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Abstract

We consider the problem of fair allocation of indivisible goods where we are given a
set I of m indivisible resources (items) and a set P of n customers (players) competing
for the resources. Each resource j ∈ I has a same value vj > 0 for a subset of
customers interested in j and it has no value for other customers. The goal is to
find a feasible allocation of the resources to the interested customers such that in the
Max-Min scenario (also known as Santa Claus problem) the minimum utility (sum
of the resources) received by each of the customers is as high as possible and in the
Min-Max case (also known as R||Cmax problem), the maximum utility is as low as
possible.

In this paper we are interested in instances of the problem that admit a PTAS.
These instances are not only of theoretical interest but also have practical applica-
tions. For the Max-Min allocation problem, we start with instances of the problem
that can be viewed as a convex bipartite graph; there exists an ordering of the re-
sources such that each customer is interested (has positive evaluation) in a set of
consecutive resources and we demonstrate a PTAS. For the Min-Max allocation prob-
lem, we obtain a PTAS for instances in which there is an ordering of the customers
(machines) and each resource (job) is adjacent to a consecutive set of customers (ma-
chines). Next we show that our method for the Max-Min scenario, can be extended
to a broader class of bipartite graphs where the resources can be viewed as a tree
and each customer is interested in a sub-tree of a bounded number of leaves of this
tree (e.g. a sub-path).
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1 Introduction and Problem Definition

A bipartite graph H = (P, I) with white vertices P and black vertices I is convex, if there is
an ordering π of the vertices in I such that the neighborhood of each vertex in P consists of
consecutive vertices, i.e., the neighborhood of each vertex in P forms an interval. Convex
bipartite graphs are well known for their nice structures and both theoretical and practical
properties. Many hard (i.e. NP-complete) optimization problems become polynomial-time
solvable or even linear-time solvable in convex bipartite graphs while remaining hard for
general bipartite graphs [6].

We consider the problem of allocating indivisible items (resources) to a set of players
(customers) in a convex bipartite graph below.

Problem Description: We are given a convex bipartite graph H = (P, I) together with
an ordering π of the vertices of I, where P is a set of n players and I is a set of m items.
We consider the problem of allocating the indivisible items from I to the set P . Each
player p ∈ P has a utility function fp(j) = vj > 0 for each item j ∈ [m] (vj is a positive
integer). This represents the value of item j for player p. If p is adjacent to item j then
its value for p is vj, otherwise its value is zero. The goal is to find a maximum t and a
partition I1 ∪ I2 ∪ · · · ∪ In = I of the items such that for every 1 ≤ j ≤ n, Ij is a subset of
items adjacent to player pj and the items in Ij have a total value at least t in the max-min
case and a total value at most t in the min-max case.

The interval case arises naturally in energy production applications where resources
(energy) can be assigned and used within a number of successive time steps (i.e. the energy
produced at some time step is available only for a limited amount of time corresponding
to an interval of time steps) and the goal is a fair allocation of the resources over time,
i.e. an allocation that maximizes the minimum accumulated resource we collect at each
time step. In other words, we would like to have an allocation that guarantees the energy
we collect at each time step is at least t, a pre-specified threshold. See also [18] for some
applications in on-line scheduling.

Related work: For the general Max-Min fair allocation problem, where a given item does
not necessarily have the same value for each player, no “good” approximation algorithm is
known. In [5], by using similar ideas as in [12], an additive ratio of maxi,j vij is obtained,
which can be arbitrarily bad. A stronger LP formulation, the configuration LP, is used to
obtain a solution at least opt/n in [3]. Subsequently, [2] provided a rounding scheme for
this LP to obtain an objective function value no worse than O( opt√

n(log3 n)
). Recently in [16],

an O(
√

log logn
n logn

) approximation factor, close to the integrality gap of the configuration LP,

was shown. In the restricted case, where vij ∈ {0, vj} for i ∈ [n] and j ∈ [m], there is
an O( log log logn

log logn
) factor approximation algorithm [3] for the Max-Min allocation problem.

Furthermore, there is a simple 1
2

inapproximability result for both the restricted case, as
well as the general case (where an item does not necessarily have the same value for each
player) [5]. Recently, Feige proved that the integrality gap of the configuration LP is a
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constant. In [1] an integrality gap of 1
5

was shown for the same LP which was later improved
to 1

4
. The authors provide a local search heuristic with an approximation guarantee of 1

4

which is not known to run in polynomial. Later, it was shown in [15] that the local search
can be done in nO(logn) time. In [9] the authors provided a constructive version of Feige’s
original nonconstructive argument based on Lovász Local Lemma, thus providing the first
constant factor approximation for the restricted Max-Min fair allocation problem. They
provide an α-approximation algorithm for some constant α where an explicit value of α
is not provided. Thus there is still a gap between the 1

2
inapproximability result and the

constant α approximability result in [9].

Several special cases of the Max-Min fair allocation problem have been studied. The
case where vij ∈ {0, 1,∞} is shown to be hard in [11] and a trade off between running
time and approximation guarantee is established. In [4] the authors consider the case in
which each item has positive utility for a bounded number of players D, and prove that the
problem is as hard as the general case for D ≤ 3. They also provide a 1

2
inapproximability

result and a 1
4

approximation algorithm for the asymmetric case when D ≤ 2. The authors
also provide a simpler LP formulation for the general problem and devise a polylogarithmic
approximation algorithm that runs in quasipolynomial time. The same result has been
obtained in [7], which includes a 1

2
approximation when D ≤ 2, thus matching the bound

proved in [4]. In [20], the author provides a PTAS for a (very) special case of the problem
considered in this paper, namely, when the instance graph of the problem is a complete
bipartite graph. In [13] a 1

2
-approximation algorithm was developed for a subclass of

instances considered in this paper. See also [17], [14] for other special cases that our
results generalize.

