1.

Example 1.5 (List Hypergraph Coloring (LHC)). LHC(H), seeks, for a given input hypergraph D and lists
L(x) ⊆ V (H), x ∈ D, a homomorphism f from D to H such that f(x) ∈ L(x) for all x ∈ D. This is equivalent
to MHC(H) (with total cost zero) with c(u, i) = 0 if i ∈ L(u), otherwise, c(u, i) = 1. This problem is also
known as List H-Coloring.

The MHC problem generalizes many other problems such as (Weighted) Min Ones [1, 6, 26], Min Sol [25, 37],
a large class of linear programs of bounded integers, retraction problems [10], Minimum Sum Coloring [4, 11, 32],
and various optimum cost chromatic partition problems [15, 23, 24, 31].

We start off with inapproximability of digraphs i.e., hypergraphs with arcs of size two which we believe
are the most important instances. Later, we will discuss how to extend our hardness results to hypergraphs.
In terms of graphs and digraphs, the complexity of exact minimization of MHC(H) is well-understood. A
complete complexity classifications were given in [13] for undirected graphs and in [21] for digraphs. More
precisely, the result in [21] states that if H admits a so-called k-min-max ordering, then MHC(H) is polynomial
time solvable and otherwise it is NP-complete. We will use this characterization in our paper.

There are only a few results concerning (in)approximability of MHC parameterized by a target graph or
digraph. The authors of [17] initiated the study of (constant factor) approximation algorithms of MHC(H).
They proved a dichotomy in the case of bipartite graphs. That is, for any fixed bipartite graph H, MHC(H)
is approximable within (constant) factor |V (H)| if H is a co-circular arc graph, otherwise MHC(H) is not
approximable unless P ̸= NP. Interestingly, they showed such bipartite graphs can be characterized by the
existence of a special type of vertex orderings. A bipartite graph is co-circular arc if and only if it admits a
vertex ordering called min ordering [17]. This dichotomy result was extended to graphs in [35]. It was shown
that for any fixed graph H, MHC(H) is approximable within (constant) factor |V (H)| if H is a bi-arc graph,
otherwise MHC(H) is not approximable unless P ̸= NP. In this paper we provide a lower bound for MHC for
graphs and show that for any graph H, MHC(H) is 1.128-approx hard under the assumption P ̸= NP.

Theorem 1.6. [Inapproximability for graphs] For every graph H where MHC(H) is NP-complete, it is
NP-hard to approximate MHC(H) within factor 1.128 of its optimal cost. Moreover, under UGC it is hard to
approximate MHC(H) within factor 1.242.

Observe that the NP-completeness of the LHC problem leads to inapproximability results for MHC(H):

Observation 1.7. If LHC(H) is NP-complete then MHC(H) is not approximable within any factor, unless
P = NP.

Hence, the dichotomy for the LHC problem [20] implies that MHC(H) is not approximable for digraphs that
contain a digraph asteroidal triple (DAT), also known as bounded width digraphs. Moreover, the dichotomy
for the MHC problem states that MHC(H) is NP-complete if H does not admit a k-min-max ordering [21].
Thus, the primary focus of this paper is to provide inapproximability results for all digraphs that do not
admit a k-min-max ordering i.e., all digraphs H for which MHC(H) is NP-complete. We prove the following:

Theorem 1.8. [Inapproximability for digraphs] For every digraph H where MHC(H) is NP-complete, i.e.,
H does not admit a k-min-max ordering for any k ≥ 1, it is NP-hard to approximate MHC(H) within a
factor 1.021 of its optimal cost.

We provide an overview of our proofs in Section 3. The proof of Theorem 1.8 is presented in Section 4.2,
and the proof of Theorem 1.6 is included in the Appendix.
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Figure 1: A symmetrically invertible pair a0, b0 with 3 switches. Red dashed-arcs are the missing faithful arcs. a1b2
is a faithful arc from P to Q, b3a4 is a faithful arc from Q to P , a5a0 is a faithful arc from P to Q.

2 Definitions and preliminaries

A digraph H = (V (H), A(H)) consists of vertex set V (H) and a set of arcs A(H) ⊆ V (H)× V (H). When no
confusion arises, we use the shorthand notations uv ∈ A(D) in place of (u, v) ∈ A(D), and u ∈ D in place of
u ∈ V (D). For arc uv in D, v is an out-neighbor of u and u is an in-neighbor of v. We say uv is a symmetric
arc of D if both uv and vu are arcs of D. A graph is a digraph whose every arc is symmetric. We denote the
edge set of a graph G by E(G), and when two vertices x and y are adjacent we say xy (yx) is an edge of G.

Vertex ordering. An ordering v1 < v2 < · · · < vn of V (H) is a

– min ordering if and only if uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v imply that uv′ ∈ A(H);

– min-max ordering if and only if uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v imply that uv′, u′v ∈ A(H).

– k-min-max ordering if there is a partition of the vertices of H into V0, V1, . . . , Vk−1 so that each arc of
H is from some Vi to Vi+1, and < is a min-max ordering on the sub-digraph induced by Vi ∪ Vi+1 for
every i (here Vk = V0).

Oriented path, cycle and avoidance definition. We say that uv ∈ A(H) is an arc from u to v.
Sometimes, we emphasize this by saying that uv is a forward arc of H, and also say vu is a backward arc of H.
In what follows when we mention walk, path, and cycle we mean oriented walk, oriented path, and oriented
cycle, respectively, unless specified otherwise. For a walk P = x0, x1, . . . , xn and any i ≤ j, we denote by
P [xi, xj ] the walk xi, xi+1, . . . , xj . We call P [xi, xj ] a prefix of P if i = 0. For two walks, P and Q where the
end vertex of P is the same as the beginning of Q, let PQ be the walk obtained from concatenation of P and
Q. We define two walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to be congruent if they follow the
same pattern of forward and backward arcs, i.e., xixi+1 is a forward arc if and only if yiyi+1 is a forward
arc, and xixi+1 is a backward arc if and only if yiyi+1 is a backward arc. Suppose that the walks P,Q are
congruent. We say an arc xiyi+1 is a faithful arc from P to Q if it is a forward (backward) arc when xixi+1

is a forward (backward) arc (respectively). A faithful arc from Q to P is defined similarly. We say P avoids
Q if there is no faithful arc from P to Q. We say P and Q avoid each other if P avoids Q, and Q avoids P .
We say that P and Q weakly avoid each other if for every 0 ≤ i ≤ n− 1, either xiyi+1 is not a faithful arc
(from P to Q) or yixi+1 is not a faithful arc (from Q to P ). Note that this definition is slightly less strict
than saying that P and Q avoid each other.

The obstructions to k-min-max ordering are mainly due to the notion of symmetrically invertible pair. If
H does not admit a k-min-max ordering, then there are oriented walk P (from a to b) and oriented walk Q
(from b to a) so that P and Q weakly avoid each other. Furthermore, we assume there is at least one faithful
arc between P and Q. We can partition P and Q into segments so that in each segment the faithful arcs are
in one direction (from P to Q only or from Q to P only). When the direction of the faithful arcs changes, we
say a switch occurs (see Figure 1).

Let H be a hypergraph. We say H admits a min-max ordering if there is an ordering a1, a2, . . . , an of vertices
of H so if e1 = (ai1 , . . . , air ) and e2 = (aj1 , . . . , ajr ) are arcs of H, then (amin{i1,j1}, amin{i2,j2}, . . . , amin{ir,jr})
and (amax{i1,j1}, amax{i2,j2}, . . . , amax{ir,jr}) are arcs of H.
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Digraph class Approximation hardness assuming P ̸= NP Approximation hardness under UGC

(A)
√

2 − ϵ 2 − ϵ
(B) 1.128 1.242
(C) 1.076 1.137
(D) 1.021 —
(Z)

√
2 − ϵ or no approximation 2 − ϵ or no approximation

Table 1: Summery of our hardness results.

3 Overview of the proofs and future directions

Consider a symmetrically invertible pair a, b with a walk P from a to b and a walk Q from b to a, where P
and Q weakly avoid each other. Additionally, suppose there are some faithful arcs from P to Q. Based on
the existence of two walks P and Q and the number of switches, we categorize the class of digraphs that do
not admit a k-min-max ordering into the following categories:

(A) digraphs with symmetrically invertible pairs with one switch,

(B) digraphs with symmetrically invertible pairs with three switches,

(C) digraphs with symmetrically invertible pairs with five switches,

(D) digraphs with symmetrically invertible pairs with at least seven switches,

(Z) digraphs with zero switches (and hence, no symmetrically invertible pairs).

The graph corresponding to Vertex Cover problem {aa, ab} belongs to class (A) and the inapproximability
of MHC(H) for any (graph) digraph H in class (A) is

√
2 − ϵ under the P ̸= NP assumption and 2 − ϵ

under the Unique Game Conjecture (UGC). Our inapproximability bound for MHC(H) when H is in class
(B) is 1.128 under P ̸= NP and 1.242 under the UGC. Interestingly, any graph H for which MHC(H) is
NP-complete belongs to class (A) or (B). For any digraph H in class (C), we show that it is NP-hard to
approximate MHC(H) within a factor better than 1.076, and it is UG-hard to approximate MHC(H) with a
ratio better than 1.137. For digraph H in class (D), we show that it is NP-hard to approximate MHC(H)
within a factor 1.0134 of its optimal cost. Finally, we note that for class (Z), we may deal with a digraph H
for which LHC is NP-complete, and therefore, MHC does not admit any approximation (one concrete example
of such digraphs is the class of oriented cycles). For all the other cases, we show an inapproximability of√

2 − ϵ assuming P ̸= NP and 2 − ϵ under the UGC. Table 1 summarizes our hardness results.
For digraphs in classes (B) and (C), we give a hardness reduction starting from Vertex Cover, and for class

(D), we provide a gap-preserving reduction starting from Max-3-SAT.
To find a hardness reduction in class (B), we start with an arbitrary graph G and construct a 3-partite

graph G3 with partite sets V0, V1, V2 where each Vi is a copy of V (G). For every u ∈ V0 and v ∈ V1 we
put an edge uv (in G3) if their corresponding vertices are adjacent in G. Moreover, connect each vertex
in V2 to its corresponding vertex in V0 by an edge and to its corresponding vertex in V1 by an edge. Let
P = a0, . . . , a1, . . . , a2, . . . , b0 and Q = b0, . . . , b1, . . . , b2, . . . , a0 be two walks corresponding to symmetrically
invertible pair a0, b0. Suppose there are faithful arcs from P [a0, a1] to Q[b0, b1] and faithful arcs from Q[b1, b2]
to P [a1, a2], and finally there are faithful arcs from P [a2, b0] to Q[b2, a0]. We construct digraph D from G3 as
follows. Each edge of G3 between Vi and Vi+1 (sum modulo 3) is replaced by an oriented path homomorphic
to the i-th segment of P . We define the cost function c : V (D) × V (H) → Q≥0 ∪ {+∞} where ∀v0 ∈ V0,
c(v0, a0) = 1, c(v0, b0) = 0 and c(v0, d) = |G|, d ̸∈ {a0, b0}. ∀v1 ∈ V1, c(v1, b1) = 1, c(v1, a1) = 0 and
c(v1, d) = |G|, d ̸∈ {a1, b1}. ∀v2 ∈ V2, c(v2, a2) = 1, c(v1, b2) = 0 and c(v0, d) = |G|, d ̸∈ {a2, b2}. For a vertex
v of D between Vi and Vi+1, i = 0, 1, 2, the cost of mapping v to its corresponding vertex in the i-th segment
of P and Q is zero and to anything else the cost is |G|. We argue that if the cost of a homomorphism from D
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to H is less than 1.128 (1.242 under UGC) of its optimal, then the Vertex Cover can be approximated better
than

√
2 − ϵ (2 − ϵ under UGC).

