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Abstract

For graphs G and H , a mapping f : V (G) → V (H) is a homomorphism of G to H if uv ∈ E(G)

implies f (u) f (v) ∈ E(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci (u), i ∈ V (H),
then the cost of the homomorphism f is

∑
u∈V (G) c f (u)(u). For each fixed graph H , we have the minimum

cost homomorphism problem, written as MinHOM(H). The problem is to decide, for an input graph G with
costs ci (u), u ∈ V (G), i ∈ V (H), whether there exists a homomorphism of G to H and, if one exists, to
find one of minimum cost. Minimum cost homomorphism problems encompass (or are related to) many
well-studied optimization problems. We prove a dichotomy of the minimum cost homomorphism problems
for graphs H , with loops allowed. When each connected component of H is either a reflexive proper interval
graph or an irreflexive proper interval bigraph, the problem MinHOM(H) is polynomial time solvable. In
all other cases the problem MinHOM(H) is NP-hard. This solves an open problem from an earlier paper.
c© 2007 Elsevier Ltd. All rights reserved.

1. Motivation and terminology

We consider finite graphs (and digraphs) without multiple edges, but with loops allowed. For
a graph (or digraph) H , we use V (H) and E(H) to denote the set of vertices and edges of G. A
graph (or digraph) without loops will be called irreflexive; a graph (or digraph) in which every
vertex has a loop will be called reflexive. In this paper our focus will be on graphs, but we shall
make some remarks about digraphs as well.

The intersection graph of a family F = {S1, S2, . . . , Sn} of sets is the graph G with
V (G) = F in which Si and S j are adjacent just if Si ∩ S j 6= ∅. Note that by this definition, each
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intersection graph is reflexive. (This is not the usual interpretation [10,29].) A graph isomorphic
to the intersection graph of a family of intervals on the real line is called an interval graph. If
the intervals can be chosen to be inclusion-free, the graph is called a proper interval graph. Thus
both interval graphs and proper interval graphs are reflexive. The intersection bigraph of two
families F1 = {S1, S2, . . . , Sn} and F2 = {T1, T2, . . . , Tm} of sets is the bipartite graph with
V (G) = F1 ∪F2 in which Si and T j are adjacent just if Si ∩ T j 6= ∅. Note that by this definition
an intersection bigraph is irreflexive (as are all bipartite graphs). A bipartite graph isomorphic to
the intersection bigraph of two families of intervals on the real line is called an interval bigraph.
If the intervals in each family Fi can be chosen to be inclusion-free, the graph is called a proper
interval bigraph. Thus both interval bigraphs and proper interval bigraphs are irreflexive.

For graphs (or digraphs) G and H , a mapping f : V (G) → V (H) is a homomorphism
of G to H if uv ∈ E(G) implies f (u) f (v) ∈ E(H). Recent treatment of graph (and
digraph) homomorphisms can be found in [19,21]. Let H be a fixed graph (or digraph).
The homomorphism problem for H asks whether an input graph (or digraph) G admits a
homomorphism to H . The list homomorphism problem for H asks whether an input graph (or
digraph) G with lists (sets) Lu ⊆ V (H), u ∈ V (G) admits a homomorphism f to H in which
all f (u) ∈ Lu, u ∈ V (G).

There have been several studies of homomorphism (and more generally constraint
satisfaction) problems with costs. Most frequently, each edge i j of the graph H has a cost
c(i, j) [1,2]. (It is then natural to take H to be a complete (reflexive) graph.) In this context,
given an input graph G, one seeks a homomorphism f of G to H with minimum cost, i.e., a
homomorphism for which the sum, over all uv ∈ E(G), of c( f (u) f (v)) is minimized. These
are typified by problems such as finding a maximum bipartite subgraph, or, in the context of
more general constraints, finding an assignment satisfying a maximum number of clauses [2].
More generally, [5] considers instead of costs of edges i j of H , the costs of mapping an edge
uv of G to an edge i j of H . Of course, we typically assume again that H is a complete graph.
In this way, the constraint on the edge uv is ‘soft’—it may map to any pair i j of H , but with
cost that depends both on uv and on i j . Nonbinary constraints are treated in the same way
in [5]. This general ‘soft’ constraint satisfaction context of [5] allows for vertex weights as well,
since they can be viewed as unary constraints. We describe this model in greater detail below.
Nevertheless, in combinatorial optimization it makes sense to investigate vertex weights alone,
insisting that binary (and higher order) constraints are hard, or ‘crisp’. This is the path we take,
focusing on problems in which each possible assignment of a value to a variable has an associated
cost.