The R||Cmax problem, as it is known in standard scheduling notation, is an important
class of resource allocation problems. In this problem, we have machines (the players) and
jobs (the items). Each job can be executed on any machine that belongs to a subset of
machines (the subset depends on the job). Furthermore, the time required to process the
job depends on the machine it executes on. We seek an assignment of jobs to machines such
that the makespan is minimized. For the R||Cmax problem, a 2-approximation algorithm
based on a characterization of the extreme point solutions of a linear programming relax-
ation of the problem is given [12]. The authors also provide a 3

2
inapproximability result.

So far, all efforts to improve either of the bounds have failed. In a very recent result [19],
it is shown that the restricted version of R||Cmax admits an α approximation guarantee for
α strictly less than 2. This result is an estimation result i.e. it estimates the (optimal)
makespan of the restricted R||Cmax within a factor of α = 33

17
+ ε for some arbitrary small

positive ε. In this paper we consider the restricted case of the R||Cmax problem where the
processing time of each job for the subset of machines is the same.

Outline Of Our Results: Our results can be summarized as follows:

(1) We present a PTAS for the restricted Max-Min fair allocation problem when the
instance of the problem is a convex bipartite graph (each player sees an interval of items).
Notice that this instance of the problem is (strongly) NP-complete, as it contains complete
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bipartite graphs as a special case (each player is adjacent to all the items), which is known
to be strongly NP-complete [8].

(2) We modify our approach for the Min-Max allocation problem to obtain a PTAS for
the R||Cmax problem when the machines a job can run on are consecutive in some ordering
(form an interval).

(3) In the Max-Min fair allocation, we show how our techniques can be extended to
a bigger class of bipartite graphs. In a convex bipartite graph the items adjacent to a
player form an interval or, equivalently, a path. In this extension, we consider the case
where the items are the vertices of a tree and each player is interested in (has positive
evaluation for) items that lie in a sub-tree with bounded number of leaves of the tree. We
show that our algorithm can be modified to obtain a PTAS, though the run time increases
as a polynomial of the number of leaves.

To obtain the PTAS for the instances considered in this paper, we first use scaling to
classify the items into small and big items. Because the items adjacent to a player are
consecutive, we can construct a solution comprising small items efficiently. We then add
the big items to the solution efficiently to construct the total solution.

2 Preprocessing the Input

Consider the convex bipartite graph H = (P, I) together with an ordering π of the vertices
in I. For every vertex p ∈ P let [`p, rp] be the interval of the items adjacent to p. Based
on the ordering π, we define the following ordering on the vertices in P :

p is ordered before q whenever `p < `q, or `p = `q and rp ≤ rq (breaking ties
arbitrarily). According to ordering π, if p ∈ P is adjacent to i ∈ I and q ∈ P
is adjacent to j ∈ I with p < q and j < i then p is also adjacent to j.

By a feasible assignment we mean an assignment such that each item is assigned to
exactly one player that has non-zero evaluation for that item.

Definition 2.1 (t-assignment) A t-assignment, t ≥ 0, is a feasible assignment such that
every player p receives a set of items Ip ⊆ [`p, rp] with total value at least t.

Given a particular instance H = (P, I) of the problem, we perform some steps that
simplifies the input instance. For a positive integer t, we may assume that the value of
each item is at most t. If item j has value vj > t then we set vj to t without loss of
generality. By a proper scaling, i.e. dividing each value by t, we may assume that the
value of each item is in [0, 1]. Observe that a t-assignment becomes a 1-assignment. We do
a binary search to find the largest value of t for which each player receives a set of items
with total value at least t. The binary search is carried out in the interval [0, 1

n

∑
j∈I vj]
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p1 p2 p3

0.4 1 0.2 1 0.4

Figure 1: An example of an instance in which Hall’s condition is satisfied for t = 1 but the
optimal solution value is not greater than 0.4.

where 0 is an absolute lower bound, and 1
n

∑
j∈I vj is an absolute upper bound of the

optimal solution respectively.

For a subset P ′ ⊆ P of players, let N(P ′) be the union of the set of all neighbors of the
players in P ′. For an interval [i, j] of the items, let P [i, j] be the set of players whose entire
neighborhood lies in [i, j]: P [i, j] = {p ∈ P : N(p) = [`p, rp] ⊆ [i, j]}. For a subset I ′ ⊆ I
of items, let v(I ′) denote the sum of the values of all the items in I ′. We note that in every
1-assignment, for every subset P ′ ⊆ P of players, the value of the items in its neighborhood
should be at least |P ′|. In other words, ∀P ′ ⊆ P : v(N(P ′)) ≥ |P ′|. If the value of each
item is 1 then this condition is the well known Hall’s condition [10], a condition sufficient
and necessary for a bipartite graph to have a perfect matching. From now on we refer to
the above condition as Hall’s condition. Lemma 2.2 shows that in order to check Hall’s
condition for H it suffices to check it for every interval of items, and so Hall’s condition in
our setting becomes Condition (1) below:

∀ [`, r] ⊆ [1,m] : v([`, r]) ≥ |P [`, r]|. (1)

Lemma 2.2 In order to check Hall’s condition for H it suffices to verify Condition (1).
In other words, it suffices to check Hall’s condition for every set of players P [`, r], [`, r] ⊆
[1,m].

