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Abstract

A digraphD = (V ,A) is mediated if for each pairx, y of distinct vertices ofD, eitherxy ∈ A or
yx ∈ A or there is a vertexz such that bothxz, yz ∈ A. For a digraphD,�−(D) is the maximum in-
degree of a vertex inD. Thenth mediation number�(n) is the minimum of�−(D) over all mediated
digraphs onn vertices. Mediated digraphs and�(n) are of interest in the study of quantum nonlocality.
We obtain a lower boundf (n) for �(n) and determine infinite sequences of values ofn for which

�(n)= f (n) and�(n)>f (n), respectively. We derive upper bounds for�(n) and prove that�(n)=
f (n)(1+ o(1)). We conjecture that there is a constantc such that�(n)�f (n) + c. Methods and
results of design theory and number theory are used.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The class of mediated digraphs defined later in this section was introduced in[11] as a
model in quantum mechanics. We define and study an extremal parameter of digraphs in
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Fig. 1. A mediated digraphH of order 6.

this class, thenth mediation number. The parameter is of interest in the study of quantum
nonlocality.
The vertex (arc) set of a digraphD will be denoted byV (D) (A(D)). For a digraphD

andx �= y ∈ V (D), we say thatx dominatesy if xy ∈ A(D). All vertices that dominate
x are in-neighborsof x; the set of in-neighbors is denoted byN−(x). The number of
in-neighbors ofx is the in-degreeof x. Theclosed in-neighborhoodN−[x] is defined as
follows:N−[x]= {x}∪N−(x). We denote the maximum in-degree of a vertex of a digraph
D by�−(D). For standard terminology and notation on digraphs, see, e.g.,[2].
A digraphD is mediatedif for every pairx, y of vertices there is a vertexz such that

bothx, y ∈ N−[z] (possiblyz = x or y). Tournaments, doubly regular digraphs[10] and
symmetric digraphs of diameter 2 are special families of mediated digraphs.Fig. 1 is an
example of a mediated digraph.
Thenthmediation number�(n) is the minimum of�−(D) over all mediated digraphs

onn vertices. This parameter is of interest in quantum mechanics as explained in the next
section.
The rest of the paper is organized as follows. Section 2 provides a motivation for the

study of mediated digraphs and thenth mediation number. (One is not required to read
the section in order to understand the rest of the paper.) In Section 3, we obtain a lower
boundf (n) for �(n), which is proved to be sharp in the next two sections. Section 4 is
devoted to a characterization of�(n) as an extremal parameter of special families of sets.
This allows us to use some results from design theory. Section 5 provides upper bounds for
�(n). We prove that�(n)=f (n)(1+o(1)),which is the central result of the paper and is of
importance for quantum nonlocality (see Section 2). In Section 6 we show that�(n)>f (n)
for an infinite number of values ofn. We conjecture that, in fact, there is a constantc such
that�(n)�f (n) + c for eachn�1 and pose the problem of checking whether�(n) is a
monotonically increasing function.

2. Mediated digraphs in quantum mechanics

Nonlocality is a fundamental, and curious, feature of quantum theory which confused
Einstein and continues to yield exciting results in physics (there are numerous popular
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explanations of nonlocality, a more technical review is in[17,3] one can find some of the
crucial earlypapers in thefield).Thestudyofnonlocality is sometimeshelpedbyconsidering
classical analogies: it was in this endeavor that mediated digraphs were discovered (see
[11]—in that papermediateddigraphsare called totally pairedgraphs).Consider twoobjects
which are connected and then suddenly sent to suchwidely separated locations that they can
no longer influence each other on relevant time scales. The results of local measurements on
eachmember of a pair of classical objects, which have been connected and separated in this
fashion, canbecorrelated, dependingon their relationshipwhen theywere together.Perhaps,
when they were together, the objects exchanged some information, like a string of bits. The
rough edges of a sheet of paper torn in two remain correlated when the pieces are sent to
distantly separated locations: local measurements that are made on them are connected.
The correlations between the results of certain sets of local measurements on some pairs
of quantum objects, which have been connected and separated, cannot be explained by
allowing only an exchange of a bit string when they started together. If one studies the
probability distributions of the different possible outcomes of local measurements on sets
of quantum objects, for different local measurement settings, one cannot explain them by
common strings of information shared between the objects. This is an aspect of nonlocality.
Since, it is the case that measurements on quantum objects can show classical correlations
but the reverse is not true, there is a sense in which quantum objects have correlations
beyond allowed classical ones.
Nonlocality has been well studied for pairs of quantum objects but less work has been

