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Abstract. Since the CSP dichotomy conjecture has been established, a17

number of other dichotomy questions have attracted interest, including18

one for list homomorphism problems of signed graphs. Signed graphs19

arise naturally in many contexts, including for instance nowhere-zero20

flows for graphs embedded in non-orientable surfaces. The dichotomy21

classification is known for homomorphisms without list restrictions, so it22

is surprising that it is not known, or even conjectured, if lists are present23

since this usually makes the classifications easier to obtain.24

There is however a conjectured classification, due to Kim and Siggers,25

in the special case of “semi-balanced” signed graphs. These authors con-26

firmed their conjecture for the class of reflexive signed graphs. As our27

main result we verify the conjecture for irreflexive signed graphs. For28

this purpose we prove an extension theorem for certain unsigned bi-29

partite graphs of independent interest. These graphs are known as two-30

directional ray graphs, but they are also exactly the bipartite graphs that31

are the complements of circular arc graphs, and are exactly the contain-32

ment interval bigraphs. Moreover, we offer an alternative proof for the33

class of reflexive signed graphs, and a direct polynomial time algorithm34

in the polynomial cases where the previous algorithms used algebraic35

methods of general CSP dichotomy theorems.36

For both reflexive and irreflexive cases the dichotomy classification de-37

pends on a result linking the absence of certain structures to the exis-38

tence of a special ordering. The structures are used to prove the NP-39

completeness and the ordering is used to design polynomial algorithms.40
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1 Introduction41

The CSP Dichotomy Theorem [8,25] guarantees that each homomorphism prob-42

lem for a fixed template relational structure H (“does a corresponding input re-43

lational structure G admit a homomorphism to H?”) is either polynomial-time44

solvable or NP-complete, the distinction being whether or not the structure H45

admits a certain symmetry. In the context of undirected graphs H = H, there is46

a more natural structural distinction, namely the tractable problems correspond47

to the graphs H that have a loop, or are bipartite [15].48

A graph is called reflexive if each vertex has a loop, and irreflexive if no49

vertex has a loop.50

For list homomorphisms (when each vertex v ∈ V (G) has a list L(v) ⊆51

V (H)), the distinction turns out to be whether or not H is a “bi-arc graph”,52

a notion related to interval graphs [10]. In the special case of bipartite graphs53

H, the distinction is whether or not H has a min ordering. A min ordering of54

a bipartite graph with parts A,B is a pair of linear orders <A, <B of A and B55

respectively, such that if there are edges ab, a′b′ with a ∈ A, a′ ∈ A, a < a′ and56

b ∈ B, b′ ∈ B, b′ < b, then there is also the edge ab′. If a bipartite graph H has57

a min ordering, then the list homomorphism problem to H is polynomial-time58

solvable; otherwise it is NP-complete [9,14]. The bipartite graphs that admit a59

min ordering are an interesting graph class, as they are precisely those bipartite60

graphs whose complements are circular arc graphs, precisely the containment61

interval bigraphs, and precisely the intersection graphs of two-directional rays62

[14,9,17,22].63

An analogous situation occurs for reflexive graphs (and digraphs), where64

the distinction is similar, although the definition of a min ordering is slightly65

different. A min ordering of a reflexive graph H is a linear order < of V (H),66

such that if there are edges uv, u′v′ ∈ E(H) with u < u′ and v′ < v, then there67

is also the edge uv′. (It is possible to interpret the two kinds of min orderings68

as special cases of a general min ordering for digraphs, but it will be simpler for69

our purposes to use these two separate definitions.) If a reflexive graph H has70

a min ordering, then the list homomorphism problem to H is polynomial-time71

solvable; otherwise it is NP-complete [11].72

In both cases, there is an obstruction characterization of the situation when73

a min ordering exists. An invertible pair in a reflexive graph H is a pair (u, u′) of74

vertices ofH, with a pair of walks u = v1, v2, . . . , vk = u′ and u′ = v′1, v
′
2, . . . , v

′
k =75

u of equal length, and another pair of walks u′ = w1, w2, . . . , wm = u and76

u = w′
1, w

′
2, . . . , w

′
m = u′ of equal length, such that each vi is non-adjacent77

to v′i+1 for all i = 1, 2, . . . , k − 1 and each wj is non-adjacent to w′
j+1, for all78

j = 1, 2, . . . ,m− 1. An invertible pair in a bipartite graph H with parts A,B is79

defined exactly in the same way, but with the condition that u, u′ belong to the80

same part (A or B). It is easy to see that if an invertible pair exists, then there81

can be no min ordering (both for the reflexive and the bipartite cases). The con-82

verse also holds for both cases. For the reflexive case, this is shown in [11]. In fact,83

the proof in this case (see the proof of Theorem 3.2 in [11]) implies a stronger84

result — namely, if a set of ordered pairs of vertices does not violate transitivity,85
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then it can be extended to a min ordering if and only if it contains no invertible86

pair. (A set of ordered pairs is said to violate transitivity if it contains some pairs87

(t0, t1), (t1, t2), (t2, t3), . . . , (tk−1, tk), (tk, t0) with t0 < t1 < · · · < tk < t0.) For88

the bipartite case, the converse of the characterization is proved in [14]; however,89

this is done by a reduction to the reflexive case, and there is no analogue for90

extending a given set of ordered pairs. In fact, such a result was not known for91

bipartite graphs.92

In this paper, we fill the gap and prove an analogous extension version of the93

min ordering characterization for bipartite graphs, Corollary 7. This result is94

then used in the following section to prove the bipartite case of the conjecture of95

Kim and Siggers. Moreover, we show how to use the extension result for reflexive96

graphs from [11] to give an analogous proof of the conjecture for reflexive graphs,97

providing an alternative proof of the result first claimed by Kim and Siggers [19].98

A signed graph Ĥ is a graph H together with an assignment of signs +,− to99

the edges of H. There may be parallel edges with the same end vertices in which100

case we require there are only two edges and they have opposite signs. In this101

situation we say there is an edge with both signs, a concept which we make precise102

below. There may be edges that are loops, and there may also be two parallel103

loops of opposite signs at the same vertex. Edges with a + sign are called positive,104

or blue, edges with a − sign are called negative, or red. Edges with both signs are105

called bicoloured, while purely red or purely blue edges are called unicoloured.106

Two signed graphs are called switch-equivalent if one can be obtained from the107

other by a sequence of vertex switchings, where a switching at a vertex v flips the108

signs of all edges incident with v. (A bicoloured edge remains bicoloured.) Signed109

graphs arise in many contexts in mathematics and in applications. This includes110

knot theory, qualitative matrix theory, gain graphs, psychosociology, chemistry,111

and statistical physics [24]. In graph theory, they are of particular interest in112

nowhere-zero flows for graphs embedded in non-orientable surfaces [18].113

A sign-preserving homomorphism of a signed graph Ĝ to a signed graph Ĥ114

is a mapping taking vertices of G to vertices of H, and edges of G to edges of H115

preserving both incidence and the sign of edges. A homomorphism of a signed116

graph Ĝ to a signed graph Ĥ is a sign-preserving homomorphism of Ĝ′ to Ĥ for117

some signed graph Ĝ′ switch-equivalent to Ĝ. Equivalently, a homomorphism of118

a signed graph Ĝ to a signed graph Ĥ is a homomorphism f of the underlying119

graph G of Ĝ to the underlying graphH of Ĥ, such that for any closed walkW in120

G, the sign of W (the product of the signs of all edges) is the same as the sign of121

f(W ) in H. We will use this definition in the last section, as it does not require122

switching in the input graph before mapping it. The equivalence of the two123

definitions follows from the theorem of Zaslavsky [23], and the actual switching124

required for Ĝ before the mapping if one exists, as well as the two violating closed125

walks if such a mapping doesn’t exist, can be found in polynomial time [20].126

We remark that the equivalent definition for homomorphisms of signed graphs127

is well defined with our notion of bicoloured edges. Suppose f is a homomorphism128

of Ĝ to Ĥ. Let e be an edge of G such that f(e) is bicoloured. Assume by129

induction that f mapsG−e so that (i) for any edge mapping to a bicoloured edge,130
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f assigns one of the two parallel edges as the image, and (ii) all closed walks of131

G map to a closed walk of the same sign in H. We claim there is a choice for f(e)132

(of the two possible edges in the bicoloured edge) so that for any closed walk W133

of G containing e, the image f(W ) has the same sign. Without loss of generality134

assume e is positive. Suppose W is positive closed walk containing e (the case135

when W is negative is analogous). Then f(W − e) has sign s and we choose f(e)136

to have the same sign s. Now suppose W ′ is a negative closed walk containing e137

(the case when W ′ is positive is similarly handled). Suppose f(W ′ − e) has sign138

s′. Then the closed walk obtained from the union of f(W − e) and f(W ′ − e)139

has sign ss′. Further since e is positive, we have W − e union W ′ − e forms a140

negative closed walk in G. Thus ss′ is negative. We have already assigned f(e)141

to be the edge of sign s, so with that same choice f(W ′) is negative as required.142

In other words, all closed walks containing e enforce the same choice for f(e).143

Hence, we can simply say e is mapped to the bicoloured edge f(e) and know that144

there is an explicit choice for f(e) the ensures all closed walks containing e have145

the correct sign.146

Thus a homomorphism of Ĝ to Ĥ is a homomorphism of the underlying147

graphs G to H which maps bicoloured edges of Ĝ to bicoloured edges of Ĥ, and148

for which any unicoloured closed walk W in Ĝ with unicoloured image f(W ) in149

Ĥ has the same product of the signs of its edges. (In other words, closed walks150

with only unicoloured edges map to closed walks that either contain a bicoloured151

edge or have the same parity of the number of negative edges.)152

The study of homomorphisms of signed graphs was pioneered by Guenin [13]153

and introduced more systematically by Naserasr, Rollová, and Sopena, see the154

survey [20].155

The homomorphism problem for the signed graph Ĥ asks whether an input156

signed graph Ĝ admits a homomorphism to Ĥ. The s-core of a signed graph Ĥ157

is the smallest homomorphic image of Ĥ that is a subgraph of Ĥ. (The s-core158

is unique up to isomorphism [6].) It was conjectured in [6] that the homomor-159

phism problem for Ĥ is polynomial if the s-core of Ĥ has at most two edges160

(a bicoloured edge counts as two edges), and is NP-complete otherwise. The161

conjecture was verified in [6] for all signed graphs that do not simultaneously162

contain a bicoloured edge and a unicoloured loop of each colour. Finally, the full163

conjecture was established in [7].164

The list homomorphism problem for a signed graph Ĥ asks whether an input165

signed graph Ĝ with lists L(v) ⊆ V (Ĥ), v ∈ V (Ĝ), admits a homomorphism f166

to Ĥ with all f(v) ∈ L(v), v ∈ V (Ĝ). The complexity classification for these list167

homomorphism problems appears to be difficult, and no structural classification168

conjecture has arisen. (Even though these are not directly CSP problems, the169

fact that dichotomy holds can be derived from the CSP Dichotomy Theorem.)170

Some special cases have been treated [2,3,5,19], including a full classification for171

signed trees [1].172

In [19], H. Kim and M.H. Siggers focus on a special class of signed graphs:173

we say that a signed graph Ĥ is semi-balanced if any closed walk of unicoloured174

edges has an even number of negative edges. Equivalently, there is a switch-175
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equivalent signed graph Ĥ ′ in which there are no purely red edges [1]. We note176

that this class has been called pr-graphs in [19], uni-balanced graphs in [3], and177

weakly balanced graphs in [1].178

Kim and Siggers [19] conjectured a classification of the complexity of the179

list homomorphism problems for semi-balanced signed graphs Ĥ, and verified180

it in the special case of signed graphs that are reflexive. (In the last version181

of [19] they actually apply a result from this paper, cf. the footnote on page182