Proof: First, we claim that it is sufficient to prove Hall’s condition only for a subset of
the players P ′ such that N(P ′) forms an interval. In other words, whenever there exists
a subset of the players P ′ such that N(P ′) consists of several maximal intervals and the
above condition is violated, then there exists a P ′′ ⊂ P ′ such that N(P ′′) is an interval for
which the condition is violated. Indeed, assume that there exist several maximal intervals
J1, . . . , Jk whose union gives N(P ′). Since each player is adjacent to an interval of items,
there exists a corresponding partition of P ′ into subsets P ′1, . . . ,P ′k, such that N(P ′i) = Ji.
Since Hall’s condition is violated, we have

v(J1) + . . .+ v(Jk) = v(N(P ′)) < |P ′| = |P ′1|+ . . .+ |P ′k|

Thus, there must exist an i ∈ [k] such that v(Ji) = v(N(P ′i)) < |P ′i|, and Hall’s condition
is violated for this P ′i whose neighborhood forms an interval. Therefore it is sufficient to
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check Hall’s condition for every interval of items. Since there are at most m2 intervals (m
is the number of items), Hall’s condition can be verified in time polynomial in |H|. �

Note that the v([1,m])
n

is an upper bound on the optimal value. In Figure 1 Hall’s
condition is satisfied but the optimal value is 0.4. This shows the integrality gap of the
ILP formulation for the problem is more than 2. Thus, a different approach is required to
get even a 1

2
approximate solution.

For any integer k ≥ 3, we let 1
k

be the error parameter. For each instance for which
there is an optimal 1-assignment, we seek an assignment such that each player receives a
set of items with total value at least 1 − 1

k
, k ≥ 3. We call an item small if its value is

less than 1
k
, otherwise it is considered a big item. We further round the values of the big

items as follows. If vj (the value of item j) is in the interval [ 1
k
(1 + 1

k
)i, 1

k
(1 + 1

k
)i+1) then

it is replaced by 1
k
(1 + 1

k
)i+1. After the rounding, there are at most K = d log k

log(1+ 1
k
)
e distinct

values more than 1
k
. Using straightforward calculus, one can show that K is no more than

k1.4. For i, 1 ≤ i ≤ K let qi+1 = 1
k
(1 + 1

k
)i+1. For subset I ′ of I let vs(I

′) denote the value
of the small items in I ′.

In what follows let p1, p2, . . . , pn be the ordering of the players and let m be the number
of items in H. We also assume the following because it is a necessary condition for having
an optimal 1-assignment.

Assumption: A 1-assignment (an optimal 1-assignment) assigns to each player pi a
set of big items with total value 1 − wi, 0 ≤ wi ≤ 1 and produces an instance H ′ of
the problem for which Hall’s condition is satisfied, i.e. for every interval [`, r] of items,
vs([`, r]) ≥

∑
pi∈P [`,r]wi

3 Structural Properties and the Algorithm

We start with a crucial lemma that will constitute the core of our algorithms. Intu-
itively, the lemma says that if a 1-assignment exists, then there exists another ”almost”
1-assignment with a very particular structure.

Lemma 3.1 Suppose there exists an optimal 1-assignment for H in which player pn (last
player) receives a set S of items from N(pn), containing αi, 1 ≤ i ≤ K big items with
value qi and a set of small items with total value at least α0

k
and less than α0+1

k
such that

v(S) ≥ 1. Then we obtain (in polynomial time) an assignment such that:

1. for every i ≥ 1 the items with value qi are the rightmost ones in the neighborhood of
pn.

2. pn gets a set of consecutive small items from right to left (in the ordering) of the
interval N(pn) with value at least α0−1

k
.
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3. The existence of a 1-assignment for the rest of H is preserved.

Proof: Proof of 1. Suppose there are two big items x1, x2, x1 < x2, with the same value
in the neighborhood of pn such that x1 ∈ S and x2 6∈ S. Then item x2 is either assigned
to some player pi < pn by the optimal solution or it is not assigned to any player. If x2 is
not assigned to any player by the optimal 1-assignment then we can include it instead of
x1. If x2 is assigned to pi in the optimal 1-assignment then x1 is also adjacent to pi by the
ordering property and we can assign x1 to pi and x2 to pn.

Proof of 2. We note that we may look at the optimal 1-assignment as follows. The optimal
1-assignment assigns a set of big items to each player pi with total value 1−wi, 0 ≤ wi ≤ 1
in the first step. After this step, we have an instance of the fair allocation problem where
each player pi, 1 ≤ i ≤ n is allocated a set of small items with total value at least wi.
Because the solution consists of only small items we have di

k
≤ wi ≤ di+1

k
for some integer

di, 0 ≤ di ≤ k − 1. Since there is an optimal 1-assignment, Hall’s condition is satisfied for
each set of players. Also by Lemma 2.2, Hall’s condition needs to be verified only for each
interval of items. For every interval [`, r] of the items, we have Condition (2) below:

v([`, r]) ≥
∑

pi∈P [`,r]

wi (2)

