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Abstract

Interval minors of bipartite graphs were recently introduced by Ja-
cob Fox in the study of Stanley-Wilf limits. We investigate the maxi-
mum number of edges in Kr,s-interval minor free bipartite graphs. We
determine exact values when r = 2 and describe the extremal graphs.
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For r = 3, lower and upper bounds are given and the structure of
K3,s-interval minor free graphs is studied.
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1 Introduction

All graphs in this paper are simple, i.e. multiple edges and loops are not
allowed. By an ordered bipartite graph (G;A,B), we mean a bipartite graph
G with independent sets A and B which partition the vertex set of G and
each of A and B has a linear ordering on its elements. We call two vertices
u and v consecutive in the linear order < on A or B if u < v and there is
no vertex w such that u < w < v. By identifying two consecutive vertices
u and v to a single vertex w, we obtain a new ordered bipartite graph such
that the neighbourhood of w is the union of the neighbourhoods of u and v
in G. All bipartite graphs in this paper are ordered and so, for simplicity, we
usually say bipartite graph G instead of ordered bipartite graph (G;A,B).
Two ordered bipartite graphs G and G′ are isomorphic if there is a graph
isomorphism G → G′ preserving both parts, possibly exchanging them, and
preserving both linear orders. They are equivalent if G′ can be obtained from
G by reversing the orders in one or both parts of G and possibly exchange
the two parts.

If G and H are ordered bipartite graphs, then H is called an interval
minor of G if a graph isomorphic to H can be obtained from G by repeatedly
applying the following operations:

(i) deleting an edge;

(ii) identifying two consecutive vertices.

If H is not an interval minor of G, we say that G avoids H as an interval mi-
nor or that G is H-interval minor free. Let ex(p, q,H) denote the maximum
number of edges in a bipartite graph with parts of sizes p and q avoiding H
as an interval minor.

In classical Turán extremal graph theory, one asks about the maximum
number of edges of a graph of order n which has no subgraph isomorphic to a
given graph. Originated from problems in computational and combinatorial
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geometry, the authors in [2, 6, 7] considered Turán type problems for ma-
trices which can be seen as ordered bipartite graphs. In the ordered version
of Turán theory, the question is: what is the maximum number edges of an
ordered bipartite graph with parts of size p and q with no subgraph isomor-
phic to a given ordered bipartite graph? More results on this problem and
its variations are given in [1, 3, 4, 8, 9]. As another variation, interval minors
were recently introduced by Fox in [5] in the study of Stanley-Wilf limits. He
gave exponential upper and lower bounds for ex(n, n,K`,`). In this paper,
we are interested in the case when H is a complete bipartite graph. We de-
termine the value of ex(p, q,K2,`) and find bounds on ex(p, q,K3,`). We note
that our definition of interval minors for ordered bipartite graphs is slightly
different from Fox’s definition for matrices, since we allow exchanging parts
of the bipartition, so for us a matrix and its transpose are the same. Of
course, when the matrix of H is symmetric, the two definitions coincide.

2 K2,` as interval minor

For simplicity, we denote ex(p, q,K2,`) by m(p, q, `). In this section we find
the exact value of this quantity. Let (G;A,B) be an ordered bipartite graph
where A has ordering a1 < a2 < · · · < ap and B has ordering b1 < b2 <
· · · < bq. The vertices a1 and b1 are called bottom vertices whereas ap and
bq are said to be top vertices. The degree of a vertex v is denoted by d(v).

Lemma 2.1. For any positive integers p and q, we have

m(p, q, `) 6 (`− 1)(p− 1) + q.

Proof. Let (G;A,B) be a bipartite graph. Suppose that A has ordering
a1 < a2 < · · · < ap and B has ordering b1 < b2 < · · · < bq. For 1 6 i 6 p−1,
let

Ai = {bj | ∃ i1 6 i < i2 such that ai1bj , ai2bj ∈ E(G)}.

Since G is K2,`-interval minor free, |Ai| 6 `− 1. Each bj ∈ B appears in at
least d(bj)− 1 of sets Ai, 1 6 i 6 p− 1. It follows that

q∑
i=1

(d(bj)− 1) 6
p−1∑
i=1

|Ai| ≤ (`− 1)(p− 1).