4 of [19], version v4.) Their paper also highlights the importance of irreflexive183

signed graphs, by reducing parts of the problem for general signed graphs to184

their bipartite translations.185

We note that non-bipartite irreflexive signed graphs are not relevant because186

their list homomorphism problems are NP-complete by [15]; it is also easy to see187

that they always contain an invertible pair.188

The Kim-Siggers conjecture is particularly elegant when stated for irreflexive189

signed graphs. To be specific, we assume that Ĥ is a bipartite signed graph190

without purely red edges, and define a special min ordering of Ĥ to be a min191

ordering of the underlying graph H of Ĥ, such that at each vertex its bicoloured192

neighbours precede its unicoloured neighbours. The conjectured classification for193

semi-balanced signed graphs states that the list homomorphism problem for Ĥ194

is polynomial-time solvable if Ĥ has a special min ordering, and is NP-complete195

otherwise.196

This implies that there are two natural obstructions to Ĥ having a polynomial-197

time solvable list homomorphism problem – namely invertible pairs, which ob-198

struct the existence of a min ordering, and chains, which obstruct a min ordering199

from being made special. Invertible pairs are defined above for unsigned bipar-200

tite graphs, and for signed bipartite graphs they are just invertible pairs in the201

underlying unsigned graph. A chain in a signed graph Ĥ consists of two walks of202

equal length, a walk U with vertices u = u0, u1, . . . , uk = v and a walk D, with203

vertices u = d0, d1, . . . , dk = v such that the edges uu1, dk−1v are unicoloured,204

and the edges ud1, uk−1v are bicoloured, and for each i, 1 ≤ i ≤ k − 2, we have205

both uiui+1 and didi+1 edges of H while diui+1 is not an edge of H, or both206

uiui+1 and didi+1 bicoloured edges of H while diui+1 is not a bicoloured edge207

of H. See Figure 1 for an example.208

Kim and Siggers also conjectured that a semi-balanced signed graph Ĥ has209

a special min ordering if and only if it has no invertible pairs and no chains.210

We prove both conjectures (cf. Theorem 3 below), in the case of irreflexive and211

reflexive signed graphs. The irreflexive result generalizes previous results on semi-212

balanced signed trees, and semi-balanced separable signed graphs [1,2].213

In this journal version of our conference paper [4] we have added a discussion214

of the extension result for reflexive graphs, of its application to characterize215

reflexive signed graphs that admit a special min ordering, as well as a simple216

direct algorithm for the polynomial cases. Moreover, we also offer an application217

of our results to obtain the concrete structure (via forbidden subgraphs) of the218

polynomial cases, at least for certain special classes of bipartite semi-balanced219

signed graphs.220
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W1 = 1− 2− 3− 4− 5− 6− 7− 6− 7− 6− 5− 4− 8− 9− 10

W2 = 10− 9− 10− 9− 10− 9 − 8 − 4 − 3 − 2 − 1− 2− 1− 2− 1

2

21

4

4

53

3

Fig. 1. An example of a signed graph (on the left) with a chain (on the right) and an
invertible pair (1, 10) certified by the pair of walks W1, W2 and the pair consisting of
the reverse of both walks.

2 Min orderings of (unsigned) bipartite graphs221

In this section we only deal with unsigned bipartite graphs H, with a fixed222

bicolouring A,B. The pair digraphH+ has as vertices all ordered pairs of distinct223

equicoloured vertices of H, i.e., V (H+) = {(a, a′) : a, a′ ∈ A, a ̸= a′} ∪ {(b, b′) :224

b, b′ ∈ B, b ̸= b′}. There is in H+ an arc from (a, a′) to (b, b′) precisely if ab, a′b′225

are edges of H while ab′ is not an edge of H. In that case we also say that226

(a, a′) dominates (b, b′). We note that (a, a′) dominates (b, b′) if and only if227

(b′, b) dominates (a′, a), a property we call skew symmetry of H+. A subset C of228

pairs of H+ is a strong component if for two pairs (a, a′) and (b, b′) in C, there229

is a directed path from (a, a′) to (b, b′) and vice versa, and C is maximal with230

respect to this property. Note an invertible pair (u, u′) of H is precisely a pair231

of H+ belonging to the same strong component as its reverse pair (u′, u).232

A sequence (x0, x1), (x1, x2), . . . , (xn, xn+1) of pairs of H+ will be called a233

thread from x0 to xn+1 if x0 ̸= xn+1, and a circuit if x0 = xn+1. Note that the234

vertices (of H) in any thread or circuit are either all in A or all in B. A thread235

or circuit all of whose pairs belong to a subset X of V (H+) is called a thread or236

circuit in X. We say X contains the thread or circuit.237

In this language, (x0, x1) is an invertible pair if and only if (x0, x1), (x1, x0) is238

a circuit (with n = 1) in some strong component of H+. Also note that H+ does239

not contain circuits with n = 0, since such a circuit would consist of a repeat240

pair (x0, x0) and such pairs are not vertices of H+ by definition.241

Let P be any set of pairs. We say that P is closed under reachability if242

(x′, y′) ∈ P whenever (x, y) ∈ P and (x, y)(x′, y′) is an edge in H+. We say that243

P is closed under transitivity if (x, z) ∈ P whenever (x, y) ∈ P and (y, z) ∈ P .244

We note that a set of pairs P in H+, which contains a circuit cannot be closed245

under transitivity, because such a set would contain a repeat pair.246

We have the following result.247

Theorem 1. The following statements are equivalent for a bipartite graph H:248

1. H has a min ordering.249

2. H has no invertible pairs.250
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3. The vertices of H+ can be partitioned into sets D,D′ such that251

(a) (x, y) ∈ D if and only if (y, x) ∈ D′,252

(b) D is closed under reachability, and253

(c) D is closed under transitivity.254

Proof. Wemay assume thatH is connected, in particular has no isolated vertices.255

It is straightforward to see that 1 implies 2, and 3 implies 1 (by defining256

x < y if (x, y) ∈ D). Thus it remains to show that 2 implies 3.257

Therefore, we assume that H has no invertible pairs. Note that for each258

strong component C of H+, there is a corresponding reversed (or dual) strong259

component C ′ whose pairs are precisely the reversed pairs of the pairs in C, i.e.,260

C ′ = {(a, b) : (b, a) ∈ C}. We shall say that C,C ′ are coupled strong components.261

Note that a strong component C may be coupled with itself; it is easy to check262

that all pairs in a self-coupled strong component are invertible.263

The partition of V (H+) into D,D′ will consist of separating each pair of264

coupled strong components C,C ′ of H+. The pairs of one strong component will265

be placed in the set D, their reversed pairs will go into D′.266

We shall build these sets D,D′ by iteratively adding a strong component of267

H+−D−D′ to D and its dual to D′. The detailed algorithm is described below.268

Initially the algorithm starts with any (possibly empty) sets D and D′ such that269

(a-c) of Condition 3 in Theorem 1 are satisfied. In the remainder of this section270

we show that our algorithm will maintain these properties (a-c) until each pair271

(x, y) with x ̸= y belongs either to D or to D′, proving 2 implies 3.272

We note that properties (a,b) above imply that each strong component of273

H+ belongs entirely to D, D′, or to V (H+) − D − D′, and that no pair in D274

dominates a pair in V (H+) − D. A strong component C of H+ is trivial if it275

consists of just one pair. Note that for any D satisfying (a,b), a trivial strong276

component of H+ −D −D′ is also a trivial strong component of H+.277

We say that a pair (a, a′) is a sink pair if N(a) contains N(a′). If a pair278

(a, a′) dominates (b, b′), then a′b′ is an edge, and ab′ is not. Thus N(a) does not279

contain N(a′). We conclude a sink pair does not dominate any pair of H+, and280

hence a sink pair forms a trivial strong component of H+ (regardless of what281

is in D). Conversely, if a pair (a, a′) is not a sink pair, then it dominates some282

other pair (b, b′). Indeed, b′ can be any vertex in N(a′)−N(a) and b can be any283

neighbour of a. By skew symmetry we have (a, a′) is a sink pair if and only if284

(a′, a) is not dominated by some pair.285

The reachability closure PR of a set P is the smallest set containing P and286

closed under reachability. The transitivity closure PT of a set P is the smallest287

set containing P and closed under transitivity. The closure P ∗ of a set P is288

the smallest set containing P and closed under reachability and transitivity. It289

is easy to see that the transitivity closure PT is obtained from P by setting290

initially PT = P and then performing the following operation as long as new291

pairs are added:292

(i) if (x, y) ∈ PT and (y, z) ∈ PT , then add (x, z) to PT .293
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Similarly, the reachability closure PR is obtained from P by setting initially294

PR = P and then performing the the following operation as long as new pairs295

are added:296

(ii) if (x, y) ∈ PR and (x, y)(x′, y′) is an edge in H+, then add (x′, y′) to PR.297

Finally, the closure P ∗ is obtained from P by initially setting P ∗ = P and then298

performing alternating transitivity and reachability closures until no new pairs299

are added.300

We now describe the algorithm. As suggested earlier, we start initially with301

(possibly empty) sets D,D′, that satisfy (a-c). Clearly empty sets satisfy (a-c),302

but we require the generality of initial non-empty D,D′ for application in the303

next section where we will specify certain pairs that must be in the min order.304