Let S(pn) be the set of items obtained as follows. Start from rpn , the last item in the
neighborhood of pn, and add the small items one by one from right to left to set S(pn), as
long as v(S(pn)) < wn − 1

k
. Then, we add the next rightmost small item to the set S(pn)

as well (so v(S(pn)) ≥ wn − 1
k
). Let `s(pn) be the index (according to the ordering) of the

leftmost item added to S(pn). Note that we may need to add all of the small items to S(pn).
Observe that wn − 1

k
≤ v(S(pn)) < wn since the last item added to S(pn) has value less

than 1
k
. By assigning S(pn) to pn and removing it from H, Condition (2) is still satisfied

for each interval of items in the rest of the graph. Observe that since Hall’s condition is
satisfied, vs(N(pn)) ≥ wn. On the other hand, v(S(pn)) < wn. We assign S(pn) to pn,
and we observe that the items in S(pn) are consecutive. We will show that for the rest of
the players and items, Hall’s condition is still satisfied. Let H ′ = H \ (S(pn) ∪ {pn}) be
the reduced instance we derive after assigning items in S(pn) to player pn. Note that the
neighborhood of each player in H ′ is an interval. Consider an interval [`, r]H′ in H ′ such
that PH′ [`, r] 6= ∅ in H ′. If [`, r]H′ ∪ S(pn) is not an interval in H then Hall’s condition
is satisfied for [`, r]H′ as otherwise [`, r]H′ = [`, r]H and Hall’s condition would not be
satisfied in H. So we assume [`, r]H′ ∪ S(pn) forms an interval in H. Consider the set of
items [`, r]H′ ∪ S(pn) in H (an interval in H). We note that S(pn) corresponds to interval
[`s(pn), rpn ] in H. First we notice that ` ≤ `s(pn) (i.e. ` is to the left of `s(pn)). This
follows from the ordering of the players based on the left end points of their intervals.
Thus we have [`, r]H′ ∪ S(pn) = [`, r]. Moreover P [`, r] = P [[`, r]H′ ] ∪ {pn}. Therefore
we have v([`, r]H′) + v(S(pn)) = v[`, r] ≥

∑
pi∈P [`,r]wi. Since v(S(pn)) < wn, we have

v([`, r]H′) ≥
∑

pi∈P [[`,r]H′ ]wi. �

7



The Algorithm: We first observe that if an optimal 1-assignment assigns a set of items
containing αi items with value qi to player pn then by Lemma 3.1 we may assume that
these αi big items are the rightmost big items of value qi in the neighborhood of pn.

Before we proceed, we need the following definition of the right-most vectors (intuitively
vectors that satisfy the conditions of Lemma 3.1).

Definition 3.2 (Right-most Ordering) Let V = (α0, α1, α2, ..., αK) be a vector of non-
negative integers. For a given interval of items [`, r] ⊆ [1,m] let S([`, r]) be all the sets
of items S ⊆ [`, r] that are consistent with V i.e. S ∈ S([`, r]) if the vector of items that
represents S is exactly V . There might be several different sets S in [`, r] consistent with
V . We say that S is a right-most set of items in [`, r] if

• for each i, 1 ≤ i ≤ K, S contains the rightmost αi big items with value qi from [`, r].

• the small items in S are the rightmost consecutive small items from [`, r].

Observe that such a set S in our setting is unique. Moreover, when we say that a vector
of non-negative integers V is the right-most for a given interval [`, r], we interpret it as the
unique S ∈ S([`, r]) with the properties listed above.

At each step i, 1 ≤ i ≤ n of the algorithm we keep track of the right-most vectors of
items assigned to the players pn−i+1, pn−i+2, . . . , pn as well as the subgraph left for the rest
of the players. We call such a vector an assigned vector and there might be several such
assigned vectors at step i. Each assigned vector Ai = (β0, β1, . . . , βK) at step i indicates
that all together βj items of value qj, 1 ≤ j ≤ K and a set of S ′ of small items with value
β0
k

can be assigned to players pn−i+1, pn−i+2, . . . , pn, i.e. Ai represents an assignment to the
players pn−i+1, pn−i+2, . . . , pn.

In order to keep track of the right-most assigned vectors and subgraphs we construct
an n × d matrix M . Here d = (K + 1)mK+1 is the number of all possible assigned
vectors that arise from the initial vector V = (z0, z1, z2, ..., zK) representing all the items
(recall that m = |I|). Each entry of M contains one bit (which is either 0 or 1) and
an n × m adjacency matrix. When we consider player pn−i+1 we consider a right-most
vector Vi = (α0, α1, . . . , αK) (in the neighborhood of pn−i+1) with value at least 1 − 1

k

that includes all the items in the private neighborhood of pn−i+1 (as otherwise they will
not be used later). Then we look at an entry M [i − 1, j′] = 1, where j′ represents the
right-most vector (β0, β1, . . . , βK) and we set M [i, j] = 1, where j corresponds to vector
Vi = (α0 +β0, α1 +β1, . . . , αk +βK). Moreover M [i, j] = H ′ ⊆ H where H ′ is the subgraph
that arises by ignoring the items from the current assigned vector and ignoring the players
pn−i+1, pn−i+2, . . . , pn. Note that several possible configurations may set one entry to one.
This subgraph is obtained from the set of items corresponding to Vi and the subgraph from
M [i− 1, j′].
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Algorithm for Convex Case

At step i (at the beginning i = 1):

1. The current player for consideration is pn−i+1. Let Ai be the current set of all right-
most assigned vectors i.e. Ai = {j ∈ [d] : M [i−1, j] = 1} (A1 = ∅). For each A ∈ Ai
do:

(a) Consider all the minimal right-most vectors Vi = (α0, α1, α2, ..., αk) representing
items from N(pn−i+1) in the subgraph induced by the current assigned vector
A (this subgraph can be simply found by consulting the corresponding entry in
the matrix M) such that:

• 1− 1
k
≤ α0

k
+
∑j=K

j=1 αjqj

• all the items corresponding to this vector are in the neighborhood of pn−i+1

• Vi includes all the private neighbors of pn−i+1 (items adjacent only to pn+1−i)

• If the value of the items in the private neighborhood of pn−i+1 is at least
1− 1

k
then let Vi be the vector of all the items in the private neighborhood

of pn−i+1

Observe that each vector Vi represents a unique set of items since it is a right-
most vector.