undertaken for more than two[8,15]. Let i be some object which can be measured in
one of two ways but not both at once. For example, suppose we have an apparatus which
measures either the height or the width ofi, but not the two together. Letxi ∈ {0,1} be the
measurements ofi and letai ∈ {0,1} be possible outcomes of thismeasurement. It is natural
to hold that theway that an object ismeasured affects the result of ameasurement:ai=ai(xi)
(an object with height ‘0’ and width ‘1’ will yield a result ‘1’ when its width is measured
and ‘0’ otherwise). If the measurement events occur at space-like separated locations then
the way that another object,j , is measured elsewhere,xj , cannot affectai unless the
objects are exchanging information faster than light:ai=ai(xi, xj )=ai(xi, (xj +1) mod2)
(ai is unaltered for any value ofxj ).
Astandardclassical analogy forquantumnonlocality isas follows (see[16]and references

therein). Classical separated objects are allowed to cheat and exchange information, faster
than light, about theway theyare to bemeasured. In this case theoutcomesof ameasurement
on the objecti could indeed depend on the way the objectj is measured:ai = ai(xi, xj ).
The correlations present in sets of quantum objects can now be classically approximated.
One can ask how many bits of information have to be exchanged between classical objects
in order to fool an experimentalist into thinking that he/she is measuring a quantum state.
The classical objects are given an extra property; their characteristics can depend on theway
other, distant, objects aremeasured. Howmuch of this freedom is needed for one to allow in
order to produce scenarios which can have the same measurement results as measurements
of quantum objects?
In the scenario considered in[11] (motivated by the structure of probability spaces)

each object (a vertex) knows how it is to be measured and can send this information to
other vertices (an arc from source vertex to target vertex). This information stays put on
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receipt and does not propagate around the graph: a vertex can only know the way an-
other vertex is to be measured by receiving an arc directly from that vertex (not via a
third party). The measurement results of vertices, given that their properties might now
depend on the way their neighbors are to be measured, are more general and now have
a chance to reproduce quantum correlations. It was shown that it is necessary that the
vertices be connected as a mediated digraph if they are to fool an experimentalist into
thinking that he/she is measuring a quantum state. Within this model, a certain topology
of communication is a necessary classical property in order to simulate sets of quantum
objects classically. Note that sufficiency was not shown and this is now being studied
(these digraphs are patterns of faster than light communication—however, this violation
of causality is not necessary and can be removed by a randomization procedure[11]
Theorem 3).
Given thatn classical objects connected as any mediated digraph can sometimes be at

least as nonlocal asn quantum mechanical objects, it is interesting to find out how ‘con-
nected’ these digraphs are. If the digraphs are good analogues of quantum nonlocality, then
their structure should inform us about quantum correlations. One would like to consider the
least connectedmembers of the set of mediated digraphs—the least connected digraphs that
can still be at least as nonlocal as quantum states. In order to achieve this, one must have a
good measure of connectivity: we consider�−(D). If ann vertex digraph contains a vertex
which depends on the settings of lots of other vertices,�−(D) will be large: this defines a
highly nonlocal pattern—one vertex is highly correlated with many others. If all vertices in
a digraph are only connected to a few others,�−(D) will be small: such digraphs seem to
have a form of short-range nonlocality. Proving that, for anyn, there are mediated digraphs
which have�−(D) scaling with

√
n (Theorem 5.4 of this paper), shows that each object

need only be connected to a fraction of the set of objects whichdiminishesasn increases (as
1/

√
n). Asn increases there existsmediated digraphs inwhich each vertex becomes increas-

ingly localized with respect to the whole—this must be telling us something about quantum
nonlocality.