In the iterative step, we shall have current sets D,D′ satisfying (a-c), and select305

a strong component C of H+ − D − D′ which can be used to enlarge the set306

D to (C ∪ D)∗ (and also enlarge the set D′ to consist of the reversed pairs307

of the new set D), so that (a-c) are again satisfied. The algorithm ends when308

V (H+) − D − D′ is empty; at this point the pairs in D, together with repeat309

pairs (a, a), a ∈ V (H), define a transitive, reflexive, and antisymmetric relation310

by properties (a-c), which is a linear ordering on V (H), as V (H+)−D −D′ is311

empty. In fact, it is a min ordering of H, by property (b).312

It remains to explain how to select the next strong component C so that313

the updated D,D′, as explained above, still satisfy (a-c). Since D′ is updated314

to consist of the reversed pairs in D, (a) is automatically satisfied. Moreover,315

as D is updated to the closure (C ∪D)∗, transitivity, (c), and reachability, (b),316

are both always satisfied. Thus we need to verify the closures can be completed317

while respecting the current D,D′; that is, taking the closures never yields a318

repeat pair, which by definition do not belong to V (H+), or a pair previously319

assigned to D′. It is easy to see that either of these cases to occur, the set D320

would have to contain a circuit. Indeed, a repeat pair could only be obtained321

during a transitive closure, and the pairs involved in the closure would form a322

circuit. Similarly, if a pair (x, y) is placed in D′ and some later iteration in D,323

then the set D contains both pairs (x, y) and (y, x) and hence a circuit with324

n = 1. Thus it suffices to be checking for the existence of circuits.325

In selecting the strong component C we shall give preference to non-trivial326

strong components. This breaks the execution of the algorithm into two stages.327

In the first stage we process non-trivial strong components of H+, moving each328

to either D or D′ as it is processed, together with all strong components, and329

their duals, involved in computing the closure (C ∪D)∗. At this point all non-330

trivial strong components are in D ∪ D′ and we process the remaining trivial331

strong components in H+ − D − D′. Recall, trivial strong components of H+
332

belonging to H+ −D −D′ remain trivial strong components, independently of333

what has been added to D, so the processing of non-trivial strong components334

first is well-defined.335

We call a strong component C admissible if the dual strong component C ′
336

is not reachable from C. Note that if C is not admissible, then (C ∪D)∗ would337

contain a circuit as for any (a, b) ∈ C both (a, b) and (b, a) would belong to338
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CR ⊆ (C∪D)∗. Also note that at least one of C,C ′ must be admissible; otherwise,339

they are reachable from each other and C = C ′ contains an invertible pair. Hence,340

we can (and will) always choose an admissible strong component to add to D at341

each iteration. Testing admissibility is not relevant in the second stage, where342

all trivial strong components are admissible because a trivial strong component343

cannot be reachable from another trivial strong component. However, we do not344

need this observation, so we will skip the easy proof.345

In conclusion, here is the statement of the algorithm. Given sets D,D′
346

satisfying (a-c) if there exists a non-trivial admissible strong component C of347

H+ −D −D′, we update D to (C ∪D)∗ and update D′ to contain the reverse348

pairs of (C∪D)∗. This is stage 1 of the algorithm. Otherwise we select any trivial349

admissible strong component H+−D−D′, and update D and D′ the same way;350

this is stage 2.351

We now show that 2 implies 3 in Theorem 1. At the end of the algorithm we352

will have placed each pair in either D or D′, and hence we indeed will have a353

partition of V (H+). Moreover, (a) follows from the description of the algorithm.354

To prove (b,c), we observe that at each step of the algorithm we take the closure355

of D, thus D will indeed be closed under reachability and transitivity as long as356

no circuits are formed during the transitivity closure. We prove in Corollary 3357

that no circuits are formed in the first stage of the algorithm, and prove in358

Corollary 5 that no circuits are formed in the second stage of the algorithm.359

This completes the proof of Theorem 1360

Every pair in (C ∪D)∗ is obtained by some sequence of transitive and reach-361

ability closures starting from pairs in C ∪ D, possibly several such sequences.362

For each pair (x, y) ∈ (C ∪ D)∗ we define the time stamp recording when the363

pair appears in (C ∪ D)∗ for the first time. Thus, the time stamp of every364

pair (x, y) ∈ (C ∪ D)∗ is unique. Pairs in C ∪ D have time stamp 0, those in365

(C ∪D)T ∪ (C ∪D)R but not in C ∪D have time stamp 1, and so on. Moreover,366

for each pair (x, y) ∈ (C ∪D)∗ we also define a derivation sequence, which is a367

sequence of operations (R for reachability closure and T for transitivity closure)368

that produces the pair within time equal to its time stamp. This sequence is also369

not necessarily unique, as there are two possible sequences for each positive time370

stamp.371

Pairs in C ∪ D, having time stamp 0, have the unique empty derivation372

sequence (-). Pairs with time stamp 1 consist of those in (C ∪ D)T − (C ∪ D)373

that have the derivation sequence (T), together with those in (C∪D)R−(C∪D)374

that have derivation sequence (R). Pairs with time stamp 2 consist of those in375

((C ∪D)R)T − (C ∪D)R, having the derivation sequence (RT), as well as those376

in ((C ∪D)T )R − (C ∪D)T with the derivation sequence (TR).377

It is worth emphasizing that despite the similarity of the notation, for an378

alternating sequence (Z) of T ’and R’s, the set (C ∪ D)Z consists not only of379

pairs with derivation sequence Z but also includes all sequences with derivation380

sequences corresponding to the prefixes of Z.381

In general, we call a pair which admits a derivation sequence ending in R382

(that is a pair that can be placed in (C ∪ D)∗ within its time stamp when383
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applying the reachability closure as its final operation) a reachability pair, and384

call a pair which only admits a derivation sequence ending in T (that is a pair385

that can be placed in (C ∪ D)∗ within its time stamp only when applying the386

transitivity closure as its final operation) a transitivity pair. Finally, a pair in387

C ∪D is called an original pair. Thus, each pair in (C ∪D)∗ is either an original388

pair, or a reachability pair, or a transitivity pair. It will turn out that the only389

possible time stamps are 0, 1, 2 or 3.390

To improve readability we shall omit the parentheses and write expressions391

like ((C ∪D)T )R as (C ∪D)TR; if Z = z1z2 . . . zk is an alternating sequence of392

T ’s and R’s, we write (C ∪D)Z for (C ∪D)z1z2...zk .393

If (u, v) is a transitivity pair in (C∪D)Z , there exists a thread (u0, u1), (u1, u2),394

. . . , (um, um+1) from u = u0 to v = um+1 with each pair (ui, ui+1) in (C ∪D)Z
′
,395

where Z ′ is obtained from Z = z1z2 . . . zk by deleting the last symbol zk = T .396

We say that a thread or circuit is good if each pair (ui, ui+1) is an original397

pair or a reachability pair. If there is a thread from u to v in (C ∪ D)Z , there398

is also a good thread from u to v in (C ∪D)Z , as each transitivity pair, being399

obtained by transitivity from other pairs, can be replaced by those pairs and400

stay within (C ∪D)Z . Similarly, if there is a circuit in (C ∪D)Z , then there is401

also a good circuit in (C ∪D)Z .402

A good thread (u0, u1), (u1, u2), . . . , (um, um+1) in (C∪D)Z is called minimal403

if no pair (ui, uj) with j ̸= i + 1 is a reachability pair in (C ∪D)Z . If a thread404

(u0, u1), (u1, u2), . . . , (um, um+1) admits a reachability pair (ui, uj) with j > i+1,405

we can use it to obtin a shorter thread. On the other hand, if (ui, uj) with j < i406

is a reachability pair in (C ∪ D)Z , then (C ∪ D)Z contains a circuit. Thus it407

is clear that if (C ∪D)Z contains no circuits, and there is in (C ∪D)Z a good408

thread from u to v, then there is in (C ∪D)Z also a minimal good thread from409

u to v. In particular, we note for future reference that if (C ∪D)Z contains no410

circuits, then for any transitivity pair (u, v) in (C ∪D)Z there exists in411

(C ∪D)Z a minimal good thread (u, u1), (u1, u2), . . . , (um, v) from u to v.412

Moreover, if (u0, u1), (u1, u2), . . . , (um, u0) is a shortest good circuit in (C∪D)Z ,413

then (u1, u2), . . . , (um, u0) is a minimal good thread in (C ∪D)Z , as is any other414

thread obtained from the shortest circuit by removing one pair.415

Our first goal is to show that given a minimal good thread (u0, u1), (u1, u2),416

. . . , (um, um+1), under certain conditions we can find vertices v0, v1, . . . , vm+1417

so that the edges ujvj , j = 0, . . . ,m+ 1, form an independent matching.418

We proceed to a sequence of lemmas. For all these lemmas we are as-419

suming that no strong component of H+ has an invertible pairs (as-420

sumption 2 of Theorem 1), and that D,D′ satisfy conditions (a-c). In421

these lemmas we also assume that Z is any derivation sequence, i.e., a (possibly422

empty) alternating sequence of R’s and T ’s. To account for the empty derivation423

sequence (Z) = (−), we define (C ∪D)Z = C ∪D.424

Lemma 1. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread425

from u0 to um+1 in (C ∪D)Z .426

If some (ui, ui+1) is dominated by (pi, qi) ∈ (C ∪D)Z , then piuk ̸∈ E(H) for427

all k ̸= i, and qiuk ̸∈ E(H) for all k ̸= i, i+ 1.428
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If additionally (ui+1, ui+2) is also dominated by (pi+1, qi+1) ∈ (C∪D)Z , then429

also qiui ̸∈ E(H) and qi+1uk ̸∈ E(H) for all k ̸= i+ 2.430

Proof. Suppose to the contrary there is an edge between pi and some uk, k ̸=431

i. Then (pi, qi) dominates (uk, ui+1), making (uk, ui+1) a reachability pair (or432

original pair) in (C ∪D)Z . This is a contradiction to the minimality of the good433

thread (u0, u1), (u1, u2), . . . , (um, um+1). (Note k ̸= i + 1 as (pi, qi) dominates434

(ui, ui+1).)435

Thus pi is not adjacent to any uk, k ̸= i, and this now implies that each qi436

is non-adjacent to all uk, k ̸= i, i+ 1 by the same reasoning, using the fact that437

piuk is not an edge. (Note that the argument fails when k = i, and we do not438

claim anything about qiui.)439

If there are consecutive pairs (ui, ui+1) and (ui+1, ui+2) that are dominated440

by pairs in (C ∪D)Z , we now prove that qiui and qi+1ui+1 are also non-edges.441

We have already proved that piui+2 and uiqi+1 are non-edges. If qi+1ui+1 was an442

edge, we would have (ui, ui+1) dominates (pi, qi+1) which dominates (ui, ui+2)443