We now formulate our problem, in the context of graph homomorphisms. (Of course, there
is a natural counterpart for constraint satisfaction problems in general.) Suppose G and H are
graphs (or digraphs). As in the above discussion, we shall reserve the letters u, v, etc., for the
vertices of G, and the letters i, j , etc., for the vertices of H . Let ci (u), u ∈ V (G), i ∈ V (H),
be a nonnegative real number, which we shall think of as the cost of mapping u to i . The
cost of a homomorphism f of G to H is

∑
u∈V (G) c f (u)(u). If H is fixed, the minimum cost

homomorphism problem, MinHOM(H), for H is the following decision problem. Given an input
graph G, together with costs ci (u), u ∈ V (G), i ∈ V (H), and an integer k, decide if G admits a
homomorphism to H of cost not exceeding k.

We shall also use MinHOM(H) to denote the corresponding optimization problem, in which
we want to minimize the cost of a homomorphism of G to H , or state that none exists. The
minimum cost of a homomorphism of G to H (if one exists) will be denoted by mch(G, H). For
simplicity, we shall always assume the graph G to be irreflexive. (Note that we can always solve
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a problem in which some vertices u of G have loops, by changing the weights ci (u) to be infinite
on all vertices i of H which do not have a loop.)

Returning briefly to the problem of minimum cost soft homomorphism problem of [5], in the
context of graphs, we may reformulate it as follows. Suppose H is a fixed complete graph. Given
an input graph G, together with nonnegative costs ci (u), u ∈ V (G), i ∈ V (H), and nonnegative
costs ci j (uv), uv ∈ E(G), i j ∈ E(H), find a mapping f of V (G) to H which minimizes the
sum

∑
u∈V (G) c f (u)(u) +

∑
uv∈E(G) c f (u) f (v)(uv). This generalizes our problem MinHOM(H)

for a graph H , as we can set the (hard) values c f (u) f (v)(uv) = 0 if f (u) f (v) ∈ E(H) and
c f (u) f (v)(uv) = ∞ if f (u) f (v) 6∈ E(H). As mentioned earlier, we do not study this problem,
focusing instead on the simpler problem MinHOM(H); the interested reader should consult [5].

The problem MinHOM(H) was introduced in [13], where it was motivated by a real-
world problem in defence logistics. We believe that it offers a practical and natural model for
optimization of weighted homomorphisms. It is easy to see that the homomorphism problem (for
H ) is a special case of MinHOM(H), obtained by setting all weights to 0 (and taking k = 0).
Similarly, the list homomorphism problem (for H ) is obtained by setting ci (u) = 0 if i ∈ Lu and
ci (u) = 1 otherwise (and taking k = 0). When H is an irreflexive complete graph, the problem
MinHOM(H) becomes the so-called general optimum cost chromatic partition problem, which
has been intensively studied [16,22,23], and has a number of applications, [25,30]. Two special
cases of that problem which have been singled out are the optimum cost chromatic partition
problem, obtained when all ci (u), u ∈ V (G), are the same (the cost only depends on the colour
i) [25], and the chromatic sum problem, obtained when each ci (u) = i (the cost of the colour i
is the value i , i.e., we are trying to minimize the sum of the assigned colours) [23].

Recall that we do admit loops in a graph (or digraph). For the homomorphism problem
for graphs H , the following dichotomy classification is known: if H is bipartite or has a
loop, the problem is polynomial time solvable; otherwise it is NP-complete [20]. For the list
homomorphism problem for graphs H , a similar dichotomy classification is also known [8].
None of the weighted versions of homomorphism problems cited above has a known dichotomy
classification. This includes the soft constraint satisfaction problem of [5], although the authors
do identify a class of polynomially solvable constraints that is in a certain sense maximal. We
shall provide a dichotomy classification of the complexity of MinHOM(H) for graphs.

Preliminary results on MinHOM(H) for irreflexive graphs were obtained by Gutin, Rafiey,
Yeo and Tso in [13]: it was shown there that MinHOM(H) is polynomial time solvable if H is
an irreflexive bipartite graph whose complement is an interval graph, and NP-complete when H
is either a nonbipartite graph or a bipartite graph whose complement is not a circular arc graph.
This left as unclassified a large class of irreflexive graphs, settled in this paper. In fact, we shall
provide a general classification which applies to graphs with loops allowed.

Theorem 1.1. Let H be a graph (with loops allowed). If each component of H is a proper
interval graph or a proper interval bigraph, then the problem MinHOM(H) is polynomial time
solvable. In all other cases, the problem MinHOM(H) is NP-complete.

The theorem will be proved in the following two sections. The next section provides the
polynomial time algorithms, and the following section proves the NP-completeness.