A similar treatment is applied to obtain the hardness of approximation for class (C) digraphs. In this
case, we need a 5-partite graph G5 constructed from an input graph G, where the edges of G5 are between
consecutive partite sets (also from the last partite set to the first one). However, if we continue with this
type of construction for digraphs with a symmetrically invertible pair with k switches, then the hardness
of approximation bound would be of the form (1 + α

k ) for some constant α < 1. Therefore, we need to
develop a totally different strategy and use the hardness of Max 3-SAT. We construct a graph G from an
instance of 3-SAT and then partition the vertices of G into k parts corresponding to k switches in P and Q.
Next, we deploy a delicate engineering for replacing each edge of G by an oriented path homomorphic to
appropriate sub-paths of P and Q and obtain digraph D and define the cost function. Next, we show that if
the minimum cost homomorphism from D to H can be approximated better than 1.0134 then Max 3-SAT
admits an approximation factor better than 7/8.

Remark 3.1. For the hardness results we obtain under the complexity assumption P ̸= NP, similar to all
other works in the literature, we rely on the PCP characterization of the class NP, which implies, one way or
another, we are using Gap-SAT as the starting point of our reduction. We have used various known hardness
results that suit our case analysis better in order to get our APX-hardness results.

Remark 3.2. In Section F, we extend the definitions of symmetrically invertible pairs to hypergraphs by
introducing an auxiliary digraph H and a pair digraph H+ to capture the structural properties of hypergraph
H when it does not admit a min-max ordering. We apply our reduction technique developed for digraphs to
the case of hypergraphs.

3.1 Future directions

We remark that for various special cases of the MHC problem, inapproximability results are known. The most
notable example is the Vertex Cover problem where the target graph H is {aa, ab}. It is a classical result that
Vertex Cover has a 2-approximation algorithm, and inapproximability results are also known. It is NP-hard
to approximate Vertex Cover within factor 1.3606 [7]. Later, the factor was improved to (

√
2− ϵ) for any ϵ > 0

[29]. Moreover, assuming UGC, Vertex Cover cannot be approximated within any constant factor better than
2. There are other classes of target digraphs H, where MHC(H) does not admit (2 − ϵ)-approximation, for
any ϵ > 0. One particular example is the class of oriented cycles. When MHC(H) is NP-complete for oriented
cycle H, then it is NP-hard to approximate MHC(H) within factor

√
2 − ϵ, and UGC hard to approximate

MHC(H) within factor 2 − ϵ for every ϵ > 0. See Theorem E.3 in Section E.
However, there are classes of digraph H where MHC(H) is NP-complete and MHC(H) admits a 2-

approximation algorithm, particularly the class of oriented trees admitting a min ordering. We do not have a
strong intuition that there is no better than 2-approximation algorithm for MHC(H). On the other hand,
this class of digraphs is a sub-class of class (B) discussed earlier in this section, and hence, MHC(H) can not
be approximated better than 1.242 under UGC and does not admit a 1.128-approximation, assuming P ̸=
NP. Perhaps a more intriguing question to ask is the following.

Open Problem 3.3. Is there a digraph H for which MHC(H) is NP-complete, yet a δ, δ < 0.9866, exists
such that MHC(H) admits an (2 − δ)-approximation?

For future work, a direction is sought. First, MHC(H) might admit an approximation algorithm only
if LHC(H) is polynomial time solvable. LHC(H) can be solved in polynomial time if H can be partitioned
into a “bounded width” part and an “affine” part. Otherwise, this LHC is NP-complete [5]. For the affine
case, it was observed in [26] that, based on hardness result for Nearest Codeword problem [1], Min-Ones for

3LIN is not possible to approximate within a factor of Ω(2log
1−ε n), unless NP ⊆ QP. Moreover, in bounded

width case, Lemma 8.14 of [26] shows that Min Ones for Horn SAT cannot be approximated to within a factor

of Ω(2log1−ε n), unless NP ⊆ QP. Using their example, we give an example of hypergraph H consisting of
three uniform hypergraphs (different sizes) for which MHC(H) does not admit a constant approximation (see
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Lemma F.5). Therefore, the constant factor approximable cases of MHC(H) must be bounded width and
have at most two uniform sub-hypergraphs.

4 Inapproximability of MHC

We say that an optimization problem P is α-approx-hard, α > 0, if it is NP-hard to find an α-approximation
for P. Note that if P is a maximization problem, then α ≤ 1; if it is a minimization problem, then α ≥ 1.
We also use another notion of inapproximability under the Unique Game Conjecture (UGC) [27]. We say an
optimization problem P is α-UG-hard if it is UG-hard to approximate P within factor α. See [3] for further
details.

A nice property of the MHC problem is that the hardness results for approximation are “carried over” by
induced sub-digraphs. This means if MHC(H) is α-approx-hard or it is α-UG-hard, then the same holds for
any digraph which has H as its induced sub-digraph. Informally speaking, such a property holds since the
cost functions in the MHC problem are part of inputs, hence, modifying cost functions gives rise to hardness
results for every digraph H ′ which has H as its induced sub-digraph. This is proved formally as follows.

Lemma 4.1 (Sub-digraph hardness). Let H be an induced sub-digraph of a digraph H ′. If MHC(H) is
α-approx-hard [α-UG-hard], then MHC(H ′) is α-approx-hard [α-UG-hard].

Proof. Let G,H together with the cost function c : G × H → Q≥0 ∪ {+∞} be an instance of MHC(H).
Construct an instance of MHC (H ′) with digraphs G,H ′ and cost function c′ : G×H ′ → Q≥0 ∪ {+∞} where
c′(u, i) = c(u, i) for every u ∈ G and i ∈ H, otherwise, for every u ∈ G and i ∈ H ′ \H , c′(u, i) = +∞. Notice
that the cost of any homomorphism from G to H is strictly less than +∞.

Notice that f ′∗ : V (G) → V (H ′), the minimum cost homomorphism from G to H ′, does not map any
of the vertices of G to any vertex in H ′ \H due to the way we have defined c′. Therefore, f ′∗ is also the
minimum cost homomorphism for H. Now it is straightforward to see that if an algorithm approximates
f∗ : V (G) → V (H), the minimum cost homomorphism from G to H within a factor α, it is, in fact, computing
an α-approximation of f ′∗.

The above lemma provides us the flexibility to focus only on obstructions that render MHC(H) NP-
complete. The NP-complete cases for MHC has been characterized in terms of k-min-max ordering.

Theorem 4.2 ([21]). Let H be a digraph. Then MHC(H) is polynomial time solvable if H admits a k-min-max
ordering, for some k ≥ 1. Otherwise, MHC(H) is NP-complete.

The obstructions for min-max ordering and k-min-max ordering have been characterized in [22]. In the
rest of this section, we focus on inapproximability of such instances of MHC. Next, we explain the necessary
definitions and terminology to state these obstructions.

4.1 Symmetrically invertible pairs

We observe that if < is a min-max ordering of a digraph H and P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn are
two congruent walks in H that weakly avoid each other, then x0 < y0 if and only if xn < yn. Indeed, if xi < yi
and yi+1 < xi+1, then the min-max property is not satisfied for xi, yi, xi+1, yi+1; a similar contradiction arises
if yi < xi and xi+1 < yi+1.

Definition 4.3 (Symmetrically invertible pair). A symmetrically invertible pair in H is a pair of distinct
vertices a and b with two congruent walks P and Q in H, where P is from a to b and Q is from b to a such
that P and Q weakly avoid each other. Moreover, there is at least one faithful arc between P and Q. We say
P,Q are the associated walks with the pair a, b.

Now it is clear that, if H has a symmetrically invertible pair, then it cannot have a min-max ordering.
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a0

b0

a0,1 a0,2 a1 a2

b0,1 b0,2 b1 b2 b2,1

a2,1

a0

b0
Walk P

Walk Q

Figure 2: A symmetrically invertible pair a0, b0 with 3 switches. Dashed-arcs are the missing faithful arcs. a0,1b0,2 is
a faithful arc from P to Q, b1a2 is a faithful arc from Q to P , a2,1a0 is a faithful arc from P to Q.

Let a0, b0 be a symmetrically invertible pair with associated walks P and Q. Without loss of generality,
let P and Q be partitioned into k pieces as follows (see Figure 2) :

P = a0, a0,1, a0,2, . . . , a0,l0 , a1, a1,1, a1,2, . . . a1,l1 , a2, . . . , ak−1, ak−1,1, . . . , ak−1,lk−1
, b0,

Q = b0, b0,1, b0,2, . . . , b0,l0 , b1, b1,1, b1,2, . . . , b1,l1 , b2, . . . , bk−1, bk−1,1, . . . , bk−1,lk−1
, a0.

For 0 ≤ i < j ≤ k − 1, let Pi,j (resp. Qi,j) denote P [ai, aj ] of P (resp. Q[bi, bj ] of Q). Furthermore,
assume that Pi,i+1 avoids Qi,i+1 when i is odd and there is at least one faithful arc from Qi,i+1 to Pi,i+1.
One can assume such arc always exists due to the definition of the symmetrically invertible pair. Likewise,
assume Qi,i+1 avoids Pi,i+1 when i is even and there is at least one faithful arc from Pi,i+1 to Qi,i+1 (here
0 ≤ i ≤ k − 1). We refer to k as the number of switches for walks P and Q.

With the walks P and Q as above, notice that a1, b1 is also a symmetrically invertible pair. Indeed, setting
P ′ = P [a1, ak−1]P [ak−1, b0]Q[b0, b1] and Q′ = Q[b1, bk−1]Q[bk−1, a0]P [a0, a1] we will have the pair (P ′, Q′) of
walks associated to (a1, b1). Moreover, when k is even, there is some faithful arc from Q[bk−1, a0]P [a0, a1] to
P [ak−1, b0]Q[b0, b1] whereas there is no faithful arc from P [ak−1, b0]Q[b0, b1] to Q[bk−1, a0]P [a0, a1]. Therefore,
when k is even then (Q′, P ′) has k − 1 switches, thereby, (a1, b1) has at most k − 1 switches, by definition.
This observation in particular implies the following proposition which we will use in our hardness reductions.

Proposition 4.4 (Odd number of switches). Let H be a digraph with a pair of symmetrically invertible
vertices. Then, H contains a symmetrically invertible pair with an odd number of switches.

