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Abstract: An edge-colored graph H is properly colored if no two adjacent
edges of H have the same color. In 1997 J. Bang-Jensen and G. Gutin
conjectured that an edge-colored complete graph G has a properly colored
Hamilton path if and only if G has a spanning subgraph consisting of a prop-
erly colored path Cp and a (possibly empty) collection of properly colored
cycles Cq, Cy, ..., Cq such that (C))N V(Cj) =9 provided 0 </ <j<d.
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1. INTRODUCTION

Let G = (V, E) be a complete graph, and letc : E — {1, 2, ..., x} be a fixed (not
necessarily proper) edge-coloring of G with x colors, x > 2. With given ¢, G is
called a x-edge-colored (or, edge-colored) complete graph. A subgraph H C G is
called properly colored if ¢ defines a proper edge-coloring of H.

The existence of properly colored Hamilton paths and cycles has been studied in
several articles; this topic was surveyed in [2] and later in Chapter 11 of [3]. While
there are characterizations [6,11] (see also Chapter 11 of [3]) of 2-edge-colored
complete graphs with properly colored Hamilton cycles, no such characterization
is known for x-edge-colored complete graphs with y > 3, and it is still an open
question to determine the computational complexity of this problem [8].

The most studied possibly sufficient condition for an edge-colored complete
graph with n vertices to have a properly colored Hamilton cycle is A, < /2],
where A,,, is the maximal number of edges of the same color incident to the
same vertex. This was conjectured by B. Bollobas and P. Erd6s [9] in 1976, but
remains unsolved. The best result so far for ‘small’ values of n is by J. Shearer [12]:
TAnon < [n/2] guarantees the existence of a properly colored Hamilton cycle.
The best result so far for large values of n is due to N. Alon and G. Gutin [1]: For
every € > 0 and n = n, large enough, A,,,, < (1 — (1/\/5) — €)|n/2] implies the
existence of a properly colored Hamilton cycle.

For the case of properly colored Hamilton paths, the situation is somewhat dif-
ferent. Let the abbreviation PCHP stand for “properly colored Hamilton path.”
Let G be an edge-colored graph. A properly colored cycle factor of G is a span-
ning subgraph of G consisting of properly colored cycles Cy, C, ..., Cy such that
V(C)H)NV(Cj) =P provided 1 <i < j <d. A properly colored 1-path-cycle fac-
tor of G is a spanning subgraph of G consisting of a properly colored path Cy and
a (possibly empty) collection of properly colored cycles C;, Cy, ..., Cy4 such that
V(C)NV(Cj) =P provided) <i < j<d.

The following theorem gives a PCHP characterization for the case of just two
colors:

Theorem 1.1 [2]. A 2-edge-colored complete graph G has a PCHP if and only if
G contains a properly colored 1-path-cycle factor.

It is conjectured in [2] that the above theorem holds for any number of colors.
We call it the BJG conjecture. In support of the BJG conjecture, the following
result was proved in [5]: If a y-edge-colored complete graph G (x > 2) contains a
properly colored cycle factor, then G contains a PCHP.

It is easy to see that the BJG conjecture in [2] can be reduced to the following:

Conjecture 1.2 (PCHP Conjecture). Let x > 3 and let G be a x-edge-colored
complete graph. Assume that there exist C, P C G, where C is a properly colored
cycle and P a properly colored path, such that V(C)NV(P) =@ and V(C)U
V(P) = V(G). Then G contains a PCHP.
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In this article, we prove the PCHP conjecture and, thus, the BJG conjecture. Since
it takes polynomial time to check whether an edge-colored graph has a properly
colored 1-path-cycle factor [2], our result implies that the PCHP problem is poly-
nomial time solvable for edge-colored complete graphs. The proof of Theorem 2.1
is constructive and can be turned into a polynomial time algorithm for transforming
a properly colored 1-path-cycle factor into a properly colored Hamilton path.

