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Abstract

We unify several seemingly different graph and digraph classes under one um-
brella. These classes are all, broadly speaking, different generalizations of interval
graphs, and include, in addition to interval graphs, adjusted interval digraphs, com-
plements of threshold tolerance graphs (known as ‘co-TT’ graphs), bipartite interval
containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal
ray bigraphs. (The last three classes coincide, but have been investigated in different
contexts.) We show that all of the above classes are united by a common ordering
characterization, the existence of a min ordering. However, because the presence
or absence of reflexive relationships (loops) affect whether a graph or digraph has
a min ordering, to obtain this result, we must define the graphs and digraphs to
have those loops that are implied by their definitions. These have been largely ig-
nored in previous work. We propose a common generalization of all these graph
and digraph classes, namely signed-interval digraphs, characterized by the existence
of a compact representation, a signed-interval model, which is a generalization of
known representations of the graph classes. We show that the signed-interval di-
graphs are precisely those digraphs that are characterized by the existence of a min
ordering when the loops implied by the model are considered part of the graph.
We also offer an alternative geometric characterization of these digraphs. We show
that co-TT graphs are the symmetric signed-interval digraphs, the adjusted interval
digraphs are the reflexive signed-interval digraphs, and the interval graphs are the
intersection of these two classes, namely, the reflexive and symmetric signed-interval
digraphs. 1

1 Introduction

A digraph H is reflexive if each vv ∈ E(H), v ∈ V (H) (every vertex in H has a loop);
irreflexive if no vv ∈ E(H) (no vertex in H has a loop); and symmetric if ab ∈ E(H)
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Figure 1: An interval graph and corresponding interval model. There is an implicit loop
at each vertex.

implies ba ∈ E(H). In this paper, we shall treat both graphs and digraphs; for simplicity
we view graphs as symmetric digraphs. (Thus, graphs can have loops, and irreflexive
graphs are loopless.)

A graph H is an interval graph if it is the intersection graph of a family of intervals
on the real line, i.e., if there exists a family of intervals {[xv, yv]|v ∈ V (H)} such that
uv ∈ E(H) if and only if [xu, yu]∩ [xv, yv] 6= ∅. The family of intervals is an interval model
of H. (See Figure 1.) Similarly, a graph is a circular-arc graph if it is the intersection
graph of a family of arcs on the circle.

A graph H is a threshold tolerance graph [34] if each vertex v can be assigned a weight
wv and a tolerance tv so that ab is an edge of H if and only if wa + wb > min(ta, tb).
(When all tv are equal, this defines a better known class of threshold graphs [6].) Those
graphs that are the complements of threshold tolerance graphs, the co-threshold tolerance
graphs (“co-TT” graphs) have also been shown to be those graphs that are representable
with a generalization of an interval model, called a co-TT model. Details are given in the
next section.

A generalization of interval models to directed graphs is the class of adjusted-interval
digraphs [13], where each vertex has a source interval and a sink interval that share a
common left endpoint, and for two vertices x and y, xy is a directed edge if the source
interval of x intersects the sink interval of y. We discuss the model in more detail in the
next section; an illustration is given in Figure 4. An interval model can be seen as the
special case where the source interval for each vertex is equal to the sink interval for that
vertex, necessitating only one interval to represent both.

Henceforth, we will let K denote the matrix rows are 01 and 10 and let L denote the
matrix whose rows are 01 and 11 (See Figure 2). Let M , A, and B be matrices. M is
A-free if A is not the submatrix of M induced by any subset of its rows and columns,
and it is {A,B}-free if it is A-free and B-free. A min ordering of a digraph H is a linear
ordering < of the vertices of H, so that ab ∈ E(H), a′b′ ∈ E(H) and a < a′, b′ < b implies
that ab′ ∈ E(H) [13] (cf. also [19]). In other words, a min ordering is an ordering of the
vertices such that when the rows and columns of the adjacency matrix are ordered in this
way, it is {K,L}-free.
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Figure 2: A min ordering of a digraph is an ordering of the vertices such that neither of
the depicted submatrices K and L occurs in the corresponding adjacency matrix.

The presence or absence of loops (1’s on the diagonal of the adjacency matrix) can
affect whether the graph has a min ordering. It was pointed out in [13] that when loops
are added to every vertex of an interval graph, it has a min ordering. (Equivalently,
its augmented adjacency matrix has a min ordering.) This is equivalent to stating that
the graph is considered to be reflexive. Note that the characterization of interval graphs
implies that they are reflexive, since an interval intersects itself. Similarly, the model of
adjusted interval digraphs implies that they are reflexive, since a vertex’s source interval
intersects its sink interval at their shared left endpoint.