This proves that |E(G)| 6 (`− 1)(p− 1) + q.
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If (G;A,B) and (G′;A′, B′) are disjoint ordered bipartite graphs and the
bottom vertices x, y of G are adjacent and the top vertices x′, y′ of G′ are
adjacent, then we denote by G ⊕ G′ the ordered bipartite graph obtained
from (G ∪G′;A ∪A′, B ∪B′) by identifying x with x′ and y with y′, where
the linear orders of A∪A′ and B∪B′ are such that the vertices of G′ precede
those of G. The graph G⊕G′ is called the concatenation of G and G′.

In the description of K2,`-interval minor free graphs below, we shall use
the following simple observation, whose proof is left to the reader. Let G and
G′ be vertex disjoint Kr,s-interval minor free bipartite graphs with r ≥ 2 and
s ≥ 2 such that the bottom vertices in G are adjacent and the top vertices
in G′ are adjacent. Then G⊕G′ is Kr,s-interval minor free.

Example 2.2. We introduce a family of K2,`-interval minor free bipartite
graphs which would turn out to be extremal. Let ` > 3 and let p and q be
positive integers and let r = b(p − 1)/(` − 2)c and s = b(q − 1)/(` − 2)c.
We can write p = (` − 2)r + e and q = (` − 2)s + f , where 1 6 e 6 ` − 2,
1 6 f 6 `− 2. Suppose now that r < s. Let H0 be Ke,`−1 and let Hi be a
copy of K`−1,`−1 for 1 6 i 6 r. The concatenation H = H0 ⊕H1 ⊕ · · · ⊕Hr

is K2,`-interval minor free by the above observation. It has parts of sizes p
and q′ = (`− 2)(r +1)+1. It also has r`(`− 2)+ e(`− 1) edges. Finally, let
H+ = K1,q−q′+1. The graph Hp,q(`) = H+ ⊕ H has parts of sizes p, q and
has (`− 1)(p− 1) + q edges. An example is depicted in Figure 1(b), where
the identified top and bottom vertices used in concatenations are shown as
square vertices.

By Lemma 2.1 and Example 2.2, the following is obvious.

Theorem 2.3. Let ` > 3, p = (` − 2)r + e and q = (` − 2)s + f , where
1 6 e 6 `− 2, 1 6 f 6 `− 2. If r < s, then

m(p, q, `) = (`− 1)(p− 1) + q.

Extremal graphs for excluded K2,` given in Example 2.2 are of the form of
a concatenation of r copies of K`−1,`−1 together with Ke,`−1 and K1,t where
t = q− (`− 2)(r + 1). Note that the latter graph itself is a concatenation of
copies of K1,2 and that the constituents concatenated in another order than
given in the example, are also extremal graphs. For an example, consider
the graph in Figure 1(c), which is also extremal for (p, q, `) = (5, 11, 5). Re-
arranging the order of concatenations is not the only way to obtain examples
of extremal graphs. What one can do is also using the following operation.
Delete a vertex in B of degree 1, replace it by a degree-1 vertex x adjacent
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Figure 1: (a) G9,10(5), (b) H5,11(5), (c) K1,4 ⊕K2,4 ⊕K1,2 ⊕K4,4

to any vertex ai ∈ A which is adjacent to two consecutive vertices bj and
bj+1, and put x between bj and bj+1 in the linear order of B. This gives
other extremal examples that cannot always be written as concatenations
of complete bipartite graphs.

And there is another operation that gives somewhat different extremal
examples. Suppose that G is an extremal graph for (p, q, `) with r < s as
above. If A contains a vertex ai of degree ` − 1 (by Theorem 2.3, degree
cannot be smaller since the deletion of that vertex would contradict the
theorem), then we can delete ai and obtain an extremal graph for (p−1, q, `).
The deletion of vertices of degrees `− 1 can be repeated. Or we can delete
any set of k vertices from A if they are incident to precisely k(`− 1) edges.

We now proceed with the much more difficult case, in which we have
b(p− 1)/(`− 2)c = b(q − 1)/(`− 2)c, i.e. r = s.