(b) If there is no such Vi, report NO assignment and exit.

(c) For every such vector Vi (at step i) we consider the assigned vector Vi = Ai +Vi
(observe that, given Vi, the assigned vector Vi is uniquely defined):

• Set M [i, j] = 1 where j is the column corresponding to this assigned vector
Vi.

• Update the entry in M [i, j] corresponding to the subgraph induced by play-
ers p1, p2, . . . , pn−i by using the previous entry of the corresponding sub-
graph at step i − 1 and the current set of items in vector Vi (at Step 1 we
use the adjacency matrix of H).

Step (c) above keeps track of the remaining subgraph for the rest of the players.

2. Set i = i+ 1 and go to (1).

3. Assign the items in the neighborhood of p1 (corresponding to one of the subgraph
remained containing p1) and trace back M to obtain an assignment for the rest of
the players.

In order to retrieve an actual assignment (last step of the algorithm) we proceed as
follows: at step n when we consider player p1 there should be at least one vector of items
with value 1− 1

k
in the neighborhood of p1). We assign the items that are uniquely defined
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by such a vector to player p1. To continue with the rest of the players we may find useful
to include the index j at a step i that caused a particular assigned vector at the next
step i + 1 be set to 1. With this, when we allocate a particular vector of items to player
pn−i we know how to trace back a feasible assignment. In other words, whenever we set
M [i, j] = 1 in the body of the algorithm we also store which assigned vector j′ from row
i− 1 is responsible for setting M [i, j] = 1 at step i.

Lemma 3.3 Let H be an instance of the problem with n players and m items. Suppose
there is an optimal 1-assignment for H. Then the Algorithm assigns (in polynomial time)
to each player a set of items with value at least 1− 2

k
.

Proof: First by definition of right-most vector, the value of set S corresponding to vector
Vi is at least 1− 2

k
. This is true because 1− 1

k
≤ α0

k
+
∑j=K

j=1 αjqj and the value of the small

items in S is at least α0−1
k

.

Second we need to show that the number of assigned vectors Ai at step i is at most
(K+1)mK+1. According to Item (2) of Lemma 3.1 we can take the small items consecutively
from right to left. This allows us to look at the small items as a number of blocks of
size 1

k
when they are considered from right to left. Therefore we may assume there are

K + 1 types of items resulting in at most mK+1 different possible assigned vectors. When
the graph induced by players pn−i+1, pn−i+2, . . . , pn and their neighborhood is a complete
bipartite graph then the number of possible assignments (number of 1’s in the row i of
M) is bounded by (K+ 1)mK+2. Moreover, since each right-most assigned vector uniquely
defines a set of items S, this means that at each step the entry of M [i, j] that corresponds
to the subgraph induced for the rest of the players (p1, . . . , pn−i) is unique. So, the size of
the matrix M is O(nmK+2) and each entry of M contains an m× n adjacency matrix.

Note that each assigned vector at step i represents at least one assignment to the players
pn−i+1, pn−i+2, . . . , pn such that each of them receives at least 1 − 2

k
. We claim that if we

keep track of at most (K + 1)mK+2 different possible ways of assigning the items to the
players pn, pn−1, ..., pn−i+1 then according to Lemma 3.1 we guarantee the existing of a
1-assignment for the players p1, p2, . . . , pn−i using the remaining items.

Suppose there exists i, 1 ≤ i ≤ n, such that there is no vector Vi in Step 1.b. Then
we show that there is no optimal 1-assignment. We use induction on i. Note that i is
more than 1 as otherwise there are not enough items in the neighborhood of pn and clearly
there is no optimal 1-assignment. We show that i > 2. If i = 2 then according to the
selection of the items in Step (1) for player pn we include all the private neighbors of pn,
and all the possible vectors V1 considered for player pn are right-most. Hence by Lemma
3.1 the existence of the 1-assignment should be preserved for the rest of the players, a
contradiction.

Let i ≥ 3. At step i − 1 the algorithm considers a vector Vi−1 from N(pn−i+2), and
together with an assigned vector Ai−2 from row i− 2 of M , it creates a new entry for row
i− 1. If the algorithm should have recorded some other assignment different from the ones
in the entry of M at row i− 1 then it means some big item x (of value qj) and not in the
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items represented by Ai−2 +Vi−1 (or a set X of small items with total value β
k

) is assigned
to a player pt, n − i + 2 ≤ t and some item x′ (of value qj) from the of items represented
by Ai−2 + Vi−1 (or a set Y of small items with total value β

k
represented by Ai−2 + Vi−1

) is assigned to pn−i+1. Note that x < x′. However, since pn−i+1 is adjacent to x′, it is
also adjacent to x and hence we can exchange x and x′. In other words, as far as player
pn−i+1 is concerned, the items from the right-most assigned vector are the ones that can
be assigned to the players pn−i+2, pn−i+3, . . . , pn. �

Theorem 3.4 Let H be an instance of the problem with n players and m items. Then for
k ≥ 3 there exists a (1− 3

k+1
)-approximation algorithm with running time O(n2mK+2).

Proof: According to Lemma 3.3, each player receives a set of items with value at least
1− 2

k
, once we round the value of the items. Because of the rounding, this value should be

divided by 1 + 1
k
. Therefore each player receives a set of items with value at least 1− 3

k+1
.

