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Abstract

AdigraphD = (V, A) is mediated if for each paiv, y of distinct vertices oD, eitherxy € A or
yx € A orthereis a vertex such that bothz, yz € A. For adigraphD, 4™ (D) is the maximum in-
degree of a vertex i®. Thenth mediation numben(n) is the minimum of4™ (D) over all mediated
digraphs om vertices. Mediated digraphs aph) are of interest in the study of quantum nonlocality.
We obtain a lower bound (n) for u(n) and determine infinite sequences of values &dr which
w(n) = f(n) andu(n) > f(n), respectively. We derive upper bounds fdr) and prove that(n) =
f(@m)(1+ o(1)). We conjecture that there is a constarguch thatu(n) < f(n) + ¢. Methods and
results of design theory and number theory are used.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The class of mediated digraphs defined later in this section was introduggdi]ias a
model in quantum mechanics. We define and study an extremal parameter of digraphs in
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Fig. 1. A mediated digrapi/ of order 6.

this class, thath mediation number. The parameter is of interest in the study of quantum
nonlocality.

The vertex (arc) set of a digraph will be denoted by (D) (A(D)). For a digraphD
andx # y € V(D), we say thak dominatesy if xy € A(D). All vertices that dominate
x arein-neighborsof x; the set of in-neighbors is denoted By (x). The number of
in-neighbors ofx is thein-degreeof x. The closed in-neighborhood ~[x] is defined as
follows: N~ [x]={x}U N~ (x). We denote the maximum in-degree of a vertex of a digraph
D by A~ (D). For standard terminology and notation on digraphs, see[2]g.,

A digraph D is mediatedf for every pairx, y of vertices there is a vertexsuch that
bothx, y € N™[z] (possiblyz = x or y). Tournaments, doubly regular digragi®] and
symmetric digraphs of diameter 2 are special families of mediated digrgjthsl is an
example of a mediated digraph.

The nth mediation numbep(n) is the minimum of4™ (D) over all mediated digraphs
onn vertices. This parameter is of interest in quantum mechanics as explained in the next
section.

The rest of the paper is organized as follows. Section 2 provides a motivation for the
study of mediated digraphs and thth mediation number. (One is not required to read
the section in order to understand the rest of the paper.) In Section 3, we obtain a lower
bound f (n) for u(n), which is proved to be sharp in the next two sections. Section 4 is
devoted to a characterization pfn) as an extremal parameter of special families of sets.
This allows us to use some results from design theory. Section 5 provides upper bounds for
u(n). We prove thati(n) = f (n) (1+0(2)), which is the central result of the paper and is of
importance for quantum nonlocality (see Section 2). In Section 6 we show(hat f(n)
for an infinite number of values af. We conjecture that, in fact, there is a constastich
that u(n) < f(n) + ¢ for eachn >1 and pose the problem of checking whetpét) is a
monotonically increasing function.

2. Mediated digraphs in quantum mechanics

Nonlocality is a fundamental, and curious, feature of quantum theory which confused
Einstein and continues to yield exciting results in physics (there are numerous popular
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explanations of nonlocality, a more technical review i$lii,3] one can find some of the
crucial early papersinthefield). The study of nonlocality is sometimes helped by considering
classical analogies: it was in this endeavor that mediated digraphs were discovered (see
[11]—in that paper mediated digraphs are called totally paired graphs). Consider two objects
which are connected and then suddenly sent to such widely separated locations that they can
no longer influence each other on relevant time scales. The results of local measurements on
each member of a pair of classical objects, which have been connected and separated in this
fashion, can be correlated, depending on their relationship when they were together. Perhaps,
when they were together, the objects exchanged some information, like a string of bits. The
rough edges of a sheet of paper torn in two remain correlated when the pieces are sent to
distantly separated locations: local measurements that are made on them are connected.
The correlations between the results of certain sets of local measurements on some pairs
of quantum objects, which have been connected and separated, cannot be explained by
allowing only an exchange of a bit string when they started together. If one studies the
probability distributions of the different possible outcomes of local measurements on sets
of quantum objects, for different local measurement settings, one cannot explain them by
common strings of information shared between the objects. This is an aspect of nonlocality.
Since, it is the case that measurements on quantum objects can show classical correlations
but the reverse is not true, there is a sense in which quantum objects have correlations
beyond allowed classical ones.