3. Lower bound for �(n)

For a realx, let�x denote the least integer not smaller thanx. Letf (n)=�12(
√
4n− 3−

1). The following proposition gives a lower bound for�(n), which is the exact value of
�(n) for infinitely many values ofn (see Corollaries 4.5 and 5.2).

Proposition 3.1. For eachn�1,we have�(n)�f (n).

Proof. LetD be amediated digraph and letd=�−(D). If D has just one vertex, the bound
holds, so we may assume thatn�2. By the definition of a mediated digraph, each pairx, y

of vertices ofD belongs to the closed in-neighborhood of some vertex. Letd−
1 , d

−
2 , . . . , d

−
n

be the in-degrees of verticesv1, v2, . . . , vn of D. Since a vertexvi has
(
d−
i
2

)
+ d−

i pairs

of vertices in its closed in-neighborhood and sinceD has overall
(
n
2

)
pairs of vertices,
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we have

n∑
i=1

((
d−
i

2

)
+ d−

i

)
�

(
n

2

)
.

Therefore, we have
∑n

i=1((d
−
i )

2 + d−
i )�n(n − 1). So,n(d2 + d)�n(n − 1) andd�

1
2(

√
4n− 3− 1) and the result follows by integrality ofd. �

The digraphH in Fig. 1shows that�(6)= 2. Indeed,f (6)= 2= �−(H).

4. Families of sets and�(n)

Since we will heavily use the terminology and results of design theory, in this section
we characterize�(n) in terms of special families of sets. Symmetric families, 2-covering
families and families having a system of distinct representatives are of significant interest
in the theory and applications of combinatorics, see, e.g.,[4,6,12].
We consider families of subsets of a finite setX. Using block-design terminology, we

call the elements ofX pointsand the subsets ofX blocks. LetF= {X1, X2, . . . , Xm} be a
family. Anm-tupleS = (x1, x2, . . . , xm) is asystem of distinct representatives(SDR) if all
points ofS are distinct andxi ∈ Xi for eachi = 1,2, . . . , m. A family F is symmetricif
m=|X|. A family F is 2-coveringif, for each pairj, k ∈ X, there existsi ∈ {1,2, . . . , m}
such that{j, k} ⊆ Xi .
Let [n] = {1,2, . . . , n}. Let mcard(F) be the maximum cardinality of a block inF. We

callFmediatedif it is symmetric, 2-covering and has an SDR. Let�−(n) be the minimum
mcard(F) over all mediated families on[n].
We have the following:

Proposition 4.1. For eachn�1,�(n)= �−(n)− 1.

Proof. LetD be amediated digraph on vertices[n]with�−(D)=�(n). By the definition of
a mediated digraph, the familyN= {N−[i] : i ∈ [n]} is 2-covering. Clearly,(1,2, . . . , n)
is an SDR ofN. Thus,N is mediated and�−(n)��(n)+ 1.
LetF= {X1, X2, . . . , Xn} be a mediated family on[n] with mcard(F)= �−(n). Since

F has an SDR (since it is mediated), without loss of generality, we may assume that
i ∈ Xi . Construct a digraphD with V (D)= [n] andN−[i] = Xi . SinceF is 2-covering,
D is mediated and�(n)��−(n) − 1. This inequality and�−(n)��(n) + 1 imply that
�(n)= �−(n)− 1. �

Let n>k�2 and��1 be integers. A familyF = {X1, X2, . . . , Xb} of blocks onX is
called an(n, k, �)-designif |X|=n, each block hask points and every pair of distinct points
is contained in exactly� blocks. An(n, k, �)-design issymmetricif it has n blocks, i.e.,
b= n. A projective plane of orderq is a symmetric(q2 + q + 1, q + 1,1)-design for some
integerq >1. For a familyF of blocks and a pointi, let d(i) denote the number of blocks
containingi.
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The following two theorems are well-known, see, e.g.,[4,6,12].