The size of the matrix M in Lemma 3.3 is O(nmK+1) and each entry of M contains an
m× n adjacency matrix. Therefore the running time of the algorithm is O(n2mK+2). �

4 Min-Max Allocation Problem (R||Cmax )

Problem Description: We are given a set M of identical machines and a set J of jobs.
Each job j has a same processing time pj on a subset of machines and it has processing
time ∞ on the rest of the machines. The goal is to find an assignment of the jobs to the
machines, such that the maximum load among all the machines is minimized. Formally,
we have a bipartite graph H = (M,J,E) where M is a set of machines and J is a set of
jobs, and E denotes the edge set. There is an edge in E between a machine and a job
if the job can be executed on that machine. We consider the case where each job can be
executed on an interval of machines:

Assumption: We have an ordering M1,M2, ...,Mn of machines such that each job can be
executed on consecutive machines (an interval of machines).

We denote the interval of job Ji by [`i, ri]. We assume that Ji is before Jj, i < j
whenever `i < `j or `i = `j, ri ≤ rj. We denote this ordering by π. The ordering π has
the following property: if Mi is adjacent to Jr, and Mj for j > i is adjacent to Js, s < r
then Mi is also adjacent to Js. By scaling down the value of the processing time, we may
assume that 0 ≤ pi ≤ 1.

Consider the error parameter 1
k

for an integer k ≥ 2. The goal is to find an assignment
such that each machine receives a set of jobs with total processing time at most 1 + 1

k
,

k ≥ 2, when there exists an optimal 1-assignment. We say a job is small if its value is
less than 1

k
, otherwise it is called a big job. Now we further round the values of the jobs

as follows. If vj (the value of item j) is in the interval [ 1
k
(1 + 1

k
)i, 1

k
(1 + 1

k
)i+1) then it is

replaced by 1
k
(1+ 1

k
)i. Using this method, we obtain at most K = d log k

log(1+ 1
k
)
e distinct values

more than 1
k
. For 1 ≤ i ≤ K let qi = 1

k
(1 + 1

k
)i.
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We use the usual classification of the jobs into big and small, together with rounding
step as in the case of Max-Min allocation. For subset J ′ of jobs let w(J ′) (ws(J

′)) be
the sum of the processing times of all the jobs (small jobs) in J ′. For every subset M ′ of
machines let J [M ′] be the set of jobs whose entire neighborhood lies in set M ′. A necessary
condition for having a maximum load at most 1 is that for every subset M ′ of machines
w(J [M ′]) ≤ |M ′|. In order to check this condition, we need to check it for every interval of
machines. For interval [i, j] of machines Mi,Mi+1, ...,Mj, we look at all the jobs that are
executed only on machines Mi,Mi+1, . . . ,Mj and if the sum of the processing time of all
these jobs is greater than j − i+ 1 then the condition is violated. For interval [`, r], ` ≤ r,
let J [`, r] be the set of jobs that can be executed only on a subset of the machines in this
interval. By argument similar to that used in the proof of Lemma 2.2, Condition 3 is given
below. For simplicity we refer to the condition ∀ [`, r] ⊆ [1, n] : w(J [`, r]) ≤ r− `+ 1 as
Hall’s condition.

Assumption: A 1-assignment (an optimal 1-assignment) is an assignment that assigns
to each machine Mi a set of big jobs with total value 1−wi, 0 ≤ wi ≤ 1 and it produces an
instance H ′ of the problem for which the Hall’s condition (with respect to the small jobs)
is satisfied, i.e. for every interval [`, r] of machines, vs(J [`, r]) ≤

∑i=r
i=` wi.

Let N0[`, c] be an ordered set of small jobs in the neighborhood of M`, obtained as
follows. We first add all the jobs in J [`, `] one by one from left to right (according to
ordering π). In step j, 1 ≤ j ≤ c, we add to N0[`, c] all the small jobs from J [`, ` + j] \
J [`, `+ j − 1] one by one from left to right.

Let Ni[`, c], i ≥ 1 be an ordered set of jobs with value qi obtained as follows. We first
add to Ni[`, c] all the jobs with value qi from J [`, `] one by one from left to right. In step
j, 1 ≤ j ≤ c, we add to Ni[`, c] all the jobs with value qi from J [`, ` + j] \ J [`, ` + j − 1]
from left to right.

Lemma 4.1 Suppose there exists an optimal 1-assignment for H in which machine M1

(the first machine in the ordering) receives a set S of jobs from N(M1), containing αi,
1 ≤ i ≤ K, big jobs with value qi, and a set of small jobs with total value at least α0

k
and

less than α0+1
k

, such that v(S) ≤ 1. Then we obtain (in polynomial time) an assignment
such that:

1. for every i ≥ 1, the jobs with value qi are the first αi’s jobs in Ni[1, c] for some c > 1.

2. M1 gets a set of consecutive small jobs from N0[1, c] with value less than α0+2
k

and
the existence of a 1-assignment for the rest of H is preserved.