In this paper, we observe that a co-TT model of a co-TT graph implies that some
vertices have loops and others do not. This issue has been ignored in the previous literature
on the class. In the present paper, we show that when the loops that are implied by a
co-TT model of the graph are included, it is min-orderable. A relationship between co-TT
graphs and min orderings has not been previously recognized.

The main goal of this paper is to promote a common generalization of all of these
classes by combining elements of adjusted interval models and co-TT models, to obtain
what we will call a signed-interval model of a digraph. We call the class of graphs that
are representable with a signed-interval model the signed-interval digraphs. The signed-
interval model implies which vertices have loops and which do not. We show that when
the implied loops are included in the digraph, it has a min ordering. We show that class
of signed-interval digraphs is equal to the class of digraphs that have a min ordering,
giving a characterization of the min orderable digraphs in terms of representability with
a signed-interval model.

Thus, the interval graphs, co-TT graphs, and adjusted interval digraphs are subclasses
of the class of signed-interval digraphs. We show that interval graphs are exactly the
subclass of signed-interval digraphs that are symmetric and reflexive, the co-TT graphs
are the subclass that are symmetric, and the adjusted interval digraphs are the subclass
that are reflexive. This implies that the class of interval graphs is the intersection of the
class of adjusted interval digraphs and the class of co-TT graphs (see Figure 3).

A uniform orientation of bipartite graph G is the digraph that results from selecting a
bipartition {A,B} of G and orienting all of its edges from A to B. Note that the uniform
orientations of bipartite graphs are the class of irreflexive digraphs where every vertex is
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Figure 3: A: The class of signed-interval digraphs, which is equal to the class of min
orderable digraphs. B: The class of co-TT graphs, which is equal to the class of symmetric
min orderable digraphs. C: The class of adjusted interval digraphs, which is equal to the
class of reflexive min orderable digraphs. D: The class of interval graphs, equal to the
class of symmetric and reflexive min orderable digraphs, and equal to the intersection of
the co-TT graphs and the adjusted interval digraphs.

a source or sink. We show that the uniform orientations of G are signed-interval digraphs
if and only if G is the complement of a circular-arc graph.

It follows from [11, 29, 36] that the class of bipartite graphs that are complements of
circular-arc graphs is equal to the class of interval containment bigraphs and to the class of
two-directional orthogonal-ray bigraphs, defined below. Because the uniform orientations
of these bipartite graphs are irreflexive, their uniform orientations are disjoint from the
adjusted interval digraphs, hence disjoint from the interval graphs. Because they are
antisymmetric, their intersection with the co-TT graphs is trivial: it is the class of edgeless,
loopless digraphs, the only loopless digraphs that are both symmetric and antisymmetric.

Let Γ be the two-by-two matrix whose rows are 11 and 10. A graph is strongly chordal
if its vertices can be ordered so that its augmented adjacency matrix has no submatrix
that is a Γ. That is, it is Γ-free. This is equivalent to the proposition that its augmented
adjacency matrix can be ordered so that it is L-free. since reversing the ordering of a
Γ-free matrix gives an L-free matrix and vice-versa. Though the relationship of co-TT
graphs to min orderings has not previously been recognized, it is well known that co-TT
graphs are strongly chordal [34]. Our characterization of interval graphs as the reflexive,
symmetric signed-interval digraphs is equivalent to the characterization that they are the
reflexive min-orderable graphs.

A preliminary version of these results appeared in [22].

2 Previous work

Interval graphs are important in graph theory and in applications, and are distinguished
by several elegant characterizations and efficient recognition algorithms [3, 10, 14, 16, 20,
31, 38]. One attempt to extend the concept to digraphs is given in [37], but many of
the desirable structural properties are absent. More recently, the more restricted class
of adjusted interval digraphs has been found to offer a nicer generalization of interval
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Figure 4: An adjusted interval digraph and a corresponding adjusted interval model. The
source interval for each vertex is the upper one.

graphs [13]. Recall that digraph H is an adjusted interval digraph if there are two families
of real intervals, the source intervals {[xv, yv]|v ∈ V (H)} and the sink intervals and
{[xv, zv]|v ∈ V (H)} such that uv ∈ E(H) if and only if the source interval for u intersects
the sink interval for v. (See Figure 4.) This differs from the class in [37] in that the left
endpoint, xv, must be shared by the two intervals [xv, yv] and [xv, zv] assigned to v; they
are “adjusted.” An adjusted interval model of H is a set of source and sink intervals that
represent H in this way.