Nonlocality has been well studied for pairs of quantum objects but less work has been
undertaken for more than twi®,15]. Let i be some object which can be measured in
one of two ways but not both at once. For example, suppose we have an apparatus which
measures either the height or the width dbut not the two together. Lat < {0, 1} be the
measurements ofand leta; € {0, 1} be possible outcomes of this measurement. Itis natural
to hold that the way that an object is measured affects the result of a measurgmenty;)

(an object with height ‘0’ and width ‘1’ will yield a result ‘1’ when its width is measured

and ‘0’ otherwise). If the measurement events occur at space-like separated locations then
the way that another objecj, is measured elsewherg;, cannot affects; unless the
objects are exchanging information faster than light:a; (x;, x;) =a; (x;, (x;+1) mod 2

(a; is unaltered for any value af;).

A standard classical analogy for quantum nonlocality is as followqd {&}and references
therein). Classical separated objects are allowed to cheat and exchange information, faster
than light, about the way they are to be measured. In this case the outcomes of a measurement
on the objeci could indeed depend on the way the objgi$ measureds; = a; (x;, x;).

The correlations present in sets of quantum objects can now be classically approximated.
One can ask how many bits of information have to be exchanged between classical objects
in order to fool an experimentalist into thinking that he/she is measuring a quantum state.
The classical objects are given an extra property; their characteristics can depend on the way
other, distant, objects are measured. How much of this freedom is needed for one to allow in
order to produce scenarios which can have the same measurement results as measurements
of quantum objects?

In the scenario considered [ti1] (motivated by the structure of probability spaces)
each object (a vertex) knows how it is to be measured and can send this information to
other vertices (an arc from source vertex to target vertex). This information stays put on
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receipt and does not propagate around the graph: a vertex can only know the way an-
other vertex is to be measured by receiving an arc directly from that vertex (not via a
third party). The measurement results of vertices, given that their properties might now
depend on the way their neighbors are to be measured, are more general and now have
a chance to reproduce quantum correlations. It was shown that it is necessary that the
vertices be connected as a mediated digraph if they are to fool an experimentalist into
thinking that he/she is measuring a quantum state. Within this model, a certain topology
of communication is a necessary classical property in order to simulate sets of quantum
objects classically. Note that sufficiency was not shown and this is now being studied
(these digraphs are patterns of faster than light communication—however, this violation
of causality is not necessary and can be removed by a randomization pro¢edilre
Theorem 3).

Given thatn classical objects connected as any mediated digraph can sometimes be at
least as nonlocal as quantum mechanical objects, it is interesting to find out how ‘con-
nected’ these digraphs are. If the digraphs are good analogues of quantum nonlocality, then
their structure should inform us about quantum correlations. One would like to consider the
least connected members of the set of mediated digraphs—the least connected digraphs that
can still be at least as nonlocal as quantum states. In order to achieve this, one must have a
good measure of connectivity: we consider(D). If ann vertex digraph contains a vertex
which depends on the settings of lots of other vertiees;D) will be large: this defines a
highly nonlocal pattern—one vertex is highly correlated with many others. If all vertices in
a digraph are only connected to a few othets(D) will be small: such digraphs seem to
have a form of short-range nonlocality. Proving that, for athere are mediated digraphs
which haved™ (D) scaling with/n (Theorem 5.4 of this paper), shows that each object
need only be connected to a fraction of the set of objects whinimishesasn increases (as
1/./n). Asn increases there exists mediated digraphs in which each vertex becomes increas-
ingly localized with respect to the whole—this must be telling us something about quantum
nonlocality.

3. Lower bound for u(n)

For areal, let[x] denote the least integer not smaller thahet f (n) = {%(«/411 - 3-
1)7. The following proposition gives a lower bound fp(n), which is the exact value of
u(n) for infinitely many values of: (see Corollaries 4.5 and 5.2).

Proposition 3.1. For eachn > 1, we haveu(n) > f (n).

Proof. Let D be a mediated digraph and e 4™ (D). If D has just one vertex, the bound
holds, so we may assume that 2. By the definition of a mediated digraph, each paiy
of vertices ofD belongs to the closed in-neighborhood of some vertexdfetl, , ..., d,

be the in-degrees of vertices, vy, ..., v, of D. Since a vertex; has(dg) +d; pairs
of vertices in its closed in-neighborhood and sineehas overall(g) pairs of vertices,
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we have

2((%))=(2)

Therefore, we havd " ;((d,)? + d7)=n(n — 1). So,n(d? + d)=n(n — 1) andd >
%(«/471 — 3 —1) and the result follows by integrality of. [J

The digraphH in Fig. 1shows thaj(6) = 2. Indeed,f (6) =2 = 4" (H).

