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Abstract

The Dichotomy Conjecture for Constraint Satisfaction Prob-

lems has been verified for conservative problems (or, equiva-

lently, for list homomorphism problems) by Andrei Bulatov.

An earlier case of this dichotomy, for list homomorphisms

to undirected graphs, came with an elegant structural dis-

tinction between the tractable and intractable cases. Such

structural characterization is absent in Bulatov’s classifica-

tion, and Bulatov asked whether one can be found. We

provide an answer in the case of digraphs. In the process we

give forbidden structure characterizations of the existence of

certain polymorphisms relevant in Bulatov’s dichotomy clas-

sification.

The key concept we introduce is that of a digraph asteroidal

triple (DAT). The dichotomy then takes the following form.

If a digraph H has a DAT, then the list homomorphism

problem for H is NP-complete; and a DAT-free digraph H

has a polynomial time solvable list homomorphism problem.

DAT-free digraphs can be recognized in polynomial time. It

follows from our results that the list homomorphism problem

for a DAT-free digraph H can be solved by a local consis-

tency algorithm (of width (2,3)).

1 Introduction.

The framework of constraint satisfaction problems
(CSP’s) allows a unification of many natural problems
arising in applied computer science and artificial intel-
ligence. In recent years, it has also become central in
theoretical computer science, with most of the interest
driven by the Dichotomy Conjecture formulated by T.
Feder and M. Vardi in [19].

A general constraint satisfaction problem consists
of a set of variables with values in a common domain,
and a set of constraints limiting the values the vari-
ables can take. The theoretical investigations frequently
focus on the so-called non-uniform CSP’s, where the
constraints are restricted by a certain finite template.
The Dichotomy Conjecture simply says that for each
such template the corresponding non-uniform problem
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is polynomial or NP-complete. Two original motivat-
ing examples for the Dichotomy Conjecture were Scha-
effer’s dichotomy classification of Boolean satisfiability
problems [37], and Hell-Nešetřil’s dichotomy classifica-
tion of graph homomorphism problems [22]. The first
case corresponds to the templates in which the com-
mon domain has only two values (say 0, 1); the sec-
ond case corresponds to templates which are undirected
graphs. Since that time, a number of other special cases
have been established, e.g., [2, 3, 7, 13, 18], including
the case of conservative problems [8] discussed below.
In most of these cases, progress has been made possi-
ble by an algebraic approach pioneered by Jeavons, Co-
hen, and Gyssens [28]. In particular, Bulatov, Jeavons,
and Krokhin [9] have established that the complexity
of a non-uniform CSP only depends on the so-called
polymorphisms of the template. This fundamentally
affected the quest for the Dichotomy Conjecture, and
in particular allowed more concrete statements of the
expected distinction between tractable and intractable
cases [9, 32, 35], cf. the survey [24].

The special case of conservative CSP’s (or equiv-
alently, CSP’s with lists) is one of the early successes
of the algebraic method; here dichotomy has been set-
tled by Bulatov [8]. In his paper, Bulatov notes that
his dichotomy lacks the combinatorial insights offered
by the earlier special case of undirected graphs [16]. We
provide such combinatorial insights in the case of di-
rected graphs. This yields the first polynomial time dis-
tinction between the tractable and intractable cases for
conservative CSP’s in the case of digraphs. In the pro-
cess, we also simplify Bulatov’s classification in terms
of polymorphisms, and give forbidden structure char-
acterizations of digraphs which admit certain relevant
polymorphisms.

Our technique is a combination of the polymor-
phism approach typical of the algebraic method, and
of forbidden structure characterizations typical of struc-
tural graph theory. In particular, we introduce a class
of digraphs that bears some similarity to the class of
asteroidal-triple free graphs - of interest in the study of
structured graphs [6, 12].



2 Preliminaries.

In this paper we focus on templates that are digraphs. A
digraph H is a finite set V (H) of vertices, together with
a binary relation E(H) on the set V (H); the elements
of E(H) are called arcs of H . A homomorphism of a
digraph G to a digraph H is a mapping f : V (G) →
V (H) which preserves arcs, i.e., such that uv ∈ E(G)
implies f(u)f(v) ∈ E(H). The CSP with template
H , also known as the homomorphism problem for H ,
is the decision problem in which the instance is a
digraph G and the question is whether or not G admits
a homomorphism to H . We note that we view an
undirected graphH as a special case of a directed graph,
in which the relation E(H) is symmetric.