We note that in the two polynomial cases, each component of the graph H is either irreflexive
or reflexive. Indeed, it is easy to see that if H contains an edge rs where r has a loop and s does
not, then the problem MinHOM(H) is NP-complete. It suffices to notice that if G has all vertex
costs cs(u) = 0, u ∈ V (G), and all other vertex costs ci (u) = 1, u ∈ V (G), i 6= s, then there
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exists a homomorphism of cost not exceeding k if and only if G has an independent set of size
|V (G)| − k. Thus it suffices to consider the reflexive and irreflexive graphs separately, and we
shall do so in the remainder of the paper.

In Section 4, we discuss the situation for digraphs. At this point the classification is open,
although we do mention some partial results.

2. Polynomial algorithms

We say that a digraph H has the Min–Max property if its vertices can be ordered
w1, w2, . . . , wp so that if i < j and s < r and wiwr , w jws ∈ E(H), then wiws ∈ E(H)

and w jwr ∈ E(H).
This property was first defined in [11], where it was identified as an important property

of digraphs, as far as the problem MinHOM(H) is concerned. (We should point out that the
original definition, which is easily seen equivalent to the one given above, required that if
wiwr , w jws ∈ E(H), then also wxwy ∈ E(H) for x = min(i, j), y = min(r, s) and for
x = max(i, j), y = max(r, s).)

Using an algorithm of [5], the authors of [11] proved the following result. (The proof in [11]
is only stated for irreflexive digraphs, but it is literally the same for digraphs in general.)

Theorem 2.1 ([11]). Let H be a digraph. If H satisfies the Min–Max property, then
MinHOM(H) is polynomial time solvable.

The Min–Max property is very closely related to a property of digraphs that has long been of
interest [15]. We say that a digraph G has the X -underbar property if its vertices can be ordered
w1, w2, . . . , wp so that if i < j , s < r and wiwr , w jws ∈ E(H), then wiws ∈ E(H). (In other
words, wiwr , w jws ∈ E(H) implies that wxwy ∈ E(H) for x = min(i, j), y = min(r, s)). It is
interesting to note that the X -underbar property is sufficient to ensure that the list homomorphism
problem for H has a polynomial solution [21].

We first apply Theorem 2.1 to reflexive graphs. It is important to keep in mind that we may
view graphs as special digraphs, by replacing each edge uv of the graph by the two opposite edges
uv, vu of the digraph; this does not affect which mappings are homomorphisms [21]. Under this
interpretation, we observe the following fact.

Proposition 2.2. A reflexive graph H has the Min–Max property if and only if its vertices can
be ordered w1, w2, . . . , wp so that i < j < k and wiwk ∈ E(H) imply that wiw j ∈ E(H) and
w jwk ∈ E(H).

Proof. To see that the condition is necessary, consider the directed edge wiwk and the loop
w jw j and apply the definition in digraphs. To see that it is sufficient, suppose i < j , s < r
and wiwr , w jws ∈ E(H). Observe that, up to symmetry, there are only two nontrivial cases
possible—typified by s < i < r < j and s < i < j < r . In both cases, the condition in
the theorem and the loops wiwi and wrwr (respectively w jw j ) ensure that wiws ∈ E(H) and
w jwr ∈ E(H). �

The condition in Proposition 2.2 is known to characterize proper interval graphs [6,17].

Corollary 2.3. A reflexive graph H has the Min–Max property if and only if it is a proper interval
graph. �
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For irreflexive graphs H , we observe that the standard view of H as a digraph will not work.
Indeed, if both uv and vu are directed edges of the digraph H , then the Min–Max property
requires that both uu and vv be loops of H . Therefore, we shall view a bipartite graph H ,
with a fixed bipartition into (say) white and black vertices, as a digraph in which all edges are
directed from white to black vertices. Under this interpretation, we observe the following fact.
(We have simply replaced one ordering of all vertices with the induced orderings on white and
black vertices; note that given orderings of white and black vertices, any total ordering preserving
the relative orders of white and of black vertices satisfies the condition.)

Proposition 2.4. A bipartite digraph H, with a fixed bipartition into white and black vertices,
and with all edges oriented from white to black vertices, has the Min–Max property if and only
if the white vertices can be ordered as u1, u2, . . . , u p and the black vertices can be ordered
as v1, v2, . . . , vq , so that if i < j , s < r and uivr , u jvs ∈ E(H), then uivs ∈ E(H) and
u jvr ∈ E(H). �

The condition in Proposition 2.4 is known to characterize proper interval bigraphs (also known
as proper interval bipartite graphs) [28,29].

Corollary 2.5. An irreflexive graph H has the Min–Max property if and only if it is a proper
interval bigraph. �

It now follows that we can apply Theorem 2.1 to reflexive proper interval graphs
and irreflexive bipartite proper interval bigraphs, to deduce the polynomial algorithms in
Theorem 1.1. To begin with, let us formulate the result for a connected graph H .

