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Abstract

Ann-tournament is anorientation of a completen-partite graph. It wasprovedby J.A.Bondy in 1976
that every strongn-partite tournament has ann-cycle. We characterize strongn-partite tournaments
in which a longest cycle is of lengthn and, thus, settle a problem in Volkmann (Discrete Math. 199
(1999) 279).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We use terminology and notation of[3]; all necessary notation and a large part of termi-
nology used in this paper are provided in the next section.
A very informative paper[11] of Volkmann is the latest survey on cycles in an important

class of digraphs, multipartite tournaments. Cycles in multipartite tournaments were earlier
overviewed in[2,5,9]. Along with description of a large number of results on cycles in
multipartite tournaments, Volkmann[11] formulates several open problems.
Bondy[4] proved that every strongn-partite tournament has a cycle of lengthn. Problem

3.4 in[11] is as follows:
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Problem 1.1. Characterize all strong n-partite tournaments in which a longest cycle is of
lengthn.

Notice that Problem 1.1 was first stated in[10]. This seemingly simple problem turns out
to be fairly non-trivial. In this paper, we provide such a characterization in Theorems 3.3
and 3.11 and prove that our necessary and sufficient conditions are verifiable in polynomial
time.

2. Terminology and notation

A digraph obtained from an undirected graphG by replacing every edge ofG with a
directed edge (arc) with the same end-vertices is called anorientationof G. An oriented
graph is an orientation of some undirected graph. Atournamentis an orientation of a
complete graph and ann-partite tournamentis an orientation of a completen-partite graph.
Partite sets of complete graphs becomepartite setsof n-partite tournaments. Anextended
tournamentis ann-partite tournament obtained froma tournament onnvertices by replacing
every vertex with an independent set of vertices. In an extended tournament all arcs between
two partite sets are oriented in the same direction.
The termscycleandpathmean simple directed cycle and path. A cycle of lengthk is

a k-cycle. For a cycleC = v1v2 . . . vkv1, C[vi, vj ] denotes the pathvivi+1 . . . vj which is
part ofC. A cycle subdigraphof a digraphD is a collection of vertex-disjoint cycles of
D. A digraphD is strongif for every ordered pairx, y of distinct vertices inD there exist
paths fromx to y. For a setX of vertices of a digraphD,D〈X〉 denotes the subdigraph ofD
induced byX.
For setsT , S of vertices of a digraphD = (V ,A), T → S means that for every vertex

t ∈ T and for every vertexs ∈ S, we havets ∈ A, andT ⇒ S means that for no pair
s ∈ S, t ∈ T , we havest ∈ A.While for oriented graphsT → S impliesT ⇒ S, this is
not always true for general digraphs. We also use the notationT ⇀↽ S, if neitherT → S

norS → T . If u→ v (i.e.,uv ∈ A), we say thatu dominatesv andv is dominatedby u.
The following simple argument is calleddirected duality. Many properties of a given

digraphD are preserved when we reverse all arcs ofD and obtain a new digraphD′. For
example,D has ak-cycle if and only ifD′ does.

3. Characterization

The following simple lemma first proved in[6] is very useful in our investigation. Similar,
yet different results, can be found in[1,7]. We provide a proof for the sake of completeness
and because of its usefulness for an algorithm described later on.

Lemma 3.1. If a strong n-partite tournament, n�3,has a k-cycle containing vertices from
less than k partite sets, then D has an m-cycle withm>n.

Proof. Let Z = z1z2 . . . zsz1 be a longest cycle inD with at least two vertices from the
same partite set. Assume thats�n. Consider the setSof vertices from partite sets not inZ.