More general relational structures H are defined
similarly, cf. e.g. [19, 23]. Feder and Vardi [19] have
pioneered the view of non-uniform CSP’s as homomor-
phism problems for a template H that is a relational
structure. They have also identified the special case
when H is a digraph as crucial for the Dichotomy Con-
jecture - if the conjecture holds for templates that are
digraphs, then it holds in general [19].

For a fixed digraph (or more general relational
structure) H , the list homomorphism problem to H ,
denoted LHOM(H), asks whether or not an input
digraph (or corresponding structure) G, equipped with
lists L(v), v ∈ V (G), admits a homomorphism f : G →
H , such that for each v ∈ V (G) we have f(v) ∈ L(v).

The problem LHOM(H) has been thoroughly stud-
ied for undirected graphs H [14, 15, 16]. For example,
for reflexive graphs H (every vertex has a loop), the
problem LHOM(H) is polynomial time solvable if H is
an interval graph, and is NP-complete otherwise [14].
For irreflexive graphs (no vertex has a loop), the prob-
lem LHOM(H) is polynomial time solvable if H is a bi-
partite graph whose complement is a circular arc graph,
and is NP-complete otherwise [15]. For general graphs,
where some vertices may have loops and others don’t,
there is also a structural, albeit somewhat more techni-
cal, distinction [16]. The problem LHOM(H) has also
been studied when H is a reflexive digraph, in [17].

These results have motivated a focus on CSP’s with
lists, leading to a full proof by Bulatov [8] of the di-
chotomy of LHOM(H) for all templates H . To explain
the results, we first give the necessary definitions con-
cerning polymorphisms. We again focus on digraphs,
but similar definitions apply to general relational struc-
tures.

Let H be a digraph and k a positive integer. A
mapping f : V (H)k → V (H) is a polymorphism
of H , of arity k, if it is compatible with the re-
lation E(H). (The mapping f is compatible with
the relation E(H) if u1
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f is conservative if f(u1, u2, . . . , uk) always is one of
u1, u2, . . . , uk, and is idempotent if f(u, u, . . . , u) = u,
for all u. A polymorphism f of arity two is commuta-
tive if f(u, v) = f(v, u) for all u, v, and is associative
if f(u, f(v, w)) = f(f(u, v), w) for all u, v, w. An idem-
potent commutative and associative polymorphism is
called a semi-lattice. It is easy to see that a conser-
vative semi-lattice polymorphism f on H defines a lin-
ear ordering < on V (H) such that f(u, v) = min(u, v).
(It is enough to set u < v exactly when f(u, v) = u.)
Conversely, if f(u, v) = min(u, v) (with respect to some
linear ordering <) is a polymorphism, then this poly-
morphism is clearly conservative, commutative and as-
sociative. Such a linear ordering < is called a min-
ordering. In other words, < is a min-ordering of H
just if it satisfies the following property: if uv ∈ E(H)
and u′v′ ∈ E(H), then min(u, u′)min(v, v′) ∈ E(H).
A polymorphism f of arity three is a majority func-
tion if f(u, u, v) = f(u, v, u) = f(v, u, u) = u for any
u and v. A polymorphism f of arity three is called
Maltsev if f(u, u, v) = f(v, u, u) = v for any u and v.
It is known that if H admits a conservative majority
function or a conservative Maltsev polymorphism, or
a conservative semi-lattice polymorphism (i.e., a min-
ordering), then the problem LHOM(H) is polynomial
time solvable [9, 19, 20]. Bulatov’s result states that,
locally, these are the only reasons for the polynomiality
of LHOM(H). The result is formulated for general rela-
tional structures [8]; we state it for digraphs as follows.

Theorem 2.1. Let H be a digraph.
If, for each pair of vertices u, v of H, there exists a

conservative polymorphism f of H, that either is binary
and f |u,v is a semi-lattice, or is ternary and f |u,v is
majority, or Maltsev, then LHOM(H) is polynomial
time solvable.