Proof: Proof of 1. Suppose the optimal 1-assignment assigns job J` ∈ Ai[1, c] to machine
M1 and it assigns job J`′ ∈ Ai[1, c] to Mr and J` > J`′ . By definition of Ai[1, c], J` is also
adjacent to Mr and hence we can exchange J`, J`′ between M1,Mr.
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Proof of 2. The optimal assignment loads to each machines a set of big jobs and to each
machine Mi, 1 ≤ i ≤ n, a set of small jobs with total value wi ≤ 1. Now we would have
a necessary Hall’s condition. We add the small jobs from A0[1, c] for some c one by one
to S1, as long as v(S1) ≤ α0+1

k
. Note that S1 could be the entire set of small jobs in the

neighborhood of M1. Moreover v(S1) ≤ α0+2
k

since the last job added to S1 has value at
most 1

k
. We assign S1 to M1, and we argue that Hall’s condition is satisfied for the rest of

the graph. Let [`, r] be an interval of machines for which Hall’s condition is not satisfied.
Consider [`, r]H′ in H ′ = H \ (M1 ∪S1). Note that J [`, r]H′ must have intersection with S1

in H as otherwise the Hall’s condition is not satisfied for interval [`, r] as well. So we may
assume that S1 ∩ J [`, r]H′ 6= ∅. Since S1 ⊂ N(M1), we have ` = 1 in H ′. If v(S1) ≥ α0+1

k

then Hall’s condition is not satisfied for interval [1, r] in H according to the selection of
the jobs in S1. �Let N(M [`, r]) (a set of jobs) denote the neighborhood of machines
M`,M`+1, . . . ,Mr.

Definition 4.2 (Left-most Ordering-R||Cmax) Let V = (α0, α1, α2, ..., αK) be a vector
of non-negative integers. Let V represent a set S of jobs from N(M [`, r]) containing αi,
1 ≤ i ≤ K big jobs of value qi and a set of small jobs with total value at least α0

k
and at

most α0+1
k

. We say vector V is a left-most vector if:

• for each i, 1 ≤ i ≤ K, S contains the first αi jobs with value qi from Ni[`, r].

• the small jobs in S are the first set of consecutive small jobs from N0[`, r].

Let n be the number of machines and m be the number of jobs and set d = (K+1)mK+1.
Identical with the Max-Min case, we consider a matrix M with the same properties. The
algorithm is similar to the one in the Max-Min case of Section 3 (with the necessary
adjustments).

Algorithm for the RCmax case:

Let n be the number of machines and m be the number of jobs and set d = (K+1)mK+1.
As in Section 3 we keep track of the assigned vector of jobs as well as the remaining graph.

Algorithm for Convex Case: R||Cmax

At step i (at the beginning i = 1):

1. The current machine for consideration is Mi. Let Ai be the current set of all left-most
assigned vectors i.e. Ai = {j ∈ [d] : M [i− 1, j] = 1} (A1 = ∅) For each A ∈ Ai do:

(a) Consider all the maximal left-most vectors Vi = (α0, α1, α2, ..., αk) inside N(Mi)
in the subgraph induced by the current assigned vector A (this subgraph can
be simply found by consulting the corresponding entry in the matrix M) such
that:
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• α0

k
+
∑j=K

j=1 αjqj ≤ 1 + 1
k

• all the jobs corresponding to this vector are in the neighborhood of Mi

• Vi includes all the private neighbors of Mi (jobs adjacent only to Mi)

• If the value of jobs in the private neighborhood of Mi is at least 1 then let
Vi be the vector of all the jobs in the private neighborhood of Mi

Observe that each vector Vi represents a unique set of jobs since it is a left-most
vector.

(b) If the value of the jobs in private neighborhood of Mi is more than 1 then report
NO assignment and exit.

(c) For every such vector Vi (at step i) we consider the assigned vector Vi = A+ Vi
(observe that, given Vi, this assigned vector is uniquely defined):

• Set M [i, j] = 1 where j is the column corresponding to this assigned vector.

• Update the entry in M [i, j] corresponding to the subgraph induced by ma-
chines M1,M2, . . . ,Mi by using the previous entry of the corresponding
subgraph at step i− 1 and the current set of jobs in vector Vi (at step 1 we
use the adjacency matrix of H).

The last step keeps track of the remaining subgraph for the rest of the players.

2. Set i = i+ 1 and go to (1).

3. Assign the jobs in the neighborhood of Mn (corresponding to one of the subgraph
remained containing Mn) and trace back M to obtain an assignment for the rest of
the machines.

Lemma 4.3 Suppose there exists an optimal 1-assignment for H. Then there exists a
polynomial time assignment that assign all the jobs to the machines without exceeding the
maximum load 1 + 2

k
.

Theorem 4.4 Let H be an instance of the problem with n machines and m jobs. Then for
k ≥ 3 there exists an (1+ 3

k+1
+ 2

k2
)-approximation algorithm with running time O(nmK+2).

Proof: The proof is similar to the proof of Theorem 3.3. The only consideration is that
because of the rounding we need to multiply the approximation ratio in Lemma 4.3 by
1 + 1

k
and hence we obtain a (1 + 3

k+1
+ 2

k2
)-approximation ratio. �

5 Max-Min problem when the Items are in a Tree

In this section we consider instances of the problem when the items are the vertices of a tree
T and each player is interested in a sub-tree of T with at most d leaves for some constant d.
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This class of instances contain, the class of convex bipartite instance, as a special case. We
notice that if the items are vertices of a tree T and each player is interested in a sub-tree
of T then we get the general instances of the problem. To see this we just need to assume
T is a star.

Problem Description: We are given a bipartite graph H = (P, T ) where P is a set
of n players and T is a tree where each node of T is an item. We consider the problem
of allocating the indivisible items from I to the set P . Each player p ∈ P has a utility
function fp(j) = vj > 0 for each item j ∈ [m] (vj is a positive integer). This represents the
value of item j for player p. If p is adjacent to item j then its value for p is vj, otherwise
its value is zero. For each players p the set of items adjacent to p forms a sub-tree of T
with at most d leaves (d is a constant number). The goal is to find a maximum t and a
partition T1 ∪ T2 ∪ · · · ∪ Tn = T of the items (on T ) such that for every j, 1 ≤ j ≤ n, Tj is
a subset of items adjacent to player pj and the items in Tj have a total value at least t.