Example 2.4. Let ` > 3, p = (` − 2)r + e and q = (` − 2)r + f , where
1 6 e 6 ` − 2 and 1 6 f 6 ` − 2. Similarly as in Example 2.2, let G0 be
Ke,f and let Gi be a copy of K`−1,`−1 for 1 6 i 6 r. Let Gp,q(`) be the
concatenation G0⊕G1⊕ · · ·⊕Gr. This graph is K2,`-interval minor free. It
has parts of sizes p, q and has r`(`−2)+ef edges. An example is illustrated
in Figure 1(a).

Theorem 2.5. Let ` > 3, p = (` − 2)r + e and q = (` − 2)r + f , where
1 6 e 6 `− 2 and 1 6 f 6 `− 2. Then

m(p, q, `) = r`(`− 2) + ef.
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Proof. Since the graphs in Example 2.4 attain the stated bound, it suffices
to establish the upper bound, m(p, q, `) 6 r`(` − 2) + ef . Let (G;A,B)
be a bipartite graph with parts of sizes p, q and with m(p, q, `) edges. Let
A have ordering a1 < a2 < · · · < ap and B have ordering b1 < b2 <
· · · < bq. Note that any two consecutive vertices of G have at least one
common neighbour. Otherwise, by identifying two consecutive vertices with
no common neighbour lying say in A, we obtain a graph with parts of
sizes p− 1, q and with m(p, q, `) edges. This is a contradiction since clearly
m(p, q, `) > m(p− 1, q, `).

For 1 6 i 6 p− 1, let

Ai = {bj | ∃ i1 6 i < i2 such that ai1bj , ai2bj ∈ E(G)}.

Also let A′
i = Ai \ {bh}, where h is the smallest index for which bh ∈ Ai.

Since G is K2,`-interval minor free, |A′
i| 6 ` − 2. For each vertex bj ∈ B,

define

D(bj) = {ai | j is the smallest index such that ai is adjacent to bj},

and let d′(bj) = |D(bj)|. Every vertex in N(bj) \D(bj) is adjacent to bj and
also to some vertex bh ∈ B with h < j and hence

d(bj)− d′(bj) 6 `− 1 (1)

since G is K2,`-interval minor free. Let h and h′ be the smallest and largest
indices such that ah, ah′ ∈ N(bj)\D(bj), respectively. Observe that h′−h >
d(bj)−d′(bj)−1. We claim that bj appears in sets A′

h, A′
h+1, . . . , A

′
h′−1. Let

h 6 i < h′. Since bj is adjacent to ah and to ah′ , we have bj ∈ Ai. We
know that ah is adjacent to some vertex bj1 with j1 < j. Also ah′ is adjacent
to some vertex bj2 with j2 < j. Suppose that j1 6 j2. Now we use the
property that every two consecutive vertices of G have at least one common
neighbour for consecutive pairs of vertices bt, bt+1 (t = j1, . . . , j2 − 1). It
follows that there is j1 6 j0 6 j2 such that bj0 is in Ai. If j2 < j1, the same
property used for t = j2, . . . , j1 − 1 shows that there exists j0, j2 6 j0 6 j1,
such that bj0 ∈ Ai. Since j0 < j, from the definition of A′

i, we conclude that
bj ∈ A′

i. So we have proved the claim. We conclude that bj appears in sets
A′

h, A′
h+1, . . . , A

′
h+t−1 for some 1 6 h 6 p− 1 and t = d(bj)− d′(bj)− 1.

Let S = {i | 1 6 i 6 p − 1, i 6≡ 1, . . . , e − 1 (mod ` − 2)}. We have
|S| = r(` − 1 − e). By the conclusion in the last paragraph, each bj ∈ B
appears in at least d(bj) − d′(bj) − 1 consecutive sets A′

i. Combined with
(1), we conclude that bj appears in at least d(bj) − d′(bj) − 1 − (e − 1) of
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sets A′
i, where i ∈ S. Note that this number is negative for j = 1 since

d(b1) = d′(b1). Now it follows that

q∑
i=2

(d(bj)− d′(bj)− e) 6
∑
i∈S

|A′
i|. (2)

By adding d(b1) − d′(b1) to the left side of (2) and noting that
∑

j d(bj) =
|E(G)| and

∑
j d′(bj) = p, we obtain therefrom that

|E(G)| − p− eq + e 6 r(`− 1− e)(`− 2).