Theorem 4.2. For each prime powerq, there exists a projective plane of orderq.

Theorem 4.3. LetS = {X1, X2, . . . , Xn} be a family of subsets of{1,2, . . . , n} and letr
be a natural number such that|Xi |=d(i)= r for eachi=1,2, . . . , n.ThenS has an SDR.

The last theorem can be used to prove the following:

Proposition 4.4. Every symmetric(n, k, �)-design is a mediated family of blocks.

Proof. LetF = {X1, X2, . . . , Xb} be an(n, k, �)-design onX, |X| = n. It is well-known
(see, e.g.,[4,6]) that, for all such designs, there is a constantr such thatr = d(i) for
each pointi. The parametersn, k, �, b and r also satisfy the following two equalities:
bk(k− 1)= �n(n− 1) andr(k− 1)= �(b− 1). Assume thatF is symmetric. Usingb= n

and the two equalities, we easily conclude thatr = k. It now follows from Theorem 4.3 that
F has a SDR. SinceF is symmetric and 2-covering (��1),F is mediated. �

Now we are ready to compute an infinite number of values of�(n).

Corollary 4.5. For each prime powerq, �(q2 + q + 1)= f (q2 + q + 1)= q.

Proof. Let n = q2 + q + 1. By Theorem 4.2 and Propositions 3.1 and 4.4, we have
f (n)��(n)= �−(n)− 1�q. However, one can trivially verify thatf (n)= q. �

5. Upper bounds for�(n)

Theorem 5.1. Letn=q2+q+1+m(q+1)− t ,whereq is a prime power, 1�m�q+1
and0� t�q. Then�(n)�q +m.

Proof. ByTheorem4.2, thereexistsaprojectiveplane,�, of orderq. Since� is asymmetric
(q2 + q + 1, q + 1,1)-design,� hasq2 + q + 1 blocks andq2 + q + 1 points, each block
hasq + 1 points and every point is contained inq + 1 blocks.
Let P be the set of points in�, let x be a point in� and letB1, B2, . . . , Bq+1 be the

blocks of� which containx.
Let W = {w1, w2, . . . , wm} be a set of extra points outside the plane�. Let

Z={z1, z2, . . . , zmq−t } be a subset ofB1∪B2∪· · ·∪Bm−{x}. LetZ′={z′1, z′2, . . . , z′mq−t }
such that(P ∪W) ∩ Z′ = ∅. Since� is a design with� = 1, a pointz in Z is contained
in exactly one of the blocksB1, B2, . . . , Bq+1, which we denoteB�(z). We will now define
n new blocks on the setS = P ∪W ∪ Z′, such that every pair of points inS belong to a
new block and no block contains more thanq+1+m points. We will also see that the new
family of blocks has an SDR.
First, addW to all blocksB1, B2, . . . , Bq+1. Then addz′ to all blocks of�which contain

z but notx, for all z ∈ Z. We include all extended and unextended blocks from� to our
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new family of blocks. We thus have a set ofq2 + q + 1 blocks. We now add the following
m+ |Z| blocks.

Qi =W ∪ {z′ ∈ Z′ : z ∈ Z ∩ Bi}, for i = 1,2, . . . , m.

For everyz ∈ Z letRz = (B�(z) − {z}) ∪ {z′}.
By Proposition 4.4,� has an SDR. Thus, the new blocks apart from the lastm + |Z|

blocks have an SDR consisting of points from P. This SDR can be extended to an SDR for
all new blocks by adding points fromW for blocksQi andZ′ for blocksRz.
We will consider all possible pairs�,� in S and show that for each there is a block

containing� and�. This will prove that the new family of blocks that we have constructed
is 2-covering. We consider all possible cases for�,� as follows.
Case1: � = a ∈ P .

(i) If � = b ∈ P , then some block contains botha andb, asa, b ∈ P , all pairs inP are in
a block of�, and we have either kept untouched or extended the blocks of�.