4.2 Hardness of approximation for digraphs

The techniques used here are based on the elegant characterization and structural properties of digraphs
admitting a k-min-max ordering. The following corollary characterizes digraphs that do not admit a k-min-max
ordering for any k ≥ 1. It is obtained from Theorems 4.2, A.1, A.2 that we borrow from [21, 22].

Corollary 4.5. Let H be a digraph. Then MHC(H) is NP-complete if one the following occurs:

1. H is balanced (see appendix A), and it does not admit a min-max ordering.

2. H contains walks P and Q, from a, b to b, a (respectively) where P,Q weakly avoids each other and P
have some faithful arcs to Q or Q have some faithful arcs to P (at least one switch).

3. H contains three congruent walks P,Q,R from a, b, a to b, a, a, respectively such that :

• Q has no faithful arc to P ,

• if there is a faithful arc from i-th vertex of Q to (i + 1)-th vertex to R, then there is no faithful arc
from j-vertex of R to (j + 1)-vertex of P , i + 1 ≤ j, from R to P .

4. There is a homomorphism f : V (H) →
−→
C k, k > 1, but H contains a symmetrically invertible pair a, b

with f(a) = f(b).
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Next we prove a sequence of hardness results for various cases, namely Lemmas 4.6, 4.7, 4.8, 4.9, and at
the end argue these lemmas are sufficient to cover the cases in Corollary 4.5.

Lemma 4.6 (General case and one switch). Let H be a digraph that contains three congruent walks P,Q,R
from a, b, a to b, a, a, respectively. Suppose Q has no faithful arc to P , and if there is a faithful arc from the
i-th vertex of Q to (i + 1)-th vertex of R, then there is no faithful arc from j-th vertex of R to (j + 1)-th
vertex of P , i + 1 ≤ j. Then,

1. MHC(H) is (
√

2 − ϵ)-approx-hard for every ϵ > 0.

2. MHC(H) is (2 − ϵ)-UG-hard for every ϵ > 0.

Proof. Let G be the graph described in [7]. We orient each edge of G to obtain the digraph G. Vertex cover
in digraphs is defined in the same way as for graphs. We construct an instance of MHC(H) as follows. Let
pi, ri, qi, 0 ≤ i ≤ t be the vertices of P,Q,R, respectively. Construct digraph D by replacing each arc e = uv
of G by an oriented path Se : u = u0, u1, . . . , ut−1, ut = v which is congruent to P,Q,R. Define the cost
function c : V (D) × V (H) → Q≥0 by the following rules. For every arc e = uv of G

• c(u, b) = c(v, b) = 0 and c(u, a) = c(v, a) = 1,

• for every ui ∈ Se, 1 ≤ i ≤ t− 1, c(ui, pi) = c(ui, ri) = c(ui, qi) = 0,

• for every ui ∈ Se, 1 ≤ i ≤ t− 1, and d ̸∈ {pi, qi, ri} set c(ui, d) = |G|.

Next we show that G has a vertex cover of size m if and only if there exists a homomorphism from D to
H with total cost m.

Let V C be a vertex cover in G. Define a mapping f : V (D) → V (H) by setting f(u) = a if u ∈ V C
and f(u) = b if u ∈ G \ V C. For every vertex ui of Se, 1 ≤ i ≤ t − 1, corresponding to arc e = uv of G,
set f(ui) = pi when f(u = u0) = a, f(ut = v) = b; set f(ui) = ri when f(u) = f(v) = a, and finally set
f(ui) = qi when f(u) = b, f(v) = a. Since Se can be mapped to one of the P,Q,R depending on f(u), f(v),
it is easy to see that f is a homomorphism from D to H with c(f) = m.

Conversely, let f : V (D) → V (H) be a homomorphism with cost c(f) = m < |G|. Let V C = {u ∈ D |
f(u) = a}. We show that V C is a vertex cover in G of size m. Let u, v ∈ G \ V C, and for contradiction
suppose e = uv is an arc of G. This means f(u) = b, and f(v) = b, and hence, Se is mapped to a walk T in
H from b to b and congruent to Q. However, because c(f) < |G| we conclude that f(ui) ∈ {pi, qi, ri}, and
since there is no faithful arc from Q to P , and there is no faithful arc from R to P after a faithful arc from Q
to R, there is no such T ; this is a contradiction to f being a homomorphism. Therefore, V C is a vertex cover
of size c(f) = m.

Let f∗ be an optimal minimum cost homomorphism from D to H. For contradiction, suppose for
some λ > 0, there exists a (1 + λ)-approximation algorithm for MHC(H) that finds a homomorphism
f : V (D) → V (H) with c(f) < (1 + λ)c(f∗). Now obtain a vertex cover V C in G from f , and an optimal
vertex cover V C∗ in G from f∗. Thus, we have |V C| < (1 + λ)(|V C∗|). By setting λ =

√
2 − 1 − ϵ, we

conclude that vertex cover in G can be approximated within factor
√

2 − ϵ, a contradiction to [7].
Using the UGC assumption and appealing to hardness of approximation for vertex cover from [30], we

conclude that MHC(H) is (2 − ϵ)-UG-hard for any ϵ > 0.

Lemma 4.7 (3 switches). Let H be a digraph where MHC(H) is NP-complete. Suppose H contains a
symmetrically invertible pair with three switches. Then MHC(H) is 1.128-approx-hard, and it is 1.242-UG-hard.

Proof. Let a0, b0 be a symmetrically invertible pair with three switches. Let P = a0, a0,1, a0,2, . . . , a0,l0 ,
a1, a1,1, . . . , a1,l1 , a2, a2,1, . . . , a2,l2 , b0 and let Q = b0, b0,1, . . . , b0,l0 , b1, b1,1,, . . . , b1,l1 , b2, b2,1, . . . , b2,l2 , a0. Let
Pi = P [ai, ai+1] and Qi = Q[bi, bi+1], i = 0, 1 and P2 = P [a2, b0], Q2 = P [b2, a0]. Moreover, Pi has faithful
arcs to Qi, but Qi has no faithful arc to Pi, i = 0, 2 and Q1 has faithful arcs to P1, but P1 has no faithful arc
to Q1. Let G be a graph with vertex set {x1, . . . , xn} considered by [7, 29].
Construction of the 3-partite graph G′ from G: Let V0, V1, V2 be 3 disjoint copies of the vertices of G. Let
V0 = {u1, u2, . . . , un}, V1 = {v1, v2, . . . , vn}, and V2 = {w1, . . . , wn} where ur, vr, wr are the copy of xr ∈ G.
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For each edge e = xrxs of G, add the edges urvs and usvr into G′ where ur, us ∈ V0 (corresponding to vertices
xr, xs ∈ G, respectively) and vr, vs ∈ V1 (corresponding to xr, xs ∈ G, respectively). For every vr ∈ V1,
wr ∈ V2 corresponding to xr ∈ G, add the edge vrwr into G′. For every ur ∈ V0, wr ∈ V2 corresponding to
xr ∈ G, add the edge urwr into G′.
Construction of digraph D from G′, and defining the cost function: For every edge e = uv of G′ with u ∈ Vi,
v ∈ Vi+1, i = 0, 1, 2 (sum module 3), replace e by a new path Yi = yi, yi,1, . . . , yi,li , yi+1 which is congruent to
Pi and Qi, by identifying yi with u and yi+1 by v. Let D be the resulting digraph. Define the cost function
c : D ×H → Q≥0, for Yi as follows. c(yi,j , ai,j) = c(yi,j , bi,j) = 0 and c(yi,j , t) = 2|G| for every other vertex
t ∈ P ∪Q. For every u ∈ Vi, set c(u, ai) = 1, c(u, bi) = 0 when i = 0, 2 and set c(u, ai) = 0, c(u, bi) = 1 when
i = 1. In any other case, the cost of mapping u to a vertex in P ∪Q is 2|G|.
From a vertex cover in G to a homomorphism from D to H: Let V C be a vertex cover in G. Then define the
mapping f : V (D) → V (H) as follows. For ur ∈ V0, set f(ur) = a0 if xr ∈ V C (ur is the copy of xr) else set
f(ur) = b0. For every vr ∈ V1, set f(vr) = b1 if xr ∈ V C (vr is the copy of xr ∈ G) else f(vr) = a1. For every
wr ∈ V2, set f(wr) = a2 if xr ̸∈ V C (wr is the copy of xr ∈ G) else f(wr) = b2. Let Y0 = y0, y0,1, . . . , y0,l0 , y1
be a path in D from ur ∈ V0 to vs ∈ V1 (y0 = ur and y1 = vs). We extend f to the vertices of Y0 as follows.
Since V C is a vertex cover in G, by definition there is no path in D between a vertex ur ∈ V0, with f(ur) = b0,
and vertex vs ∈ V0, with f(vs) = a1. Thus, f maps Y0 to P0 ∪Q0 according the following rules.

• if f(ur) = a0 and f(vs) = a1. Then, f maps Y0 to P0.

• if f(ur) = b0 and f(vs) = b1. Then f maps Y0 to Q0.

• if f(ur) = a0 and f(vs) = b1. Let a0,lb0,l+1 be a first faithful arc from P0 to Q0. Now, set f(y0,j) = a0,j
if j ≤ l else set f(y0, j) = b0,j . Notice that f is a homomorphism that maps Y0 to P0 ∪Q0 (using the
faithful arc a0,lb0,l+1).

Similarly one can extend f to make it a homomorphism from Yi to Pi ∪Qi where Yi = yi, yi,1, . . . , yi,li , yi+1,
i = 1, 2 (sum module 3) yi ∈ Vi to yi+1 ∈ Vi+1.

Now it is easy to see that f is a homomorphism from D to H with total cost 2|V C|+|G|−|V C| = |V C|+|G|.
From a homomorphism from D to H to a vertex cover in G: Let f : V (D) → V (H) be a homomorphism
with the total cost less than 2|G|. We modify f so that for every ur ∈ V0, vr ∈ V1, and wr ∈ V2 (where
ur, vr, wr are copies of the same vertex xr ∈ G) f(ur) = a0 if and only if f(vr) = b1 if and only if f(wr) = b2.
Suppose for some ur ∈ V0, f(ur) = a0 and f(vr) = a1. Note that there is edge vrwr in G′, and hence, there
is oriented walk Y1 from vr to wr homomorphic to P [a1, a2]. Since P [a1, a2] does not have a faithful arc to
Q[b1, b2], and f is a homomorphism, we must have f(wr) = a2. Now, we modify f , and obtain f1, by setting
f1(vr) = b1, and f(wr) = b2. Furthermore, Y2, an oriented path from wr to ur in D, is assigned under f1 to
Q[b2, a0], and the path Y1 between vr and wr is mapped to Q[b1, b2]. Finally, any path Y0 from some ui ∈ V0

to vr with f(ui) = a0, under f1 is mapped to P [a0, a0,l]Q[b0,l+1, b1] where a0,lb0,l+1 is a faithful arc from
P [a0, a1] to Q[b0, b1]. It is clear that f1 is also a homomorphism from D to H with the same cost as f . We
continue this process until we obtain a homomorphism f t so that f t(ur) = a0 if and only if f t(vr) = b1,
and if and only if f t(wr) = b2 for every 1 ≤ r ≤ n. Therefore, for simplicity, we may assume f t = f . Let
V C = {xr ∈ G | f(ur) = a0 where ur ∈ V0 is the copy of xr ∈ G }. Now, it is not difficult to show that V C
is a vertex cover in G of size |G| − c(f).
Showing the 1.128-approximation is NP-hard: We show that it is NP-hard to find a homomorphism
f : V (D) → V (H) with c(f) < (1 + λ)c(f∗) (here λ = 0.155, and f∗ is the optimal minimum cost
homomorphism from D to H). For contradiction, suppose there is a polynomial-time algorithm that produces
such a homomorphism f . Then, c(f) = |V C| + |G| and c(f∗) = |V C∗| + |G| (here V C∗ is the optimal vertex
cover in G). We have |V C| + |G| < (1 + λ)(|V C∗| + |G|).