This in turn yields that |E(G)| 6 r`(`−2)+ef , which we were to prove.

Example 2.4 describes extremal graphs for Theorem 2.5. They are con-
catenations of complete bipartite graphs, all of which but at most one are
copies of K`−1,`−1. If e = 1 and f > 1, vertices of degree 1 can be inserted
anywhere between two consecutive neighbors of their neighbor in A. But in
all other cases, we believe that all extremal graphs are as in Example 2.4,
except that the order of concatenations can be different.

3 K2,2 as interval minor

In this section we determine the structure of K2,2-interval minor free bipar-
tite graphs. We first define two families of K2,2-interval minor free graphs.
For every positive integer n > 3, let A = {x, a1, . . . , an−1, z} and B =
{b1, y, b′2, b2, . . . , bn−1, b

′
n−1, t, bn} with ordering x < a1 < · · · < an−1 < z

and b1 < y < b′2 < b2 < · · · < b′n−1 < t < bn, respectively. Let Rn be the
bipartite graph with parts A,B and edge set

E(G) = {aibi, aibi+1 | 1 6 i 6 n− 1} ∪ {xy, a1b
′
2, an−1b

′
n−1, zt}.

Similarly we define a graph Sn for every integer n > 2. Let A = {x, a1, . . . ,
an−1, a

′
n−1, z, an} and B = {b1, y, b′2, b2, . . . , bn, t} with ordering x < a1 <

· · · < a′n−1 < z < an and b1 < y < b′2 < b2 < · · · < bn < t, respectively. Let
Sn be the bipartite graph with parts A,B and edge set

E(G) = {aibi, aibi+1 | 1 6 i 6 n− 1} ∪ {xy, a1b
′
2, a

′
n−1bn, zt, anbn}.

For instance, R5 and S4 are shown in Figure 2.

Lemma 3.1. For every positive integers p and q, we have m(p, q, 2) =
p + q − 1.
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Figure 2: The graphs R5 and S4.

Proof. By Lemma 2.1, m(p, q, 2) 6 p + q − 1. We construct K2,2-interval
minor free bipartite graphs with parts of sizes p, q and with p + q− 1 edges.
This is easy if p 6 4. So let 5 6 p 6 q. Consider Sp−3 and add edges
a1y, zbp−3. Also add q − p vertices into the set B, all of them ordered
between y and b′2, and join each of them to a1. The resulting graph has
parts of size p, q and has p + q − 1 edges.

In what follows we assume that (G;A,B) is a bipartite graph without
K2,2 as an interval minor. Let A and B have the ordering a1 < a2 < · · · < ap

and b1 < b2 < · · · < bq, respectively. A vertex in G of degree 0 is said to
be reducible. If d(ai) = 1 and the neighbor bj of ai is adjacent to ai−1 if
i > 1 and is adjacent to ai+1 if i < p, then ai is also said to be reducible.
Similarly we define when a vertex bj ∈ B is reducible. Clearly, if ai (or bj)
is reducible, then G has a K2,2-interval minor if and only if G− ai (G− bj)
has one. Therefore, we may assume that we remove all reducible vertices
from G. When G has no reducible vertices, we say that G is reduced, which
we assume henceforth.

Let X = {a1, a2} if d(a1) = 1 and X = {a1}, otherwise. Similarly,
let Y = {ap−1, ap} if d(ap) = 1 and Y = {ap}, otherwise; Z = {b1, b2}
if d(b1) = 1 and Z = {b1}, otherwise; T = {bq−1, bq} if d(bq) = 1 and
T = {bq}, otherwise. We may assume that all these sets are mutually
disjoint. Otherwise G has a simple structure – it is equivalent to a subgraph
of a graph shown in Figure 3 and any such graph has no K2,2 as interval
minor. Note that each such subgraph becomes equivalent to a subgraph of
R2 after removing reducible vertices.
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Figure 3: X and Y intersect only in special situations.

Claim 3.2. There is an edge from X to b1 or bq.