Corollary 2.6. If H is a connected graph which is a reflexive proper interval graph or an
irreflexive proper interval bigraph, then the problem MinHOM(H) is polynomial time solvable.

Proof. For proper interval graphs H this directly follows from Theorem 2.1, and Corollary 2.3.
For proper interval bigraphs, we note that we may assume that the graph G is also bipartite, else
no homomorphism to H exists. We may also assume that G is connected, as otherwise we can
solve the problem for each component separately. Thus we may consider G to be given with
white and black vertices (only two such partitions are possible for a connected graph), and orient
all edges from white to black vertices. Now we can use Theorem 2.1, and Corollary 2.5, to derive
a polynomial solution. �

Corollary 2.7. Let H be any graph (with loops allowed). If each component of H is a reflexive
proper interval graph or an irreflexive proper interval bigraph, then the problem MinHOM(H)

is polynomial time solvable.

Proof. Let Hi , i = 1, 2, . . . , k, be the components of H . As above, it suffices to solve the
problem for each component of G separately; thus we assume that G is connected. Now the
minimum cost homomorphism of G to H is the smallest minimum cost homomorphism to any
Hi . Thus a polynomial time algorithm follows from the previous corollary. �

The polynomial algorithms for MinHOM(H) follow from [5], via the translation in [11],
which depends on submodularity of the cost functions. It is often the case that a problem solved
using submodularity can be solved more efficiently by another more direct method [9]. This is
indeed the case here, and we give such a direct algorithm. We show how, in our case, one can
solve the problem directly as a single minimum weighted cut problem. For simplicity, we shall
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focus on the reflexive case, although the technique applies for irreflexive graphs as well. A similar
construction is given in [5], cf. also [24].

Thus suppose that H is a reflexive proper interval graph, with vertices ordered
w1, w2, . . . , wp, so that i < j < k and wiwk ∈ E(H) imply wiw j ∈ E(H) and w jwk ∈ E(H).
For simplicity we shall write i instead of wi . We denote, for each i , by `(i) the smallest subscript
j such that j is adjacent to i ; note that j ≤ i since H is reflexive. Also note for future reference
that if i ′ ≤ i , then i ′ is adjacent to i if and only if `(i) ≤ i ′.

Given a graph G with costs ci (u), u ∈ V (G), i ∈ V (H), we construct an auxiliary digraph
G × H as follows. The vertex set of G × H is V (G) × V (H) together with two other vertices,
denoted by s and t . The directed weighted edges of G × H are

• an edge from s to (u, 1), of weight ∞, for each u ∈ V (G),
• an edge from (u, i) to (u, i + 1), of weight ci (u), for each u ∈ V (G) and i ∈ V (H),
• an edge from (u, p) to t , of weight cp(u), for each u ∈ V (G), and
• an edge from (u, i) to (v, `(i)), of weight ∞, for every edge uv ∈ E(G) and each i ∈ V (H).

(Note that each undirected edge uv of G gives rise to two directed edges (u, i)(v, `(i)) and
(v, i)(u, `(i)), both of infinite weight, in the last statement.)

A cut in G × H is a partition of the vertices into two sets S and T such that s ∈ S and t ∈ T ;
the weight of a cut is the sum of weights of all edges going from a vertex of S to a vertex of
T . Let S be a cut of minimum (finite) weight, and define ju to be the maximum value such that
(u, ju) ∈ S. Let S′ be the cut containing s and all (u, 1), (u, 2), . . . , (u, ju), for all u ∈ V (G). If
S′

6= S, then either the weight of S′ is infinite, or at most that of S, as the only edges we might
add to the cut are of the form (u, i)(v, l(i)). If the weight of S′ is infinite, then there must be
an edge of the form (u, i)(v, `(i)) in the cut S′, where neither (u, i) nor (v, `(i)) belong to S.
Note that `(i) > jv as (v, `(i)) 6∈ S′. Furthermore `( ju) ≥ `(i), as ju > i , which implies that
`( ju) > jv . Therefore the edge (u, ju)(v, `( ju)) belonged to the cut S, which thus had infinite
weight, a contradiction. Therefore S′

= S. Now define a mapping f from V (G) to V (H) by
setting f (u) = ju . This must be a homomorphism of G to H ; indeed, suppose that uv ∈ E(G),
but ju jv 6∈ E(H). Without loss of generality assume that jv ≤ ju , which implies that jv < `( ju).
This implies that the edge (u, ju)(v, `( ju)) belongs to the cut S, a contradiction. Conversely, any
minimum cost homomorphism f of G to H corresponds, in this way, to a minimum weight cut
of G × H .