Otherwise, LHOM(H) is NP-complete.

This proves the dichotomy of LHOM(H) for di-
graphs, and provides a criterion for distinguishing the
tractable and intractable cases. As pointed out in [8],
the criterion lacks the combinatorial elegance and the
structural information of the earlier results for undi-
rected graphs.

We provide a simpler classification for digraphs.
The characterization is similar to the spirit of the earlier
combinatorial classifications for graphs [14, 15, 16], and
gives structural information about obstructions that
cause intractability. It provides for digraphs the first
criterion that is polynomial in V (H). As a byproduct,
we will also conclude that in the case of digraphs, the
statement of Bulatov’s theorem can be simplified as
follows.



Corollary 2.1. Let H be a digraph.
If, for each pair of vertices u, v of H, there exists a

conservative polymorphism f of H, that either is binary
and f |u,v is a semi-lattice, or is ternary and f |u,v is
majority, then LHOM(H) is polynomial time solvable.

Otherwise, LHOM(H) is NP-complete.

We have recently learned that A. Kazda [29] has
proved that if a digraph H admits a Maltsev polymor-
phism, it must also admit a majority polymorphism.
Corollary 2.1 can be viewed as complementing Kazda’s
result, by showing that for conservative polymorphisms
of digraphs, Maltsev polymorphisms are not needed
even locally.

The fact that Maltsev polymorphisms are not
needed in Corollary 2.1 has important algorithmic im-
plications. As in [8, 9], a digraph H can be associated
with a conservative algebra; if H satisfies the condition
in the corollary then every two-element subalgebra of
the associated algebra forH admits either a semi-lattice
or a majority operation. According to Corollary 3.2 of
[36], this property implies that the variety generated by
the associated algebra of H omits types one and two.
(The types of algebras are known to have a deep con-
nection to the complexity of homomorphism problems
cf. [27].) According to Theorem 9.10 of [27] this means
the variety is semi-distributive. It then follows from
Theorem 3.7 in [4] that, as conjectured in [33], a local
consistency algorithm is applicable, and in fact the fol-
lowing result holds. (A more detailed discussion of the
connection between algebras, varieties, types, and list
homomorphism problems can be found in [31].)

Corollary 2.2. If the list homomorphism problem for
H is polynomial time solvable, then it has width (2, 3).

This means that the problem can be solved in poly-
nomial time by a canonical local consistency algorithm
which makes lists for pairs of vertices consistent over
triples of vertices [4, 19, 23].

3 Asteroidal Triples.

Recall that for reflexive graphs H , the problem
LHOM(H) is polynomial time solvable if H is an inter-
val graph and is NP-complete otherwise [14]. Accord-
ing to the theorem of Lekkerkerker and Boland [34], a
graph is an interval graph if and only if it does contain
an induced cycle of length at least four, or an aster-
oidal triple, i.e., three vertices a, b, c any two of which
are joined by a path not containing any neighbours of
the third vertex. Since induced cycles of length at least
six are easily seen to contain asteroidal triples them-
selves, we may view asteroidal triples as the principal

structures in undirected graphs H that cause the NP-
completeness of LHOM(H). We will introduce a di-
graph relative of an asteroidal triple that we call a di-
graph asteroidal triple, or DAT. Even though its some-
what technical definition makes a DAT only a distant
relative of the simple concept of an asteroidal triple,
DATs play the same pivotal role for digraphs as as-
teroidal triples (together with induced four- and five-
cycles) play for undirected graphs - namely they are
the only obstructions to polynomiality of the problem
LHOM(H), cf. Theorem 3.3.

Let H be a digraph. We say that uv ∈ E(H) is a
forward arc of H (or just an arc of H); in that case we
also say that vu is a backward arc of H . We define two
walks P = x0, x1, . . . , xn and Q = y0, y1, . . . , yn in H to
be congruent, if they follow the same pattern of forward
and backward arcs. Specifically, by this we mean that
xixi+1 is a forward arc (respectively backward arc) of H
if and only if yiyi+1 is a forward (respectively backward)
arc of H . If P and Q as above are congruent walks in
H , we say that P avoids Q, if there is no arc xiyi+1 in
the same direction (forward or backward) as xixi+1.