This gives, in particular, some indication that the problem of the existence of
a properly colored Hamilton cycle in an edge-colored graph may be polynomial
time solvable after all. The situation may remind one of that with the existence
of Hamilton paths and cycles in semicomplete multipartite digraphs (SMDs) [4]
(see also Chapter 5 in [3]). Both Hamilton path and cycle problems for SMDs are
polynomial time solvable, but only for the Hamilton path problem we have a nice
characterization (see, e.g., [10] or Chapter 5 in [3]) so far.

In passing we mention a simple sufficient condition proved in [ 7] for the existence
of a PCHP in an edge-colored K, : K,, has no monochromatic triangles.

2. RESULTS

If H is connected, the distance in H between two vertices u, v € V(H) is the length
of a shortest path in H from u to v, and we denote it by disty(u, v).

Theorem 2.1. The PCHP Conjecture holds.

Proof. LetC=v;...v,vy(n>3)and P = u;...u, (m > 1). Throughout we
will perform addition and subtraction in the indices of the vertices v; € C modulon.

Let je{l,2,...,n}. If m > 2 and c(u1v;) # c(uiu>), then at least one of the
paths UnUm—1 . - UIVjVjy] ... Vj] and UnUm—1 .. - UIVjVj_1 ... Vjt] is a PCHP.
Similarly there exists a PCHP if c(u,,v;) # c(uy—1u,—2). SO we may assume the
following:

(1) If m > 2, then c(uiv;) = c(ujus) and c(u,vj) = c(Um—1u,) for every j=
1,2,...,n.

Thus, to complete the proof of this theorem it suffices to prove the following
claim:

Claim A. If (1) is satisfied, then there exists a PCHP H in G with uy as its
first vertex, such that the initial edge of H is either uu, or one of the edges u v,
(1 < j < n), and such that if m > 2, then u,, is the last vertex of H and the last
edge of H is either u,,_\u,, or one of the edges vju,, (1 < j < n).

Let b(P, C) = 2(n — 3) + m; we notice that b(P, C) > 1. Suppose that Claim A
is false, and let (G, P, C, c) be a counterexample with a minimal value of b(P, C).

If m = 1, then either u viv,...v, Oor u vV v, ...v; is a PCHP as desired. Thus,
we have established m > 2 and b(P, C) > 2.

Now we prove
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2)m > 3.

Suppose that m = 2. With x = c(uu3), we have c(ujv;) = c(uzv;) = x for all
j=1,2,...,n, by (I1). Choose r such that c(v,_;v,) # x # c(Vy+1V,42); this is
possible if r can be chosen with c(v,v,+1) = x, and otherwise it is trivial. But then
the path u;v,v,_1 ... V,32v,41u; yields a contradiction.

We continue to prove further properties of the coloring c.

(3)Foreveryi, 1 <i < m,thereexistr and s (1 < r, s < n), such that c(u;u;11) #
c(uivy), c(ui—u;) # c(u;vy).

Otherwise the path P = P —u; —upy — -+ — u;_ satisfies (1) in G’ = G —
uy —uy — -+ — u;_ (withu; in place of u). Since b(P’, C) < b(P, C), there exists
a PCHP H' in G’ that starts from u; with one of the edges u;u;j oru;vj,1 < j <n
and finishes in u,, with u,,, _ju,, orwithanedge viu,,, 1 <k < n.Thenu;...u; H’
is a PCHP in G of the desired type having u,u; as its initial edge, a contradiction.
A similar argument shows the existence of s.

Suppose  that  c(vi—1v;) = c(v;jvj41) =x, where  diste(vi, vj41) > 3.
If c(vjvj)=x, then define G' =G —v;—vigg —---—v; and define
¢ E(G)—{1,2,..., x} by

, X ife= Vi—1Vj+1
c(e) =

c(e) otherwise.

Both P and the cycle C" = vj1vj42... 0,01 ... Vi—1vj4; are properly colored by
¢’. Moreover, P clearly satisfies (1) with respect to C’. Since b(P, C') < b(P, C),
there exists a PCHP P; in G’ with initial edge u u, or ujv, for some r € {j +
L,j+2,...,n,1,...,i =1} If vi_yv;y; € Py, then we find the desired PCHP H
in G by replacing the edge v;_jv;41 by the path v;_jv;...v;v;;1. Otherwise, if
vi—1vj41 € P1, then P is properly colored in G and satisfies (1) with respect to
C” = v;vi41 ... v v;, which is a properly colored cycle. By b(P;, C”) < b(P, C),
the desired PCHP exists in G, a contradiction.
Thus, we have the following:

(4) Assume that distc(vy, vi41) > 3. If c(vg_1v5) = c(v,v,41) = X, then c(v,v;) # x.