We conclude that the minimum weight of cut in G × H is exactly equal to the minimum cost
of a homomorphism of G to H . Since minimum weighted cuts can be found by standard flow
techniques, we obtain a polynomial time algorithm. Specifically, we note that the graph G × H
has O(|V (G)||V (H)|) vertices. Using the best minimum cut (maximum flow) algorithms, we
obtain minimum cost homomorphisms in time O(|V (G)|3|V (H)|3) [27]; if H is fixed, and G
has n vertices, this is O(n3).

We observe that this sort of product construction is also similar to the algorithm in [11], which
transforms the minimum cost homomorphism problem into a maximum independent set problem
in another kind of product G ⊗ H . (See also Exercise 7 in Chapter 2 of [21].) Note that these
kinds of algorithms, which solve the problem via a product construction involving G and H , are
polynomial even if H is part of the input.

3. NP-completeness

In this section it will be more convenient to begin with the irreflexive case. Hence all graphs
are irreflexive unless stated otherwise (at the end of the section).
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Fig. 1. A bipartite claw (a), a bipartite net (b) and a bipartite tent (c).

A bipartite graph H with vertices x1, x2, x3, x4, y1, y2, y3 is called

a bipartite claw if E(H) = {x4 y1, y1x1, x4 y2, y2x2, x4 y3, y3x3};

a bipartite net if E(H) = {x1 y1, y1x3, y1x4, x3 y2, x4 y2, y2x2, y3x4};

a bipartite tent if E(H) = {x1 y1, y1x3, y1x4, x3 y2, x4 y2, y2x2, y3x4}.

See Fig. 1.
These graphs play an important role for proper interval bigraphs. One of the equivalent

characterizations is the following result [18].

Theorem 3.1 ([18]). A bipartite graph H is a proper interval bigraph if and only if it does not
contain an induced cycle of length at least six, or a bipartite claw, or a bipartite net, or a bipartite
tent.

It follows that to show that MinHOM(H) is NP-complete when H is not a proper interval
bigraph, it suffices to prove that MinHOM(H) is NP-complete when H is either a cycle of length
at least six, or a bipartite claw, or a bipartite net, or a bipartite tent. Indeed, if MinHOM(H) is
NP-complete and H is an induced subgraph of H ′, then MinHOM(H ′) is also NP-complete, as
we may set the costs ci (u) = ∞ for all vertices u of G and all i which are vertices of H ′ but not
of H . The NP-completeness of MinHOM(H) for bipartite cycles of length at least six follows
from [7]. In the remainder of this section, we prove that MinHOM(H) is NP-complete for the
bipartite claw, net, and tent.

We shall use the following tool.

Theorem 3.2. The problem of finding a maximum independent set in a 3-partite graph G (even
given the three partite sets) is NP-complete.

Proof. Let G3 be the set of all graphs of degree at most 3 with at least three vertices excluding
K4. By the well-known theorem of Brooks (see, e.g., [32]), every graph in G3 is 3-partite. Using
Lovasz’s constructive proof of Brooks’ theorem in [26], one can find three partite sets of a graph
G ∈ G3 in polynomial time.

Nevertheless, Alekseev and Lozin showed recently in [3] that the problem of finding a
maximum independent set in a graph G of G3 is NP-complete, which completes the proof. �

In the rest of this section we will use the notation of Fig. 1 for the target graph H . We denote
by α(G) the maximal number of vertices in an independent vertex set of a graph G. We will prove
the following lemma using a reduction from the problem of finding a maximum independent set
in a 3-partite graph.
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Lemma 3.3. If H is a bipartite claw, then MinHOM(H) is NP-complete.

Proof. Let H be a bipartite claw, with V (H) = {x1, x2, x3, x4, y1, y2, y3} and E(H) =

{x4 y1, y1x1, x4 y2, y2x2, x4 y3, y3x3} (see Fig. 1(a)). Let G be a 3-partite graph, with partite sets
V1, V2, V3. We will now build a graph G∗ for which mch(G∗, H) = |V (G)| − α(G). This will
prove the lemma, by Theorem 3.2.

Let G∗ be obtained from G by inserting a new vertex me into every edge e ∈ E(G). Note that
V (G∗) = V (G) ∪ {me | e ∈ E(G)} and E(G∗) = {umuv, muvv | uv ∈ E(G)}. Define costs as
follows, where i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}.

cxi (u) = 0 if u ∈ Vi cx4(u) = 1 if u ∈ V (G)

cxi (u) = |V (G)| if u 6∈ Vi cyi (u) = |V (G)| if u ∈ V (G)

cyi (me) = 0 if e ∈ E(G) cx j (me) = |V (G)| if e ∈ E(G).