4. Families of sets andu(n)

Since we will heavily use the terminology and results of design theory, in this section
we characterizeu(n) in terms of special families of sets. Symmetric families, 2-covering
families and families having a system of distinct representatives are of significant interest
in the theory and applications of combinatorics, see, pi@,12]

We consider families of subsets of a finite $etUsing block-design terminology, we
call the elements ok pointsand the subsets df blocks Let.7 = {X3, Xo,..., X,,} bea
family. An m-tuple S = (x1, x2, .. ., x;,) is asystem of distinct representatii&DR if all
points of§ are distinct and; € X; foreachi =1, 2, ..., m. A family % is symmetridf
m = |X|. Afamily # is 2-coveringif, for each pairj, k € X, there existg € {1, 2, ..., m}
such that;j, k} C X;.

Let[n]=1{1,2,...,n}. Let mcard#) be the maximum cardinality of a block ii. We
call # mediatedf it is symmetric, 2-covering and has an SDR. luet(n) be the minimum
mcard.# ) over all mediated families ofx].

We have the following:

Proposition 4.1. For eachn > 1, u(n) = u~(n) — 1.

Proof. Let D be a mediated digraph on vertida$ with A~ (D) = u(n). By the definition of
a mediated digraph, the family” = {N~[i] : i € [n]}is 2-covering. Clearly1, 2, ..., n)
is an SDR of/". Thus,./" is mediated ang™ (n) < u(n) + 1.
Let# ={X1, X2, ..., X, } be a mediated family ofn] with mcard %) = 4~ (n). Since
Z has an SDR (since it is mediated), without loss of generality, we may assume that
i € X;. Construct a digrapl® with V(D) = [r] andN~[i] = X;. SinceZ is 2-covering,
D is mediated andi(n) <u~(n) — 1. This inequality andu™ (n) <u(n) + 1 imply that
pn)y=p (n)—1. 0O

Letn > k>2 andZ>1 be integers. A family7 = {X4, Xo, ..., X;} of blocks onX is
called an(n, k, 2)-designf | X| =n, each block hak points and every pair of distinct points
is contained in exactlyl blocks. An(n, k, 1)-design issymmetridf it has n blocks, i.e.,
b =n. A projective plane of ordeq is a symmetridg? + ¢ + 1, ¢ + 1, 1)-design for some
integerg > 1. For a familyZ of blocks and a point, letd (i) denote the number of blocks
containingi.
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The following two theorems are well-known, see, €/4,6,12]
Theorem 4.2. For each prime powey, there exists a projective plane of ordgr

Theorem 4.3. LetY = {X1, X2, ..., X,} be a family of subsets ¢1, 2, ..., n} and letr
be a natural number such thgX;| =d(i)=r foreachi =1, 2, ..., n. Then¥ has an SDR

The last theorem can be used to prove the following:
Proposition 4.4. Every symmetri¢n, k, 2)-design is a mediated family of blocks

Proof. Let# = {X1, X2, ..., Xp} be an(n, k, A)-design onX, | X| = n. It is well-known
(see, e.g.[4,6]) that, for all such designs, there is a constarsiuch thatr = d(i) for
each pointi. The parameters, k, 4, b andr also satisfy the following two equalities:
bk(k — 1) = in(n — 1) andr(k — 1) = A(b — 1). Assume that# is symmetric. Using =n
and the two equalities, we easily conclude thatk. It now follows from Theorem 4.3 that
Z has a SDR. Sincé is symmetric and 2-covering.& 1), # is mediated. O

Now we are ready to compute an infinite number of values(oj.
Corollary 4.5. For each prime powey, u(g? +q +1) = f(¢° +q + 1) =q.

Proof. Let n = g2 + g + 1. By Theorem 4.2 and Propositions 3.1 and 4.4, we have
f(n) <pm) = p (n) — 1<q. However, one can trivially verify that(n) = ¢. O

5. Upper bounds for u(n)

Theorem 5.1. Letn = g2+ ¢ +1+m(g+ 1) —t, whereg is a prime powerl<m <gq +1
and0<t<q. Thenu(n)<q + m.

Proof. By Theorem 4.2, there exists a projective plaiieof orderg. Sincell is a symmetric
(¢°+q + 1, g + 1, 1)-design,IT hasqg? + ¢ + 1 blocks and;? + g + 1 points, each block
hasg + 1 points and every point is containedgnt- 1 blocks.

Let P be the set of points i/, letx be a point inlT and letBy, B, ..., B,+1 be the
blocks of IT which containx.