Considerthe pathu ... u, oU, 1V 1V4—2 ... Vgyp1 Vgl plh pi1 - . . Uy ASit cannot
be a PCHP we conclude the following (Figs. 1 and 2).

(S)Let2 < p<mand 1 < g < n. Then at least one of the following holds.

(@ p=3andc(upup_1) = c(up—1v4-1)
(b) c(up-_1v4-1) = c(Vg—2v4-1)

() C(”pvq) = C(quq+1)

(d) p<mandc(u,vy) = c(uppir).
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FIGURE 1. The path used to prove (5).
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Considering the path uy ... u,_2u p_1Vg41Vg42 - - . Vg—1Vgl pUh pt1 - - . Uy, Similarly

leads to:

(6) Let2 < p <m and 1 < g < n. Then at least one of the following holds.

(@ p>3andc(uyrup_1) = c(up_1v441)
(b) c(up-—1v441) = c(Vg41V442)

(©) c(upvy) = c(vy_1vy)

(d) p <mand c(u,vy) = c(uplpir).
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FIGURE 2. The path used to prove (6).
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In several of the following applications of (5) and (6), it will be useful to note
that (5c) and (6¢) are mutually exclusive statements for any values of p and ¢, since
C is properly colored, and that (5d) and (6d) are identical statements.

For the remaining part of the article, we define x = c(uu,) and y = c(u—1Um)-

(7) Assume c(upv;) = z # c(upu3) forsome j € {1,2,...,n}.

(@ If c(vjvjp1) #z then c(vjovj—1)=x, and if c(vj_jv;) #z then
c(Vj11vj42) = X.

(b) If z=1x or c(vj_1vj) # z # c(vjvj41), then c(vj_rv;_1) = c(Vj11Vj42) =
c(vj—1vjy1) =xand n € {3, 5}.

Ifc(vj_1v;) # z,then c(v;41vj42) = x follows from (6) with p = 2and g = j (only
(b) of (6) is not necessarily false). If c(v;v;41) # z, then c(v;_v;_1) = x similarly
follows from (5). This shows (a).

Now assume c(v;_1v;j) # z # ¢(v;v;41) or z = x. In the case z = x the fact that ¢
is a proper coloring of C together with (a) implies c(vj_2vj—1) = c(Vj41Vj42) = X.
The same conclusion follows directly from (a) when c(vj_1v;) # z # c(vjvj41).
By symmetry, and since c(v;_jv;) # c(v;v 1), we may assume c(Vj_1vj1) #
c(v;vj41). Since the Hamilton path u v ovj43... 0201V 1Vjus ... U, fails
to be a PCHP, it follows that ¢(v;_1vj41) = x.

Consider (4) for s = j — 1 and t = j 4+ 1. The conclusion c(v;v;) # x of (4)
implies distc(v;—1, vj42) < 2, whichis only possible forn < 5. Moreover, the edges
vj_ov;_1 and v;;1v 47, both of color x, are not adjacent on C, which implies n # 4.
Thus (b) is proved.

(8) Assume c(uy—1vr) = 2 # c(Upm—ruy—1) for some k € {1,2, ..., n}.

(@) If c(ug_1vx) #z then c(vgrivee2) =y, and if c(vgves1) # z then
c(Vg—2Vk—1) = Y.

(b) If z =y or c(vk—1v) # 7 # c(VkVr41), then c(vr2vk—1) = (Vg1 1Vk42) =
c(Vk—1vk+1) = yand n € {3, 5}.

The proof of (8) is similar to that of (7).

(9) Assume c(uov;) # xforall j =1,2,..., n. Then there exists j € {1,2,...,n}
such that

(@) c(uavj_1) = c(uavj) # c(uaus), and
(b) c(vj2vj_1) = c(vjvj1) = x.

