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Abstract

An n-tournamentis an orientation of a completpartite graph. It was proved by J.A. Bondy in 1976
that every strong-partite tournament has amncycle. We characterize stromgpartite tournaments
in which a longest cycle is of lengtihand, thus, settle a problem in Volkmann (Discrete Math. 199
(1999) 279).
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1. Introduction

We use terminology and notation [&]; all necessary notation and a large part of termi-
nology used in this paper are provided in the next section.

A very informative papefl1] of Volkmann is the latest survey on cycles in an important
class of digraphs, multipartite tournaments. Cycles in multipartite tournaments were earlier
overviewed in[2,5,9]. Along with description of a large number of results on cycles in
multipartite tournaments, Volkmarjth1] formulates several open problems.

Bondy[4] proved that every strongpartite tournament has a cycle of lengttProblem
3.4in[11] is as follows:
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Problem 1.1. Characterize all strong n-partite tournaments in which a longest cycle is of
lengthn.

Notice that Problem 1.1 was first stated18]. This seemingly simple problem turns out
to be fairly non-trivial. In this paper, we provide such a characterization in Theorems 3.3
and 3.11 and prove that our necessary and sufficient conditions are verifiable in polynomial
time.

2. Terminology and notation

A digraph obtained from an undirected gra@hby replacing every edge @ with a
directed edge (arc) with the same end-vertices is calledri@mtationof G. An oriented
graphis an orientation of some undirected graphtournamentis an orientation of a
complete graph and anpartite tournamenis an orientation of a completepartite graph.
Partite sets of complete graphs becqpaetite setsof n-partite tournaments. Aextended
tournaments ann-partite tournament obtained from a tournamenteartices by replacing
every vertex with an independent set of vertices. In an extended tournament all arcs between
two partite sets are oriented in the same direction.

The termscycle and path mean simple directed cycle and path. A cycle of lenigth
ak-cycle For a cycleC = vivz ... vgv1, Cly;, vj] denotes the pathyv; 11 ... v; which is
part of C. A cycle subdigraptof a digraphD is a collection of vertex-disjoint cycles of
D. A digraphD is strongif for every ordered paix, y of distinct vertices irD there exist
paths fronx toy. For a seX of vertices of a digrap®, D (X) denotes the subdigraph bf
induced byX.

For setsT, S of vertices of a digraplD = (V, A), T — S means that for every vertex
t € T and for every vertex € S, we havets € A, andT = S means that for no pair
s € 8,t € T,we havest € A. While for oriented graph¥ — S impliesT = S, this is
not always true for general digraphs. We also use the notdtiea S, if neitherT — §
norS — T.If u — v (i.e.,uv € A), we say thatt dominates andv is dominatedy u.

The following simple argument is calletirected duality Many properties of a given
digraphD are preserved when we reverse all arc®aind obtain a new digrapb’. For
exampleD has a-cycle if and only if D’ does.

3. Characterization

The following simple lemma first proved |6] is very useful in our investigation. Similar,
yet different results, can be found]ih,7]. We provide a proof for the sake of completeness
and because of its usefulness for an algorithm described later on.

Lemma 3.1. If a strong n-partite tournament > 3, has a k-cycle containing vertices from
less than k partite setthen D has an m-cycle with > n.

Proof. Let Z = z1z2...z5z1 be a longest cycle iD with at least two vertices from the
same partite set. Assume thaf n. Consider the se$of vertices from partite sets not ih
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If a vertexx € S has arcs to and frorfi (Z), then there existssuch that; — x — z;41,
and thus< can be inserted id to get a longer cycle with at least two vertices from the same
partite set, a contradiction.

Thus, we may assume that eittfer> V(Z) or V(Z) — S. Since both alternatives can
be treated similarly, we consider on®(Z) — S. SinceD is strong, we can find a pat
from a vertexx in Sto Z. Let P be a shortest such path andigbe the terminal vertex of
P. ThenPZ[z;11, zi—1]x is a longer cycle with at least two vertices from the same partite
set, a contradiction. [J

The following theorem allows us to settle Volkmann'’s problem for extended tournaments:

Theorem 3.2([8]). Thelength of alongest cycle in a strong extended tournament D equals
the maximal number of vertices in a cycle subdigraptDofA longest cycle in D can be
found in timeO(p?), where p is the number of vertices in

As a special case, we immediately obtain the following:

Theorem 3.3. In a strong extended tournament D with n-partite stits length of a longest
cycle equals n if and only if the maximal number of vertices in a cycle subdigraph of D
equals n. One can verify whether the length of a longest cycle in D is n ifQiip®, where

p is the number of vertices iD.