(and thus also places (ui, ui+2) in (C ∪ D)Z). This contradicts the minimality444

of our good thread. Moreover, if qiui was an edge, then (ui+1, ui+2) dominates445

(qi, qi+1) which dominates (ui, ui+2), yielding a similar contradiction.446

Lemma 2. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread447

from u0 to um+1 in (C ∪D)Z .448

If (ui, ui+1) is dominated by (pi, qi) ∈ (C ∪ D)Z and additionally uj , j ̸= i,449

has a neighbour pj that is non-adjacent to all uk, k ̸= j, then all pairs (uk, uk+1)450

with i ≤ k ≤ j − 1 are also dominated by some (pk, qk) ∈ (C ∪D)Z .451

Proof. We first assume that j ≥ i+2. Suppose to the contrary that not all inter-452

mediate pairs are so dominated. That is for i ≤ i′ < j′ ≤ j the pair(ui′ , ui′+1) is453

dominated by a pair in (C∪D)Z but none of the pairs (ui′+1, ui′+2), . . . , (uj′−1, uj′)454

is. Note either j′ = j or j′ < j in which case (uj′ , uj′+1) is dominated by455

(pj′ , qj′) ∈ (C ∪D)Z .456

First consider a neighbour r of ui′+2. If r is not a neighbour of ui′+1,457

then (ui′+1, ui′+2) dominates (qi′ , r) placing (qi′ , r) ∈ (C ∪ D)Z . However, by458

Lemma 1, qi′ is not a neighbour of ui′+2 and hence (qi′ , r) dominates (ui′+1, ui′+2),459

a contradiction. We conclude that all neighbours of ui′+2 are also neighbours of460

ui′+1. Next, consider s a neighbour of ui′+3. If s not a neighbour of ui′+2, then461

(ui′+2, ui′+3) dominates (r, s), implying (r, s) ∈ (C ∪D)Z . If the edge from r to462

ui′+3 is absent, then (r, s) dominates (ui′+2, ui′+3) contrary to our assumption.463

Thus r is adjacent to ui′+3. Again, by Lemma 1, qi′ is not adjacent to ui′+3.464

Thus (qi′ , r) dominates (ui′+1, ui′+3) making the latter a reachability pair. This465

contradicts the assumption the good thread is minimal. Hence, s is a neighbour466

of ui′+2 and by the above also neighbour of ui′+1.467

Continuing in this vein we conclude every neighbour of uj′ is adjacent to468

ui′+1. If j′ = j, this contradicts our assumption about pj and if j′ < j this469

contradicts Lemma 1 (which states pj′ is non-adjacent to ui′+1).470
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The case j ≤ i− 2 is handled by an analogous argument started by showing471

any neighbour of uj′+1 is a neighbour of uj′ , ultimately implying pi is a neighbour472

of uj′ contrary to Lemma 1.473

From these two lemmas we conclude that if (ui, ui+1) and (uj , uj+1), j > i are474

dominated by (pi, qi) ∈ (C ∪D)Z and (pj , qj) ∈ (C ∪D)Z respectively, then all475

intermediate pairs are also so dominated and we have an independent matching476

ukvk, i ≤ k ≤ j. Indeed, each vk can be chosen to be the corresponding pk477

or qk−1. In particular, if all pairs (uk, uk+1) are so dominated we obtain a full478

independent matching.479

Corollary 1. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread480

from u0 to um+1 in (C ∪D)Z .481

If each pair (uj , uj+1) is dominated by some pair in (C ∪ D)Z , then there482

exist vertices vj such that the edges ujvj , j = 0, 1, . . . ,m+1, form an independent483

matching in H.484

This situation – a minimal good thread and a corresponding independent485

matching using each vertex involved in the thread – gives us a lot of structure486

we can use.487

Lemma 3. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread488

in (C ∪ D)Z and u0v0, u1v1, . . . , umvm, um+1vm+1 is an independent matching489

in H.490

A vertex of H which is adjacent to at least two of the vertices u0, u1, . . . ,491

um, um+1 is adjacent to all of them, and a vertex of H adjacent to at least two492

of the vertices v0, v1, . . . , vm, vm+1 is adjacent to all of them.493

Proof. If w is adjacent to uj and uk with j < k, but not adjacent to uj−1, then494

the pair (vj−1, w) is dominated by the pair (uj−1, uj) ∈ (C∪D)Z , and dominates495

the pair (uj−1, uk), thus (uj−1, uk) ∈ (C ∪ D)Z , contradicting the minimality496

of our thread. On the other hand, if w is adjacent to uj and uk with j < k,497

but not adjacent to uk−1 then (uk−1, uk) ∈ (C ∪D)Z dominates (vk−1, w) which498

dominates (uk−1, uj), a similar contradiction. Finally if w is adjacent to uj and499

uk with j < k, but not adjacent to uk+1 we have (uk, uk+1) dominating (w, vk+1)500

which dominates (uj , uk+1). Observing that (v0, v1), (v1, v2), . . . , (vm, vm+1) is501

also a minimal good thread in (C ∪ D)Z equipped with a corresponding inde-502

pendent matching v0u0, v1u1, . . . , vmum, vm+1um+1, we conclude that the same503

holds for w adjacent to two of the vi’s.504

We denote by K the set of all vertices adjacent to all u0, u1, . . . , um, um+1505

and by K ′ the set of all vertices adjacent to all v0, v1, . . . , vm, vm+1. We first506

observe that K ∪K ′ induces a complete bipartite graph.507

Lemma 4. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread508

in (C ∪ D)Z and u0v0, u1v1, . . . , umvm, um+1vm+1 is an independent matching509

in H.510
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If K is the set of all vertices adjacent to all u0, u1, . . . , um, um+1 and K ′ the511

set of all vertices adjacent to all v0, v1, . . . , vm, vm+1 then each vertex of K is512

adjacent to each vertex of K ′.513

Proof. If wz is not an edge for some w ∈ K, z ∈ K ′, then (u0, u1), (u1, u0)514

is an invertible pair, because the pairs (u0, u1), (w, v1), (u1, z), (v1, v0), (u1, u0),515

(w, v0), (u0, z), (v0, v1), (u0, u1) form a directed eight-cycle inH+, implying (u0, u1),516

(u1, u0) are in the same non-trivial strong component of H+.517

Lemma 5. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread518

in (C ∪ D)Z with m ≥ 1, u0v0, u1v1, . . . , umvm, um+1vm+1 is an independent519

matching in H, and K,K ′ are defined as above.520

Then any two distinct vertices ui, uj , i ̸= j, belong to different components of521

the graph H \ (K ∪K ′).522

Proof. The definitions of K and K ′ imply that any vertex of H \ (K ∪K ′) has523

at most one neighbour amongst u0, u1, . . . , um+1 and at most one neighbour524

amongst v0, v1, . . . , vm+1. In the arguments that follow, we repeatedly appeal to525

this fact.526

It suffices to show that any path joining two different vertices ui, uj must527

contain a vertex of K ∪ K ′. Let ui, b1, a2, . . . , at, bt, uj be a path in H for528

some i ̸= j. By the preceding observation, if b1 is not in K, it is not ad-529

jacent to any ur, r ̸= i. Consider now the thread (v0, v1), (v1, v2), (vi−1, b1),530

(b1, vi+1), . . . , (vm, vm+1); we say that this thread was obtained from the mini-531

mal good thread (v0, v1), (v1, v2), . . . , (vm, vm+1) by replacing vi with b1. The532

pairs in this new thread are again all in (C ∪D)Z , because (vi−1, b1), (vi−1, vi)533

are in the same strong component, and similarly for (vi, vi+1), (b1, vi+1). More-534

over, the same argument shows it is again a minimal good thread. Note also535

that v0u0, . . . , vi−1ui−1, b1ui, vi+1ui+1, . . . , vm+1um+1 is a corresponding inde-536

pendent matching in H containing an edge for each vertex involved in the new537

thread. Finally, each vertex k′ of K ′ is adjacent to b1 by Lemma 3 applied to538

the new thread, as k′ is adjacent to all vj , j ̸= i and m + 1 ≥ 2. We have a539

new minimal good thread and a new corresponding matching, while keeping the540

same K,K ′.541

Therefore, we can continue with the modified thread (v0, v1), (v1, v2), (vi−1, b1),542

(b1, vi+1), . . . , (vm, vm+1) and matching v0u0, . . . , vi−1ui−1, b1ui, vi+1ui+1, . . . ,543

vm+1um+1 and replace ui+1 by a2, similarly obtaining another modified min-544

imal good thread (u0, u1), . . . , (ui, a2), (a2, ui+2), . . . , (um, um+1) and indepen-545

dent matching v0u0, . . . , vi−1ui−1, b1ui, vi+1a2, . . . , vm+1um+1. We can continue546

replacing the vertices along the path ui, b1, a2, . . . , at, bt, uj , until we obtain the547

minimal good thread (u0, u1), . . . , (at−1, at), (at, uj), . . . , (um, um+1) and inde-548

pendent matching v0u0, . . . , vi−1ui−1, . . . , btat, vjuj , . . . , vm+1um+1. Since bt is549

adjacent to both uj and at, we must have bt ∈ K.550

We conclude from Lemma 5 that the graph H \ (K ∪K ′) consists of distinct551

components S0, S1, . . . , Sm+1, . . . Sn, where each Si, i = 0, 1, . . . ,m+ 1 contains552

the edge uivi. (There may be other components Sm+2, . . . , Sn.) Let Ci denote553
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the strong component of H+ containing the pair (ui, ui+1). We aim to prove554

that Ci ̸= Cj when i ̸= j. For this purpose we analyze the relationship between555

the strong components Ci of H
+ and the components Si of H.556

Lemma 6. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread557

in (C∪D)Z with m ≥ 1, and u0v0, u1v1, . . . , umvm, um+1vm+1 is an independent558

matching in H.559

The strong component of H+ containing the pair (ui, ui+1) consists precisely560

of all those pairs (a, b) where a ∈ Si, b ∈ Si+1.561

Proof. Suppose first that (a, b) ∈ Ci, i.e., that there is a directed path P from562

(ui, ui+1) to (a, b) and a directed path P ′ from (a, b) to (ui, ui+1). If (p, q) is the563

second vertex of P , then uip, ui+1q are edges of H hence p ∈ Si∪K, q ∈ Si+1∪K.564