Note that a walk (or path) has a beginning and an
end. A reversal of a walk P = x0, x1, . . . , xn is the walk
P−1 = xn, xn−1, . . . , x0.

An invertible pair in H is a pair of vertices u, v, such
that

• there exist congruent walks P from u to v and Q
from v to u, such that P avoids Q,

• and there exist congruent walks P ′ from v to u and
Q′ from u to v, such that P ′ avoids Q′.

Note that it is possible that P ′ is the reversal of P
and Q′ is the reversal of Q, as long as both P avoids Q
and Q avoids P .

Let H be a digraph. We introduce the following
auxiliary digraph H+. The vertices of H+ are all
ordered pairs (u, v), where u, v are vertices of H . There
is an arc from (u, v) to (u′, v′) in H+ in one of the
following situations:

• uu′ ∈ E(H), vv′ ∈ E(H), uv′ 6∈ E(H), or

• u′u ∈ E(H), v′v ∈ E(H), v′u 6∈ E(H).

In the former case, we say the arc from (u, v) to
(u′, v′) is a + arc in H+, in the latter case, we say it
is a − arc. Two directed walks in H+ are similar if
they have the same pattern of + and − arcs (thus, in
particular, the same length).

We make the following observations:



1. u, v is an invertible pair if and only if (u, v), (v, u)
are in the same strong component of H+;

2. H+ contains an arc from (u, v) to (u′, v′) if and
only if it contains an arc from (v′, u′) to (v, u);

3. if u, v is an invertible pair in H and (p, q) is in the
same strong component of H+ as (u, v), then p, q
is also an invertible pair in H .

The observation 2 will be called the skew-symmetry
of H+. It is useful for proving many facts about H+,
including the observation 3 above.

Theorem 3.1. Suppose C is a strong component of
H+, and f a conservative polymorphism of H.

If f is semi-lattice for a pair (u, v) ∈ C, then it is
semi-lattice for all pairs in C.

If f is majority for a pair (u, v) ∈ C, then it is
majority for all pairs in C.

If f is Maltsev for a pair (u, v) ∈ C, then it is
Maltsev for all pairs in C.

Proof. If f is binary and semi-lattice for (u, v), then
f(u, v) = f(v, u). If (u, v) has an arc to (u′, v′) in H+,
then f(u, v) = u implies f(u′, v′) = u′, and if it has an
arc from (u′, v′), then f(u, v) = v implies f(u′, v′) = v′.
Iterating over C, we conclude that f is semi-lattice over
all pairs in C. (Only commutativity needs checking.)
The proofs for the other polymorphisms are similar.

A permutable triple in H is a triple of vertices
u, v, w together with six vertices s(u), b(u), s(v), b(v),
s(w), b(w), which satisfy the following condition.

• For any vertex x from u, v, w, there exists a walk
P (x, s(x)) from x to s(x) and two walks P (y, b(x))
(from y to b(x)), and P (z, b(x)) (from z to b(x)),
congruent to P (x, s(x)), such that P (x, s(x)) avoids
both P (y, b(x)) and P (z, b(x)) (here y and z are the
other two vertices from u, v, w).

Note that since P (x, s(x)) avoids both P (y, b(x)),
and P (z, b(x)), a permutable triple yields two similar
directed walks P (x; y), P (x; z) from (x, y) and (x, z) to
(s(x), b(x)) in H+.

Recall that an undirected asteroidal triple u, v, w
is defined by the property that for any vertex x from
u, v, w, there exists a walk joining the other two vertices
which is avoided by the neighbours of x. Our definition
of a permutable triple already sounds vaguely reminis-
cent of this. However, we shall need another technical
condition.

A digraph asteroidal triple (DAT) is a permutable
triple in which each of the three pairs (s(u), b(u)),

(s(v), b(v)), and (s(w), b(w)) is invertible. This turns
out to imply that the entire permutable triple “is inside”
one strong component of H+, in the following sense.

Theorem 3.2. If u, v, w is a DAT, then there exist,
for each permutation x, y, z of u, v, w, walks P (x, s(x)),
P (y, b(x)), and P (z, b(x)), as in the definition above,
such that all the associated walks P (x; y), P (x; z) lie
entirely inside one fixed strong component C of H+.