Thus, |V C| < (1+λ)|V C∗|+λ|G|, and hence, |V C|−λ|G| < (1+λ)|V C∗|. We may assume |V C| ≥ 0.639|G|,
thanks to the construction in [7]. Therefore, we have |V C|(1 − λ

0.639 ) ≤ |V C| − λ|G| < (1 + λ)|V C∗|, and

consequently, we have |V C| < 1+λ
1− λ

0.639

|V C∗|.

Setting (1+λ)0.639
0.639−λ =

√
2, we get a contradiction since, as shown in [29], the vertex cover cannot be

approximated within any factor better than
√

2 − ϵ. Thus, 1 + λ = 1.128 and it is NP-hard to approximate
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MHC(H) within the factor 1.128. Moreover, setting (1+λ)0.639
0.639−λ = 2, (λ = 0.242) we get a contradiction with

the (2 − ϵ)-UG-hardness for the Vertex Cover [30].

Lemma 4.8 (5 switches). For digraph H containing symmetrically invertible pair with five switches, MHC(H)
is 1.076-approx-hard, and it is 1.137-UG-hard.

Lemma 4.9 (7 and more switches). Let H be a digraph containing symmetrically invertible pair with k ≥ 7
switches. Then MHC(H) is 1.021-approx-hard.

Proof. Let F be a 3-SAT formula with variables α0, α1, . . . , αn,¬α0,¬α1, . . . ,¬αn. Without loss of generality,
we assume that αi and ¬αi both appear in F as otherwise, if only αi appears in F then we can set αi to be
true and eliminate the clauses containing αi (the same treatment for ¬αi). It is easy to see that a random
assignment on average satisfied at least 7

8 fraction of clauses. On the other hand, it was shown in [16] that
for every δ > 0, it is NP-hard to satisfy more that ( 78 + δ) fraction of clauses. In other words, Max 3-SAT is
( 7
8 + δ)-approx-hard for every δ > 0.

Construction of graph G from F . For each clause Ci = (αi ∨ βi ∨ γi) we consider three vertices xi, yi, zi ∈ G
corresponding to αi, βi, γi (respectively), and the edges xiyi, xizi, yizi. We add an edge xixj (yiyj , zizj) if aj
(bj , cj) in clause Cj is the negation of ai(bi, ci) in clause Ci.

Let V0, V1, . . . , Vn−1, Vn be a partition of V (G) so that V0 contains vertices of G corresponding to α0 and
¬αn, V1 consists of vertices of G corresponding to ¬α0 and α1, V2 consists of vertices of G corresponding to
¬α1 and α2, and so on. Finally, Vn consists of vertices of G corresponding to ¬αn−1 and αn. Notice that
there is an edge from Vi to Vi+1 (sum modulo n + 1). Let P and Q be two congruent walks in H starting at
a0, b0 and ending at b0, a0 (respectively) that weakly avoid each other. As mentioned earlier, we partition
P,Q into k pieces as follows.

P =

P0,2︷ ︸︸ ︷
a0, a0,1, a0,2, . . . , a0,l0 , a1, a1,1, a1,2, . . . a1,l1 , a2, . . . , ak−1, ak−1,1, ak−1,2, . . . , ak−1,lk−1

, ak = b0

Q = b0, b0,1, b0,2, . . . , b0,l0 , b1, b1,1, b1,2, . . . , b1,l1 , b2︸ ︷︷ ︸
Q0,2

, . . . , bk−1, bk−1,1, . . . , bk−1,lk−1
, bk = a0

Recall that for i < j, Pi,j is P [ai, aj ] (the potion of P from ai to aj) and Qi,j is Q[bi, bj ] (the portion of Q
from bi to bj). Then, Pi,i+1 avoids Qi,i+1 when i is odd and there is a faithful arc from Qi,i+1 to Pi,i+1. Also,
Qi,i+1 avoids Pi,i+1 when i is even and there is at least one faithful arc from Pi,i+1 to Qi,i+1 (0 ≤ i ≤ k − 1).

For 0 < i < j ≤ k − 1, let Pj,i be the walk Pj,kQ0,i; concatenation of Pj,k and Q0,i. In other words,
Pj,i starts from aj and it follows P to ak = b0 (to the end of P ), and then it continues on Q from b0 to bi.
Similarly, Qj,i = Qj,kP0,i.

When i+ 4 ≤ j, let Xi,j be a path that is congruent to Pi,j . When j − i = 1, then Xi,i+1 is a path that is
congruent to Pi,i+1. When 2 ≤ j − i ≤ 3, then let Xj,i is a path congruent to Pj,i. Notice that since Xi,j ,
Pi,j , and Qi,j are all congruent, every vertex in Xi,j has its corresponding vertices in Pi,j and Qi,j . For all
i + 4 ≤ j, let ga be a homomorphism from Xi,j to Pi,j so that for every u ∈ Xi,j , ga(u) is its corresponding
vertex in Pi,j . For all 0 ≤ i ≤ k − 1, extend ga so that it is a homomorphism from Xi,i+1 to Pi,i+1 where for
every u ∈ Xi,i+1, ga(u) is its corresponding vertex in Pi,i+1. Finally, for all i + 2 ≤ j ≤ i + 3, extend ga to a
homomorphism from Xj,i to Pj,i so that for every u ∈ Xj,i, ga(u) is its corresponding vertex in Pj,i.

Let gb be the corresponding homomorphism to ga, i.e., a homomorphism from Xi,j to Qi,j and from Xj,i to
Qj,i (respectively for i+ 4 ≤ j, j < i+ 4) so that for every u ∈ Xi,j and Xj,i, gb(u) is its corresponding vertex
in Qi,j and Qj,i, respectively. Notice that we often use a copy of Xi,j , say Yi,j and assume ga(y) = ga(x) for
y ∈ Yi,j , x ∈ Xi,j , where y is the copy of x. The same is considered for gb.

In what follows, we construct an instance of MHC(H) with input digraph D and target digraph H where
H is a digraph containing P ∪Q as an induced sub-digraph.
Construction of the digraph D and defining the cost function: Let D be a digraph constructed from G as follows.
The vertices of D consists of U0, U1, . . . , Un where each Ut is a copy of the vertices in Vt (t = 0, 1, . . . , n).

Let e = uv be an arbitrary edge of G with u ∈ Vi′ and v ∈ Vj′ . Let i = i′ mod k, and j = j′ mod k.
When j = i+ 1 or i+ 4 ≤ j we add a copy of Xi,j between u ∈ Ui′ and v ∈ Uj′ (u is corresponding to u ∈ Vi′
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and v is corresponding to v ∈ Vj′) identifying the first vertex of Xi,j by u and the last vertex of Xi,j by v.
When i + 2 ≤ j ≤ i + 3, then place a copy of Xj,i identifying v with the beginning of Xj,i, and u with the
end of Xj,i.

Now define the cost function c : V (D) × V (H) → Q≥0 as follows. For every u ∈ Ui′ if i is even then set
c(u, ai) = 1, c(u, bi) = 0, and in any other case the cost is 2|G|, that is, c(u, d) = 2|G| when d ̸∈ {ai, bi}. For
every u ∈ Ui′ if i is odd then set c(u, bi) = 1, c(u, ai) = 0, and in any other case the cost is 2|G|.

Let Yi,j (Yj,i when j − i = 2, 3) be a copy of Xi,j (Xj,i) connecting vertices u and v in D. Define the
cost function for w ∈ Yi,j (w ∈ Yj,i) as follows. Set c(w, d) = 2|G| when d ̸∈ {ga(w), gb(w)}. Initially, set
c(w, ga(w)) = c(w, gb(w)) = 0. We change it to 1 according to the following cases.

1. i is even, j is even, and j − i ≥ 4. If gb(w) ∈ {bi+1, bj−1} then set c(w, gb(w)) = 1.

2. i is odd, j is odd, and j − i ≥ 4. If ga(w) ∈ {ai+1, aj−1} then set c(w, ga(w)) = 1.

3. i is even, j is odd, and j − i ≥ 4. If gb(w) = bi+1 then c(w, bi+1) = 1. If ga(w) = aj−1 then set
c(w, aj−1) = 1.

4. i is odd, j is even, and j − i ≥ 4. If ga(w) = ai+1 then set c(w, ai+1) = 1. If gb(w) = bj−1 then set
c(w, bj−1) = 1.

5. i is even, j is even and j − i = 2. If gb(w) ∈ {bj+1, bi−1} then set c(w, gb(w)) = 1.

6. i is odd, j is odd and j − i = 2. If ga(w) ∈ {aj+1, ai−1} then set c(w, ga(w)) = 1.

7. i is even, j is odd, and j − i = 3. If ga(w) = aj+1 then set c(w, aj+1) = 1. If gb(w) = bi−1 then set
c(w, bi−1) = 1.

8. i is odd, j is even, and j − i = 3. If gb(w) = bj+1 then set c(w, bj+1) = 1. If ga(w) = ai−1 then set
c(w, ai−1) = 1.

From an independent set in G to a homomorphism from D to H: Let I be an independent set in G. Define
the mapping f : V (D) → V (H) as follows. For every u ∈ U2i′ set f(u) = a2i if u ̸∈ I else set f(u) = b2i. For
every u ∈ U2i′+1 set f(u) = b2i+1 if u ̸∈ I else set f(u) = a2i+1.

Let e = uv be an edge of G and let Yi,j ( j = i + 1 or j − i ≥ 4) be a copy of Xi,j in D where the first
vertex of Yi,j is u and the last vertex of Yi,j is v. Let Yj,i (2 ≤ j − i ≤ 3) be a copy of Xj,i in D where the
first vertex of Yj,i is v and the last vertex of Yj,i is u. We show that f can be defined on Yi,j (Yj,i, j− i = 2, 3)
so that it becomes a homomorphism from Yi,j (Yj,i) to Pi,j ∪Qi,j (Pj,i ∪Qj,i).

Claim 4.10. f can be defined on Yi,j (Yj,i, j − i = 2, 3) so that it becomes a homomorphism from D to H.
Moreover, the cost of f is |G| − |I| +

∑
i+1<j |Ei,j | where |Ei,j | is the number of edges e = uv between Vi, Vj

with one endpoint of e in I and another one outside I.