Let I be an independent set in G, and define a mapping f from V (G∗) to V (H) as follows.
For all u ∈ Vi let f (u) = xi if u ∈ I and f (u) = x4 if u 6∈ I . Let uv ∈ E(G) be arbitrary, and
let f (muv) = yi if {u, v} ∩ (I ∩ Vi ) 6= ∅, and let f (muv) = y1 if x, y 6∈ I . Note that f is a
homomorphism of G∗ to H with cost |V (G)| − |I |.

Let f be a homomorphism of G∗ to H of cost |V (G)| − k. We will now show that there
exists an independent set, I in G of order at least k. If k ≤ 0 then we are trivially done so
assume that k > 0, which implies that all individual costs in c( f ) are either zero or one. Let
I = {u ∈ V (G) | c f (u)(u) = 0} and note that |I | ≥ k. Note that I is an independent set in G, as
if uv ∈ E(G), where u ∈ I ∩ Vi and v ∈ I ∩ V j (i 6= j), then f (u) = xi and f (v) = x j which
implies that f is not a homomorphism, a contradiction. Therefore I is independent in G.

Observe that we have proved that mch(G∗, H) = |V (G)|−α(G). Thus, we have now reduced
the problem in Theorem 3.2 to MinHOM(H), which completes the proof. �

In the proofs of the next two lemmas, we will again use reductions from the problem of finding
a maximum independent set in a 3-partite graph.

Lemma 3.4. If H is a bipartite net, then MinHOM(H) is NP-complete.

Proof. Let H be a bipartite net, with V (H) = {x1, x2, x3, x4, y1, y2, y3} and E(H) =

{x1 y1, y1x3, y1x4, x3 y2, x4 y2, y2x2, y3x4} (see Fig. 1(b)). Let G be a 3-partite graph, with partite
sets V1, V2, V3. We will now build a graph G∗ such that mch(G∗, H) = 2|V3|+ |V (G)|−α(G).
This will prove the lemma, by Theorem 3.2.

Let G∗ be obtained from G in the following way. For every vertex v ∈ V3 let Pv = sv
1 tv1 sv

2 tv2 sv
3

be a path of length 4. For every u ∈ V1 and v ∈ V2 with uv ∈ E(G) we introduce a new vertex
muv . We set

V (G∗) = V1 ∪ V2 ∪ {me | e ∈ E(G)} ∪ {V (Pv) | v ∈ V3}.

The edge set of G∗ consists of the following edges. For every edge uv between V1 and V2 in G
both umuv and vmuv belong to G∗. All edges in V (Pv), where v ∈ V3, belong to G∗. For all
u ∈ V1 and v ∈ V3, where uv ∈ E(G), the edge usv

1 belongs to G∗. For all u ∈ V2 and v ∈ V3,
where uv ∈ E(G), the edge usv

3 belongs to G∗.
We now define the costs of mapping vertices from V1 ∪ V2 as follows, where all costs not

shown are given the value 2|V3| + |V (G)|. For each u ∈ Vi , i = 1, 2, we set cxi (u) = 0 and
cx4(u) = 1. We define the costs of mapping vertices from V (G∗) − V1 − V2 as follows, where



908 G. Gutin et al. / European Journal of Combinatorics 29 (2008) 900–911

i ∈ {1, 2, 3} and j ∈ {1, 2}. For each e ∈ E(G) and z ∈ V (H), we set cz(me) = 0. Finally, for
each v ∈ V3, we set

cy3(s
v
i ) = 0 and cq(sv

i ) = 1 for all q ∈ V (H) − y3;

cx4(t
v
j ) = 1 and cq(tvj ) = 0 for all q ∈ V (H) − x4.

Let I be an independent set in G, and define a mapping f from V (G∗) to V (H) as follows.
For each i = 1, 2 and u ∈ Vi , let f (u) = xi if u ∈ I and f (u) = x4 if u 6∈ I . For every edge
uv of G with u ∈ V1 and v ∈ V2, let f (muv) = y2 if v ∈ I and f (muv) = y1, otherwise. For all
v ∈ V3 ∩ I let f (sv

1 ) = f (sv
2 ) = f (sv

3 ) = y3 and f (tv1 ) = f (tv2 ) = x4. For all v ∈ V3 − I let
f (sv

1 ) = f (sv
2 ) = y1, f (sv

3 ) = y2 and f (tv1 ) = f (tv2 ) = x3. Note that f is a homomorphism of
G∗ to H with cost 2|V3| + |V (G)| − |I |.

Let f be a homomorphism from G∗ to H of cost 2|V3| + |V (G)| − k. We will now show that
there exists an independent set I in G of order at least k. If k ≤ 0 then we are trivially done so
assume that k > 0, which implies that all individual costs in c( f ) are either zero or one. Define
I as follows.