In particular, all six pairs (u, v), (v, u), (u,w),
(w, u), (v, w), (w, v), and all three pairs (s(u), b(u)),
(s(v), b(v)), (s(w), b(w)) are invertible, and belong to C.

Proof. Indeed, consider in H the three vertices
u, v, w of a DAT, the three invertible pairs s(u), b(u),
and s(v), b(v), and s(w), b(w), and the nine walks
P (u, s(u)), P (v, b(u)), P (w, b(u)), P (v, s(v)),
P (u, b(v)), P (w, b(v)), and P (w, s(w)), P (u, b(w)),
P (v, b(w)), from the definition. Consider now the
walks P (u; v), P (u;w), and P (v;u), P (v;w), and
P (w;u), P (w, v), joining (u, v), (u,w) to (s(u), b(u)),
and (v, u), (v, w) to (s(v), b(v)), and (w, u), (w, v) to
(s(w), b(w)), respectively, in H+.

Suppose x is any vertex from u, v, w. Since
s(x), b(x) is an invertible pair, we also have in H+ a di-
rected walk Q(x) from(s(x), b(x)) to (b(x), s(x)). Con-
sider now the following directed walk from (u, v) to
(v, u): concatenate P (u; v) from (u, v) to (s(u), b(u)),
with Q(u) from (s(u), b(u)) to (b(u), s(u)), and then
concatenated with the skew-symmetric walk to P (u; v)
(taking us from (b(u), s(u)) to (v, u)). Replacing the last
segment by the skew-symmetric walk to P (u;w) yields
a directed walk from (u, v) to (w, u). By similar con-
catenations we see that all the pairs (u, v), (v, u), (u,w),
(w, u), (v, w), (w, v), as well as all vertices on the walks
P (u; v), P (u;w), P (v;u), P (v;w), P (w;u), P (w, v), in-
cluding (s(u), b(u)), (s(v), b(v)), (s(w), b(w)) are in the
same component of H+.

We have already observed that a strong component
C of H+ either has no invertible pairs, or all pairs are
invertible (observation 3, above). It is easy to check
that we also have the following property:

4. if u, v, w is a permutable triple in H , and (x, y) is
in the same component of H+ as (s(u), b(u)), then
there exists a walk P (u, x) (from u to x) and two
walks P (v, y) (from v to y), and P (w, y) (from w
to y), both congruent to P (u, x), such that P (u, x)
avoids both P (v, y) and P (w, y).

This allows us to define a permutable triple u, v, w
as having just one common pair (s, b) = (s(u), b(u)) =
(s(u), b(u)) = (s(u), b(u)). We may call a pair s, b a



base pair if there is a permutable triple u, v, w with (s, b)
= (s(u), b(u)) = (s(u), b(u)) = (s(u), b(u)). Property 4
says that a strong component C of H+ either has no
base pairs, or all pairs are base pairs. Thus H has a
DAT if and only if some component of H+ contains
both invertible pairs and base pairs.

We note, for future reference, that in the proof of
Theorem 3.2 we have only used walks from (b(u), s(u))
to (s(u), b(u)), from (b(v), s(v)) to (s(v), b(v)), and from
(b(w), s(w)) to (s(w), b(w)). (Although invertibility of
these pairs also ensures directed walks from (b(u), s(u))
to (s(u), b(u)) and so on, we did not use these walks in
the proof.)

We are now ready to state our main result.

Theorem 3.3. Let H be a digraph.
If H contains a DAT, the problem LHOM(H) is

NP-complete.
If H is DAT-free, the problem LHOM(H) is poly-

nomial time solvable.

Deciding whether or not a given digraphH contains
a DAT is easily seen to be polynomial in the size
of V (H). One only needs to check for connectivity
properties in suitable auxiliary digraph defined on the
triples of vertices of H . Specifically, let H++ be the
digraph with the vertex set V (H)3 and an arc from
(u, v, w) to (u′, v′, w′) just when H has arcs uu′, vv′, ww′

but not uv′ and not uw′, or H has an arcs u′u, v′v, w′w
but not v′u and not w′u. Then u, v, w is a DAT if
and only if for every permutation x, y, z of u, v, w, the
digraph H++ contains an invertible pair s, b such that
(s, b, b) is reachable from (x, y, z).