From a homomorphism from D to H to an independent set in G: Let f be a homomorphism from D to H
with total cost less than 2|G|. Let u ∈ Ui′ and v ∈ Uj′ , with j − i > 1, and uv is an edge of G. Suppose
f(u) = bi, f(v) = bj , and i, j both are even. Notice that c(f(Yi,j) (c(f(Yj,i)) is 2. In this case we modify
f and assign u to ai, and then the image of Yi,j (Yj,i, when 2 ≤ j − i ≤ 3) changes so that f is still a
homomorphism from Yi,j to Pi,j ∪Qi,j . This was explained in Cases 1,2,3,4. Notice that by doing so, the
value of f does not change and f still is a homomorphism from D to H.

Similarly, when f(u) = ai, f(v) = aj , and both i, j are odd we modify f so that f(u) = bi, and consequently
f(Yi,j) is changed accordingly. Again in this case the value of f stays the same and f is a homomorphism
from D to H. Now define set I = {ui ∈ Ui′ | f(ui) = bi and i is even} ∪ {vi ∈ Ui′ | f(vi) = ai and i is odd}.
We show that I is an independent set in G. Let u ∈ Ui′ ∩ I, and v ∈ Vj′ ∩ I. We show that uv ̸∈ E(G). For
contradiction, suppose uv is an edge of G.

First suppose j − i = 1. Now by definition f(u) = bi and i is even or f(ui) = ai and i is odd. Suppose
i is even. Notice that by definition of the cost function, the image of Yi,i+1 under f lies in Pi,i+1 ∪Qi,i+1.
However, since there is no faithful arc from Qi,i+1 to Pi,i+1, the image of Yi,i+1 under f is Qi,i+1, and
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f(vi) ̸= ai+1, a contradiction. When i (still in case j − i = 1) is odd we have f(u) = ai, and again since there
no faithful arc from Pi,i+1 to Qi,i+1, the image of Yi,i+1 under f is Pi,i+1, and f(vi) ̸= bi+1, a contradiction.

Now consider the case where 2 < j − i. Then, according to the modification of f , when f(u) = bi and i, j
both are even, then f(vj) ̸= bj , and hence, vj ̸∈ I. When f(u) = bi and i is even and j is odd then f(vj) ̸= aj ,
and hence, vj ̸∈ I. Similarly, when f(u) = ai and i is even then f(vj) ̸= aj .

Therefore, I is an independent set in G. Notice that c(f) = |G| − |I| +
∑

i+1<j |Ei,j | where |Ei,j | is the
number of edges between Vi, Vj where one end point is in I and the other point is outside I.
Getting contradiction to Max 3-SAT inapproximability: Let f∗ be an optimal minimum cost homomorphism
from D to H. Suppose that for some λ > 0, there exists a (1 + λ)-approximation algorithm for MHC(H) that
finds a homomorphism f : V (D) → V (H) with c(f) < (1 + λ)c(f∗). Let |EI | =

∑
i<j |Ei,j | (corresponding to

homomorphism f), and let |E∗| =
∑

i<j |E∗
i,j | (corresponding to optimal homomorphism f∗).

Thus, we have |G| − |I| + |EI | < (1 + λ)(|G| − |I∗| + |E∗|). Note that the number of edges in G
corresponding to each clause of F is |G| (each vertex lies on a triangle). Therefore, |EI |, |E∗| ≤ |G|. First
assume |E∗| ≤ |EI | (in the other case we replace |E∗| by |EI | on the right side of the inequality). Thus, we
have (1 +λ)|I∗| < |I|+λ(|G|+ |E∗|), and consequently (1 +λ)|I∗| < 2λ|G|+ |I|. Since there is an assignment

that satisfies at least 7
8 of the clauses, we conclude that I∗ ≥ 7|G|

24 . Thus, (1 + λ)|I∗| < 48
7 λ|I∗| + |I|. Now,

(1 − 41
7 λ)|I∗| < |I|. Therefore, (1 − 1

8 )|I∗| < |I| which is a contradiction to Max 3-SAT admits a better than
7
8 approximation algorithm.

Theorem 4.11 (Restatement of Theorem 1.8). Let H be a digraph that does not admit a k-min-max ordering
for any k ≥ 1. Then MHC(H) is (1.021)-approx-hard.

Proof. We consider four scenarios and argue that it does cover all the digraphs that do not admit k-min-max
ordering for any k ≥ 1.
First scenario: H contains a symmetrically invertible pair with at least one switch. The proof follows from
Lemma 4.6, Lemma 4.7, Lemma 4.8, and Lemma 4.9.
Second scenario: H is balanced. According to Lemma A.4, H may have symmetrically invertible pair a, b with
associated walks P,Q that weakly avoid each (with at least one switch), and hence, we are done according to
the First scenario. Another possibility by Lemma A.4 (2), is the existence of three walks P,Q,R (in H) from
a, b, a to b, a, a such that Q avoids P , and hence, by Lemma 4.6 we get the desired conclusion.

Third scenario: H is homomorphic to some directed cycle
−→
Ck and has a symmetrically invertible pair belonging

to the same set. This case is handled by the First scenario.

Fourth scenario: H is not homomorphic to any directed cycle
−→
C k. Suppose H contains two induced oriented

cycles of net lengths l, r, where l, r are co-prime. Now according to Lemma A.3 H may have symmetrically
invertible pair a, b with associated walks P,Q (with at least one switch). Another possibility is that there
exist, three walks P,Q,R from a, b, a to b, a, a such that Q avoids P , and by Lemma 4.6 we get the conclusion.

Now the cases for digraphs not admitting a k-min-max ordering, k ≥ 1, are as follows. First, assume H
does not contain an induced oriented cycle of net length greater than one. In this case, either H is balanced,
or H has an induced oriented cycle of net length one. In the latter, H contains a symmetrically invertible
pair a, b, and congruent walks P,Q from a, b to b, a respectively such that P,Q weakly avoid each other. This
case is considered in the First scenario. When H is balanced and does not admit a min-max ordering, then
in the Second scenario, we can apply Lemma 4.6.

Next, we assume that H contains an induced oriented cycle of net length k > 1. When homomorphism

f : V (H) →
−→
Ck exists, then according to Theorem A.2, H has symmetrically invertible pair a, b with

f(a) = f(b), and we appeal to the similar argument as in First scenario. When H is not homomorphic to
−→
Ck

then we argue in the Fourth scenario Lemma 4.6 can be applied.
We conclude that if H does not admit not admit a k-min-max ordering for every k ≥ 1, then MHC(H) is

1.021-approx-hard.
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[15] Magnús M Halldórsson, Guy Kortsarz, and Hadas Shachnai. Minimizing average completion of dedi-
cated tasks and interval graphs. In Approximation, Randomization, and Combinatorial Optimization:
Algorithms and Techniques, pages 114–126. Springer, 2001.

[16] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798–859,
2001.

14



[17] Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. Approximation of
minimum cost homomorphisms. In European Symposium on Algorithms (ESA), pages 587–598. Springer,
2012.
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A Obstruction and structural characterization

The net length of a walk is the number of forward arcs minus the number of backward arcs. A closed walk is
balanced if it has net length zero, otherwise, it is unbalanced. Note that in an unbalanced closed walk we
may always choose a direction in which the net length is positive (or negative). A digraph is unbalanced if it
contains an unbalanced closed walk (or equivalently an unbalanced cycle ); otherwise it is balanced. It is easy
to see that a digraph is balanced if and only if it admits a labeling of vertices by non-negative integers so that
each arc goes from a vertex with a label i to a vertex with a label i+ 1. In other words, a balanced digraph H

admits a homomorphism to some induced directed path
−→
P k, k > 1. We observe that an unbalanced digraph

H has only a limited range of possible values of k for which it could have a homomorphism to induced

directed cycle on k vertices ,
−→
C k, and hence, a limited range of possible values of k for which it could have a

k-min-max ordering. It is easy to see that an oriented cycle C admits a homomorphism to
−→
C k only if the net

length of C is divisible by k [19]. Thus, any oriented cycle of net length q > 0 in H limits the possible values
of k to the divisors of q. If H is balanced, one can see that H has a k-min-max ordering for some k if and
only if it has a min-max ordering [22].

Theorem A.1 ([22]). A digraph H admits a min-max ordering if and only if H has no induced cycle of net
length greater than one and no symmetrically invertible pair.

The deep structural Theorem A.2 characterizes the digraph admitting k-min-max ordering and it provides
a forbidden obstruction characterizations for k-min-max ordering. According to this theorem, it is polynomial-
time to decide whether a given digraph H admits a min-max ordering or a k-min-max ordering, k > 1. We
use this theorem in our reduction.

Theorem A.2 ([22]). Let H be a weakly connected digraph i.e., the underlying graph of H is connected.

Suppose H is homomorphic to C⃗k under homomorphism f .
Then H admits a k-min-max ordering if and only if it contains no induced oriented cycle of positive net

length other than k, and no symmetrically invertible pair u, v with f(u) = f(v).

In the following two lemmas, we study the structural properties of digraphs H, where MHC(H) is NP-
complete, in two particular cases. The cases considered here are important because they are the building
blocks of our hardness reductions. We first discuss the effect of two induced oriented cycles C1, C2 with net
length l > k > 0, respectively, and provide some sub-structure useful in our reduction. The following lemma
can be obtained from [21] (Theorem 7.3), and [22].

Lemma A.3. Let H be a digraph and suppose H contains two induced oriented cycles C1, C2 of net length
l > k > 0, respectively. Then the following hold.
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1. H contains a symmetrically invertible pair a, b, and congruent walks P,Q from a, b to b, a respectively
such that P,Q weakly avoid each other, and P and Q have at least three switches.

2. H contains three congruent walks P,Q,R from a, b, a to b, a, a, respectively such that :

• Q has no faithful arc to P ,

• if there is an i-th faithful arc from Q to R, then there is no j-th faithful arc, i + 1 ≤ j, from R to
P .

In the following lemma, we layout a structural property of balanced digraph H that does not admit a
min-max ordering. This property is used in one of our hardness reductions.

Lemma A.4. Let H be a balanced digraph which does not admit a min-max ordering. Then the following
hold.

1. H contains a symmetrically invertible pair a, b, and congruent walks P,Q from a, b to b, a respectively
such that P,Q weakly avoid each other, and P and Q have at least three switches.

2. H contains three congruent walks P,Q,R from a, b, a to b, a, a, respectively such that :

• Q has no faithful arc to P ,

• if there is an i-th faithful arc from Q to R, then there is no j-th faithful arc, i + 1 ≤ j, from R to
P .

Remark A.5. Some of the balanced digraphs satisfying item (2) belong to class (Z) described in the
introduction.

Observation A.6. Suppose a, b is a symmetrically invertible pair with associated walks P and Q with
exactly one switch. Then P and Q satisfy the condition (2) in Lemmas A.3 and A.4. In other words, if P has
some faithful arc to Q, but Q has no faithful arc to P , then one can assume R is a walk then that starts from
P and it takes the first faithful arc from P to Q and then it follows Q to the end.