By (3) there exists j € {1,2, ..., n} such that c(u,v;) = z # c(uru3). We may
assume c(v;v;41) # z (if not, then c(v;_1v;) # z holds, and we may renumber the
vertices on C so that v;,, becomes v;_, for all £ =0, 1, 2, ... without change of
the conclusion). Then (7a) implies c(v;_v;—1) = x.
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Again by (3) there exists r € {1, 2, ..., n} such that if m > 4, then c(usv,) #
c(u3u4) holds.

Suppose c(urvj—1) # z. SINCE UV, Vg2 ... Vj2Vj— UV Vjy] ... Vp |V U3U4
... U, is not a PCHP, at least one of the following holds:

(1) curv,41) = c(Vr11V,42),
(i) c(uzv,) = c(v,_1v,),
(iii) r = jand c(upv,) = c(usv,).

Since uqv,_1v,_5 ... Vit VjURVj—1Vj2 .. . Upp |V USUS - . Uy is not a PCHP, at least
one of the following holds:

(iv) c(uyv,—1) = c(v,—2v,-1),
(V) c(usvy) = c(vvp41),
(vi) r = j — 1 and c(uyv,) = c(uzv,).

Let p = 3 and ¢ = r, and observe that neither of (5a), (5d), (6a), or (6d) holds.

We will now show that (iii) and (vi) do not hold. If » = j, then c(v,_v,—1) = x #
c(upv,_1), hence also (5b) does not hold, and (5¢) must be satisfied, thatis, c(u3v,) =
c(vvp41). In particular, if r = j, then c(u3v,) = c(v;v;41) # z = c(uav;), contrary
to (iii).

If r = j — 1, then c(uav,41) = c(uzv;) = zand c(v41v,42) = c(vjvj41) # 2, S0
(6b) does not hold. Then (6¢) implies c(u3v,) = c(v,—1v,) = c(v;2v;—1) = x. In
particular, if r = j — 1, then c(u,v,) # c(usv,) follows, hence also (vi) does not
hold.

We deduce that (i) or (ii) is true, and that (iv) or (v) is true. Now (6¢) is equivalent
to (ii), and (6b) and (i) both are not true (by (1) and our assumption), therefore (ii)
holds. Similarly (5¢) is equivalent to (v) and (5b) contradicts (iv), so also (v) holds.
But (i) contradicts (v), since C is properly colored. This establishes c(uov;_1) = z.

Finally, c(v;v;41) = x follows from (7a).

(10) Assume c(up,—1vj)#y for all j=1,2,...,n. Then there exists k €
{1, 2, ..., n} such that

(@) c(um—1vk—1) = c(Upm—1V) 7 c(Um—2Up—1), and
(b) c(vk—2vi—1) = c(VkVk41) = Y.

The proof is similar to the proof of (9).

(11) Assume z = c(uv;) = c(urv;—1) & {x, c(upuz)} for some j e {1,2,...,n}.
Furthermore assume c(v;v;1) # z. Then one of the following holds:

(a) n is an even number, and n/2 edges of C have color x.
(b) If C('Uj/Uj’-H) =X, then Vj € S = {Uj_4, Vj_2, Vj, Uj+2}.
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First c(vj_ov;—1) = c(v;vj41) = x follows from two applications of (7a), applying
(7) to uov; and u,v;_1 in this order. Since C is properly colored, we conclude that
c(vjvjq1) = ximplies v & {v;_3, vj_1, Vj41}. Assume that (b) does not hold, and
choose any vy € V(C)\ § satisfying c(vjv;41) = x. Then, n > 8 follows from
vy & SU{vj_3,vj_1, vj41}. We will prove the following statement.

(¥) c(vy2vj_1) = c(vj12V)43) = X.