(ii) If � = b′ ∈ Z′ − a′ (if a /∈Z, a′ = ∅), thena andb′ both lie in some block, because of
the following argument. Some block must contain botha andb, and if this block does
not containx, then we have addedb′ to this block, and if it does containx, thena and
b′ both lie in the blocksRb.

(iii) If � = b′ = a′, thena andb′ both lie in all blocks containinga except theBi ∪W ’s.
(iv) If � = w ∈ W , thena andw both lie in some blockBi ∪W since the sets of points

B1, B2, . . . , Bq+1 include all points in� (each of these sets hasq + 1 points, and the
unique common pointx).

Case2: � = w ∈ W .

(i) If � = b ∈ W , thenw andb both lie in all blocksBi ∪W .
(ii) If � = b′ ∈ Z′, thenw andb′ both lie in some blockQi .

Case3: � = a′ ∈ Z′ and� = b′ ∈ Z′. Thena′ andb′ both lie in some block, because of
the following argument. Some block must contain botha andb, and if this block does not
containx, then we have added botha′ andb′ to this block, and if it does containx, thena′
andb′ both lie in one of the blocksQi .
To complete the proof it suffices to show that no newblock has size greater thanq+1+m.

(This puts an upper bound on themaximum cardinality of the blocks and so an upper bound
on �−(n).) This is clearly true for allQi , Rz and allBi ∪ W . Now the proof follows
because no block of� not in the set{B1, B2, . . . , Bq+1} contains more thanm points from
B1 ∪ B2 ∪ · · · ∪ Bm. �

Corollary 5.2. Letq beaprimepower. Ifs is an integer such thatq2+q+2�s�q2+2q+2,
then�(s)= f (s)= q + 1.

Proof. Let s be an integer such thatq2 + q + 2�s�q2 + 2q + 2. By Theorem 5.1 for
m = 1, �(s)�q + 1. By Proposition 3.1,q + 1��(s)�f (s)�f (q2 + q + 2). Thus, it
suffices to show thatf (q2 + q + 2)= q + 1, which is easily verifiable. �
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The following number-theoretical result was proved in[1].

Theorem 5.3. There is a realx0 such that for allx >x0 the interval[x, x + x�], where
� = 0.525,contains prime numbers.

The last two assertions imply the following:

Theorem 5.4.We have�(n)= f (n)(1+ o(1)).

Proof. Let n be sufficiently large. Letp and q be a pair of consecutive primes such
that p2 + p + 1�n<q2 + q + 1, and letd = q2 + q − p2 − p. By Theorem 5.1,
�(n)�p+�d/(p+1).By Theorem 5.3,q−p�p�. Thus,d= (q+p+1)(q−p)�3p×
p� = 3p1+�. So,�(n)�p + 3p� + 1= p(1+ o(1)) = f (p2 + p + 1)(1+ o(1))�f (n)
(1+ o(1)). �

We believe that the following holds for a small constantc:

Conjecture 5.5. There is a constantc such that�(n)�f (n)+ c for eachn.

If this conjecture holds, we would like to know the smallest value ofc.
To obtain another upper bound for�(n) we will use the notion of a cyclicn-difference

cover that extends that of a cyclic(n, k, �)-difference set (see[4,12]). A subsetD =
{d1, d2, . . . , dk} ofZn is called acyclicn-difference coverif the collection of valuesdi −dj
(mod n) contains every element ofZn at least once. In the rest of this section, all op-
erations with elements ofZn are taken modulon. For c ∈ Zn, let c + D = {c + d :
d ∈ D}. The family devD = {c + D : c ∈ Zn} of n blocks is called thedevelopment
of D.

Proposition 5.6. If there exists a cyclicn-difference coverD = {d1, d2, . . . , dk}, then
�(n)�k − 1.