We conclude this section with the following obser-
vation.

Theorem 3.4. Let H be a reflexive digraph and U the
underlying graph of H.

If U contains an asteroidal triple then H contains
a DAT.

Proof. Suppose u, v, w is an asteroidal triple in U , with
P (u, v) (respectively P (u,w), respectively P (v, w)) a
path in U not containing any neighbours w (respectively
of v, respectively of u). We first note that each of the
pairs u, v and u,w and v, w is invertible in H : for in-
stance to obtain a walk from u to v avoiding a walk from
v to u, it suffices to follow the path in H correspond-
ing to P (u,w) while taking the corresponding number
of loops at v, then taking loops at w while following
the path in H corresponding to the reverse of P (u, v),
and finally taking the path in H corresponding to the
reverse of P (v, w), while taking loops at u. Now we ob-
serve that u, v, w is a DAT: for instance there is a walk

from u to u, consisting of loops at u, which avoids both
the path corresponding to P (v, w) and the congruent
walk consisting of loops at w.

4 Conservative Polymorphisms.

It is easy to see that if a digraph (or other relational
structure) H admits a conservative polymorphism de-
fined by identities, such as the semi-lattice, majority,
or Maltsev polymorphisms, then so does any induced
subgraph (substructure) of H . Thus one may want to
characterize such digraphs by a forbidden substructure
characterization. For example, for reflexive undirected
graphs H [5, 14], a conservative majority exists if and
only if H is an interval graph, i.e., does not admit an
asteroidal triple or a chordless cycle of length greater
than three [34].

The following results illustrate our approach, and
introduce a technique used in the proof of Theorem 5.2.

Theorem 4.1. A digraph H admits a conservative ma-
jority polymorphism if and only if it has no permutable
triple.

Proof. Let f be a conservative polymorphism on H ,
and suppose that u, v, w is a permutable triple on
H . Assume that f(u, v, w) = u. There exist mutu-
ally congruent walks from u, v, w to s(u), b(u), b(u) re-
spectively, where the first walk avoids the second two
walks. Let u1, v1, w1 be the first vertices on these
walks (respectively), just after u, v, w. We must have
f(u1, v1, w1) = u1, since u lacks the right kind of arc to
v1 and w1. Similarly, for the i-th vertices of these walks,
we must have f(ui, vi, wi) = ui. This would imply that
f(s(u), b(u), b(u)) = s(u), which is impossible if f is
majority on the pair s(u), b(u). Symmetric arguments
handle the cases when f(u, v, w) = v and f(u, v, w) = w.
Thus there is no conservative majority function.

Next, assume that there is no permutable triple
in H . We proceed to define a conservative majority
function f on H as follows. Consider three vertices
u, v, w . Let x be one vertex of u, v, w, and y, z the other
two vertices. We say that x is a distinguisher for x, y, z,
if for any three mutually congruent walks from x, y, z to
any s, b, b respectively, the first walk does not avoid one
of the other two walks. Since there is no permutable
triple, at least one of u, v, w must be a distinguisher
for u, v, w. This definition can be applied even if the
vertices u, v, w are not distinct. Note that if, say, u = v
then no walk starting in u can avoid a walk starting in
v, whence u is a distinguisher, and similarly for v, w.

We define the values of f as follows: for a triple
(u, v, w), we set f(u, v, w) to be the first vertex from
u, v, w, in this order, that is a distinguisher for u, v, w.
Note that the last remark ensures that if u = v or u = w,



then f(u, v, w) = u. On the other hand, if v = w, it is
possible that u, u 6= v is a distinguisher of u, v, w, and
we make an exception and define f(u, v, w) = v.