An interval model of an interval graph G can be viewed as two mappings {v → xv|v ∈
V (H)} and {v → yv|v ∈ V (H)} such that xv ≤ yv for each v ∈ V (H), and such that
uv ∈ E(H) if and only if yv ≤ xu and yu ≤ xv; [xv, yv] is the interval corresponding to v.
The constraint xv ≤ yv comes from the need for [xv, yv] to be an interval. The proposition
that two intervals intersect is the same as the proposition (xv ≤ yu and xu ≤ yv), since
this means that neither interval lies entirely to the right of the other.

A generalization of interval models is obtained by dropping the constraint xv ≤ yv
for each v ∈ V (H) in this formulation, while retaining the constraint that uv is and
edge if and only if xv ≤ yu and xu ≤ yv. Recall that a graph H is a threshold tolerance
graph [34] if each vertex v can be assigned a weight wv and a tolerance tv so that for
all a, b ∈ V (H), ab is an edge of H if and only if wa + wb > min(ta, tb). and the co-TT
graphs are the complements of threshold tolerance graphs. A graph H is a co-TT graph,
if there exist real numbers xv, yv, v ∈ V (H), such that ab ∈ E(H) if and only if xa ≤ yb
and xb ≤ ya [18]. This differs from the definition of interval graphs in that it is no longer
required that xv ≤ yv, illustrating the motivation for dropping the constraint in this case.
(See Figure 5.) That these are precisely the co-TT graphs is easily seen by letting xv = wv

and yv = tv − wv. The two mappings v → xv and v → yv, are called the co-TT model of
H.

One view of a co-TT model is that there are now intervals whose ‘beginning,’ xv, may
come after their ‘end,’ yv. In other words, we may have ‘intervals’ [xv, yv] with yv < xv.
We may view a co-TT model as consisting of intervals [xv, yv], v ∈ V (H), some of which
go in the positive direction (have xv ≤ yv) and others go in the negative direction (have
xv > yv). We speak of positive or negative intervals, and positive or negative vertices that
correspond to them. (In the literature [15, 18, 23, 34], the direction is denoted by colors
of the intervals: positive intervals, and vertices, are colored blue, and negative intervals,
and vertices, are colored red.)

The definition of adjacency in a co-TT model implies that two positive vertices are
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adjacent if and only if they intersect; in particular, each positive vertex has a loop.
Two negative vertices are never adjacent; in particular negative vertices have no loops.
Finally, a positive vertex u corresponding to a positive interval [a, b] and a negative vertex
v corresponding to a negative interval [c, d] are adjacent if and only if [d, c] is contained
in [a, b] (i.e., a ≤ d ≤ c ≤ b).

We emphasize that our definition of co-TT graphs differs from the standard definition
[15, 18, 34]. In the standard definition, the condition ab ∈ E(H) ⇐⇒ xa ≤ yb and xb ≤ ya
is applied only for a 6= b, ignoring the issue of loops. We generalize the condition to the
case where a = b, which can require that some of the vertices have loops. Thus, a graph
under the standard interpretation is co-TT if and only if with a suitable addition of loops
it is co-TT under our definition above. It is not necessary to know a co-TT model of the
graph in order to convert a co-TT graph without loops into one satisfying our definition
in linear time. The closed neighborhood of a vertex x, denoted N [x], consists of x and
its neighbors. Two vertices are true twins if they have identical closed neighborhoods. A
vertex is simplicial if its closed neighborhood induces a complete subgraph. It was shown
in [16] that if a graph H is co-TT (in the standard sense), then it has a co-TT model
with negative intervals for all simplicial vertices without true twins and all other intervals
positive. Thus, there is an easy translation between the co-TT graphs as defined here and
the standard irreflexive co-TT graphs, namely, loops may be placed on all vertices other
than simplicial vertices that have no true twins. A linear-time algorithm is given in [15]
for performing this operation.

Note that the interval graphs are those co-TT graphs that have a co-TT model where
all vertices are positive. In other words, they are the reflexive co-TT graphs.

Adjacency on a set of intervals can also be defined by interval containment. A graph
is a containment graph of intervals [17] if there is a family of intervals {[xv, yv]|v ∈ V (H)}
on the real line such that uv ∈ E(H) if and only if one of [xu, yu] and [xv, yv] contains the
other. A graph is a containment graph of intervals if and only if it and its complement
are both transitively orientable, thus if and only if it is a permutation graph [17].