B Proof of Lemma 4.8: 5 switches

Proof of Lemma 4.8

Proof. Let a0, b0 be an invertible pair with five switches. Let P = a0, a0,1, a0,2, . . . , a0,l0 , a1, a1,1,
. . . , a1,l1 , a2, . . . , a4, a4,1, . . . , a4,l4 , a5 = b0 and let Q = b0, b0,1, . . . , b0,l0 , b1, b1,1,, . . . , b1,l1 , b2, . . . , b4,
b4,1, . . . , b4,l4 , b5 = a0. Let Pi = P [ai, ai+1] and Qi = Q[bi, bi+1]. Moreover, P2i has faithful arcs to Q2i, but
Q2i has no faithful arc to P2i, 0 ≤ i ≤ 2 and Q2i+1 has faithful arcs to P2i+1, but P2i+1 has no faithful arc to
Q2i+1, 0 ≤ i ≤ 1. Let G be a graph with vertex set {x1, . . . , xn} considered in [7, 29].

Construction of the 5-partite graph G′ from G: Let V0, V1, . . . , V4 be 5 disjoint copies of the vertices of G. For
each edge e = xrxs of G, add the edges urvs and usvr into G′ where ur, us ∈ V0 (corresponding to vertices
xr, xs ∈ G respectively) and vr, vs ∈ V1 (corresponding to xr, xs ∈ G respectively). For ur ∈ Vi, vr ∈ Vi+1

(i = 1, 2, 3, 4, sum module 5) corresponding to xr ∈ G, add the edge urvr into G′.

Construction of digraph D from G′, and defining the cost function: For every edge e = uv of G′ with u ∈ Vi,
v ∈ Vi+1 (sum module 5), replace e by a new path Yi = yi, yi,1, . . . , yi,li , yi+1 which is congruent to Pi

and Qi, by identifying yi with u and yi+1 by v. Let D be the resulting digraph. Define the cost function
c : D ×H → Q≥0, for Yi as follows. c(yi,j , ai,j) = c(yi,j , bi,j) = 0 and c(yi,j , t) = 3|G| for every other vertex
t ∈ P ∪Q. For every u ∈ Vi, set c(u, ai) = 1, c(u, bi) = 0 when i = 0, 2, 4 and set c(u, ai) = 0, c(u, bi) = 1
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when i = 1, 3. In any other case, the cost of mapping u to a vertex in P ∪Q is 3|G|.

From a vertex cover in G to a homomorphism from D to H: Let V C be a vertex cover in G. Define the
mapping f : V (D) → V (H) as follows. For every u ∈ V0 which is a copy of vertex x ∈ G set f(u) = a0 if
x ∈ V C, else set f(u) = b0. For every vertex v ∈ V1 which is a copy of vertex x ∈ G, set f(v) = b1 if x ∈ V C,
else f(v) = a1. For every vertex u ∈ Vi, with i = 2, 4, if x ̸∈ V C (here u is the copy of vertex x) then set
f(u) = ai else set f(u) = bi. For every vertex u ∈ V3 if x ∈ V C then set f(u) = b3 else f(u) = a3 (here u is
the copy of vertex x). Now consider an edge e = uv in G′ with u ∈ Vi, and v ∈ Vi+1. In D the edge e has
been replaced by oriented path Yi = yi, yi,1, . . . , yi,li , yi+1 between u and v (yi = u, yi+1 = v). Define f for
Yi as follows.

• If f(yi) = ai and f(yi+1) = ai+1 then set f(yi,j) = ai,j .

• If f(yi) = bi and f(yi+1) = bi+1 then set f(yi,j) = bi,j .

• If i is even, f(yi) = ai, and f(yi+1) = bi+1. Then, let ai,lbi,l+1 be the first faithful arc from Pi to Qi.
Set f(yi,j) = ai,j if j ≤ l else f(yi,j) = bi,j .

• If i is odd, f(yi) = bi, and f(yi+1) = ai+1. Then, let bi,lai,l+1 be the first faithful arc from Qi to Pi.
Set f(yi,j) = bi,j if j ≤ l else f(yi,j) = ai,j .

Using a similar argument, as the one in the proof of Lemma 4.7, it is not difficult to see that f is a
homomorphism from D to H with cost c(f) = |V C| + 2|G|.

From a homomorphism from D to H to a vertex cover in G: Let f : V (D) → V (H) be a homomorphism of
cost less than 3|G|. We modify f so that for every vi ∈ Vi, 0 ≤ i ≤ 4, where all are the copy of the same
vertex x ∈ G, f(v0) = a0 if and only if f(vj) = bj , 1 ≤ j ≤ 4.

Suppose for some u0 ∈ V0, f(u0) = a0 and f(u1) = a1 where u0 ∈ V0 and u1 ∈ V1, and are the copy of
the same vertex y ∈ G. Let u2, u3, u4 be the copy of y in V2, V3, V4, respectively. Let a0,lb0,l+1 be the first
faithful arc from P0 to Q0, and let R0 = P [a0, a0,l]Q[b0,l+1, b1].

According to the construction, let Yi, i = 1, 2, 3, 4, be the oriented path in D from ui to ui+1 (sum
module 5) and congruent to Pi. Notice that since there is no faithful arc from Pi to Qi, for odd i and f
is a homomorphism from D to H, if f(ui) = ai then f(ui+1) = ai+1. Likewise when i > 0 is even and
f(ui) = bi then f(ui+1) = bi+1. By this observation, f(u2) = a2 (f maps Y1 to P1). We modify f as follows.
Set f(u1) = b1, and f(u2) = b2, and the new f maps Y1 to Q1. Set f(u3) = b3, and the new f maps Y2

to Q2 (f(u3) = b3) and f maps Y3 to Q3, and finally maps Y4 to Q4. A similar treatment is performed
when f(v1) = b1 but f(v0) ̸= a0 for v0 ∈ V0, and v1 ∈ V1 (where v0, v1 are copies of the same vertex in G).
Moreover, for the path Y0 between v0 ∈ V0, and u1, if f(v0) = a0 then the new f maps Y0 to R0. Notice that
by doing so f is still a homomorphism from D to H with the same cost.

Now, suppose f(u0) = a0 and f(u1) = b1 where u0, u1 are the copies of the same vertex y ∈ G. Then, we
change the image of f so that f maps Yi to Qi, i = 1, 2, 3, 4 without increasing its values.

Therefore, we conclude that c(f) = 2|G| + |{u ∈ V0 | f(u) = a0}|. Now let V C = {x ∈ V (G) | f(u) =
a0 where u is the copy of x}. It is easy to see that V C is a vertex cover in G.

Showing the hardness 1.076 and 1.137. We show that it is NP-hard to find a homomorphism f : V (G′) → V (H)
with c(f) < (1 +λ)c(f∗) (here λ = 0.076, and f∗ is the optimal minimum cost homomorphism from G′ to H).
For contradiction, suppose that there is a polynomial-time algorithm that produces such a homomorphism f .
Thus, c(f) = |V C| + 2|G| and c(f∗) = |V C∗| + 2|G| (here V C∗ is the optimal vertex cover in G). We have
|V C| + 2|G| < (1 + λ)(|V C∗| + 2|G|).

Thus, |V C| < (1 + λ)|V C∗| + 2λ|G|, and consequently, |V C| − 2λ|G| < (1 + λ)|V C∗|. We may assume
|V C| ≥ 0.639|G|. This follows from the construction in [7]. Therefore, we have |V C|(1− 2λ

0.639 ) < (1+λ)|V C∗|.
By setting 1+λ

1− 2λ
0.639

=
√

2, and hence, λ = 0.076 we get a contradiction that the vertex cover cannot be
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approximated within the factor than
√

2 according to [7]. Therefore, we obtain (1 + λ) = 1.076 hardness
result assuming P ̸= NP.

Moreover, setting λ = 1
7.299 ≈ 0.137, we get a contradiction to (2 − ϵ)-UG-hardness for the vertex cover

according to [30]. Therefore, we obtain (1 + λ) = 1.13 hardness result assuming UGC.

C Proof of Claim 4.10: 7 switches

We extend f to Yi,j and Yj,i in order to obtain a homomorphism from D to H. To do so we consider the
following cases.

Case 1. j − i ≥ 4.

1. Suppose u, v ̸∈ I. Then, for every w ∈ Yi,j set f(w) = ga(w) when i, j are even and when both are odd
set f(w) = gb(w). In any of these two cases the cost of mapping Yi,j to Pi,j (or Qi,j) under f is 2. If i
is even and j is odd then f maps the first portion of Yi,j to Pi,i+1 and then using the first faithful arc
from Pi,i+1 to Qi,i+1, the rest of the Yi,j is mapped to Qi,j . Note that in this case again according to
definition of the costs in (3), the cost of mapping Yi,j to Pi,j ∪Qi,j under f is 2. Analogously, when i is
odd and j is even, f maps Yi,j to Qi,i+1 ∪Pi,j , and the cost of mapping Yi,j to Pi,j ∪Qi,j) under f is 2.

2. Suppose u ∈ I, and v ̸∈ I, and i, j both are even. Note that we have f(u) = bi and f(v) = aj . Let
bi+1,lai+1,l+1 be a first faithful arc from Qi+1,i+2 to Pi+1,i+2. Now for w ∈ Yi,j if gb(w) is before bi+1,l+1

then set f(w) = gb(w); otherwise, set f(w) = ga(w). Observe that f is a homomorphism from Yi,j to
Pi,j ∪Qi,j , because it maps the first part of Yi,j to Qi,j according to gb, and then using the faithful arc
bi+1,lai+1,l+1, the rest of Yi,j is mapped according to ga. The cost of mapping Yi,j to Pi,j ∪Qi,j under
f is 2.

3. Suppose u ∈ I, v ̸∈ I, i is even and j is odd. Note that we have f(u) = bi and f(v) = bj . In this case for
every w ∈ Yi,j , set f(w) = gb(w). Notice that by definition if gb(w) ∈ {bi+1, bj−1}, then c(w, gb(w)) = 1.
Thus, the cost of mapping Yi,j to Qi,j under f is 2.

4. Suppose u ∈ I, v ̸∈ I, and i is odd and j is even. Note that we have f(u) = ai and f(v) = aj . In
this case for every w ∈ Yi,j , f(w) = ga(w). Notice that by definition if ga(w) ∈ {ai+1, aj−1}, then
c(w, ga(w)) = 1. Thus, the cost of mapping Yi,j to Pi,j under f is 2.

5. Suppose u ∈ I, v ̸∈ I, and both i and j are odd. Note that we have f(u) = ai and f(v) = bj . Let
ai+1,lbi+1,l+1 be the first faithful arc from Pi+1,i+2 to Qi+1,i+2. Now for w ∈ Yi,j if ga(w) is before
ai+1,l+1 then set f(w) = ga(w); otherwise, set f(w) = gb(w). Observe that f is a homomorphism
from Yi,j to Pi,j ∪Qi,j , because it maps the first part of Yi,j to Pi,j according to ga, and then using
the faithful arc ai+1,lbi+1,l+1, the rest of Yi,j is mapped according to gb. The cost of mapping Yi,j to
Pi,j ∪Qi,j under f is 2.

6. Suppose u ̸∈ I, v ∈ I, and i, j both even. Analogous to (2) we define f .

7. Suppose u ̸∈ I, v ∈ I, and i, j both odd. Analogous to (5) we define f .

8. Suppose u ̸∈ I, v ∈ I, and i is even and j is odd. Analogous to (4) we define f .

9. Suppose u ̸∈ I, v ∈ I, and i is odd and j is even. Analogous to (3) we define f .

Case 2. j − i = 1.