G. Gutin, A. Rafiey / Discrete Mathematics 289 (2004) 163–168 165

If a vertexx ∈ S has arcs to and fromV (Z), then there existsi such thatzi → x → zi+1,
and thusx can be inserted inZ to get a longer cycle with at least two vertices from the same
partite set, a contradiction.
Thus, we may assume that eitherS → V (Z) or V (Z)→ S. Since both alternatives can

be treated similarly, we consider onlyV (Z)→ S. SinceD is strong, we can find a pathP
from a vertexx in S to Z. LetP be a shortest such path and letzi be the terminal vertex of
P. ThenPZ[zi+1, zi−1]x is a longer cycle with at least two vertices from the same partite
set, a contradiction.�

The following theoremallows us to settleVolkmann’s problem for extended tournaments:

Theorem 3.2([8] ). The length of a longest cycle in a strong extended tournamentD equals
the maximal number of vertices in a cycle subdigraph ofD. A longest cycle in D can be
found in timeO(p3), where p is the number of vertices inD.

As a special case, we immediately obtain the following:

Theorem 3.3. In a strong extended tournament Dwith n-partite sets, the length of a longest
cycle equals n if and only if the maximal number of vertices in a cycle subdigraph of D
equals n. One can verify whether the length of a longest cycle in D is n in timeO(p3),where
p is the number of vertices inD.

There exist strongn-partite tournamentsD that are not extended tournament, yet every
longest cycle inD is of lengthn. Consider a strong 4-partite tournamentH with partite sets
V1= {v1}, V2 = {v2, v′2}, V3= {v3}, V4 = {v4} and such thatV1→ V2→ V3→ V4→
V1→ V3 andv′2→ v4→ v2. It is not difficult to check thatH has no Hamilton cycle, but
H contains ann-cycle.
Theorem 3.3 allows us, from now on, to consider only strongn-partite tournamentsD,

which are not extended tournaments.We know thatD has ann-cycleCandweassume thatD
has no longer cycle. LetV1, V2, . . . , Vn be partite sets ofD. By Lemma 3.1, wemay assume
thatC=v1v2 . . . vnv1, vi ∈ Vi, i=1,2, . . . , n. LetU [Vi, Vj ] denoteVi ∪Vi+1∪· · ·∪Vj ,
where all indices are taken modulon.
To study the structure ofD we prove the following series of lemmas.

Lemma 3.4. Let T (S) be the maximal subset ofD − V (C) such thatT ⇒ V (C) and
V (C)⇒ S. ThenT = S = ∅.

Proof. Assume thatT �= ∅. Let U = V (D) − (V (C) ∪ S ∪ T ). SinceD is strong, there
exists an arcxy from S ∪U to T . There is a (shortest) path from a vertexvi ∈ C to x. Since
y dominates eithervi+1 or vi+2 or both, it is easy to see thatD has a cycle of length more
thann. Thus,|T | = 0, a contradiction. By directed duality,|S| = 0. �

Lemma 3.5. For everyi ∈ {1,2, . . . , n}, Vi−1→ Vi, whereV0 = Vn.
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Proof. Clearly, the lemma holds if bothVi−1 andVi are singletons. By directed duality,
we may assume that|Vi |�2. Let Vi−1 = {vi−1} and z ∈ Vi − vi . If z → vi−1 then
z→ vi−2, since otherwise the cyclezC[vi−1, vi−2]z has length more thann. By continuing
this argument we conclude thatz⇒ C, which contradicts Lemma 3.4.
It remains to consider the case of|Vi−1|�2. Lety ∈ Vi−1− vi−1. Suppose thatz→ y.

By directed dualityVi−1 → vi and thus, in particular,y → vi . Hence,yC[vi, vi−1]zy is
an(n+ 2)-cycle, a contradiction. Thus,Vi−1→ Vi. �

This lemma implies immediately the following:

Corollary 3.6. For every choicewi ∈ Vi , i = 1,2, . . . , n,w1w2 . . . wnw1 is a cycle inD.

Lemma 3.7. For every pair of non-singletonsVi , Vj we have that eitherVi → Vj or
Vj → Vi .