A concept related to interval graphs for bipartite graphs is as follows. A bipartite
graph H with parts A,B is an interval bigraph if there are intervals {[xa, ya], a ∈ A}, and
{[xb, yb], b ∈ B}, such that for a ∈ A and b ∈ B, ab ∈ E(H) if and only if [xa, ya]∩[xb, yb] 6=
∅. Such a set of intervals is known as an interval bigraph model of the graph. For this
paper, a more relevant class is a bipartite version of this concept. A bipartite graph H
with parts A,B is an interval containment bigraph [21, 29] if there are sets of intervals
{Ia|a ∈ A}, and {Jb|b ∈ B}, such that ab ∈ E(H) if and only if Jb ⊆ Ia. These graphs have
been independently studied from the point of view of another geometric representation,
defined as follows [36]. A bipartite graph H with parts A and B is called a two-directional
orthogonal ray bigraph if there exists a set {Ua, a ∈ A} of upwards vertical rays, and a set
{Rb, b ∈ B} of horizontal rays to the right such that ab ∈ E(H) if and only if Ua∩Rb 6= ∅.
It is known that a bipartite graph is an interval containment bigraph if and only if its
complement is a circular arc graph [11, 29] (and thus if and only if it is a two-directional
orthogonal ray bigraph).

For notational convenience, we will let a bipartite interval containment digraph, a
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Figure 5: A co-TT graph and a corresponding co-TT model; ab is an edge since 1 ≤ 10
and 3 ≤ 8, ad is an edge since 1 ≤ 2 and 7 ≤ 8. However, bd is not an edge: although
7 ≤ 10, 3 is not less than or equal to 2. The example of this figure is one of the well-known
minimal graphs that are not interval graphs, illustrating that the interval graphs are a
proper subclass of the co-TT graphs.

bipartite interval digraph, or a two-directional orthogonal ray bigraph denote a uniform
orientation of an interval containment bigraph, interval bigraph, or two-directional or-
thogonal ray bigraph, respectively.

Matrices that can be permuted to avoid small submatrices have been of much interest
[1, 30, 32]. This of course corresponds to characterizations of digraphs by forbidden
ordered subgraphs [7, 24]. Our focus is on {K,L}-free matrices. A relationship between
this and the previous work is described in Section 6.

3 Signed-interval digraphs and min orderings

We have now seen extensions of interval graphs in two different directions. First, taking
two (adjusted) intervals instead of just one interval extends them to a class of digraphs.
Second, by admitting negative intervals extends them to a broader class of (symmetric)
graphs. Both these generalizations have proved very fruitful [10, 13, 15, 28, 18, 23, 34].

We now define a new class of digraphs that unifies these extensions, by assigning
a source vertex and a sink vertex to each vertex, as in the adjusted interval model,
and allowing these intervals to be either positive or negative, as in the co-TT model. In
particular, a signed-interval model is obtained in by assigning, for each v ∈ V (H), a source
interval [xv, yv] and a sink interval [xv, zv], such that it is not required that yv, zv ≥ xv,
and uv ∈ E(H) if and only if xu ≤ zv and xv ≤ yu. A graph is a signed-interval digraph
if it can be modeled in this way. (See Figure 6.) Alternatively, a signed-interval model
consists of three mappings from V (H) to the real line, v → xv, v → yv, and v → zv, such
that uv ∈ E(H) if and only if xu ≤ zv and xv ≤ yu. Since it is possible that xv > yv
and/or xv > zv, each of [xv, yv] and [xv, zv] can be negative or positive. Since the source
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Figure 6: A signed-interval digraph and a corresponding signed-interval model. The
source interval for each vertex is the upper one. There is a loop at a because its positive
source interval intersects its positive sink interval. There is an edge from a to b because
a’s positive source interval contains b’s negative sink interval, an edge from b to c because
b’s positive source interval intersects c’s positive sink interval, and an edge from d to c
because d’s negative source interval is contained in c’s positive sink interval.

interval and sink interval for v share the endpoint xv, we retain the property that the
intervals are adjusted.

Let H be a signed-interval digraph and consider a signed-interval model of H given
by the ordered pairs (Iv, Jv) of intervals where Iv = [xv, yv] and Jv = [xv, zv]. For α, β ∈
{+,−}, we say a vertex v is of type (α, β) if Iv is an α-interval and Jv is a β-interval. The
subdigraph of H induced by (+,+)-vertices is an adjusted interval digraph. The (−,−)-
vertices of H form an independent set. The arcs between the (+,−)- and (−,−)-vertices
form a bipartite interval containment digraph. The arcs between the (−,+)- and (−,−)-
vertices also form a bipartite interval containment digraph. Similar properties hold for
the other parts and their connections.

It has previously been recognized that interval graphs, adjusted interval digraphs, and
two-directional orthogonal ray digraphs have min orderings when care is taken to specify
which vertices have loops and which do not [10, 13, 25, 36].