1. Suppose u ∈ I and v ̸∈ I. Then, we have f(u) = bi and f(v) = bi+1. Now set f(w) = gb(w) for every
w ∈ Yi,i+1.

2. Suppose v ∈ I and u ̸∈ I. Then we have f(u) = ai and f(v) = ai+1. Now set f(w) = ga(w) for every
w ∈ Yi,i+1.
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3. Suppose v, u ̸∈ I, and i is even. Then, we have f(u) = ai and f(v) = bi+1. Let ai,lbi,l+1 be the
first faithful arc from Pi,i+1 to Qi,i+1. Now for every w ∈ Yi,i+1, if ga(w) is before ai,l+1 then set
f(w) = ga(w); otherwise, set f(w) = gb(w).

4. Suppose v, u ̸∈ I, and i is odd. Then, we have f(u) = bi and f(v) = ai+1. Let bi,lai,l+1 be the
first faithful arc from Qi,i+1 to Pi,i+1. Now for every w ∈ Yi,i+1, if gb(w) is before bi,l+1 then set
f(w) = gb(w); otherwise, set f(w) = ga(w).

Case 3. j − i = 2.

1. Suppose u, v ̸∈ I, i is even. Then, we have f(u) = ai and f(v) = ai+2. Let aj+2,lbj+2,l+1 be the first
faithful arc from Pj+2,j+3 to Qj+2,j+3. Now for w ∈ Yj,i, set f(w) = ga(w) if ga(w) is before aj+2,l+1;
otherwise, set f(w) = gb(w). Note that f is a homomorphism from Yj,i to Pj,i ∪Qj,i, and the cost of
mapping Yj,i to H under f is 2.

2. Suppose u, v ̸∈ I, and i is odd. Analogous to (1) define f .

3. Suppose u ∈ I, v ̸∈ I, and i is even. Then, we have f(u) = bi and f(v) = ai+2. In this case for w ∈ Yj,i

set f(w) = ga(w).

4. Suppose u ∈ I, v ̸∈ I, and i is odd. In this case for w ∈ Yj,i set f(w) = gb(w).

5. Suppose u ̸∈ I, v ∈ I, and i is even. Now for w ∈ Yj,i, set f(w) = gb(w).

6. Suppose u ̸∈ I, v ∈ I, and i is even. Now for w ∈ Yj,i, set f(w) = ga(w).

Case 4. j − i = 3.

1. Suppose u, v ̸∈ I and i is even. For every w ∈ Yj,i set f(w) = gb(w).

2. Suppose u, v ̸∈ I and i is odd. For every w ∈ Yj,i set f(w) = ga(w),

3. Suppose u ∈ I, v ̸∈ I, and i is even. Notice that we have f(u) = bi and f(v) = bj . Let bj+1,laj+1,l+1 be
the first faithful arc from Qj+1,j+2 to Pj+1,j+2. Now for w ∈ Yj,i, set f(w) = gb(w) if gb(w) is before
bj+1,l+1; otherwise, set f(w) = ga(w). The cost of mapping Yj,i to Qj,i under f is 2. This is because
k ≥ 7, and therefore f maps a vertex of Yj,i to bi−1 and the cost of this mapping is 1.

4. Suppose u ∈ I, v ̸∈ I, and i is odd. Let aj+1,lb1+2,l+1 be the first faithful arc from Pj+1,j+2 to Qj+1,j+2.
Now for w ∈ Yj,i, set f(w) = ga(w) if ga(w) is before aj+1,l+1; otherwise, set f(w) = gb(w). The cost
of mapping Yj,i to Pj,i under f is 2.

5. Suppose u ̸∈ I, v ∈ I, and i is even. Let bi−1,lai−1,l+1 be a last faithful arc from Qi−1,i to Pi−1,i. Now
for w ∈ Yj,i, if ga(w) is not after bi−1,l then set f(w) = ga(w); otherwise, f(w) = gb(w). Similar to
argument in (3,4), f is a homomorphism of total cost 2.

6. Suppose u ̸∈ I, v ∈ I, and i is odd. Let ai−1,lbi−1,l+1 be a last faithful arc from Pi−1,i to Qi−1,i. Now
for w ∈ Yj,i, if gb(w) is not after ai−1,l then set f(w) = gb(w); otherwise, f(w) = ga(w). Similar to
argument in (3,4), f is a homomorphism of total cost 2.

D Inapproximability results for graphs

We use Lemma 4.7, to prove Theorem 1.6. First, we need two structural theorems on the polynomial cases of
MHC(H) when H is a graph.

Theorem D.1. Let H be a bipartite graph. Then MHC(H) is polynomial-time solvable if and only if H
admits a min-max ordering (i.e., does not contain an induced cycle of length at least six, or a bipartite claw,
or a bipartite net, or a bipartite tent, see Figure 3).
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Bipartite netBipartite tentBipartite clawEven induced cycle (C6)

Figure 3: Obstruction to min-max ordering in bipartite graphs, and making MHC(H) NP-complete.

NetTentClawInduced C4

Figure 4: Obstruction to min-max ordering in reflexive graphs, and making MHC(H) NP-complete.

Theorem D.2. Let H be graph with at least one self-loop vertex. Then MHC(H) is polynomial-time solvable
if and only if H is reflexive (every vertex has a self-loop) and admits a min-max ordering (i.e., does not
contain an induced cycle of length at least four, or a claw, or a net, or a tent, see Figure 4).

Theorem D.3 (Restatement of Theorem 1.6). Let H be a graph where MHC(H) is NP-complete. Then
MHC(H) is at least 1.128-approx-hard and 1.242-UG-hard.

Proof. We consider two cases where H is irreflexive (no vertex has a self-loop) and the case where H has a
vertex with a self-loop.

H is irreflexive: Without loss of generality, we can assume H is bipartite, as otherwise, CSP(H) is
NP-complete (due to [18]). Hence, LHC(H) is NP-complete, and by Observation 1.7, MHC(H) does not
have any approximation. By this argument and by Lemma 4.1 (hardness of approximation for sub-graph), if
a sub-graph of H is not bipartite, again MHC(H) does not admit any approximation. Therefore, we continue
by assuming that H is bipartite. Moreover, when the bipartite graph H contains an induced even cycle of
length at least 6, LHC(H) is NP-complete due to [9], and hence, by Observation 1.7 MHC(H) admits no
approximation. By Theorem D.1 and Lemma 4.1, it remains to consider the cases where H is either bipartite
claw, bipartite tent, or bipartite net. It is also easy to transform the input instance G,H, c of MHC(H) into
D,H ′, c of MHC (H ′) by orienting all the edges of G from left to right and obtain digraph D, as well as
orienting all the edges of H from left to right and obtain digraph H ′. The cost function stays the same. Thus,
we will have bipartite di-claw, bipartite di-tent, and bipartite di-tent (see Figure 5). Each bipartite di-claw,
bipartite di-tent, and bipartite di-tent has a symmetrically invertible pair with three switches (see Figure
5). Thus, by Lemma 4.7, MHC (H ′) when H ′ is one of the bipartite di-claw, di-tent, di-net, MHC(H ′) is
1.128-approx-hard, and it is 1.242-UG-hard. Therefore, when H is one of the bipartite claw, tent, net then
MHC(H) is 1.128-approx-hard, and it is 1.128-UG-hard.

H has vertices with self-loops: We show that H must be reflexive; meaning every vertex has a loop.
Otherwise, H must contain an induced sub-graph H1 = {aa, ab} where b does not have a self-loop (recall that
we assume H is connected). As we mention in the introduction, Vertex Cover problem is an instance of MHC
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Figure 5: Invertible pair for bipartite di-claw, di-tent, and di-net with three switches. The blue and green colors
show the switches.

(H1). Vertex Cover is (
√

2 − ϵ)-approx-hard and (2 − ϵ)-UG-hard for every ϵ > 0. Therefore, MinHOM(H1) is
(
√

2 − ϵ)-approx-hard and (2 − ϵ)-UG-hard for every ϵ > 0. By the hardness of approximation for sub-graphs
(Lemma 4.1), we obtain better hardness bounds than the claim of the theorem. Therefore, we may assume
that H is reflexive henceforth.

If H contains an induced cycle of length at least 4 (when removing the self-loops), LHC(H) is NP-complete
due to [8], and hence, by Observation 1.7, MHC(H) does not admit any approximation. Thus, by Theorem
D.2 and Lemma 4.1, we need to consider the case where H is a claw, tent or net. When H is any of these
three graphs, H contains an invertible pair (see Figure 4). By a similar treatment, if H is reflexive and
MHC(H) is NP-complete then MHC(H) is 1.128-approx-hard and 1.242-UG-hard. This completes the proof
of the theorem.

E Special cases: oriented cycles and oriented trees

We start this section by some necessary technical definition. Before proceeding, we need a technical definition.
Let P = x0, x1, . . . , xn be a walk in H of net length k ≥ 0. We say that P is constricted from below if the net
length of any prefix P [x0, xj ] is non-negative, and is constricted from above if the net length of any prefix is
at most k. We also say that P is constricted if it is constricted both from below and from above. For a walk
P in digraph H let P−1 denote the reverse of P .

We use the following well-known lemma (for a proof, see Lemma 2.36 in [19]).

Lemma E.1. Let P1 and P2 be two constricted walks of net length r. Then there is a constricted path P of
net length r that admits a homomorphism f1 to P1 and a homomorphism f2 to P2, such that each fi takes
the starting vertex of P to the starting vertex of Pi and the ending vertex of P to the ending vertex of Pi.

We shall call P a common pre-image of P1 and P2. We often use the image of P under f1, f2 to obtain
P ′
1, P

′
2 which we call the embedded pre-images of P1, P2.

E.1 Oriented cycles

We first need the following technical lemma about induced oriented cycles.
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Lemma E.2. Let C be an induced oriented cycle, where MHC (C) is NP-complete. Then C contains three
congruent walks P,Q,R from a, b, b to b, a, b, respectively such that:

• P has no faithful arc to Q,

• if there is an i-th faithful arc from P to R, then there is no j-th faithful arc, i + 1 ≤ j, from R to Q.

Proof. The result in [14], shows that if an oriented cycle C, is not balanced, then MHC (C) is polynomial-time
solvable. Thus, we may assume that C is balanced and does not admit a min-max ordering. Let a, b be a
symmetrically invertible pair with the walks P,Q from a, b to b, a respectively that P,Q avoid each other.
Notice that an induced oriented cycle is chordless by definition. Since C is induced, there is no faithful arc
from P to Q and there is no faithful arc from Q to P , as otherwise, one can find a chord in C; a contradiction

to C being induced. Let
−→
P k be a directed path on 1, 2, . . . , k.