I = {u ∈ V1 ∪ V2|c f (u)(u) = 0} ∪ {v ∈ V3| f (sv
1 ) = f (sv

3 ) = y3}.

We will now show that I is independent in G and that |I | ≥ k. First suppose that uv ∈ E(G),
where u ∈ I ∩ Vi and v ∈ I ∩ V j (i 6= j). Observe that this is not possible if {i, j} = {1, 2}, so
without loss of generality assume that i < j = 3. However if i = 1 then we cannot have both
f (u) = x1 and f (s y

1 ) = y3 and if i = 2 then we cannot have both f (u) = x2 and f (s y
3 ) = y3.

Therefore I is independent.
If we could show that the cost of mapping Pv to H (denoted by c(Pv)) fulfills (a) and (b)

below, then we would be done, as this would imply that |I | ≥ k.

(a) c(Pv) ≥ 2 if v ∈ I ∩ V3

(b) c(Pv) ≥ 3 if v ∈ V3 − I .

Indeed,

c( f ) =

∑
u∈V1∪V2

c f (u)(u) +

∑
v∈V3

c(Pv)

≥ (|V1 ∪ V2| − |(V1 ∪ V2) ∩ I |) + 2|V3 ∩ I | + 3(|V3| − |V3 ∩ I |)

= 2|V3| + |V (G)| − |I |

and, thus, |I | ≥ k.

To prove (a) and (b) assume that v ∈ V3 is arbitrary. Note that c f (sv
1 )(sv

1 ) > 0 or c f (tv1 )(tv1 ) > 0
(or both), as if f (sv

1 ) = y3 then we must have f (tv1 ) = x4. Analogously c f (sv
3 )(sv

3 ) > 0 or
c f (tv2 )(tv2 ) > 0 (or both). This proves (a). If c f (sv

2 )(sv
2 ) > 0, then c(Pv) ≥ 3, so assume that

c f (sv
2 )(sv

2 ) = 0, which implies that f (sv
2 ) = y3. Thus, f (tv1 ) = f (tv2 ) = x4. If v 6∈ I then we

have c f (sv
1 )(sv

1 ) > 0 or c f (sv
3 )(sv

3 ) > 0, which together with c f (tv1 )(tv1 ) = c f (tv2 )(tv2 ) = 1, implies
(b). �

Lemma 3.5. If H is a bipartite tent, then MinHOM(H) is NP-complete.

Proof. Let H be a bipartite tent with V (H) = {x1, x2, x3, x4, y1, y2, y3} and E(H) =

{x4 y1, y1x1, x1 y2, y2x4, x1 y3, y3x2, x2 y1, y1x3} (see Fig. 1(c)). Let G be a 3-partite graph, with
partite sets V1, V2, V3. We will now build a graph G∗ such that mch(G∗, H) = |V (G)| − α(G).
This will prove the lemma, by Theorem 3.2.
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Let E1,2 denote all edges between V1 and V2 in G. A graph G∗ is obtained from G, by
inserting a new vertex me into every edge e ∈ E1,2. Note that V (G∗) = V (G)∪{me | e ∈ E1,2}.
The edge set of G∗ consists of all edges in G incident with a vertex in V3 as well as of the edges
{u1vu1u2 , vu1u2 u2 | u1u2 ∈ E1,2}. We now define the costs of ui ∈ Vi as follows, where all costs
not shown are given the value |V (G)|.

For i = 1: cy2(u1) = 0 cy1(u1) = 1

For i = 2: cy3(u2) = 0 cy1(u2) = 1

For i = 3: cx3(u3) = 0 cx1(u3) = 1.

For all edges e ∈ E1,2 let cx1(me) = |V (G)| and let cq(me) = 0 for all q ∈ V (H) − {x1}.
Let I be an independent set in G, and define a mapping f from V (G∗) to V (H) as follows.

For u ∈ V1 ∩ I : f (u) = y2 For u ∈ V1 − I : f (u) = y1

For u ∈ V2 ∩ I : f (u) = y3 For u ∈ V2 − I : f (u) = y1

For u ∈ V3 ∩ I : f (u) = x3 For u ∈ V3 − I : f (u) = x1.