However, q ̸∈ K, since uiq is not an edge. Moreover, if p ∈ K then (p, q) does565

not dominate any other pair and hence P ends in (a, b) = (p, q); so in this case,566

there can be no directed path from (p, q) to (ui, ui+1). Therefore we also have567

p ̸∈ K and thus p ∈ Si, q ∈ Si+1 and the same holds for all other vertices on the568

path P , including (a, b).569

On the other hand, for any pair (a, b) with a ∈ Si, b ∈ Si+1, we easily570

construct paths P, P ′ as above by using paths in Si from ui to a and in Si+1571

from ui+1 to b.572

Corollary 2. Suppose (u0, u1), (u1, u2), . . . , (um, um+1) is a minimal good thread573

in (C ∪ D)Z with m ≥ 1, and u0v0, u1v1, . . . , umvm, um+1vm+1 is an indepen-574

dent matching in H. Let Ci, i = 0, 1, . . . ,m, be the strong component of H+
575

containing the pair (ui, ui+1).576

Then Ci ̸= Cj if i ̸= j. Thus there is no directed path in H+ from (ui, ui+1)577

to (uj , uj+1) if i ̸= j.578

We now consider the first stage of the algorithm, when non-trivial strong579

components are processed. It turns out that all reachability pairs have time580

stamp 1 in this case. The time stamp of a thread or circuit is understood to be581

the maximum time stamp of its pairs.582

Suppose Z = z1 . . . zt−1zt is an alternating sequence of T ’s and R’s with583

zt = R, corresponding to time stamp t ≥ 2, and denote Z ′ = z1 . . . zt−1 and584

Z ′′ = z1 . . . zt−2. (Note that Z ′′ could be empty.)585

Lemma 7. If C is a non-trivial strong component, and (C ∪D)Z
′
contains no586

circuit, then each reachability pair in (C ∪D)Z belongs to CR.587

Proof. It is enough to prove the time stamp of each reachability pair is 1, since588

(C ∪D)R = CR ∪D and a reachability pair is not in D by definition. Thus for589

contradiction, assume that (x, y) is a reachability pair with time stamp t ≥ 2.590

This means there is a sequence Z as described above the lemma, with zt = R591

and zt−1 = T such that (x, y) ∈ (C ∪D)Z . There is a directed path P in H+ to592

(x, y) from some transitivity pair (a, b) ∈ (C ∪D)Z
′
, i.e., where (a, b) has time593

stamp t− 1. Since (C ∪D)Z
′
contains no circuit, there is a minimal good thread594
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from a to b, with all pairs (a, a1), . . . , (am, b) in (C ∪ D)Z
′′
, i.e., having time595

stamp at most t− 2. Assume that of all transitivity pairs (a, b) ∈ (C ∪D)Z
′
, all596

directed paths P from (a, b) to (x, y), and all minimal good threads from a to b597

in (C ∪D)Z
′′
, we have chosen those that minimize the length m of the thread.598

For convenience, we shall write a = a0, b = am+1.599

If t = 2, the time stamp of the thread (a, a1), . . . , (am, b) is t− 2 = 0, so they600

are all original pairs. At least one of the pairs (ai, ai+1) must be in C, otherwise601

(a, b) ∈ D and hence (x, y) ∈ D is an original pair, not a reachability pair.602

Since C is non-trivial, (ai, ai+1) is dominated by some pair (p, q) ∈ C with time603

stamp t− 2 = 0. Similarly, if t > 2, then at least one of the pairs (ai, ai+1) is a604

reachability pair in (C ∪D)Z
′′
, i.e., with time stamp at most t− 2, so it is also605

dominated by some pair (p, q) in (C ∪ D)Z
′′
. Assume that P has consecutive606

pairs (a, b), (u, v), . . . , (x, y). We claim that both u and v are non-adjacent to607

all aj . If ajv was an edge, then (a, aj) ∈ (C ∪ D)Z
′
with time stamp at most608

t− 1, would dominate (u, v), since av is a non-edge; this would contradicts the609

minimality of m. Similarly, any edge aju would allow us to replace (a, b) by610

(aj , b) with a shorter thread. Now we can apply Lemma 2 to the minimal good611

thread (a, a1), . . . , (am, b) in (C ∪D)Z
′′
, and deduce that all pairs (ai, ai+1) are612

dominated in (C ∪D)Z
′′
and so Corollary 1 implies that there is an independent613

matching ajuj , j = 0, 1, . . . ,m + 1, and therefore (u, v) also admits a minimal614

good thread (u, u1), . . . , (um, v). Since (ai, ai+1) and (ui, ui+1) are in the same615

strong component for each i, the time stamp of the thread (u, u1), . . . , (um, v)616

is also t− 2. Continuing this argument along the directed path P , we conclude617

that (x, y) is a pair with time stamp t− 1, which is a contradiction.618

This lemma allows us to prove that the algorithm doesn’t create circuits in619

the first stage, when adding non-trivial strong components.620

Corollary 3. If C is a non-trivial strong component, then (C ∪ D)∗ does not621

contain a circuit.622

Proof. If there is a circuit in (C ∪D)∗, then suppose a first circuit appears with623

time stamp t, i.e., in (C∪D)Z where Z has t symbols. Let X = (x0, x1), (x1, x2),624

. . . , (xm, x0) is a shortest good circuit in (C∪D)Z . Then (x0, x1), . . . , (xm−1, xm)625

is a minimal good thread, and so is (x1, x2), . . . , (xm, x0); therefore each pair ofX626

belongs to some minimal good thread, and hence it is an original pair from C∪D,627

or a reachability pair from CR by Lemma 7. Hence each (xi, xi+1) is in CR∪D. If628

there are two pairs (xi, xi+1), (xj , xj+1), i < j in CR, then both are dominated629

by a pair in CR ∪ D = (C ∪ D)R and hence by Lemma 2 all pairs between630

(xi, xi+1) and (xj , xj+1) are also dominated by a pair in CR ∪ D. Therefore,631

by Lemma 6 applied to the minimal good thread (xi, xi+1), . . . , (xj , xj+1), we632

obtain subgraphs Si, Si+1, . . . , Sj of H, such that the strong component of H+
633

containing (xk, xk+1) consists of all pairs (a, b), a ∈ Sk, b ∈ Sk+1, for any k, i ≤634

k ≤ j. There is a directed path in H+ from a pair in C to (xi, xi+1). Considering635

an edge (p, q)(r, s) of this path, we note that pr, qs are independent edges of H,636

and so (p, q) and (r, s) are in the same strong component of H+. This means637
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that (xi, xi+1) and (xj , xj+1) are both actually in C. This contradicts Corollary638

2.639

Thus there can be at most one pair of X in CR, and no two consecutive640

ones in D. It easily follows that m = 1, i.e., that X is a circuit with two pairs641

(x0, x1), (x1, x0). Both (x0, x1) and (x1, x0) cannot be in D since D has no cir-642

cuits. Moreover, if (x0, x1) ∈ D and (x1, x0) is reachable from C, then C is643

reachable from (x0, x1) by skew symmetry and hence C was not chosen disjoint644

from D as required. It remains to consider the case when both (x0, x1) and645

(x1, x0) are in CR. Thus suppose that (a, b) ∈ C has a directed path to both646

(x0, x1) and (x1, x0). By skew symmetry, we have a directed path from (x1, x0)647

to (b, a) and hence a directed path from (a, b) to (b, a). This means the strong648

component C was not admissible, contradicting what the algorithm is doing.649

We now focus on the second stage of the algorithm, after all non-trivial650

strong components have been handled. This means that any non-trivial strong651

component of H+ is now in D∪D′; in particular, if a pair (x, y) is dominated by652

(a, b) and dominates (c, d), then (x, y) is in D, because it is in the same strong653

component as (a, d); thus also (c, d) ∈ D. Hence any reachability pair (x, y) with654

time stamp t is directly dominated by a pair with time stamp at most t − 1.655

Moreover, if t = 1 then (x, y) is dominated by a pair in C, as if it was dominated656

by a pair in D it would be in D and hence not a reachability pair.657

In this case, it turns out that all reachability pairs have time stamp at most658

2. Below we use the same notation for the sequences Z,Z ′ as described before659

Lemma 7.660

Lemma 8. If C is a trivial strong component, and (C∪D)Z
′
contains no circuit,661

then each reachability pair in (C ∪D)Z is directly dominated by a pair (a, b) ∈662

(C ∪ D)T . Moreover, any minimal good thread from a to b has at most three663

pairs.664

Proof. This proof is similar to the proof of Lemma 7. Suppose a reachability pair665

(x, y) has time stamp t > 2. The observation preceding the lemma implies that666

(x, y) is directly dominated by a transitivity pair (a, b), which must have time667

stamp t−1 > 1, and since there are no circuits at that time, it admits a minimal668

good thread. Any thread from a to b must contain at least one reachability669

pair, and hence a pair dominated in (C ∪ D)∗. We may again assume that we670

minimized the length of the minimal good thread from a to b over all pairs (a, b)671

that dominate (x, y). This means as before that x and y are non-adjacent to all672

vertices in the pairs on the minimal good thread from a to b and, as in the proof673

of Lemma 7, we conclude there is an independent matching ajxj , and a minimal674

good thread (x, x1), (x1, x2), . . . with time stamp t − 2, contradicting the fact675

that (x, y) has time stamp t.676

Lemmas 7 and 8 imply that all reachability pairs of the closure (C∪D)∗ have677

derivation sequences (R) or (TR). Of course, this implies that transitivity pairs678

can only have derivation sequences (T), (RT), or (TRT), implying that all time679

stamps are in fact at most 3. (Original pairs have time stamps 0.) Moreover,680
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a minimal good thread or circuit has time stamp at most 2, since all pairs are681

reachability pairs or original pairs. Since reflexive and transitive closures of a set682

S include the pairs of S, we also conclude the following.683

Corollary 4. (C ∪D)∗ = (C ∪D)TRT .684

Now we can prove that the algorithm also doesn’t create circuits in the second685

stage, when adding trivial strong components.686

Corollary 5. If C is a trivial strong component, then (C∪D)∗ does not contain687

a circuit.688

Proof. Assume a circuits first appears in (C ∪ D)∗ with time stamp t and X689

is a shortest good circuit with time stamp t. The deletion of any pair from X690

results in a minimal good thread, thus each pair of X lies in some minimal691

good thread and hence either an original pair, or a reachability pair, which by692