Proof. Suppose that neitherVi → Vj norVj → Vi holds. Then, without loss of generality,
we may assume that there are verticesx ∈ Vi andy, z ∈ Vj such thatz → x → y. By
Corollary 3.6, we may assume thatx �= vi (we may replacevi in C by another vertex
in Vi). By Lemma 3.5, we have that|i − j |>1 andvj−1 → {y, z} → vj+1. Thus,
xyC[vj+1, vj−1]zx is an(n+ 1)-cycle, a contradiction. �

Lemma 3.8. For every triplevi, vj , vk such thatvj ∈ C[vi, vk],
(a) If |Vi |>1 andx ← vj for somex ∈ Vi , thenx ← Vk,
(b) If |Vk|>1 andz→ vj for somez ∈ Vk, thenz→ Vi.

Proof. By directed duality, Claims a and b are equivalent. Thus, it suffices to prove only
Claim a. Let|Vi |>1, x ∈ Vi andx ← vj . By Corollary 3.6, we may assume thatx �= vi .
We havevj+1 → x since otherwise the cyclexC[vj+1, vj ]x has length more thann.
Continuing this argument, we conclude thatx ← vk. Now by Lemma 3.7 if|Vk|>1 then
Vk → Vi becausex ← vk. �

Lemma 3.9. Let|Vi |>1and|Vj |=1. If Vi ⇀↽ Vj , thenU [Vi+1, Vj−1] ← U [Vj+1, Vi−1].

Proof. Let x ∈ Vi − vi . As above we may assume thatx → vj andvi ← vj . According
to Lemma 3.8, for everyv ∈ C[vi+1, vj ] we havex → v and for everyu ∈ C[vj+1, vi−1]
we haveu→ vi . Now consider arbitrary verticesvt ∈ C[vi+1, vj−1], vl ∈ C[vj+1, vi−1]
and suppose thatvt → vl . However, the cycle

xC[vt+1, vl−1]C[vi, vt ]C[vl, vi−1]x

has length greater thann. This is a contradiction and we havevt ← vl . By Corollary 3.6,
instead ofCwe may consider the cycle obtained fromC by replacingvt with a vertex from
U [Vi+1, Vj−1] andvl with a vertex fromU [Vj+1, Vi−1].All arguments above remain valid,
which proves the lemma.�
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Lemma 3.10. LetVi, Vj be two partite sets such that|Vi |>1, |Vj | = 1 andVi ⇀↽ Vj . Let
X be the maximal subset ofVi such thatX→ vj . LetDij be obtained fromD〈U [Vi, Vj ]〉
by changing orientations of the arcs between X andvj and letDji be obtained from
D〈U [Vj , Vi]〉 by changing orientations of the arcs betweenVi − X and vj . ThenDij
andDji have no cycles of length greater than the number of their partite sets.

Proof. Assume thatj > i. Clearly,Dij is strong and the number of partite sets inDij is
m = j + 1− i. Suppose thatDij has a cycleC′ of length greater thanm. Let S̄ be the set
of arcs inD〈U [Vi, Vj ]〉 whose orientations have been changed to obtainDij .

If C′ does not contain an arc from̄S, then it follows from Lemma 3.1 thatD has a cycle
of length greater thann, a contradiction. Now letC′ contain an arcvjx such thatvjx ∈ S̄,
x ∈ X. By deletingvjx we find a pathP in D〈U [Vi, Vj ]〉 that starts atx ∈ Vi and ends
at vj with length at leastm. Then the cyclePC[vj+1, vi−1]x is of length greater thann, a
contradiction.
By direct duality, the claim on cycles inDji follows. �

Observe that ifD is not an extended tournament, then there exist partite setsVi, Vj such
thatVi ⇀↽ Vj .