It remains to show f is a polymorphism. Thus, for
contradiction, suppose uu′ ∈ E(H), vv′ ∈ E(H), ww′ ∈
E(H), and f(u, v, w)f(u′, v′, w′) 6∈ E(H). (A symmet-
ric proof applies if u′u ∈ E(H), v′v ∈ E(H), w′w ∈
E(H), and f(u′, v′, w′)f(u, v, w) 6∈ E(H).) This clearly
implies that at least one of the triples u, v, w or u′, v′, w′

are distinct vertices. Suppose one of the triples, say
u, v, w has a repetition. If u = v, then f(u, v, w) = u,
and f(u′, v′, w′) = w′ (since f(u, v, w)f(u′, v′, w′) 6∈
E(H)). This contradicts the fact that w′ is a distin-
guisher, since the walk w′w avoids both paths u′u, v′w.
A similar proof applies if u = w. If v = w, we have
defined f(u, v, w) = v regardless of whether u is a dis-
tingiusher, so we have the same proof as well. It re-
mains to consider the case when both triples x, y, z and
x′, y′, z′ consist of distinct vertices. Assume first that
f(x, y, z) = x, f(x′, y′, z′) = y′. Note that xz′ 6∈ E(H),
else y′ would not be a distinguisher of x′, y′, z′, because
of the paths y′y, x′x, z′x. The fact that f(x′, y′, z′) = y′

means that x′ is not a distinguisher for x′, y′, z′, thus
there exist congruent walks X ′, Y ′, Z ′ from x′, y′, z′ re-
spectively, such that Y ′, Z ′ end at the same vertex, and
X ′ avoids Y ′ and Z ′. Then xx′ followed by X ′, to-
gether with yy′ followed by Y ′ and zz′ followed by Z ′

are also congruent walks, and the walk xx′, X ′ avoids
the other two walks, contradicting the fact that x is a
distinguisher for x, y, z.

Because of the symmetry between x, y, z and
x′, y′, z′, the only other cases to consider are f(x, y, z) =
x, f(x′, y′, z′) = z′ and f(x, y, z) = y, f(x′, y′, z′) = z′;
in both situations a similar proof applies.

The proof implies the following fact.

Corollary 4.1. A conservative ternary polymorphism
on H cannot be majority on all three pairs (s(u), b(u)),
(s(v), b(v)), and (s(w), b(w)), of any permutable triple
u, v, w.

We define N to be any digraph with four vertices
a, a′, b, b′ which contains the arcs aa′, ab′, bb′ but not the
arc ba′. We define an end in H to be four vertices
a, a′, b, b′, and three congruent walks, P (a, a′) from a
to a′, P (a, b′) from a to b′, and P (b, b′) from b to b′,
such that P (b, b′) avoids P (a, a′). Note that an end
with paths of length one is a copy of N .

We now define a strong end to be an end with
vertices a, a′, b, b′ and walks, P (a, a′), P (a, b′), P (b, b′),
such that additionally P (b, b′) avoids P (a, b′) (except
at the last vertex). Note that each N is also a strong
end. We claim that any end in H contains a strong

end. Indeed, if i is the smallest subscript such that
the i-th vertex of P (b, b′) has an arc to the (i + 1)-st
vertex x (where x 6= b′) of P (a, b′), forward or backward
according to P (b, b′), then there is a smaller end over
a, b, x and the (i + 1)-st vertex of P (a, a′), which is
strong.

Theorem 4.2. A digraph H admits a conservative
Maltsev polymorphism if and only if it has no end.

Proof. Let f be a conservative polymorphism on
H . We may assume that a, a′, b, b′ is a strong end
in H . Thus there exist mutually congruent walks
P (a, a′), P (a, b′), P (b, b′) from a, a, b to a′, b′, b′ respec-
tively, where the third walk avoids the first two walks.
If f is Maltsev on a, b, then f(a, a, b) = b, and
since P (b, b′) avoids P (a, a′) and P (a, b′), we derive
f(a′, b′, b′) = b′, which is impossible if f is also Maltsev
on a′, b′.