Since C is balanced, by definition, there is homomorphism f : C →
−→
P k, where k is the number of levels

in C. We may assume that f(a) = f(b) = 1 (lowest level of C) Let c be a vertex of C with f(c) = k (c is on
the highest level of C). Let d be the vertex on Q corresponding to c. Let P = P1P2, and Q = Q1Q2, where
P1 is part of P from a to c, P2 is part of P from c to b, and Q1 is part of Q from b to d, Q2 is part of Q from
d to a. Observe that P−1

2 , Q−1
2 , Q−1

1 are constricted walks and have net length k − 1.
First notice that if two congruent walks avoid each other, then their reverses also avoid each other. So

P−1, Q−1 avoid each other. Moreover, if P,Q avoid each other then their embedded pre-images also avoid
each other. For two walks R,S let RS be the walks obtained by identifying the end of R with the beginning
of S.

Notice that by Lemma E.1, P−1
2 , Q−1

2 , Q−1
1 are constricted and have embedded pre-images P ′

2, Q
′
2, R.

Now, P3 = P1P
′
2, Q3 = Q1Q

′
2 and R1 = Q1R are the three desired walks from a, b, b to b, b, a. This is

because P ′
2, Q

′
2 avoid each other, and there is no faithful arc from P ′

2 to R (unless at the end) because C is
chordless.

Theorem E.3. Let C be an induced oriented cycle that does not admit a min-max ordering. Then

1. MHC(H) is (
√

2 − ϵ)-approx hard for every ϵ > 0.

2. MHC(H) is (2 − ϵ)-UG-hard for any ϵ > 0.

Proof. By Lemma E.2 there exists three congruent walks P,Q,R satisfying the conditions of Lemma 4.6, and
hence, the theorem is established.

Proof of Lemma A.4 We may assume that we have a symmetrically invertible pair a, b and corresponding
walks P,Q with no faithful arcs between P and Q. It is not difficult to see that we may assume that a, b are
on the lowest level of P and Q. Now by similar argument, as in the proof of Lemma E.2, one can obtained
the three desired walks P,Q,R.

E.2 Oriented trees

It was shown in [17] that when H is any of the bipartite claw, bipartite net, bipartite tent (see Figure 6 when
we ignore the direction of the arcs) then MHC(H) admits a constant approximation algorithm. Notice that
by adding one extra arc to any of the digraphs depicted in Figure 6 (i.e. 37 to Di-net,Di-tent, and 36 to
Di-claw) the resulting digraph admits a min-max ordering. Therefore, is not difficult to see that this constant
factor is 2, by analysing the approximation ratio of the approximation algorithm in paper [17]. In fact from
the analysis of the approximation algorithm in [17, 35] one can conclude that if by adding one extra arc to H,
the resulting (di)graph admits a min-max then MHC(H) admits a 2-approximation algorithms. Using this
argument one can obtain the following :

Proposition E.4. There exists an infinite family of oriented trees T with the following properties:

23



Di-netDi-tentDi-claw

1

2

3

4

5

6

7

1

2

3

1

2

3

4

5

6

7

4

5

6

7

Figure 6: Obstruction to min-max ordering in bipartite digraphs; making Strict-CSP (H) NP-complete.
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Figure 7: Example of oriented tree

• T does not admit a min-max ordering, and hence, MHC (T ) is NP-complete,

• MHC (T ) admits a 2-approximation algorithm.

Proof. We start with the smallest such oriented tree, establishing the proposition, and then generalize it to
bigger trees. Let T be the oriented tree depicted in Figure 6. The ordering 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is a min
ordering of T . By adding arc 59, the same ordering becomes a min-max ordering. Now the idea in [35], is to
formulate MHC (T ) as an LP, with the cost function of minimizing the MHC (H). For each vertex v ∈ G and
i ∈ T , there is a variable 0 ≤ Xv,i ≤ 1. In the LP there are some constraints that avoid mapping an arc of
the input digraph G to arc 59. Once the LP returns the fractional values, a uniform random variable X from
real interval [0, 1], is used to round the fractional variables Xv,i to 1 if X ≤ Xv,i, and otherwise, to round
Xv,i to zero. If Xv,i is set to 1 then it means in the final homomorphism, f we set f(v) = i. If for an arc uv
of G, according to this rounding, we set f(u) = 5 and f(v) = 9, then f(u) is set to 4 and the image of any
in-neighbor of u, is set to 0. From the analysis of the algorithm in [35], one can conclude that this procedure,
yields a homomorphism whose total cost is at most twice the optimal cost.

Now consider the oriented tree T1, obtaining from T , by replacing arcs 03, 04, 15, 26 by arbitrary constricted
oriented paths P1, P2, P3, P4 (respectively) each of net length r (see Figure 8). By using the same argument
as above one can show that MHC (T1) admits a 2-approximation algorithm.

F Generalization to r-uniform (r > 2) hypergraphs

In this section, we introduce an auxiliary directed graph and paired digraph for a given hypergraph H, aimed
at capturing its structural properties when it lacks a min-max ordering.

Definition F.1 (Projection).

– For an arc e in H, let et denote the elements of e appearing in coordinate t of e. Let et,r represent the pair
(a, b) where a and b appear in coordinates t and r of e, respectively. In other words, the projection of e over
t and r is (a, b).
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Figure 8: Each solid line is a constricted oriented path, with net length r.

– For two given arcs e1 and e2 of H with the same size r, let Pt(e
1, e2) be the set of arcs e of size r in H such

that et ∈ {e1t , e2t}.

Definition F.2 (H and H+). Let H be a hypegraph. Define H to be the digraph obtained from H as follows.
The vertex set of H is the same as vertex set of H. The arc set of A(H) = {ab | (a, b) = er,s for some arc e
in H}

Define H+ to be the digraph with the vertex set {(a1, a2) | a1, a2 ∈ V (H)} and consisting of arcs
(a1, a2)(b1, b2) so that there exist coordinates r and s where the following hold.

• there exist e1, e2 of H both of the same size so that elr,s = (al, bl), 1 ≤ l ≤ 2

• ∀ ω ∈ Ps(e
1, e2) at least one of the ωr,s ̸= (a1, b2) and ωr,s ̸= (a2, b1) holds.

Every directed path W ∈ H+ gives rise to two walks P and Q in H such that P and Q weakly avoid each
other. We denote this pair of walks as W = (P,Q).

Lemma F.3. Let H be a hypergraph. Suppose there exists a directed path W = (P,Q) in H+ from (a, b) to
(b, a) (with P from a to b and Q from b to a) such that Q avoids P , but P has a faithful arc to Q. Then
MHC(H) is (

√
2 − ϵ)-approx-hard.

Proof. Let G be an arbitrary graph. We may assume that G is the graph used in [7]. Orient each edge of G
arbitrary and obtain digraph D. Now replace every arc uv in D by a path Suv which is congruent with P
and has new vertices except u and v. Now we construct an instance of MHC(H) as follows. Consider Suv in
D, and walks P and Q as in the statement of the lemma. Let aa′, bb′ be the i-th arcs of P and Q. According
to the construction of H+, there are arcs e1, e2 ∈ H so that e1r,s = (a, a′), and e2r,s = (b, b′). We replace the

i-th arc of Suv with an arc x = (x1, x2, . . . , xr) of the same size as e1. Let G be the resulting hypergraph .
The cost function c for vertices of x is c(xj , aj) = 0 if aj ∈ {e1j , e2j} and for every other case the cost is |G|.
Moreover, c(u, a) = c(v, a) = 1, c(u, b) = c(v, b) = 0 and for d ̸= {a, b}, c(u, d) = c(v, d) = |G|.

Let V C be a vertex cover in G, then we define a homomorphism f : V (G) → V (H) as follows. For every
vertex u ∈ G ∩D, set f(u) = a if u ∈ V C, otherwise set f(v) = b. For every internal vertex xj which is in arc
x = (x1, x2, . . . , xr) corresponding to the i-th arc of Suv, if f(u) = a and f(v) = b, we set f(xj) = aj where
aj = e1j , where e1 is the arc in H corresponding to the i-th arc of P . On the other hand, if f(u) = b and

f(v) = a, we set f(xj) = bj with bj = e2j , where e2 is the i-th arc corresponding to the i-th arc of Q. By this
mapping, the arc of G corresponding to the i-th arc in Suv is mapped to arc in H corresponding to the i-th
arc in P (or Q).

If f(u) = a and f(v) = a, then let the arc albl+1 be a faithful arc from P to Q. Now, the first l − 1 arcs
in G corresponding to the Suv are mapped to the first l − 1 arcs corresponding of H corresponding to P , and
then the arc in G corresponding to the l-th arc of Suv is mapped to the arc of H corresponding to the faithful
arc albi+1, and the rest rest of the arc in G corresponding to the the rest of the arcs in Suv are mapped to
the arcs of H corresponding to the arcs in Q after the l-arcs of Q.
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It is now straightforward to see that f is a homomorphism from G to H with a total cost |V C|. Now
similar to the argument in the proof of Theorem 4.6 we can show that MHC(H) is (

√
2 − ϵ)-approx-hard for

any ϵ > 0.

The definitions of H and H+ derived from H, along with the argument presented in the proof of Theorem
F.3, enable us to extend the theorems from digraphs to hypergraphs.

Theorem F.4. Let H be a hypergraph. Suppose H+ contains a directed path W = (P,Q) from (a, b) to (b, a)
such that P and Q have k-switches (k ≥ 1). Then MHC(H) is 1.021-approximation hard.

We conclude this section by providing a hardness of approximation result for the case where the target
structure consists of more than one hypergraph.

Lemma F.5. There is hypergraph H with more than one k-uniform hypergraph where MHC(H) does not
admits any constant approximation algorithm.

Proof. It was noted in [26] that Min Horn Deletion problem does not admit a constant approximation algorithm.
Min Horn Deletion problem consists of clauses in which at most one literal appear to be positive. The goal is
to find an assignment to minimize the number of variables assigned to true. This is equivalent to consider
clauses of form (x ∨ ¬y ∨ ¬z) ∧ (¬u ∨ ¬v) ∧ (w ∨ ¬p) ∧ (¬p). If we translate this a homomrphism then
we will have relation G1,G2,G3 of arity 3, 2, 2 respectively from set {x1, x2, . . . , xn} and target relations
H1 = {((0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} and H2 = {(0, 1), (1, 0), (1, 1)}, and H3 =
{(0, 0), (0, 1), (1, 1)}. The goal is to find an assignment so that every tuple in Gi is mapped to its corresponding
Hi, i = 1, 2, 3.

Now define hypergraph H consists of hypergraphs H1 = {(0, 0, 0, a), (0, 0, 1, a), (0, 1, 0, a), (0, 1, 1, a),
(1, 0, 1, a), (1, 1, 0, a), (1, 1, 1, a)} and H2 = {(0, 1), (1, 0), (1, 1)}, and H3 = {(0, 0, a), (0, 1, a), (1, 1, a)}. More-
over, define input hypergraph G, where for each tuple (x, y, z) ∈ G1 add (x, y, z, ω) into G, for every (x, y) ∈ G2

add (x, y, ω) to G, and for every (x, y) ∈ G3 add (x, y, ω) to G3. Define the cost function c(ω, a) = 0, and
c(x, 0) = 0 and c(x, 1) = 1 for every x ̸= ω. Then MHC(H) is equivalent to Min Horn Deletion problem, and
hence, it does not admit a constant approximation algorithm.
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