Lemma 8 is dominated by some (a, b) ∈ (C ∪ D)T . Only one pair can be in693

C because C is trivial, and two consecutive pairs cannot be in D because D is694

closed under transitivity and X is minimal. We also claim that only one pair can695

be dominated by a pair in (C ∪D)T . Indeed, if there are at least two such pairs,696

say (ai, ai+1), (aj , aj+1) then by Corollary 1 there are two consecutive pairs each697

in a non-trivial strong component and hence in D, contradicting the minimality698

of X.699

From these constraints it follows that X consists of at most four pairs. If X700

is the circuit (x0, x1), (x1, x2), (x2, x3), (x3, x0) then (up to relabeling) we may701

assume (x0, x1) is in C, (x1, x2), (x3, x0) are in D, and (x2, x3) is dominated by702

a pair (a, b) in (C ∪D)∗, which admits a thread (a, a1), (a1, a2), . . . , (am−1, b) in703

C ∪ D. None of these pairs can be in C, as C has only one pair (x0, x1), and704

that pair consists of vertices of the opposite colour in the bipartition of H. Thus705

m = 1 and the pair (x2, x3) is actually in D, contradicting the minimality of the706

circuit X. The proof for the case when X has three pairs is similar.707

It remains to consider the case when the circuit X has only two pairs, say708

(x0, x1), (x1, x0). It is easy to see that both cannot be in (C ∪D) as neither C709

nor D have circuits, and C is always chosen disjoint from D′. Thus one of the710

pairs, say (x0, x1), is dominated by some (a, b) ∈ (C ∪D)T . Any minimal good711

thread from a to b must include a pair in C or else (a, b) ∈ D and so we would712

have (x0, x1) ∈ D. Thus the other pair (x1, x0) cannot be in C because of the713

colour argument made when X has four pairs. If (x1, x0) ∈ D, then we would714

have (b, a) ∈ D as (x1, x0) dominates (b, a) by skew symmetry, implying a circuit715

(a, b), (b, a) with time stamp smaller than t. To see this, note that the time stamp716

of both (x1, x0) and (b, a) is 0; if the time stamp of (x0, x1) is 1 then the time717

stamp of (a, b) is 0, and if the time stamp of (x0, x1) is 2 then the time stamp of718

(a, b) is 1. This leaves the case that both (x0, x1) and (x1, x0) are dominated by719

pairs in (C ∪D)∗, say (x0, x1) is dominated by (u, v) and (x1, x0) is dominated720

by (w, y). Now the edges ux1, wx0 are independent and hence both (x0, x1) and721

(x1, x0) are in non-trivial strong components and hence in D, contradicting the722

fact that D has no circuits.723
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The preceding two corollaries provided the required results for the proof of724

Theorem 1. They also imply the first part of the following dichotomy for list725

homomorphisms of bipartite graphs (see [9,14]).726

Corollary 6. If a bipartite graph H has a min ordering, then the list homomor-727

phism problem for a bipartite graph H is polynomial time solvable. Otherwise H728

contains an invertible pair and the problem is NP-complete.729

From the proof of Theorem 1 we derive the following Extension Theorem730

that will be used in the next section.731

Corollary 7. Suppose D is a set of ordered pairs of distinct vertices of a bipar-732

tite graph H that is closed under reachability and transitivity.733

Then there exists a bipartite min ordering < of H such that x < y for each734

(x, y) ∈ D if and only if H has no invertible pair.735

Given an arbitrary set D of pairs, we can apply the corollary to the closure of736

D. However, using the results of the next section, we are able to directly decide737

the existence of an extension for any set D of ordered pairs, without taking its738

closure.739

A D-inversion consists of two pairs (a, b), (c, d) ∈ D such that (d, c) is reach-740

able from (a, b) in H+.741

Corollary 8. Suppose D is a set of ordered pairs of distinct vertices of a bipar-742

tite graph H.743

There exists a bipartite min ordering < of H such that x < y for each (x, y) ∈744

D if and only if H has no invertible pairs and no D-inversions.745

The proof of Corollary 8 will be presented at the end of the next section.746

3 Obstructions to min orderings of semi-balanced747

bipartite signed graphs748

Suppose Ĥ is a semi-balanced signed graph and let us assume that it is switched749

to a signed graph without purely red edges. The underlying graph of Ĥ is denoted750

by H. We assume H has no invertible pair. Define D0 to consist of all pairs (x, y)751

in H+ such that for some vertex z there is a bicoloured edge zx and a blue edge752

zy. Let D be the reachability and transitivity closure of D0, i.e., the smallest set753

of pairs in H+ containing all the pairs in D0 and closed under reachability and754

transitivity. It is easy to see that a min ordering of H is a special min ordering of755

Ĥ if and only if it extends D (in the sense that each pair (x, y) ∈ D has x < y).756

Note that in bipartite graphs, for any (x, y) ∈ D the vertices x and y are on the757

same side of any bipartition.758

Theorem 2. If Ĥ has no chain, then the set D can be extended to a special min759

ordering.760
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Proof. Clearly, the set D by its definition is closed under transitivity and reach-761

ability. It remains to show it has no repeat vertices, i.e., no circuits.762

If zx is a bicoloured edge and a zy is a blue edge, then we call the three763

vertices z, x, y a fork. We then define a petal in Ĥ recursively as follows:764

1. A fork z, x, y is a petal of length 1 with lower terminal x and upper terminal765

y.766

2. If P is a petal of length k with lower terminal l and upper terminal u, and767

P ′ is a petal of length k′, with lower terminal l′ = u and upper terminal u′,768

then P ∪ P ′ is a petal of length min(k, k′) with lower terminal l and upper769

terminal u′.770

3. If P is a petal of length k with lower terminal l and upper terminal u, and771

if ll′, uu′ are edges while lu′ is not, then P together with l′, u′ is a petal of772

length k + 1, with lower terminal l′ and upper terminal u′.773

Since petals are defined recursively, each is equipped with a sequence of steps in774

its construction. A petal which is not just a fork has as its last step either step775

2, or step 3. We call the former transitivity petals, and the latter reachability776

petals.777

We note that if P is a petal with lower terminal a and upper terminal b, then778

in any special min ordering we must have a < b.779

A flower is a collection of petals P1, P2, . . . , Pn with the following structure.780

If each Pi has lower terminal li and upper terminal ui, then ui = li+1. (The781

petal indices are treated modulo n so that the lower terminal of P1 equals the782

upper terminal of Pn.) We also note that the existence of a flower implies that783

there is no min ordering, as we have784

l(1) < u(1) = l(2) < · · · < l(n) < u(n) = l(1).

It is clear that a flower yields a circuit in the set D (of H+) defined at the785

start of this section, and conversely, each such circuit arises from a flower. Thus,786

it remains to prove that if Ĥ contains a flower, then it also contains a chain.787

This is done using the three observations below together with Lemma 9 which788

completes the proof of Theorem 2.789

Observation 1. Suppose F is a flower with petals P1, P2, . . . , Pn, where P1 is790

a transitivity petal obtained from petals P and P ′ as above (step 2). Then the791

sequence of petals P, P ′, P2, . . . , Pn is also a flower F ′.792

We will use this observation to reduce flowers to consist only of forks and793

reachability petals. Note that the new flower F ′ has the same number of forks794

as F and the minimum length of a petal in F and F ′ is the same.795

Observation 2. Suppose P is a petal of length k with lower terminal l and upper796

terminal u. Let v be a vertex such that uv is an edge and lv is not an edge, and797

let w be any neighbour of l. Then P together with v, w is again a reachability798

petal of length k + 1 with lower terminal w and upper terminal v.799
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Observation 3. Suppose P ′ is a reachability petal of length k + 1 with lower800

terminal l′ and upper terminal u′, obtained as in step 3 from a petal P with801

lower terminal l and upper terminal u, and let w be any neighbour of l. Then P ′′
802

obtained from P ′ by replacing l′ by w is also a reachability petal of length k + 1803

with lower terminal w and upper terminal u′.804

We note that we can also replace the vertex x of a fork z, x, y by any w805

adjacent to z by a bicoloured edge.806

Each petal in Ĥ enforces an order on the pairs (li, ui). Our aim is to prove807

that if (li, ui) belongs to several petals, then all petals in Ĥ enforce the same808

ordering, or we discover a chain in Ĥ.809

We are now ready to prove the lemma needed.810

Lemma 9. Suppose P1, P2, . . . , Pn is a flower in Ĥ. Then Ĥ contains a chain.811

Proof. As explained after Observation 1, we assume that each Pi is a reachability812

petal. We proceed by induction on the number of forks, say k, in the flower. Note813

we do not induct on the number of petals as an application of Observation 1 will814

increase the number of petals.815

First note if k = 2, then the flower is precisely a chain and we are done. Thus816

assume k > 2 and consider a pedal of minimum length. We iteratively reduce817

this minimum length until it becomes length one, i.e., the petal is a fork, and818

then by eliminating the fork, we reduce the number of forks by one.819

Without loss of generality suppose the length of P2 is minimal over all petals.820

Assume P2 has length at least two. Suppose the terminal pairs and their prede-821

cessors are labelled as in Figure 3 on the left. Recall, all petals are reachability822

petals consistent with the petals in the figure.823

We first observe that if as is an edge, then by Observation 3 we can change824

the terminal pair of P2 to be (s, e). Now P2, P3, . . . , Pn is a flower with fewer forks825

(each fork in P1 is removed) and by induction Ĥ has a chain. Hence, assume as826

is not an edge. By Observation 2 we can extend P1 to z, . . . , (t, c), (s, b), (r, a).827

Using similar reasoning, we see that eu is not an edge and P3 can be extended so828

its terminal pair is (d, u). Thus we remove the terminal pair from P2 so that its829

terminal pair is (a, d). At this point, the modified P1, P2, P3 are the first three830

petals of a flower where the length of P2 has been reduced by one from its initial831

length. If the reduced P2 is a transitivity petal (obtained through step 2), then832

z

l1

u1

l2

u2

l3

u3
. . .