First we suppose c(vj_,vjy_1) # x. Then, vy ¢ SU{v;_3,v;_1,vj41} and n >
8 imply distc(vj_1,vj41) > 3. By (4) with s=j—1 and 7= j, we have
c(vj_1vj) # x. We consider the path P; = ujvj_1vj_>...v41vjuu3. ..u, and
the cycle C; = vjvj41...vj_2v;—1vj, which are properly colored and satisfy
(1). Since b(Cy, P;) < b(C, P) holds, our minimality assumption yields a PCHP
as in Claim A, which is a contradiction. So ¢(v;_,v;_1) = x holds. Now sup-
pose c(vj42vj43) # x. Then by (4) with s = j and t = j' 4+ 1 we similarly have
c(vjvj41) # x,and we consider the path P> = u vy 0043 ... 0,2V 1UsU3 ... Uy
and thecycle Co = vj4vj ... vj11v;vj 4 instead, again with a contradiction. Thus
we have also c(v;12v;43) = x, which finishes the proof of ().

Applying () recursively, it follows that c¢(vj42¢v12¢41) = x holds for every
¢ e Nwithvjio ¢ SU{vj_3,vj_1, vj41}. In particular, either c(vj43v;14) = x or
c(vj44v45) = x holds (vjy3 ¢ S follows from n > 8, and v;14 € § only occurs
if n =8 and v; = vjy3, in which case c(vj3vj44) = x follows). However, ap-
plying (%), ¢(vj13vj+4) = x would imply c¢(vj+1v;42) = x, contradicting the fact
that C is properly colored. So ¢(v;14v;45) = x holds. Similar reasoning leads to
C(Uj_(,l)j_s) = x. It follows from (x) that all of Vjt4Vjt5, VitV jtT, o5 VjogVj=5
are colored x.

Since both v 4v;45 and v;_gv;_s are colored x, it follows from () that v ov;13
and v;_4v;_3 are also colored x. Combining this with the fact that v;v;;; and
vj_ov;_1 are both colored x, we have shown that (a) is true, which proves (11).

(12) There is an index j, 1 < j < n, such that c(u,v;) = x or c(u,,—1vj) = y.

Suppose c(u2v;) # x and c(u,,—1v;) # yforall j=1,2,...,n. By (9)and (10)
we may choose j, k € {1, 2, ..., n}such that j satisfies (9a) and (9b), and k satisfies
(10a) and (10b).

By (9b) we have c(vj_2vj—1) = c(vjvj41) = x, from which m > 4 follows, as
otherwise uusvjvjyy ... vj—ov;_ju3z would be a PCHP. Now the path

UNVf—1Vk=2 ... vj+1vju2u3 e e U 2UR VgV - - - vj_gvj_lum

is not a PCHP, so y = x follows.

We will show that (11a) holds. So suppose not; then it follows from (11) that (11b)
holds. By (10b) we have c(vk_avi—1) = c(vxVk+1) = X, which by (11b) implies
v € {vj_2, vj, Vj2}
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The case vy = v; would lead to a contradiction, since the path

ULV 2V 3... Vi VjUU3 .. . Uy 2Up—1Vj—1Up

would be a PCHP.

Suppose vx = v;_». By (10b) we then have c(v;_4v;_3) = x. Then n ¢ {3, 5}
follows from the fact that C is properly colored, and n ¢ {4, 6} holds since (11a)
is not satisfied, so we deduce n > 7. Applying (4) to s = j — 3 and r = j we have
c(vj—3v;) # x. However, the path uvj_jususz ... uu_ouu—1vj—2u, and the cycle
VjVj41...Vj—4v;_3v; are properly colored and satisfy (1), which contradicts our
minimality assumption.

For vy = v;1, we similarly conclude by (10b) and (4), withs = j — landt = j +
2,thatc(vj_1vj42) # x. Examination of the pathuv;usus . . . uyy—2Uym—1v 411, and
the cycle v;_1vj42v;43...vj_v;_; again leads to contradiction, which shows that
(11a) does hold.