Min orderings are a useful tool for graph homomorphism problems. A homomorphism
of a digraph G to a digraph H is a mapping f : V (G)→ V (H) such that f(u)f(v) ∈ E(H)
whenever uv ∈ E(G). Digraph homomorphism problems are a special case of constraint
satisfaction problems. A general tool for solving polynomial time solvable constraint
satisfaction problems are the so-called polymorphisms [4]. Without going into the tech-
nical details, we mention that min-orderings are equivalent to conservative semilattice
polymorphisms [13]. In particular, if a digraph H has a min ordering, there is a simple
polynomial-time algorithm to decide if a given input graph G admits a homomorphism
to a fixed digraph H [19, 26]. In fact, the algorithm is well known in the AI community
as the arc-consistency algorithm [4, 26]; it is easy to see that it also solves list homo-
morphism problems, where we seek a homomorphism of input G to fixed H taking each
vertex of G to one of a ‘list’ of allowed images [10, 11, 12, 13]. In fact, many (but not all)
homomorphism and list homomorphism problems that can be solved in polynomial time
can be solved using arc-consistency with respect to a min ordering.
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Figure 7: In a min-ordered matrix; v is the last out-neighbor O(u) of u in the ordering
and y is the last in-neighbor I(x) of x in the ordering. The absence of an edge from u to x
would violate the min ordering property, since rows u, y and columns x, v would contain
one of the matrices of Figure 2.

The main result of this section is the following.

Theorem 3.1. A digraph admits a min ordering if and only if it is a signed-interval
digraph.

Before embarking on the proof we offer an alternate definition of a min ordering.
Consider any linear ordering < of V (H). To this ordering, we prepend an intial element
α, which is a place holder and not a vertex. Thus, α < x for each vertex x. Suppose
the adjacency matrix is ordered according to <. For a vertex u, We denote by O(u)
the last vertex v (in the order <), such that v is an out-neighbor of u, or α if a has no
out-neighbor. (See Figure 7.) Similarly, for each vertex x, we denote by I(x) the last
vertex y such that y is an in-neighbor of x, or α if a has no in-neighbor.

Proposition 3.2. A linear ordering < of V (H) is a min ordering of a digraph H if
and only if the following property holds:

ux ∈ E(H) if and only if u ≤ I(x) and x ≤ O(u).

Proof. (See Figure 7.) Suppose first that < is a min ordering of H with α prepended. If
ux ∈ E(H), then by the definition of O(u), I(x) we have u ≤ I(x) and x ≤ O(u). On
the other hand, let u ≤ I(x) and x ≤ O(u). Note that if u = I(x) or x = O(u) we have
ux ∈ E(H) also by definition. Therefore it remains to consider vertices u, x such that
u < y = I(x) and x < v = O(u). Then uv, yx ∈ E(H) and the min ordering property
implies that ux ∈ E(H). This proves the property.

Conversely, assume that < is a linear ordering of V (H) with α prepended and that
the property holds for <. We claim it is a min ordering of H. Otherwise some ab ∈
E(H), a′b′ ∈ E(H), a < a′, b′ < b would have ab′ 6∈ E(H). This is a contradiction, since
we have a < a′ ≤ I(b′) and b′ < b ≤ O(a).

We proceed to prove the theorem.
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Proof. Suppose < is a min ordering of a digraph H with α prepended. We represent
each vertex v ∈ V (H) by the mappings v → v, v → O(v), v → I(v). In other words,
v is represented by the two intervals [v,O(v)] and [v, I(v)]. It follows from Proposition
3.2 that ab ∈ E(H) if and only if a ≤ I(b) and b ≤ O(a). Thus, H is a signed-interval
digraph.

Conversely, suppose we have the three mappings v → xv, v → yv, v → zv from V (H)
to the real line, such that ab ∈ E(H) if and only if xa ≤ zb and xb ≤ ya. Without loss of
generality we may assume the points {xv|v ∈ V (H)} are all distinct. Then we claim that
the left to right ordering of the points xv yields a min ordering < of H, with a real point
preceding these points corresponding to α. (Specifically, we define a < b if and only if xa
precedes xb.) Consider now ab ∈ E(H), a′b′ ∈ E(H), with a < a′, b′ < b. This means that
xa < xa′ ≤ zb′ and xb′ < xb ≤ ya, whence we must have ab′ ∈ E(H).

In the construction of the proof, a vertex v is assigned a positive source interval if
O(v) > v and a negative one otherwise, and a positive sink interval if I(v) > v and a
negative one otherwise. By Proposition 3.2, if both of v’s intervals are positive, v requires
a loop, and it cannot have a loop if at least one of its intervals is negative.