There exist strong-partite tournament® that are not extended tournament, yet every
longest cycle irD is of lengthn. Consider a strong 4-partite tournamehivith partite sets
Vi={v1}, Vo={vy, U/Z}’ V3 ={vs}, Va={vs4}andsuchthaVy — Vo — V3 — V4 —

V1 — Vzandv, — v4 — vo. Itis not difficult to check thaH has no Hamilton cycle, but
H contains am-cycle.

Theorem 3.3 allows us, from now on, to consider only strofgartite tournamentb,
which are not extended tournaments. We knowfthahs am-cycleC and we assume thBt
has no longer cycle. Léfy, Vo, ..., V, be partite sets dd. By Lemma 3.1, we may assume
thatC =viva...vv1, v € Vi, i=1,2,...,n. LetU[V;, V;1denoteV; UV, 1 U--- UV},
where all indices are taken moduio

To study the structure dd we prove the following series of lemmas.

Lemma 3.4. Let T (S be the maximal subset @& — V(C) such thatT = V(C) and
V(C)= S.ThenT =S = 0.

Proof. Assume thal’ # @. LetU = V(D) — (V(C) U S U T). SinceD is strong, there
exists an arxyfrom S U U to T. There is a (shortest) path from a verigxe C tox. Since
y dominates eithev; 1 or v;+2 or both, it is easy to see thBthas a cycle of length more
thann. Thus,|T| = 0, a contradiction. By directed duality§| =0. [

Lemma 3.5. Foreveryi € {1,2,...,n}, V;_1 — V;, whereVp = V,,.
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Proof. Clearly, the lemma holds if botk;_1 andV; are singletons. By directed duality,
we may assume thav;|>2. Let V;_; = {v;_1} andz € V; — v;. If z — v;_1 then
7z — v;_2, Since otherwise the cycte [v;_1, v;_2]z has length more tham By continuing
this argument we conclude thats C, which contradicts Lemma 3.4.

It remains to consider the case|®f_1| > 2. Lety € V;_1 — v;_1. Suppose that — y.
By directed dualityV;_1 — v; and thus, in particulary — v;. Hence,yClv;, v;i_1]zy is
an(n + 2)-cycle, a contradiction. Thug; _1 — V;. 0O

This lemma implies immediately the following:
Corollary 3.6. For every choicav; € V;,i=1,2,...,n, wiw2...w, w1 iS acycle inD.

Lemma 3.7. For every pair of non-singleton;, V; we have that eithe?; — V; or
Vj — Vl

Proof. Suppose that neithéf — V; norV; — V; holds. Then, without loss of generality,
we may assume that there are vertices V; andy, z € V; such that — x — y. By
Corollary 3.6, we may assume that# v; (we may replacey; in C by another vertex
in v;). By Lemma 3.5, we have that — j|>1 andv;_1 — {y,z} — v;41. Thus,
xyClvjs1, vj_1lzx is an(n 4 1)-cycle, a contradiction. [

Lemma 3.8. For every triplev;, v;, vi such thatv; € Clv;, v,

(@) If |V;| > 1landx < v; for somex e V;, thenx < Vg,
(b) If |Vk| >1andz — v; for somez € Vi, thenz — V;.

Proof. By directed duality, Claims a and b are equivalent. Thus, it suffices to prove only
Claima. Let|V;| > 1, x € V; andx < v;. By Corollary 3.6, we may assume that- v;.

We havev; 1 — x since otherwise the cycleC[v; 1, vj]x has length more than.
Continuing this argument, we conclude tvat— v;. Now by Lemma 3.7 ifi Vx| > 1 then

Vi — V; becauser < v,. [

Lemma 3.9. Let|V;| > 1and|V;|=1.1f V; = V;,thenU[Vi i1, V;_1] < U[V;11, Vi_1l.

Proof. Letx € V; — v;. As above we may assume that> v; andv; < v;. According
to Lemma 3.8, for every € C[v;+1, v;] we havex — v and for everyy € Clvj41, vi—1]
we haveu — v;. Now consider arbitrary verticas € Clviy1, vj—1], vi € C[vj41, vi—1]
and suppose that — v;. However, the cycle

xClvey1, vi—1]Clv;, v 1Clvy, vi—1]x

has length greater than This is a contradiction and we have < v;. By Corollary 3.6,
instead ofC we may consider the cycle obtained fr@y replacingv; with a vertex from
UlVit1, Vj—1] andy; with avertex fromU[V; 11, V;_1]. Allarguments above remain valid,
which proves the lemma.]
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Lemma 3.10. Let V;, V; be two partite sets such thgt;| > 1,|V;| =1andV; = V;. Let
X be the maximal subset ¥f such thatX — v;. Let D;; be obtained fronD(U[V;, V;1)
by changing orientations of the arcs between X andand let D;; be obtained from
D(U[V;, V;]) by changing orientations of the arcs betweEn— X and v;. Then D;;
and D;; have no cycles of length greater than the number of their partite sets