Let W = {w1, wo,...,w,} be a set of extra points outside the plahk Let
Z={z1,22, ..., Zmg—1} be asubset a1 UByU- - -UB,, —{x}. LetZ' ={z}, 25, .. ., 23—}
such that(P U W) N Z' = @. Sincell is a design withl = 1, a pointz in Z is contained
in exactly one of the block81, B, ..., B;41, which we denoteB ;). We will now define
n new blocks on the se§ = P U W U Z’, such that every pair of points ifibelong to a
new block and no block contains more thaa 1+ m points. We will also see that the new
family of blocks has an SDR.

First, addW to all blocksB1, Bo, ..., B,+1. Then add’ to all blocks oflT which contain
z but notx, for all z € Z. We include all extended and unextended blocks fi@rto our
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new family of blocks. We thus have a setg@f+ ¢ + 1 blocks. We now add the following
m + | Z| blocks.

0;i=Wul{deZ:zeZnB;, fori=212...,m.

For everyz € Z let R, = (B — {z}) U {Z'}.

By Proposition 4.4]1 has an SDR. Thus, the new blocks apart from thedast | Z|
blocks have an SDR consisting of points from P. This SDR can be extended to an SDR for
all new blocks by adding points frof¥ for blocks Q; andZ’ for blocksR,.

We will consider all possible pairg, f in S and show that for each there is a block
containingx andf3. This will prove that the new family of blocks that we have constructed
is 2-covering. We consider all possible casesxgf as follows.

Casel:a=a € P.

(i) If f=b € P, then some block contains battendb, asa, b € P, all pairsinP are in

a block ofI1, and we have either kept untouched or extended the blockis of

(i) If p=b'€Z —d (ifa¢ Z,a’ =), thena andd’ both lie in some block, because of
the following argument. Some block must contain bo#mndb, and if this block does
not containx, then we have addéd to this block, and if it does contain thena and
b’ both lie in the blocksk,.

(iii) If p=b"=da’, thena andb’ both lie in all blocks containing except theB; U W's.

(iv) If f=w € W, thena andw both lie in some blockB; U W since the sets of points
By, By, ..., Byy1 include all points inll (each of these sets hast- 1 points, and the
unique common point).

Case2:a=w € W.

(i) If p=0b e W, thenw andb both lie in all blocksB; U W.
(i) If p=b" € Z', thenw andd’ both lie in some bloclQ; .

Case3:a=d’ € Z' andff =b' € Z'. Thena’ andb’ both lie in some block, because of
the following argument. Some block must contain betindb, and if this block does not
containx, then we have added bathandb’ to this block, and if it does contain, thena’
andb’ both lie in one of the blockg);.

To complete the proof it suffices to show that no new block has size greaterthbi m.
(This puts an upper bound on the maximum cardinality of the blocks and so an upper bound
on u~(n).) This is clearly true for allQ;, R, and all B; U W. Now the proof follows
because no block dff not in the se{By, By, ..., B,1} contains more tham points from
BiUBU---UB,. U

Corollary 5.2. Letg be aprime power. fis aninteger such that?+¢+2 <s < ¢%+2¢+2,
thenu(s) = f(s) =q + 1.

Proof. Let s be an integer such thaf + ¢ + 2<s<¢? + 2¢ + 2. By Theorem 5.1 for
m =1, u(s)<g + 1. By Proposition 3.1¢ + 1> u(s) > f(s) > f (g% + ¢ + 2). Thus, it
suffices to show thaft (g% + ¢ + 2) = ¢ + 1, which is easily verifiable. O
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The following number-theoretical result was provedlh

Theorem 5.3. There is a realxg such that for allx > xg the interval[x, x + x*], where
o = 0.525,contains prime numbers

The last two assertions imply the following:
Theorem 5.4. We haveu(n) = f(n)(1+ o(1)).

Proof. Let n be sufficiently large. Letp and ¢ be a pair of consecutive primes such
that p2 + p + 1<n<qg?+q + 1, and letd = ¢2 + ¢ — p? — p. By Theorem 5.1,
un)<p+T7d/(p+1)].By Theorem5.3¢g — p< p*. Thusd=(g+p+1)(g—p)<3px
p*=3pr. So,u(n) < p 4+ 3p* + 1= p(L+0o(1) = f(p? + p + DA+ 0o(D) < [ (n)
(1+o0(1). O

We believe that the following holds for a small constant
Conjecture 5.5. There is a constant such thatu(n) < f(n) + ¢ for eachn.