. . .
lk−1

uk−1

lk

uk

Fig. 2. A petal of length k with terminals (lk, uk). Dotted edges are missing.
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Fig. 3. The labellings used in Lemma 9. On the left is the case when P2 has length
greater than 1 and on the right when P2 has length 1. Dotted edges are missing.

using Observation 3, modify the new flower to again consist of only reachability833

petals and forks without increasing the minimum length over all petals.834

Thus, we may assume we have a flower where P2 has length one, and hence is835

a fork. First assume the flower has n > 2 petals. If as is a unicoloured edge, then836

we modify the terminal pair of P2 to be (b, s). Hence, P1, P2 is a flower with two837

petals and fewer forks (as the fork in P3 is removed). If as is a bicoloured edge,838

then we modify P2 to have terminal pair (s, e). Now P2, P3, . . . , Pn is a flower839

with fewer forks, and by induction Ĥ contains a chain. Therefore, as is not an840

edge.841

If et is an edge, then we can modify P1 to have terminal pair (e, b) by Ob-842

servation 3. Thus, P1, P2 is a flower with fewer forks. Hence, et is not an edge,843

and we can now extend P1 by Observation 2 to be z, . . . , (t, c), (s, b), (t, a), (s, e)844

incorporating P2 into P1. Now we have a flower P1, P3, . . . , Pn with fewer forks,845

and by induction Ĥ contains a chain.846

The final case is when n = 2 but the number of forks k > 2. In this case (still847

assuming P2 is reduced to a single fork), we have that P1’s derivation included848

an application of step 2 (transitivity). We can grow P2 and shrink P1 so that P1849

is a transitive petal. Applying Observation 1 allows us to change the flower to850

have 3 petals and the same number of forks. Thus, we can apply the argument851

above to shrink a petal to length 1 and apply induction as n > 2.852

Thus if a semi-balanced bipartite signed graph has no invertible pair and no853

chain, it has no flowers by Theorem 2, and hence by Corollary 7 it has a special854

min ordering.855

Finally, we remark that the proofs are algorithmic, allowing us to construct856

the desired min ordering (if there is no invertible pair) or special min ordering857

(if there is no invertible pair and no chain).858

We have proved our main theorem, which was conjectured by Kim and Sig-859

gers.860
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Theorem 3. A semi-balanced bipartite signed graph Ĥ has a special min or-861

dering if and only if it has no chain and no invertible pair. If Ĥ has a special862

min ordering, then the the list homomorphism problem for Ĥ can be solved in863

polynomial time. Otherwise Ĥ has a chain or an invertible pair and the list864

homomorphism problem for Ĥ is NP-complete.865

The NP-completeness results are known [9,11,14], and the polynomial time866

algorithm is presented in the next section.867

We complete this section with a proof of Corollary 8 from the previous sec-868

tion. Given a bipartite graph H, we form a signed bipartite graph Ĥ whose869

vertices are all vertices of V (H), together with special vertices xab, (a, b) ∈ D.870

The edges of H become blue edges of Ĥ, and for each xab we add a bicoloured871

edge to a and a blue edge to b. Note that a chain in Ĥ corresponds precisely872

to a D-inversion in H. Therefore by Theorem 2 we conclude that if H has no873

invertible pairs and no D-inversions, D can be extended to a min ordering. This874

verifies Corollary 8.875

4 A polynomial time algorithm for the bipartite case876

Kim and Siggers have proved that the list homomorphism problem for semi-877

balanced bipartite or reflexive signed graphs with a special min ordering is poly-878

nomial time solvable. Their proof however depends on the dichotomy theorem879

[8,25], and is algebraic in nature. We provide simple direct low-degree algorithms880

that effectively use the special min ordering. In this section we describe the bi-881

partite case, the next section deals with the reflexive case.882

We begin by a review of the usual polynomial time algorithm to solve the883

list homomorphism problem to a bipartite graph H with a min ordering [12],884

cf. [16]. Recall that we assume H has a bipartition A,B. Futher for any input885

graph G with lists L(v) ⊆ V (H), v ∈ V (G) we may assume G is also bipartite886

(or else there is no homomorphism at all), with a bipartition U, V , where lists887

of vertices in U are subsets of A, and lists of vertices in V are subsets of B.888

Given such an input graph G, we first perform a consistency test, which re-889

duces the lists L(v) to L′(v) by repeatedly removing from L(v) any vertex x890

such that for some edge vw ∈ E(G) no y ∈ L(w) has xy ∈ E(H). If at the891

end of the consistency check some list is empty, there is no list homomorphism.892

Otherwise it is easy to see that the min ordering property implies the map-893

ping f(v) = minL(v), where the min is with respect to the min odering, is a894

homomorphism.895

We will apply the same logic to a semi-balanced bipartite signed graph Ĥ; we896

assume that Ĥ has been switched to have no purely red edges. If the input signed897

graph Ĝ is not bipartite, we may again conclude that no homomorphism exists,898

regardless of lists. Otherwise, we refer to the alternate definition of a homomor-899

phism of signed graphs, and seek a list homomorphism f of the underlying graph900

of Ĝ to the underlying graph of Ĥ, that:901

– maps bicoloured edges of Ĝ to bicoloured edges of Ĥ, and902
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– maps unicoloured closed walks in Ĝ that have an odd number of red edges903

to closed walks in Ĥ that include bicoloured edges.904

Indeed, as observed in the first section, this is equivalent to having a list homo-905

morphism of Ĝ to Ĥ, since Ĥ does not have unicoloured closed walks with any906

purely red (i.e., negative) edges.907

The above basic algorithm can now be applied to the underlying graphs; if it908

finds there is no list homomorphism, we conclude there is no list homomorphism909

of the signed graphs either. However, if the algorithm finds a list homomorphism910

of the underlying graphs which takes a closed walk R with odd number of red911

edges to a closed walk M with only purely blue edges edges, we need to adjust912

it. As noted in the introduction, Zaslavsky’s algorithm will identify such a closed913

walk if one exists. Since the algorithm assigns to each vertex the smallest possible914

image, in the min ordering, we will remove all vertices of M from the list of each915

vertex of R, and repeat the algorithm. The following result ensures that vertices916

of M are not needed for the images of vertices of R.917

Theorem 4. Let Ĥ be a semi-balanced bipartite signed graph with a special min918

ordering ≤.919

Suppose C is a closed walk in Ĝ and f, f ′ are two homomorphisms of Ĝ to920

Ĥ such that f(v) ≤ f ′(v) for all vertices v of Ĝ, and such that f(C) contains921

only blue edges but f ′(C) contains a bicoloured edge.922

Then the homomorphic images f(C) and f ′(C) are disjoint.923

Proof. We begin with three simple observations.924

Observation 4. There exists a blue edge ab ∈ f(C) and a bicoloured edge925

uv ∈ f ′(C) such that a < u, b < v.926

Indeed, let u be the smallest vertex in A incident to a bicoloured edge in927

f ′(C), and let v be the smallest vertex in B joined to u by a bicoloured edge928

in f ′(C). Let xy be an edge of C for which f ′(x) = u, f ′(y) = v, and let a =929

f(x), b = f(y). By assumption, a = f(x) ≤ f ′(x) = u and b = f(y) ≤ f ′(y) = v.930

Moreover, a ̸= u and b ̸= v by the special property of min ordering.931

Observation 5. For every r ∈ f ′(C), there exists an s ∈ f(C) with s ≤ r.932

This follows from the fact that some x in Ĝ has s = f(x) ≤ f ′(x) = r.933

Observation 6. There do not exist edges ab, bc, de with a < d < c and b < e,934

such that ab is blue and de is bicoloured.935

Since ≤ is a min ordering, the existence of such edges would require db to936

be an edge and the special property of ≤ at d would require this edge to be937

bicoloured, contradicting the special property at b.938

The following observation enhances Observation 6.939

Observation 7. There does not exist a walk a0b0, b0a1, a1b1, . . . , bkc of blue940

edges, and a bicoloured edge de such that a0 < d < c and b0 < e.941
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This is proved by induction on the (even) length k. Observation 6 applies if942

k = 0. For k > 0, Observation 6 still applies if a0 < d < a1 (using the blue walk943

a0b0, b0a1 and the bicoloured edge de). If d > a1, we can apply the induction944

hypothesis to a1 < d < c and de as long as b1 < e. The special property of <945

ensures that b1 ̸= e. Finally, if e < b1, then Observation 6 applies to the edges946

b0a1, a1b1, ed.947

Having these observations, we can now prove the conclusion. Indeed, suppose948

that f(C) and f ′(C) have a common vertex g. Let us take the largest vertex949

g, and by symmetry assume it is in A, like a, u, where a, b, u, v are the vertices950

from Observation 4. Recall that we have chosen u to be the smallest vertex in A951

incident with a bicoloured edge of f ′(C), and v is smallest vertex in B adjacent952

to u by a bicoloured edge in f ′(C).953

Suppose first that g > u. In f(C) there is a path with edges ab, ba1, . . . , hg954

which has a < u < g and b < v, contradicting Observation 7.955

If g = u then the path with edges ba, ab1, b1a1, . . . , akh, hg in f(C) has all956

edges blue, and thus h > v as < is special. Therefore b < v < h and a < g, also957

contradicting Observation 7.958

Finally, suppose that g < u. Here we use the path in f ′(C) with edges959

gv1, v1u1, u1v2, . . . , uk−1vk, vku, uv. A small complication arises if v1 > v, so960

we extend the path to also include ab by preceding it with the path in f(C)961

with edges ab, ba1, a1b1, b1a2, . . . , btg. Of course the result is now a walk W , not962

necessarily a path. Note that the first edges of W are blue (being in f(C)), but963

the last edge uv is bicoloured.964

If uv is the first bicoloured edge, then v < vk by the special property, and we965

have b < v < vk and a < u, a contradiction with Observation 7. Otherwise, the966

first bicoloured edge on the walk must be some ujvj+1, in case vjuj is unicoloured967

and uj ̸= u, or some vjuj , when uj−1vj is unicoloured.968

In the first case, where ujvj+1 is the first bicoloured edge, uj > u by the969

definition of u. Then a < u < uj and b < v, implying again a contradiction with970

Observation 7. In the second case, where vjuj is the first bicoloured edge, we971

have again a < u ≤ uj < uj−1, using the special property at vj , and therefore972

we have a < u < uj−1 and b < v contrary to Observation 7.973

We observe that each phase removes at least one vertex from at least one974

list, and since Ĥ is fixed, the algorithm consists of O(n) phases of arc consis-975

tency, where n is the number of vertices (and m number of edges) of Ĝ. Since976

arc consistency admits an O(m + n) time algorithm, our overall algorithm has977

complexity O(n(m+ n)).978

5 Semi-balanced reflexive signed graphs979

We first briefly outline the proof in the reflexive case; it depends on the following980

extension result analogous to Corollary 7.981

Corollary 9. Suppose D is a set of pairs of vertices of a reflexive graph H, such982

that983
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1. if (x, y) ∈ D and xx′, yy are edges of H while xy′ is not, then (x′, y′) ∈ D,984

2. and D does not contain a set of pairs (x0, x1), (x1, x2), . . . , (xn, x0).985

Then there exists a min ordering < of H such that x < y for each (x, y) ∈ D if986

and only if H has no invertible pair.987

This can be confirmed by a careful reading of the proof of Theorem 3.2 in [11].988

That theorem and proof are stated in terms of reflexive digraphs, but if we view989

an undirected graphs as a symmetric digraph, the proof applies. In that proof,990

as in the proof of Theorem 1, we build the sets D,D′ iteratively and in each step991

we only rely on the above properties 1, 2 of D.992

Having this in hand, it only remains to show that Theorem 2 applies to993

reflexive signed graphs as well. In fact, the proof is unchanged. We again initialize994