4 An alternate geometric representation of signed-

interval digraphs

Digraphs that admit a min ordering have another geometric representation. Let C be a
circle with two distinguished points (the poles) N and S, and let H be a digraph. Let
Iv, v ∈ V (H) and Jv, v ∈ V (H) be two families of arcs on C such that each Iv contains
N but not S, and each Jv contains S but not N . We say that the families Iv and Jv are
consistent if they have the same clockwise order of their clockwise ends, i.e., the clockwise
end of Ia precedes in the clockwise order the clockwise end of Ib if and only if the clockwise
end of Ja precedes in the clockwise order the clockwise end of Jb. Suppose two families
Iv, Jv are consistent; we define an ordering < on V (H) where a < b if and only if the
clockwise end of Ia precedes in the clockwise order the clockwise end of Ib; we call < the
ordering generated by the consistent families Iv, Jv.

A bi-arc model of a digraph H is a consistent pair of families of circular arcs, Iv, Jv, v ∈
V (H), such that ab ∈ E(H) if and only if Ia and Jb are disjoint. A digraph H is called a
bi-arc digraph if it has a bi-arc model.

Theorem 4.1. A digraph H admits a min ordering if and only if it is a bi-arc digraph.

Proof. Suppose Iv, Jv form a bi-arc model of H. We claim that the ordering < generated
by Iv, Jv is a min ordering of H. Indeed, suppose a < a′ and b′ < b have ab, a′b′ ∈ E(H).
Then Ia′ spans the area of the circle between N and the clockwise end of Ia, and Jb
spans the area of the circle between S and the clockwise end of Jb′ . (See Figure 1.) This
implies that Ia and Jb′ are disjoint: indeed, the counterclockwise end of Ia is blocked from
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Figure 8: Illustration for the proof of Theorem 4.1

reaching Jb′ by Jb (since ab ∈ E(H)), and the counterclockwise end of Jb′ is blocked from
reaching Ia by Ia′ (since a′b′ ∈ E(H)). (The clockwise ends are fixed by the ordering <.)

Conversely, suppose < is a min ordering of H. We construct families of arcs Iv and Jv,
with v ∈ V (H), as follows. The intervals Iv will contain N but not S, the intervals Jv will
contain S but not N . The clockwise ends of Iv are arranged in clockwise order according
to <, as are the clockwise ends of Jv. The counterclockwise ends will now be organized
so that Iv, Jv, v ∈ V (H), becomes a bi-arc model of H. For each vertex v ∈ V (H), we
define O(v) and I(v) as in the proof of Theorem 1. Then we assign the counterclockwise
endpoint of Iv to be N if v has no out-neighbors, or else extend Iv counterclockwise as
far as possible without intersecting JO(v), and assign the the counterclockwise endpoint
of each Jv to be S if v has no in-neighbors, or else extend Jv counterclockwise as far
as possible without intersecting II(v). We claim this is a bi-arc model of H. Clearly, if
b > O(a), then Ia intersects Jb by the construction, and similarly for a > I(b) we have
Jb intersecting Ia. This leaves disjoint all pairs Ia, Jb such that a ≤ I(b) and b ≤ O(a);
since aO(a), I(b)b ∈ E(H), the definition of min ordering implies that ab ∈ E(H), as
required.

Corollary 4.2. The following statements are equivalent for a digraph H.

• H has a min ordering

• H is a signed-interval digraph

• H is a bi-arc digraph.

5 Bipartite graphs

Definition 5.1. A bipartite graph G is a signed-interval bigraph if some uniform
orientation H of G is a signed-interval digraph.

We will show below that if some uniform orientation of a bipartite graph G is a signed-
interval digraph, then so is every uniform orientation. If G is a signed-interval bigraph,
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then a signed-interval model of a uniform orientation H of G gives a representation of G:
ab is an undirected edge of G if and only if one of ab and ba is an edge of H.

Note that this a signed-interval bigraph is not necessarily a signed-interval digraph in
the sense given previously, where no orientation is imposed.

The bi-adjacency matrix of a bipartite graph G with parts A,B has its i, j-th entry
equal to 1 if and only if the i-th vertex in A is adjacent to the j-th vertex in B. Note
that for this interpretation it is not required that the matrix be square.

Definition 5.2. A 0-1 matrix has a bipartite min ordering if it has an independent
permutation of rows and columns that is {K,L}-free.

Lemma 5.3. A bipartite graph G = (A,B,E) is a signed-interval bigraph if and only
if its bi-adjacency matrix has a bipartite min ordering.