We have that n is an even number, and the edges of C are alternately colored
x. Let r € {1,2,...,n} be chosen so that c(u3v,) # c(usu4); this is possible by
(3). We apply (5) and (6) with p = 3 and g = r. Then (5d) and (6d) both fail by
the choice of r. Neither of the edges uv,—; and u,v,1; have color x, due to our
assumption, hence (5a) and (6a) both fail. For the same reason one of (5b) and (6b)
fails, because either v,_,v,_1 Or v,41v,47 is colored x. If v,_,v,_; is colored x, then
(5b) fails, so (5¢) holds and gives c(u3v,) = c¢(v,v,+1), and now

ULUVk V41 - - - Vp— 1 VP USU4 o Uy Uy — 1 Vf—1 V=2 « + - Up 2 U1 U

is a PCHP, a contradiction. If v,,;v,45 is colored x, then (6b) fails, and c(u3v,) =
c(v,—1v,) follows similarly. But

ULUVg—1Vf—2 -« - Up 1V USUS - o . Uy 2 Uy — 1 Vg Vf41 « « - Up2VUp—1Up
is a PCHP, again with contradiction. This finishes the proof of (12).

(13) Assume c(upv;) = x for some j € {1,2,...,n}, and let w = c¢(v;—jv;) and
z = c(vjvj41). Then

(@) c(vj_avj_1) = c(Vj11V12) = c(vj_1vj4+1) = x and n € {3, 5}

(b) c(usvx) # x for all vy # v;

(©) c(uzvj-1) = c(uavj1) = c(uzusz) € {w, z}

(d) m=>4

(e) if c(uouz) = w, then c(uzvy) = c(uzug) # c(uzvj—1) = w for all vy # vj_;.
(f) if c(uauz) = z, then c(uzvy) = c(ususg) # c(uzvjy) = z forall vp # vjy.

We may assume j = 1, so that c(u,v,) = x, c(v,v1) = w, and c(v;v;) = z. Then
c(upvy) = x # c(upus) and (7b) directly imply (a). Since n € {3, 5} and C is prop-
erly colored, c(uvr) = x now implies v; = v; by (a) and (7b), so (b) holds.
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Now c(uyv;) = c(uyus) follows from (5) and (6) with p = 2 and g = 2, since
(5a), (5b), (6a), (6b) all fail, and (5c) contradicts (6¢), so that (5d) and the equivalent
(6d) hold. Similarly we deduce c(u,v,) = c(uru3) from (5) and (6) with p = 2 and
q=n.

Now (d) and c(u3v1) = c(uzu4) follow from (5) and (6) with p = 3 and g = 1, as
(5d) or (6d) is again satisfied. Moreover forn = 5 the identity c(u3v3) = c(usuy4)fol-
lows, using c(vov3) # c(v3vs), from the fact that neither u urv4vs5v V2V U3US - . . Uy,
NOT U V)V U V5V4V3USUY - . . Uy 1S @ PCHP. Similarly we have c(u3vy) = c(uzuy)
when n = 5.

We deduce c(u3v,) € {w, c(uszig)}, SINCE U V,_1Vy_2 ... V3VpU V| VyU3Uy . . . Uy
is not a PCHP, Moreover c(u3v,) € {c(uus), c(uzuy)} follows, using c(upv,) =
c(upu3), by examining the path uv,_1v,_7 ... VaV1UV U3U, . . . Uy, and We have
c(usvy) € {w, c(uzug)} N {c(uus), c(uzug)}. A similar argument shows c(uzv;) €
{z, c(usuqg)} N {c(urus), c(usuq)}. At least one of c(uzv,) and c(u3v;) is not equal
to c(usuy), by (3), so it follows that either c(usv,) = c(uuz) = w or c(uzvy) =
c(upu3) = z holds. This shows the remaining parts of (c), (e), and (f), and (13) is
proved.

(14) Assume c(u,,—1v;) = yforsome j € {1,2,...,n},andletw’ = c(v;_jv;) and
7' = c(vjvj41). Then

(@ c(vj2vj_1) = c(Vjy1Vj42) = c(vj_1vj41) = yand n € {3, 5}

(b) c(upu—1vr) # y for all vy # v;

©) cum-1vj-1) = cUp_1vj11) = c(Up_2ty_1) € (W', 7}

(d) m >4

(e) if c(um—2um—1) = W', then c(uy—20r) = c(Up—3Um—2) F# c(Un—2vj—1) = W
for all vi # vj_;.