If u1u2 ∈ E1,2 and u1 ∈ V1 ∩ I , then let f (mu1u2) = x4. If u2 ∈ V2 ∩ I , then let
f (mu1u2) = x2. If u1, u2 6∈ I then let f (mu1u2) = x4. Note that f is a homomorphism from G∗

to H with cost |V (G)| − |I |.
Let f be a homomorphism from G∗ to H of cost |V (G)| − k. We will now show that there

exists an independent set, I in G of order at least k. If k ≤ 0 then we are trivially done so
assume that k > 0, which implies that all individual costs in f are either zero or one. Let
I = {u ∈ V (G) | c f (u)(u) = 0} and note that |I | ≥ k. Furthermore, observe that I is an
independent set in G (as f (ve) 6= x1 for every e ∈ E1,2). We have reduced the problem in
Theorem 3.2 to MinHOM(H), which completes the proof. �

Corollary 3.6. If H is an irreflexive graph which is not a proper interval bigraph, then
MinHOM(H) is NP-complete.

Proof. If H is not bipartite, this follows from the fact that the homomorphism problem for H is
NP-complete [20]. Otherwise, the conclusion follows from Theorem 3.1, the remarks following
it, and the above three lemmas. �

We now return to considering graphs with loops allowed. Since we have observed that a graph
H with an adjacent loop and nonloop gives rise to an NP-complete problem MinHOM(H), it only
remains to prove the NP-completeness of MinHOM(H) when H is a reflexive graph which is not
a proper interval graph. We could proceed as before, as there is an analogous result characterizing
proper interval graphs by the absence of induced cycles of length at least four, or a claw, net, or
tent [31,10,29]. However, we instead reduce the problem to the irreflexive case, as follows.

Given a reflexive graph H , we define the bipartite graph H∗ with the vertex set {v′, v′′
: v ∈

V (H)} and edge set {u′v′′
: uv ∈ E(H)}. (Note that each v′v′′ is an edge of H since the graph

H is reflexive.) It is proved in [18] that H is a proper interval graph if and only if H∗ is a proper
interval bigraph. Thus suppose a reflexive graph H is not a proper interval graph, and consider
the bipartite (irreflexive) graph H∗ which is then not a proper interval bigraph. We will now
reduce the NP-complete problem MinHOM(H∗) to the problem MinHOM(H) as follows. Each
instance of MinHOM(H∗) can also be viewed as an instance of MinHOM(H). Indeed, such an
instance consists of a bipartite graph G with costs ci ′(u) for each white vertex u of G and white
vertex i ′ of H∗, and costs ci ′′(v) for each black vertex v of G and black vertex i ′′ of H∗; to
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see this as an instance of MinHOM(H), we only need to set ci (u) equal to ci ′(u) if u is white
and ci ′′(u) if u is black. Now colour-preserving homomorphisms of G to H∗ and to H are in a
one-to-one correspondence, with the same costs, i.e., there is a homomorphism of G to H∗ of
cost not exceeding k if and only if there is a homomorphism of G to H of cost not exceeding k.
We have proved the following fact.

Corollary 3.7. If H is a reflexive graph which is not a proper interval graph, then MinHOM(H)

is NP-complete.

Thus, for a connected graph H (with loops allowed), we have the following situation. If H
has both loops and nonloops, the problem MinHOM(H) is NP-complete by the remarks after
Theorem 1.1; if H is reflexive and not a proper interval graph, then MinHOM(H) is NP-complete
by Corollary 3.6; and if H is irreflexive and not a proper interval bigraph, then MinHOM(H) is
NP-complete by Corollary 3.7. Of course, as observed earlier, it is enough if this happens for one
component of H . Thus we conclude as follows.

Corollary 3.8. If a graph H (with loops allowed) has a component which is neither a reflexive
proper interval graph nor an irreflexive proper interval bigraph, then the problem MinHOM(H)

is NP-complete. �

This completes the proof of Theorem 1.1.

4. Digraphs

A digraph H (with loops allowed) satisfying the Min–Max property yields a polynomial time
solvable problem MinHOM(H) (Theorem 2.1). However, there are other digraphs H for which
the problem MinHOM(H) admits a polynomial solution. For instance, it is easy to see that when
H is a directed cycle, we can solve MinHOM(H) in polynomial time, cf. [11]. On the other hand,
a directed cycle clearly does not have the Min–Max property, as can be seen by considering the
last vertex (in the Min–Max ordering) and its two incident edges. (A similar property more
appropriate for cycle-like digraphs is introduced in [14].)

The classification problem for the complexity of minimum cost digraph homomorphism
problems remains open. However, in [12], a partial classification has been obtained for the class
of semicomplete k-partite digraphs. These are digraphs that can be obtained from undirected
complete k-partite graphs by orienting each undirected edge in one direction or in both directions.
When k ≥ 3, the classification is given in [12]. When k = 2, the situation is more complex, and
the classification has only recently been completed [14]. The full classification of all minimum
cost digraph homomorphism problems remains open. On the other hand, the dichotomy of list
homomorphism problems for digraphs follows from a result of Bulatov [4].
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