Proof. Let C be a bi-adjacency matrix of a bipartite graph G, where A is its rows and B
is its columns. Let H be a uniform orientation of G from A to B. An n × n adjacency
matrix M for H can be obtained by moving the rows of A to the first |A| rows of M ,
the columns of B in the last |B| columns, and placing zeros elsewhere. Permuting the
columns in A, does not change M , since they only contain zeros. Similarly, permuting
the rows in B does not change M .

Suppose an independent permutation πA of rows and πB of columns of C produces
a {K,L}-free matrix. The symmetric permutation πA of both rows and columns of A
and a symmetric permutation πB of both rows and columns of B produces a {K,L}-free
ordering of M .

Conversely, suppose H is a signed-interval digraph. There is a symmetric permutation
of rows and columns of its adjacency matrix M that is {K,L}-free. Moving the rows in
A to the first |A| positions without changing their relative order and moving the columns
of |B| to the last |B| positions without changing their relative order gives a {K,L}-free
independent permutation of C in the first |A| rows and last |B| columns.

Theorem 5.4. The following statements are equivalent for a bipartite graph H.

• H is a signed-interval bigraph;

• H is a two-directional orthogonal ray bigraph;

• the complement of H is a circular arc graph

• H is an interval containment bigraph.

Proof. The equivalence of the last three classes follows from a combination of results from
[11, 29, 36]. We complete the theorem by showing the equivalence, for bipartite graphs,
of the signed-interval bigraphs and the two-directional orthogonal ray bigraphs. (Cf. also
[25] where the second statement is shown equivalent to the existence of a min ordering.)

Suppose H has a signed-interval model given by the three mappings v → xv, v →
yv, v → zv such that ab ∈ E(H) if and only if xa ≤ zb and xb ≤ ya. We construct a
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two-directional ray model for H as follows. For each a ∈ A, we take an upwards vertical
ray starting in the point Pa with x-coordinate equal to ya and with y-coordinate equal
to xa. For each b ∈ B, we take a horizontal ray to the right, starting in the point Qb

with x-coordinate xb and y-coordinate zb. Now Pa intersects Qb if and only if xb ≤ ya and
xa ≤ zb, i.e., if and only if ab ∈ E(H) as required.

Now suppose that H has a two-directional model, i.e., upwards vertical rays Ua, a ∈ A,
and horizontal rays to the right Rb, b ∈ B, such that ab ∈ E(H) if and only if Ua∩Rb 6= ∅.
We will prove that H has a min ordering, whence it is a signed-interval digraph by
Theorem 3.1. We will define the orders < on A and on B as follows. Assume the starting
point of the vertical ray Ua has the (x, y)-coordinates (ua, va), and the starting point of
the horizontal ray Rb has the (x, y)-coordinates (rb, sb), for a ∈ A, and b ∈ B. It is easy
to see that we may assume, without loss of generality, that all ua, a ∈ A, and rb, b ∈ B
are distinct, and similarly for va, a ∈ A and sb, b ∈ B. We define a < a′ in A if and only if
va < v′a, and define b < b′ in B if and only if rb < rb′ . We show that this is a min ordering
of the bipartite digraph H. Otherwise, some ab ∈ E(H), a′b′ ∈ E(H), a < a′, b′ < b have
ab′ 6∈ E(H). There are two possibilities for ab′ 6∈ E(H); either ua < rb′ or ua > rb′ , va > sb′ .
In the former case, Ua ∩ Rb = ∅, in the latter case Ua′ ∩ Rb′ = ∅, contradicting the
assumptions.

6 Special cases

We now explore what min orderings look like in the special cases we have discussed,
namely reflexive graphs, reflexive digraphs, undirected graphs, and bipartite graphs. The
results are all corollaries of Theorem 3.1 and Proposition 3.2.

Corollary 6.1. A reflexive digraph H is a signed-interval digraph if and only if it is
an adjusted interval digraph.

Next we focus on symmetric digraphs, i.e., graphs.

Corollary 6.2. A reflexive graph H is a signed-interval digraph if and only if it is an
interval graph. A graph H is a signed-interval digraph if and only if it is a co-TT graph.

Proof. Consider an interval model or co-TT model of H, given by the mappings v →
xv, v → yv, setting the third mapping v → zv with each zv = yv, yields a signed-interval
digraph model of H. Conversely, assume H is a graph, i.e., a symmetric digraph, that is
a signed-interval digraph. Let < be a min ordering of H; we again have O(v) = I(v) for
all vertices v. We claim that the mappings v → xv = v, v → yv = O(v) define a co-TT
model. Indeed, from Proposition 3.2 we have ab ∈ E(H) if and only if a ≤ O(b) = yb and
b ≤ O(a) = ya, as required. If, in addition, H is reflexive, then O(v) = I(v) ≥ v, and
{[v,O(v)], v ∈ V (H)} is an interval model.