Proof. Suppose that there is no edge from X to {b1, bq}. Since G is reduced,
there are two distinct vertices bi and bj (1 < i < j < q) connected to
X. Assume that b1 and bq are adjacent to ak and al, respectively. Note
that ak, al 6∈ X. Consider the sets X, A \X, {b1, . . . , bi} and {bi+1, . . . , bq}
and identify them to single vertices to get K2,2 as an interval minor, a
contradiction.

Note that Claim 3.2 also applies to Y, Z and T . Hence, considering an
equivalent graph of G instead of G if necessary, we may assume that there is
an edge from X to Z. If there is no edge from Y to T , then there are edges
from Y to Z and from T to X. By reversing the order of B, we obtain an
equivalent graph that has edges from X to Z and from Y to T . Thus we
may assume henceforth that the following claim holds:

Claim 3.3. The graph G has edges from X to Z and from Y to T .

Claim 3.4. Every vertex of G has degree at most 2, except possibly one of
a2, b2 and/or one of ap−1, bq−1, which may be of degree 3. If d(a2) = 3,
then it has neighbors b1, b3, b4, we have d(a1) = d(b1) = d(b2) = 1 and
a1b2 ∈ E(G). Similar situations occur when b2, ap−1, or bq−1 are of degree
3.

Proof. Suppose that d(ai) ≥ 3. We claim that ai has at most one neighbour
in Z. Otherwise, |Z| ≥ 2 and hence d(b1) = 1 and aib1, aib2 ∈ E(G). This
is a contradiction since G is reduced. Similarly we see that ai has at most
one neighbour in T .

Suppose now that a middle neighbor bj of ai is in B \ (Z ∪ T ). Let bj1

and bj2 be neighbors of ai with j1 < j < j2. If d(bj) > 1, then an edge akbj
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(k 6= i), the edges joining X and Z and joining Y and T , and the edge aibj1

(if k < i) or aibj2 (if k > i) can be used to obtain a K2,2-interval minor.
Thus, d(bj) = 1.

Let us now consider bj−1. Suppose that bj−1 is not adjacent to ai. Then
j1 < j − 1. If bj−1 is adjacent to a vertex ak, where k < i, then the edges
aibj1 , akbj−1 and the edges joining X with Z and Y with T give rise to a
K2,2-interval minor in G (which is excluded), unless the following situation
occurs: the edge akbj−1 is equal to the edge joining X and Z. This is only
possible if j1 = 1, j = 3 and |Z| = 2, i.e., d(b1) = 1. If a1 is adjacent to b1

or to some other bt with t > 2, we obtain a K2,2-interval minor again. So,
it turns out that k = 1 and d(a1) = 1. If i > 2, then we consider a neighbor
of a2. It cannot be b2 since then a1 would be reducible. It can neither be b1

or bt with t > 2 since this would yield a K2,2-interval minor. Thus i = 2.
Similarly, a contradiction is obtained when k > i. (Here we do not

have the possibility of an exception as in the case when k = 1.) Thus, we
conclude that bj−1 is adjacent to ai or we have the situation that i = 2,
j = 3, etc. as described above. Similarly we conclude that bj+1 is adjacent
to ai unless we have i = p− 1, j = q− 2, etc. Note that we cannot have the
exceptional situations in both cases at the same time since then we would
have i = 2 = p − 1 and X ∩ Y would be nonempty. If aibj−1 and aibj+1

are both edges, then bj would be reducible, a contradiction. Thus, the only
possibility for a vertex of degree more than 2 is the one described in the
claim.

Claim 3.5. We have a1 adjacent to b1 or we have a1 adjacent only to b2

and b1 adjacent only to a2.

Proof. Suppose that a1b1 /∈ E(G). By Claim 3.3, X is adjacent to Z and Y
to T . If X is adjacent to a vertex bj /∈ Z and Z is adjacent to a vertex ai /∈ X,
then we have a K2,2-interval minor in G. Thus, we may assume that X has
no neighbors outside Z. Since a1b1 /∈ E(G), we have that a1b2 ∈ E(G). In
particular, d(a1) = 1 and d(b1) = 1. Then a2 ∈ X and b2 ∈ Z. Since G is
reduced, a2b2 /∈ E(G). Since all neighbors of X are in Z, we conclude that
a2 is adjacent to b1. This yields the claim.

The same argument applies to the bottom vertices.
We can now describe the structure of K2,2-interval minor free graphs. In

fact, we have proved the following theorem.