Proof. Assume thayj > i. Clearly, D;; is strong and the number of partite setsllyy is
m = j + 1 —i. Suppose thab;; has a cycleC’ of length greater tham. Let S be the set
of arcs inD(U[V;, V;1) whose orientations have been changed to obigjn

If C’ does not contain an arc frof) then it follows from Lemma 3.1 th& has a cycle
of length greater than, a contradiction. Now le€’ contain an are;x such thab;x € S,
x € X. By deletingv;x we find a pathP in D(U[V;, V;]) that starts ak € V; and ends
atv; with length at leasiz. Then the cyclePC[v; 11, v;—1]x is of length greater than, a
contradiction.

By direct duality, the claim on cycles ib;; follows. [

Observe that iD is not an extended tournament, then there exist partité/set§ such
thatV; = V;.

Theorem 3.11. Let D be a strong n-partite tournament. Suppose D is not an extended
tournament. LeVy, Vo, ..., V, be partite sets of D and let D have a cyelgs . .. v,v1,
wherev; € V;, i =1,2,...,n. Choose a paitV;, V; with the propertyV; = V; and let
|V;1<|Vi|. Choose a pair, y € V; such thaty — v; — x. Then D has no cycle of length
greater than n if and only if the following conditions hold

(a) For every pairVs, V; with the propertyV; = V;, we havemin{|Vs/|, |V;|} = 1;

(b) ULV}, Vi—1] = x andy — U[Vi41, V;];

(©) UlVit1, Vj-1l < UlVj41, Vi1l

(d) The digraphsD;;, D;; defined in Lemma&.10have no cycles of length greater than
the number of their partite sets

Proof. Condition (a) is necessary by Lemma 3.7; (b) follows from Lemmas 3.5 and 3.8;
(c) and (d) follow from Lemmas 3.9 and 3.10, respectively.

We will now prove that (a)—(d) are sufficient. By (a)/;| = 1. Let A = U[V;, V;],
B =UIV;, V;1. By (c), every path that starts froB— (V; U V;) and enters inté\ contains
the singleton partite séf;. This implies that no cycle iB can go througlB — V; — V; and
A more than once.

Assume thaD has a cycleC’ of length greater than. By (d), C’ is entirely in neither
D(B) nor D{A). Now let P’ be the part ofC’ in D{A). Clearly, P’ is a path whose first
vertex isv;. Observe that, by the first part of (dY[V;, V;—1] — x), if the terminal vertex
of P"is notinV;, thenP’ does not contain. If the terminal vertex of?’ is in V;, then, by
(d), the length ofP’ is less than the number of partite setdigA). If the terminal vertex
of P"is notinV;, thenP” = P’x is a path by (b). By (d), the length & and thus ofP’
is less than number of partite setsiifA).
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Thus, in either case, the length Bf is less than number of partite setsli{A). Analo-
gously, one can prove the corresponding resultioB). The above arguments show that
the length ofC’ is not greater than, a contradiction. [J

Theorem 3.12. One can check whether a strong n-partite tournament D on p vertices
n >3, has alongest cycle of length n in tirdgnp2).

Proof. Let V1, Vo, ..., V, be partite sets oD. One can easily check whethBris an
extended tournament in time(@?). If D is an extended tournament, using Theorem 3.3,
we can verify whether the length of a longest cycldiiis n in time O(p2). So, we may
assume thad is not an extended tournament.

The proof of Lemma 3.1 can be easily converted into a recursive procedure that either
finds out thaD has a cycle of length at least+ 1 or constructs an-cycle in D. The total
time required by the procedure is at mosd).

Now we may assume that, in time{p)”), we have constructed arcycleC=v1v2. .. v,v1
suchthaw; € V;, i=1,...,n,found apaiv;, V; with the property; = V; and|V;|=1,
and chosen a pair, y € V; such thaty — v; — x. By the previous theorem, it remains to
be seen that the conditions (a)—(d) can be checked in titn@¥. In fact, the conditions
(a)—(c) can be verified in time @2). To check (d), we can check whether some of the
digraphsD;; andD;; are extended tournaments. For all extended tournaments we can use
Theorem 3.3. For others, we find special pairs of partite sets and check the conditions (a)—(c)
before ‘splitting’ the digraphs into smaller ones to verify (d) for each of them.

Due toV;_1 — V; — V41, each ofD;; andDj; has less partite sets th@nhas and,
thus, the number of levels (or parallel ‘splittings’) at which we need to verify the condition
(d) is at most @n). Prior to checking (d), we will have spent @) time, which means the
total amount of time required is at most®3). [
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