D0 to consist of all pairs (x, y) such that for some vertex z there is a bicoloured995

edge zx and a blue edge zy, and let D be the reachability closure of D0. A min996

ordering of H is a special min ordering of Ĥ if and only if each pair (x, y) ∈ D997

has x < y. The proof of the fact that each flower contains a chain given in Section998

3 applies in the reflexive case as well.999

One can of course define the reflexive version of the auxiliary digraph H+
1000

in an obvious manner analogous to bipartite graphs; then condition 1 says D is1001

closed under reachability and condition 2 says D has no circuits. (In this case1002

we didn’t need the fact that D is closed under transitivity because the algorithm1003

we used was slightly different.)1004

In the reflexive case the definition of special min ordering is analogous to the1005

bipartite case. Each vertex has its bicoloured neighbours appearing before its1006

unicoloured neighbours.1007

Theorem 5. A semi-balanced reflexive signed graph Ĥ has a special min order-1008

ing if and only if it has no chain and no invertible pair. If Ĥ has a special min1009

ordering, then the list homomorphism problem for Ĥ can be solved in polynomial1010

time. Otherwise Ĥ has a chain or an invertible pair and the list homomorphism1011

problem for Ĥ is NP-complete.1012

We have the NP-complete cases from [9,11], so we focus on the polynomial1013

algorithms.1014

As in the bipartite case, the polynomiality is known for the cases with special1015

min ordering [19]. However, the algorithm of [19] is not direct and depends on the1016

dichotomy theorem of [8,25], which uses deep results in universal algebra. We1017

provide a simple direct polynomial algorithm along the lines of the bipartite case.1018

The complexity of the algorithm is similar to the bipartite case, O(n(m+ n)).1019

Theorem 6. Let Ĥ be a semi-balanced reflexive signed graph with a special min1020

ordering ≤. Suppose C is a closed walk in Ĝ and f, f ′ are two homomorphisms1021

of Ĝ to Ĥ such that f(v) ≤ f ′(v) for all vertices v of Ĝ, and such that f(C)1022

contains only blue edges but f ′(C) contains a bicoloured edge.1023

Then the homomorphic images f(C) and f ′(C) are disjoint.1024

Proof. We will first prove a couple of observations.1025
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Observation 8. There do not exist vertices a ≤ c ≤ b ≤ d and edges ab, cd,1026

such that ab is blue and cd is bicoloured.1027

Suppose such vertices and edges did exist. By the property of min ordering,1028

ac and bc must be edges. If ac is blue, c is not special. So ac is bicoloured. If now1029

bc is blue, c is not special, and if bc is bicoloured, b is not special and we have a1030

final contradiction. We note that this proof works even in the cases a = c, c = b,1031

or b = d.1032

Observation 9. There exists a blue edge ab ∈ f(C) with a ≤ b, and a bicoloured1033

edge uv ∈ f ′(C) with u ≤ v, such that b < u.1034

Indeed, let u be the smallest vertex incident to a bicoloured edge in f ′(C), and1035

let v be the smallest vertex joined to u by a bicoloured edge in f ′(C). Thus u ≤ v.1036

Let xy be an edge of C for which f ′(x) = u, f ′(y) = v, and let f(x) = a, f(y) = b.1037

By assumption, a = f(x) ≤ f ′(x) = u and b = f(y) ≤ f ′(y) = v.1038

If a = u, the ordering ≤ is not special. Suppose a < u ≤ v. If b = u, then u1039

is not special. The same applies if b = v. If u < b < v, Observation 8 applies.1040

Thus b < u and we are done.1041

Observation 10. If there is a blue edge ab and a bicoloured edge cd such that1042

a < c ≤ d < b, then there is no blue edge ae with a < e and e < c.1043

By the definition of a min ordering, ac is an edge and by the definition of a1044

special min ordering, it is bicoloured. Thus, ae contradicts the special property1045

at a.1046

Observation 11. Suppose that ab is a blue edge and de a bicoloured edge such1047

that a ≤ b < d ≤ e. Then there cannot exist a blue walk from b to c, where d ≤ c.1048

For a contradiction, suppose there exists such a walk. If the first edge of the1049

walk ends in d, then d is not special; and if it ends at c with d < c, then we1050

extend its beginning by edge ab. Denote by uv and vw the first two edges of the1051

walk such that u, v < d and w ≥ d. If w = d or w = e, then the ordering is not1052

special. If d < w < e, then we have a contradiction with Observation 8. Finally,1053

if w > e, we have a contradiction with Observation 10.1054

Having these observations, we can now prove the conclusion. Indeed, suppose1055

that f(C) and f ′(C) have a common vertex g. Let us take the largest vertex g1056

and let a, b, u, v be the vertices from Observation 9. Recall that a ≤ b and we1057

have chosen u to be the smallest vertex incident with a bicoloured edge of f ′(C),1058

and v is the smallest vertex adjacent to u by a bicoloured edge in f ′(C) (thus1059

u ≤ v).1060

Suppose first that g ≥ u. Then there is a blue path in f(C) starting in b and1061

ending in g ≥ u, contradicting Observation 11.1062

Finally, suppose that g < u. Here we use the path in f ′(C) starting in g1063

and ending in u. We extend the beginning of this path by a path from b to1064

u in f(C). Thus, this is a walk from b to some x with u ≤ x, contradicting1065

Observation 11.1066
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As for bipartite graphs, we can simplify Corollary 9 as follows:1067

Corollary 10. Suppose D is a set of ordered pairs of distinct vertices of a re-1068

flexive graph H.1069

There exists a min ordering < of H such that x < y for each (x, y) ∈ D if1070

and only if H has no invertible pair and no D-inversion.1071

It is interesting to see the result stated for interval graphs, since min-orderable1072

reflexive graphs are precisely interval graphs, and their min orderings correspond1073

to the left-endpoint orderings of the intervals [9].1074

Corollary 11. Suppose D is a set of ordered pairs of distinct vertices of a re-1075

flexive graph H.1076

There exists an interval representation of H such that for each (x, y) ∈ D the1077

left endpoint of the interval representing x precedes the left endpoint of the inter-1078

val representing y if and only if H has no invertible pairs and no D-inversions.1079

6 Refinements and special cases1080

In some cases one can be more specific about the dichotomy classification. In an1081

earlier paper [2] Bok et al. described the detailed structure of the polynomial1082

cases for semi-balanced bipartite signed graphs whose unicoloured edges form1083

a hamiltonian path or cycle. The proofs of NP-completeness given there are all1084

based on finding suitable chains and invertible pairs; and the polynomial algo-1085

rithms given there all depend on finding a special min ordering. It is interesting1086

to observe that, while Theorem 3 can be applied for this special class of signed1087

graphs, this does not save much of the work presented in [2], which consists1088

mostly of finding the chains and the min orderings.1089

We now restrict our attention to semi-balanced signed bipartite graphs whose1090

underlying graphs have a min ordering. According to our Theorem 3, the poly-1091

nomial cases are distinguished by the non-existence of a chain. It would be1092

interesting to replace this condition by a list of forbidden induced subgraphs, as1093

is the case for signed trees [1].1094

A bipartite chain graph is a bipartite graph in which the neighbourhoods of1095

the vertices in each color class are linearly ordered by inclusion. This term is well1096

established in the literature, and the word “chain” here refers to the ordering1097

of neighbourhoods; it bears no relation to the obstructions defined earlier which1098

we also called ”chains”, both here and in earlier papers.1099

According to [21], a bipartite graph has a min ordering if and only if it is the1100

intersection of two bipartite chain graphs with the same bipartition. As a first1101

step towards the above goal, we offer the following forbidden list characterization1102

in the case of one bipartite chain graph. We will use the well-known fact that a1103

bipartite graph is a bipartite chain graph if and only if it does not contain an1104

induced 2K2.1105

Theorem 7. Let Ĥ be semi-balanced bipartite signed graph whose underlying1106

unsigned graph is a bipartite chain graph. Then Ĥ has a special min ordering1107
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A B C

Fig. 4. Forbidden induced subgraphs of Theorem 7.

if and only if it does not have one of the three forbidden induced subgraphs in1108

Figure 4.1109

Proof. Consider a chain in Ĥ with the walk U being a, b, d, f, . . . and the walk D1110

being a, c, e, g, . . .. Without loss of generality, let us say that a is a black vertex.1111

We have b ̸= c, since a is incident to b with unicoloured edge and to c1112

with bicoloured edge. We also have a ̸= d because ac is bicoloured and cd is1113

unicoloured or missing. Furthermore, b and c are white, while a and d are black.1114

Thus all vertices a, b, c, d are different.1115

If bd is a bicoloured edge, then either cd is a unicoloured edge, and then1116

we have the graph A present, or cd is a non-edge, and then we have the graph1117

B present. Therefore, bd has to be unicoloured; moreover, cd is missing by the1118

definition of chain.1119

Suppose that df is a unicoloured edge. From the definition of chain we have1120

that e is not adjacent to f . Because of the edges incident to d, we have f ̸= c.1121

We also have d ̸= e as there is an edge between c and e but no edge between c1122

and d. Note that c, f are both white, and d, e are both black. Thus, df is not the1123

same edge as ce and there is an induced 2K2 in H. Therefore df is bicoloured;1124

eg is also bicoloured and ef is unicoloured.1125

Recall that a, d, e are black and b, c, f are white. If ce is a bicoloured edge,1126

then c, e, f, d would induce a copy of graph B. (Note that c ̸= f because of the1127

adjacencies with e, and d ̸= e because of the adjacencies with f .) Thus ce is a1128

unicoloured edge.1129

Observe that a, d, e are different because of adjacencies with c and b, c, f1130

are different because of adjacencies with d. Since a, c, d, f do not induce a 2K2,1131

the vertices a, f must be adjancet. If the edge af is unicoloured, then c, a, f, d1132

induce a copy of graph B. Thus, af must be bicoloured. Also, bemust be an edge,1133

otherwise b, d and c, e would induce a 2K2. If be is bicoloured, then a, b, e, c is A.1134

Therefore, be is unicoloured and a, b, c, d, e, f induce a copy of C. This concludes1135

the proof.1136
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posium on Mathematical Foundations of Computer Science (MFCS 2020). Leib-1165

niz International Proceedings in Informatics (LIPIcs), vol. 170, pp. 20:1–20:14.1166

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020),1167

https://drops.dagstuhl.de/opus/volltexte/2020/126881168

4. Bok, J., Brewster, R.C., Hell, P., Jedličková, N., Rafiey, A.: Min orderings and1169
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