Theorem 3.6. Every reduced bipartite graph with no K2,2 as an interval
minor is equivalent to a subgraph of Rn or Sn for some positive integer n.
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A matching of size n is a 1-regular bipartite graph on 2n vertices. The
following should be clear from Theorem 3.6.

Corollary 3.7. For every integer n ≥ 4, there are exactly eight K2,2-interval
minor free matchings of size n. They form three different equivalence classes.

4 K3,` as interval minor

For K3,`-interval minors in bipartite graphs, we start in a similar manner as
when excluding K2,`. We first establish a simple upper bound, which will
later turn out to be optimal in the case when the sizes of the two parts are
not very balanced.

Lemma 4.1. For any integers ` ≥ 1 and p, q ≥ 2, we have

ex(p, q,K3,`) 6 (`− 1)(p− 2) + 2q.

Proof. Let (G;A,B) be a bipartite graph with parts of sizes p and q. Sup-
pose that A has ordering a1 < a2 < · · · < ap and B has ordering b1 < b2 <
· · · < bq. For 2 6 i 6 p− 1, let

Ai = {bj | aibj ∈ E(G),∃ i1 < i < i2 such that ai1bj , ai2bj ∈ E(G)}.

If G is K3,`-interval minor free, we have |Ai| 6 `− 1. Each bj ∈ B of degree
at least 2 appears in precisely d(bj) − 2 of the sets Ai, 2 6 i 6 p − 1. It
follows that

q∑
j=1

(d(bj)− 2) 6
p−1∑
i=2

|Ai|.

This gives |E(G)| 6 (`− 1)(p− 2) + 2q, as desired.

Let (G;A,B) and (G′;A′, B′) be disjoint ordered bipartite graphs. Let
ap−1, ap be the last two vertices in the linear order in A and let bq−1, bq be
the last two vertices in B. Denote by a′1, a

′
2 and b′1, b

′
2 the first two vertices

in A′ and B′, respectively. Let us denote by G ⊕2 G′ the ordered bipartite
graph obtained from G and G′ by identifying ap−1 with a′1, ap with a′2, bq−1

with b′1, and bq with b′2. The resulting ordered bipartite graph G ⊕2 G′ is
called the 2-concatenation of G and G′. We have a similar observation as
used earlier for K2,`-free graphs. If ap−1, ap and bq−1, bq form K2,2 in G and
a′1, a

′
2 and b′1, b

′
2 form K2,2 in G′, and r ≥ 3 and s ≥ 3, then G ⊕2 G′ is

Kr,s-interval minor free if and only if G and G′ are both Kr,s-interval minor
free.
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Example 4.2. Let ` > 4, p = (` − 3)r + e and q = (` − 3)s + f where
2 6 e 6 `− 2, 2 6 f 6 `− 2 and r < s. Let Kp,q(`) be the 2-concatenation
of Ke,`−1, r copies of K`−1,`−1 and K2,q−(`−3)(r+1). This graph has parts of
sizes p and q and has (`− 1)(p− 2) + 2q edges.

By Lemma 4.1 and Example 4.2, the following is clear.

Theorem 4.3. Let ` > 4, p = (` − 3)r + e and q = (` − 3)s + f where
2 6 e 6 `− 2, 2 6 f 6 `− 2 and r < s. Then

ex(p, q,K3,`) = (`− 1)(p− 2) + 2q.

We now consider the remaining cases, where both parts are “almost
balanced”, i.e., b(p− 2)/(`− 3)c = b(q − 2)/(`− 3)c.

Example 4.4. Let ` > 4, p = (` − 3)r + e and q = (` − 3)r + f where
2 6 e 6 `− 2 and 2 6 f 6 `− 2. Let Kp,q(`) be the 2-concatenation of Ke,f

and r copies of K`−1,`−1. This graph is K3,`-interval minor free, has parts
of sizes p and q, and has r(`− 3)(` + 1) + ef edges. It follows that

ex(p, q,K3,`) > r(`− 3)(` + 1) + ef.

We conjecture that this is in fact the exact value for ex(p, q,K3,`). Unfor-
tunately, we have not been able to adopt the proof of Theorem 2.5 for this
case.
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