Theorem 3.11.Let D be a strong n-partite tournament. Suppose D is not an extended
tournament. LetV1, V2, . . . , Vn be partite sets of D and let D have a cyclev1v2 . . . vnv1,
wherevi ∈ Vi, i = 1,2, . . . , n. Choose a pairVi, Vj with the propertyVi ⇀↽ Vj and let
|Vj |� |Vi |.Choose a pairx, y ∈ Vi such thaty → vj → x. Then D has no cycle of length
greater than n if and only if the following conditions hold:

(a) For every pairVs, Vt with the propertyVs ⇀↽ Vt , we havemin{|Vs |, |Vt |} = 1;
(b) U [Vj , Vi−1] → x andy → U [Vi+1, Vj ];
(c) U [Vi+1, Vj−1] ← U [Vj+1, Vi−1];
(d) The digraphsDij , Dji defined in Lemma3.10have no cycles of length greater than

the number of their partite sets.

Proof. Condition (a) is necessary by Lemma 3.7; (b) follows from Lemmas 3.5 and 3.8;
(c) and (d) follow from Lemmas 3.9 and 3.10, respectively.
We will now prove that (a)–(d) are sufficient. By (a),|Vj | = 1. Let A = U [Vj , Vi],

B =U [Vi, Vj ]. By (c), every path that starts fromB − (Vi ∪Vj ) and enters intoA contains
the singleton partite setVj . This implies that no cycle inD can go throughB−Vi −Vj and
Amore than once.
Assume thatD has a cycleC′ of length greater thann. By (d),C′ is entirely in neither

D〈B〉 norD〈A〉. Now let P ′ be the part ofC′ in D〈A〉. Clearly,P ′ is a path whose first
vertex isvj . Observe that, by the first part of (b) (U [Vj , Vi−1] → x), if the terminal vertex
of P ′ is not inVi , thenP ′ does not containx. If the terminal vertex ofP ′ is in Vi , then, by
(d), the length ofP ′ is less than the number of partite sets inD〈A〉. If the terminal vertex
of P ′ is not inVi , thenP ′′ = P ′x is a path by (b). By (d), the length ofP ′′ and thus ofP ′
is less than number of partite sets inD〈A〉.
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Thus, in either case, the length ofP ′ is less than number of partite sets inD〈A〉. Analo-
gously, one can prove the corresponding result forD〈B〉. The above arguments show that
the length ofC′ is not greater thann, a contradiction. �

Theorem 3.12.One can check whether a strong n-partite tournament D on p vertices,
n�3,has a longest cycle of length n in timeO(np3).

Proof. Let V1, V2, . . . , Vn be partite sets ofD. One can easily check whetherD is an
extended tournament in time O(p2). If D is an extended tournament, using Theorem 3.3,
we can verify whether the length of a longest cycle inD is n in time O(p3). So, we may
assume thatD is not an extended tournament.
The proof of Lemma 3.1 can be easily converted into a recursive procedure that either

finds out thatD has a cycle of length at leastn+ 1 or constructs ann-cycle inD. The total
time required by the procedure is at most O(p3).
Nowwemayassume that, in timeO(p3),wehaveconstructedann-cycleC=v1v2 . . . vnv1

such thatvi ∈ Vi, i=1, . . . , n, found a pairVi, Vj with the propertyVi ⇀↽ Vj and|Vj |=1,
and chosen a pairx, y ∈ Vi such thaty → vj → x. By the previous theorem, it remains to
be seen that the conditions (a)–(d) can be checked in time O(np3). In fact, the conditions
(a)–(c) can be verified in time O(p2). To check (d), we can check whether some of the
digraphsDij andDji are extended tournaments. For all extended tournaments we can use
Theorem3.3. For others, we find special pairs of partite sets and check the conditions (a)–(c)
before ‘splitting’ the digraphs into smaller ones to verify (d) for each of them.
Due toVi−1 → Vi → Vi+1, each ofDij andDji has less partite sets thanD has and,

thus, the number of levels (or parallel ‘splittings’) at which we need to verify the condition
(d) is at most O(n). Prior to checking (d), we will have spent O(p3) time, which means the
total amount of time required is at most O(np3). �
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