() if c(up—um—1) =2, then c(uu—2v) = cUm_3tm—2) # cUm_2vj11) =2’
for all vi # vjyq.

(14) is proved similarly to (13).

By (12) we may assume c(u,v;) = x without loss of generality. Let w = c(v,v;)
and z = c(v;v;). We will further assume c(u,v,)) = c(urv;) = c(uouz) = w, which
is admissible by (13c) without loss of generality. Then, m > 4 holds by (13d) and

c(uzvy) = c(usuy) # c(uzv,) = w for all vy # v,
by (13e). These facts will be used frequently throughout the remaining part of the
proof.

15)n =3.

Suppose n # 3; from (13a) it follows that # is equal to 5. Further we then have
c(v4vs) = c(vav3) = c(vovs5) = x by (13a), and c(uyvy) # x for vy € {vs, v4} by
(13b).
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Ul U,

FIGURE 3. The situation in the proof of (15), where a = c(uzua).

We will first show that there exists je {l,2,...,5} with c(u,_v;) =
y. So suppose not. Then by (10) there is a k such that c(u,—_jvi—1) =
c(Um—1;) # c(Um—rtty—1) and c(vg_rvr—1) = c(Vgvr+1) = y. The latter implies
k ¢ {1,2}, using c(v4vs) # c(v1v2) and c(vsvy) # c(vavs). For k € {3, 4} the
path u v4urv1VVsUSUY . . . Uy Uy —1V3U, 1S @ PCHP, and for kK = 5 the path
U V3UQ VI Vo UsUSUY . . . Upy—2Up— 14U, 1S @ PCHP, giving a contradiction in each
case. Thus we have shown that j exists as desired. Figure 3 summarizes what has
been shown so far about the colors of various edges.

Now (14a) implies y € {x, z, w}, and the value of j is uniquely determined, by
(14b). Moreover, (14c) implies c(u,—2u,m—1) € {x, z, w}\ {¥}.

Casel. y=x.Inthiscase j =1 and c(u,—1v1) = x # c(U—2u,,—1). However,
UTUL VU Uy U2 . . . U4UU3V5V403U,, 1S @ PCHP, a contradiction.

Case 2. y =z In this case j =35, c(upn—1vs) = z, and c(Upy—2un—1) € {x, w}.
Supposing that c(u,,—u;,—1) = x holds, the path ujus ... uy_3uy, V403U, Uy,
and the cycle vy vsv,v; would both be properly colored, contradicting our minimality
assumption. So we have c(u,,,—ou,,—1) = w.

By (13e) we have c(usv;) = c(usuq), and c(uy—1v1) = c(Upy—2uy—1) follows
from (14c), so we deduce m # 4. Since c(uu3) = w = (U, _ru,,—1) itis clear that
m # 5 holds, hence m > 6. By (14e) we have c(u,,—»v;) = w. Now

UIUV20 1 Uy —2Upm—3 -« - U4UZVSVLUI U — 1 Uy

1s a PCHP, a contradiction.

Case 3. y = w. In this case j =2 and c(u,,_1v2) = w. We note by (14a) that
c(vyv3) = w holds. However uuyv4vsusuy . . . u,, and v;v,v3v; are now properly
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to "Uj

(251 Uug us U4 Um—1 Um,

FIGURE 4. The situation in the final steps of the proof of Claim A, where a =
c(uzuy).

colored, again contradicting our minimality assumption. This finishes the last case
and (15) is proved.

We choose j € {1, 2, 3} with c(u,,—1v;) = y, which is possible since (10b) fails
for n = 3, implying that the assumption of (10) does not hold. Then j satisfies
the assumption of (8), hence c(v;11v;42) = y follows from (8b). We deduce y €
{x, z, w} and proceed to divide into the three respective cases (see also Fig. 4).

Case 1. y=x. Then j=1 follows from c(v,v3) = x, and the choice of j
implies c(u,,—1v1) = x. But now u urvov1Uy—_1Uy—> . . . uguzv3l,, is a PCHP, a
contradiction.