A graph G is chordal if every cycle C of length greater than three in G has a chord,
which is a non-loop edge not on C whose endpoints are both in C. A graph is strongly
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chordal if every cycle C of even length has an odd chord, which is a chord whose endpoints
are an odd distance apart on C.

It is well-known that co-TT graphs and interval graphs are subclasses of the class of
strongly chordal graphs. This is used, for example, in the O(n2) algorithm for recognizing
co-TT graphs given in [15]. It follows that the interval graphs are also strongly chordal.

Corollary 6.2 gives a novel way to understand the relationship between these classes.

Lemma 6.3. A graph is strongly chordal if and only if there is an ordering of its
vertices such that its augmented adjacency matrix is L-free.

Proof. Let Γ be the graph whose rows are 11 and 10. It is shown in [8] that a graph is
strongly chordal if and only if there is an ordering of vertices such that its augmented
adjacency matrix is Γ-free. The reverse of such an ordering is K-free.

By Corollary 6.2, a graph is an interval graph if and only if there is an ordering of
vertices such that its augmented adjacency matrix is {K,L}-free. Also, by Corollary 6.2,
a graph is a co-TT graph if and only if there is an ordering of vertices such that its
adjacency matrix with some assignment of 0’s and 1’s to the elements of the diagonal is
{K,L} free. A comparison of these two statements with Lemma 6.3 gives one way to
understand the relationship between interval graphs, co-TT graphs, and the broader class
of strongly chordal graphs.

7 Algorithms and characterizations

Interval graphs are known to have elegant characterization theorems [14, 31], cf. [16,
38] and efficient recognition algorithms [3, 5, 20]. Thus, one might hope to be able to
obtain similar results for their generalizations and digraph analogues. This is true for all
the generalizations described in this paper, at least to some degree. In this section we
summarize what is known.

The prototypical characterization of interval graphs is the theorem of Lekkerkerker
and Boland [31]. In our language, it states that a reflexive graph H is an interval graph
if and only if it contains no asteroidal triple and no induced C4 or C5. An asteroidal
triple consists of three non-adjacent vertices such that any two are joined by a path
not containing any neighbors of the third vertex. An equivalent characterization by the
absence of a slightly less concise obstruction is given in [13]. A reflexive graph H is an
interval graph if and only if it contains no invertible pair. An invertible pair is a pair of
vertices u, v such that there exist two walks of equal length, P from u to v, and Q from
v to u, where the i-th vertex of P is non-adjacent to the (i + 1)-st vertex of Q (for each
i), and also two walks of equal length R, S from v to u and u to v respectively, where
the i-th vertex of R is non-adjacent to the (i + 1)-st vertex of S (for each i). It is not
difficult to see that an asteroidal triple is a special case of an invertible pair. A number of
variants of the definition of an invertible pair have arisen [13, 15, 23, 25], and they have
proved useful to give characterization theorems for various classes. It is proved in [13] that
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a reflexive digraph is an adjusted interval digraph if and only if it contains no directed
invertible pair. A directed version of an invertible pair is defined in [13] in a manner
similar to the above definition of an invertible pair. With yet another labeled version of
an invertible pair, we have the following obstruction characterization of co-TT graphs: a
graph is a co-TT graph if and only if it contains no labeled invertible pair, which follows
from the characterization in [15] in terms of an interval ordering from [33]. For bipartite
graphs, an analogous bipartite version of an invertible pair yields the following result.
A bipartite graph is a two-directional orthogonal ray bigraph if and only if it contains
no bipartite invertible pair, [25]. In fact, in [11] a stronger version is shown: there is a
bipartite analogue of an asteroidal triple, called an edge-asteroid, and a bipartite graph is
a two-directional orthogonal ray bigraph if and only if it contains no induced 6-cycle and
no edge-asteroid. Bipartite graphs that contain no edge-asteroids are characterized in [23].
Finally, in [28], there is an obstruction characterization for signed-interval digraphs, which
is a little more technical than just an invertible pair, [28].

There is a long history of efficient algorithms for the recognition of interval graphs,
many of them linear time, starting from [3] and culminating in [5]. A polynomial time
algorithm for the recognition of adjusted interval digraphs is given in [13]. It is not known
how to obtain a linear time, or even near-linear time algorithm. An O(n2) algorithm for
the recognition of two-directional orthogonal ray bigraphs follows from Theorem 5.4 and
[33]. A more efficient algorithm in this case is also not known. On the other hand, anO(n2)
algorithm for the recognition of co-TT graphs has been given in [15]. The obstruction
characterization in [28] yields a polynomial-time algorithm for the recognition of signed-
interval digraphs.
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