Indexing the tree: The spine of T is a longest path in T . Let SP = v1, v2, . . . , vq be a
spine of T . The index of a vertex x in T is the smallest i such that vi is the closest vertex
to x. For two vertices x, y of T we say x is before y, (we write x ≺ y) if the index of x is less
than the index of y. When x, y have the same index i, then x ≺ y if x is closer to vi than
y, and no other vertex z in the (x, y)-path is closer to vi than x (note that the (x, y)-path
is unique since T is a tree). In all other cases the order between x and y is arbitrary. The
index of subtree P is the index of the vertex with the smallest index among the vertices
in P . We say subtree P is before subtree Q and we write P ≺ Q if the index of P is less
than the index of Q and if P and Q have the same index then the last vertex of P in the
ordering ≺ lies inside Q.

Ordering the players: We order the players based on their sub-trees, i.e. p is before q if
P ≺ Q where P,Q are the sub-trees corresponding to p, q.

For subtree T ′ of T let P [T ′] denote the set of players whose entire neighborhood lies in
T ′. Let p1, p2, ..., pn be an ordering of the players. For player pn, let `1(pn), `2(pn), . . . , `t(pn),
t ≤ d be the leaves of N(pn) where `i(pn) ≺ `j(pn), 1 ≤ i < j ≤ t. Let x ∈ N(pn) be the
item with the smallest index.

Definition 5.1 • Let S be a subset of items in N(pn) with value qi for an 1 ≤ i ≤ K.
We say S is good if there exist β1, β2, . . . , βt such that

∑j=t
j=1 βj = |S| and S comprises

of the last βj, (for every 1 ≤ j ≤ t) items with value qi on the path from x to `j(pn)
in the sub-tree N(pn).

• Let S be a subset of small items in N(pn). We say S is good if there exist items
`1, `2, . . . , `t, `j � `j(pn), 1 ≤ j ≤ t such that S comprises of all the small items on
the path from `j + 1 to `j(pn) in the sub-tree N(pn).

Analogous to Lemma 3.1 and Theorem 3.3 we have the Lemma 5.2 and the Theorem
5.3 below.
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Lemma 5.2 Suppose there exists an optimal 1-assignment for H such that player pn re-
ceives a set S of items from N(pn) where S contains αi, 1 ≤ i ≤ K big items with value qi
and some small items with total value at least α0

k
and less than α0+1

k
such that v(S) ≥ 1.

Then there exists an assignment in which pn gets a set S ′ of items such that for every
1 ≤ i ≤ K, there are exactly αi big items with value qi in S ′ forming a good set and the
small items in S ′ form a good set with total value at least α0−1

k
. Moreover, the existence of

a 1-assignment for the rest of H is preserved.

Proof: The proof is essentially the same as the proof of Lemma 3.1 with some modifica-
tions.

Consider two items x1 and x2 with the same value which are adjacent to pn. Suppose
x1 ≺ x2 and both are on a path from x (an item with the smallest index in N(pn)) to a
leaf `j(pn). If the optimal assignment assigns x2 to pi < pn and x1 to pn, then according to
the definition, since pi < pn, x1 is also adjacent to p2 and hence we may assign x1 to pi and
x2 to pn. Thus we may assume that the optimal assignment assigns the last βj, 1 ≤ j ≤ t
pairwise comparable items with value qi from the path x to `j(pn) such that

∑j=t
j=1 βj = αi.

This proves the first part of the Lemma.

To see the second part, the optimal solution assigns some of the big items (in some
way) to some of the players such that in the remaining graph, Hall’s condition with respect
to small items is satisfied. So in the remaining graph we may assume that all the items
are small and each player pi, 1 ≤ i ≤ n, gets a set of small items with value 0 ≤ wi ≤ 1
and α0

k
≤ wn <

α0+1
k

.

We first need to show that in order to check Hall’s condition for H it is enough to check
it for every subtree T ′ of T .

∀ T ′ ⊆ T : v(T ′) ≥
∑

pi∈P [T ′]

wi (3)

Consider a set of players P ′ ⊆ P . Since the neighborhood of each player is a path of T ,
N(P ′) is a forest. If Hall’s condition for P ′ fails then there must be a subtree T ′′ of forest
N(P ′) for which Hall’s condition is violated. Consider the last player p and let S be a set
of small items that consists of all the small items in [`p, `

′] and [r′, rp] for some `′, r′ such
that α0−1

k
≤ v(S) ≤ 1. According to the ordering of the players; we assume that S contains

the items in the private neighborhood of p. Clearly such S can be obtained in polynomial
time. There is at least one pair `′, r′ such that Hall’s condition is satisfied for H \ (S∪{p})
as otherwise since v(S) ≤ α0

k
there exists a subtree T ′ in T for which Hall’s condition is

not satisfied. According to the definition of S, the neighborhood of each player is still a
subtree of bounded number of leaves. Note that we don’t need to spend time and check
the Hall’s condition for every sub-tree of T . �

Theorem 5.3 Let H be an instance of the problem with n players and m items. Then for
k ≥ 3 there exists an (1− 3

k+1
)-approximation algorithm with running time O(nmd·K+2).
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6 Conclusion and Future Work

In all instances of the problem considered in this paper, a proper ordering has played an
important role. However we do not know a dichotomy classification for the instances of
the problem that admit a PTAS. We ask for a dichotomy of the following form:

If H belongs to class X of bipartite graphs then there is a PTAS for Max-Min
allocation problem otherwise there is no PTAS.

Acknowledgements: We would like to thank Monaldo Mastrolilli for many useful dis-
cussions and for proposing this problem to us.
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