Proof. LetD = {d1, d2, . . . , dk} be a cyclicn-difference cover. Consider devD. Clearly,
devD is symmetric and has an SDR(d1, d1 + 1, . . . , n− 1+ d1).
For an arbitrary paira, b of distinct elements inZn,a−b ∈ Zn. Thus, there aredi, dj ∈ D

such thatdi − dj = a − b. Let a = c + di, b = c′ + dj , wherec, c′ ∈ Zn. The last three
equalities implyc = c′. Therefore,a andb are both inc +D. Hence, devD is 2-covering
and, thus, mediated. So, by Proposition 4.1,�(n)�k − 1. �

Using a computer search the authors of[9,18] determined the leastk = k(n) such that
there is a cyclicn-difference cover{d1, d2, . . . , dk} for eachn ∈ {3,4,5, . . . ,133}. These
results show that�(n)− f (n)�1 for n�133, which provides some support to Conjecture
5.5. However, for large values ofn, the bound in Proposition 5.6 may not be of much value
since no upper bound onk(n) of the form

√
n(1+o(1)) seems to be known (see[7], where

the boundk(n)�
√
1.5n + 6 was proved) and perhaps the boundk(n)�√

n(1+ o(1)) is
simply not true.
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6. When�(n)>f (n)

Corollaries 4.5 and 5.2 may prompt some to suspect that�(n) = f (n) holds for each
n�1. However, this is not the case.
One of the best known conjectures in combinatorics is that a projective plane does not

exist if q is not a prime power. The celebrated Bruck–Ryser theorem[5] (see also, e.g.,
[6]) proves that if a projective plane of orderq exists, whereq ≡ 1 or 2 (mod4), thenq is
the sum of two squares of integers. This gives infinitely many values ofq for which there
is no projective plane of orderq (for example, every numberq = 2p, wherep is a prime
congruent to 3 mod4). The fact that there are infinitely many primes congruent to 3 mod4
follows from the famous Dirichlet’s theorem: every arithmetic progression with common
difference relatively prime to the initial term contains infinitely many prime numbers (see,
e.g.,[14]). The above implies the following:

Theorem 6.1. There are infinitely many positive integersq for which there is no projective
plane of orderq.

The nonexistence of a projective plane of order 10, which does not follow from the
Bruck–Ryser theorem, was proved in[13].

Theorem 6.2. If there is no projective plane of orderq, then�(q2+q+1)> f (q2+q+1).

Proof. Let q be an integer such that there is no projective plane of orderq, and letn =
q2 + q + 1. Suppose that�(n)= f (n). Observe thatf (n)= q. Thus, by Proposition 4.1,
�−(n)= f (n)+ 1= q + 1. LetL= {L1, L2, . . . , Ln} be a mediated family of subsets of
[n] = {1,2, . . . , n} with mcard(L)= q + 1.
We will obtain a contradiction by showing thatL must be a projective plane. By the

choice ofn, it suffices to prove that|Li ∩Lj | = 1, for all 1� i < j�n and|Li | = q + 1 for
eachi ∈ [n].
DefineQ as follows,Q = {{i, j, Lk} : {i, j} ⊆ Lk, k ∈ [n]}. Observe thatLk contains

|Lk|(|Lk| − 1)/2 pairs of distinct points, so|Q| = ∑n
k=1|Lk|(|Lk| − 1)/2. SinceL is

mediated, every pair of pointsi, j will appear at least once inQ, so|Q|�n(n− 1)/2. As
|Lk|�q + 1 for everyk ∈ [n], we have the following:

n
(q + 1)q

2
�

n∑
k=1

|Lk|(|Lk| − 1)

2
= |Q|� n(n− 1)

2
= n

(q + 1)q

2
.

This implies that we must have equality everywhere, and thus|Lk| = q + 1 for each
k ∈ [n] and|Li ∩ Lj | = 1 for all 1� i < j�n. �

This theorem and Theorem 6.1 imply the following:

Corollary 6.3. For an infinite number of values ofn, �(n)>f (n).

The following problem is of certain interest.
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Problem 6.4. Is �(n)��(n+ 1) for eachn?
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