Case2. y = z.Inthiscase j = 3 follows fromc(vv;) = y,implying c(u,,—1v3) =
z. By (13e) c(uszvy) = c(uzvy) = c(uzug) # c(uzvz) = w. For m =4 all of
(6a,b,c,d) would fail for p =4 and ¢ = 1 (in particular (6b) fails by c(uzvy) =
c(usuy) =y # x = c(vyv3)), so we deduce m > 5.

Suppose c(uqv1) # c(uqus). Then c(uzvy) = c(uqvy) holds, as otherwise the
path wu upvov3u3V1UgUs . ..U, would be a PCHP. Now (6) with p =4 and
g =1 implies c(uzvy) =x or c(ugv;) =w (i.e.,, (6b) or (6¢)). We have
c(ugvy) = c(usvy) = c(usuq) # c(uruz) = w, so c(usvy) = x follows. But then
ULUR VU V3 Upy— 1 U—2 - . . UsU4V1U,, 1S @ PCHP, which is a contradiction. We con-
clude that c(u4v1) = c(u4us) holds.

Suppose c(ugvy) # c(ugus). Then (5¢) for p =4 and g = 2 holds, that is,
c(ugvy) = x and u U U3VIV3Up_1Upm_2 . . . UsUsV2U,, 1S @ PCHP, a contradiction.
Hence c(u4v;) = c(uqus) follows. Now by (3) we have c(ugvs) # c(ugus). With
p = 4 and g = 3 either (5b) or (5¢) holds, hence c(u3v;) = z or c(ugv3) = w. Ex-
amination of the path u v,uyviusvsuqus . . . u,, allows us to deduce c(uzv;) = x or
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c(ugv3) = w. Then c(uqv3) = w follows, since the two alternatives conflict due to
c(uzvy) = c(uzvy).

Let i be the largest number such that i < m and such that c(u;vy) = c(uyv;) =
c(uyuyyr) # c(uyvs) = wholds forevery i’ = 3,4, ...,i — 1. We note that i exists
and satisfies i > 5. It is useful to observe that (5a) and (6a) fail for p = i and every
qg = 1,2, 3; for (5a) this follows from c(u; _u; 1) # w for g = 1, and it follows
from c(u;—1vy—1) = c(ui—1u;) # c(uj—ou;_1) for g # 1. Similarly for (6a).

For i = m all of (6a,b,c,d) fail for p =i and ¢ = 1 (in particular (6b) fails by
c(ui_1v) = c(ui—1u;) = y # x = c(v,v3)), so we deduce i < m.

Suppose c(u;v1) # c(ujuir). For p =iand g = 1 (5) and (6) imply c(u;v1) = z
and c(u;_1v) = x (respectively (5¢) and (6b)). Using c(u;—1v1) = c(ui—1v2) = x
and c(u;2v2) = c(uj—ou;—1) # c(ui—1u;) = c(u;—1v2) = x, the path

Up... Ui 3U; 2VV3U; | VIUU] ... U,

is a PCHP. This contradiction shows c(u;v1) = c(u;u;+1). Suppose c(u;vy) #
c(u;uiy1). Then (5) with p = i and g = 2 implies c(u;v;) = x, but

Uiy .. . Ui 2U; V1 V3Up—1Up—2 - . . Ui Ui V2Uy,

is a PCHP, a contradiction. Therefore c(u;v;) = c(u;u;+1). By (3) we have c(u;v3) #
c(u;uiyy). Then c(u;v3) # w follows from the choice of i, and

ULV IUU3 ... U QU (V3UU] ... Uy

is a PCHP, a contradiction.

Case 3. y = w. This implies j =2 and c(u,,—1v2) = w. By (l4c) we have
c(Um—oUm—1) € {x,z}. The case c(uy—ruy—1) = z is symmetric to Case 2, so
only the case c(u,,—u;,—1) = x remains. Then m > 5 follows, as P is prop-
erly colored. We can assume c(upu,,—1) # x without loss of generality. But
UTUR Uy Up_2 . . . U4U3V3V2V U, 1S @ PCHP, with contradiction. This finishes the
proof of Case 3, and of Claim A. |
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