If this conjecture holds, we would like to know the smallest value. of

To obtain another upper bound fatn) we will use the notion of a cyclie-difference
cover that extends that of a cycli@, k, A)-difference set (se@4,12]). A subsetD =
{d1,d>, ..., di} of Z, is called ecyclicn-difference coveif the collection of valued; —d;
(mod n) contains every element df,, at least once. In the rest of this section, all op-
erations with elements of,, are taken modula. Forc € Z,, letc + D ={c + d :
d € D}. The family devD = {¢ + D : ¢ € Z,} of n blocks is called thelevelopment
of D.

Proposition 5.6. If there exists a cyclim-difference coverD = {di, do, ..., di}, then
um) <k — 1.
Proof. Let D ={d1, do, ..., d;} be a cyclicn-difference cover. Consider dév. Clearly,

devD is symmetric and has an SDRy,d1 + 1, ...,n — 1+ d1).

For an arbitrary pais, b of distinctelementsi#,,,a—b € Z,,. Thus, there aré;, d; € D
suchthatl, —dj =a —b. Leta=c+d;, b ="+ d;, wherec, ¢’ € Z,. The last three
equalities implyc = ¢’. Thereforea andb are both inc + D. Hence, dew is 2-covering
and, thus, mediated. So, by Proposition 4®) <k —1. O

Using a computer search the author§®1.8] determined the leagt= k(n) such that
there is a cyclim-difference covefds, do, . .., d;} foreachn € {3,4,5, ..., 133}. These
results show that(n) — f(n) <1 forn <133 which provides some support to Conjecture
5.5. However, for large values of the bound in Proposition 5.6 may not be of much value
since no upper bound ditn) of the form./n(1+ o(1)) seems to be known (s¢g, where
the boundk(n) <+/1.5n + 6 was proved) and perhaps the bourtd) < /n(1 + 0(1)) is
simply not true.
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6. When u(n) > f(n)

Corollaries 4.5 and 5.2 may prompt some to suspectibat= f(n) holds for each
n > 1. However, this is not the case.

One of the best known conjectures in combinatorics is that a projective plane does not
exist if g is not a prime power. The celebrated Bruck—Ryser thed&n(see also, e.g.,
[6]) proves that if a projective plane of ordgiexists, wherey = 1 or 2 (mod 4), themwy is
the sum of two squares of integers. This gives infinitely many valugsfof which there
is no projective plane of order (for example, every number = 2p, wherep is a prime
congruent to 3 mod 4). The fact that there are infinitely many primes congruent to 3 mod 4
follows from the famous Dirichlet’s theorem: every arithmetic progression with common
difference relatively prime to the initial term contains infinitely many prime numbers (see,
e.g.,[14]). The above implies the following:

Theorem 6.1. There are infinitely many positive integer$or which there is no projective
plane of orderg.

The nonexistence of a projective plane of order 10, which does not follow from the
Bruck—Ryser theorem, was proved[iB].

Theorem 6.2. Ifthere is no projective plane of ordgt thenu(g?+q+1) > f(g°+q+1).

Proof. Let g be an integer such that there is no projective plane of agfdand letn =
g%+ g + 1. Suppose that(n) = f(n). Observe thaif (n) = g. Thus, by Proposition 4.1,
wmy=fm)+1=qg+1 Let¥={L,,Lo,...,L,} beamediated family of subsets of
[n]1=1{1,2,...,n}with mcard ¥) =q + 1.

We will obtain a contradiction by showing tha must be a projective plane. By the
choice ofn, it suffices to prove thgt; N L ;| =1, forall 1<i < j<n and|L;| =¢ + 1 for
eachi € [n].

Define Q as follows,Q = {{i, j, Lx} : {i, j} € Lk, k € [n]}. Observe thaL; contains
|Lk|(|Lx| — 1)/2 pairs of distinct points, spQ| = Y ;_;|Lk|(|Lx| — 1)/2. SinceZ is
mediated, every pair of points j will appear at least once i@, so|Q|>n(n — 1)/2. As
|Ly|<g + 1for everyk € [n], we have the following:

(@+Dq _ < ILel(ILel = 1) nn—1  (¢+1yg
> = > = i
n=— /;1 5 101> = n=—y

This implies that we must have equality everywhere, and thys= ¢ + 1 for each
ke[nland|L;NL;|=1forall 1<i < j<n. O

This theorem and Theorem 6.1 imply the following:
Corollary 6.3. For an infinite number of values af u(n) > f(n).

The following problem is of certain interest.
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Problem 6.4. Is u(n) < u(n + 1) for eachn?
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