For the converse, assume that there is no end in H .
We proceed to define a conservative Maltsev polymor-
phism f on H as follows. Consider three vertices u, v, w.
If there do not exist vertices s and b and congruent walks
P (u, b) from u to b, P (v, b) from v to b, and P (w, s) from
w to s, such that both P (u, b) and P (v, b) avoid P (w, s),
then we define f(u, v, w) = u. If such vertices s, b, and
walks P (u, b), P (v, b), P (w, s) do exist, then we claim
there cannot exist vertices s′, b′ and congruent walks
P (u, s′), P (v, b′), P (w, b′), such that both P (v, b′) and
P (w, b′) avoid P (u, s′). (Otherwise the concatenation of
P−1(u, s′) with P (u, b), of P−1(v, b′) with P (v, b), and
of P−1(w, b′) with P (w, s) would form an end.) In this
case we define f(u, v, w) = w. Note that in the degen-
erate cases when the paths have length zero, we obtain
the Maltsev equations. It can be checked that f is a
polymorphism. For instance, suppose that ux, vy, wz
are arcs of H , and f(u, v, w) = u, f(x, y, z) = z, but uz
is not an arc. This means there exist congruent walks
P (x, b′), P (y, b′), P (z, s′), such that both P (x, b′) and
P (y, b′) avoid P (z, s′). Extending these walks by the
arcs ux, vy, wz yields congruent walks from u to b′, from
v to b′, and w to s′. Since f(u, v, w) = u, there must
be an arc from v to z, else the two former walks would
avoid the latter walk. This means that we obtain an
end formed by the walks from u to b′, from v to b′ and
from v to s′, a contradiction.

Corollary 4.2. A conservative ternary polymorphism
on H cannot be Maltsev on both pairs a, b and a′, b′ of
any strong end in H.

We have similar results on digraphs which admit
conservative semi-lattice polymorphisms. In particular
[17], a reflexive digraph admits a conservative semi-
lattice (i.e., a min ordering) if and only if it has no



invertible pairs. A similar situation occurs for bipartite
digraphs. However, we do not at this time have a
characterization of general digraphs with a conservative
semi- lattice (min ordering). For structures with two
binary relations, the existence of conservative semi-
lattice is NP-complete, [1].

Finally, we observe the following fact.

Proposition 4.1. A conservative binary polymor-
phism on H cannot be semi-lattice on any invertible pair
in H.

Proof. Suppose the conservative binary polymorphism
f is semi-lattice on the invertible pair u, v and assume
f(u, v) = u. Consider the congruent walks P from u
to v and Q from v to u, such that P avoids Q. It
follows that f(v, u) = v, contradicting the fact that f is
commutative on u, v.

5 The Dichotomy.

We first prove the following fact.

Theorem 5.1. If H contains a DAT, then LHOM(H)
is NP-complete.

In the interest of brevity, we give here a short proof
using the results of the previous section, together with
Theorem 2.1. We have given a direct combinatorial
proof in [25].

Proof. Suppose u, v, w is a DAT in H . Then by Theo-
rems 3.1 and 3.2, if there is a conservative semi-lattice,
majority, or Maltsev polymorphism for one of the invert-
ible pairs (s(u), b(u)), (s(v), b(v)), (s(w), b(w)), then the
same conservative polymorphism is semi-lattice, major-
ity, or Maltsev for all three pairs. We know such a
polymorphism cannot be semi-lattice on the pairs, by
Proposition 4.1. Similarly, Corollary 4.1 implies that
it cannot be majority on the pairs. We now prove it
cannot be Maltsev on the pairs, and thus LHOM(H) is
NP-complete by Theorem 2.1.

The claim is proved by showing that a DAT con-
tains a strong end joining two pairs in C and applying
Corollary 4.2. Consider the walks P (u, s(u)), P (v, b(u)),
P (w, b(u)) and P (u, b(w)), P (v, b(w)), P (w, s(w))
from the definition of DAT. Since P (w, s(w)) avoids
P (u, b(w)) and P (v, b(w)) by definition, we conclude
that conversely, also P (u, b(w) and P (v, b(w)) avoid
P (w, s(w)). Otherwise there would be a copy of N join-
ing two consecutive pairs of C (cf. Theorem 3.2). This
means that P−1(w, s(w)) avoids both P−1(v, b(w)) and
P−1(u, b(w)). Similarly, P (w, b(u)) and P (v, b(u)) avoid
P (u, s(u)). We obtain an end consisting of the pair-
wise concatenations of P−1(u, b(w)) with P (u, s(u)), of

P−1(v, b(w)) with P (v, b(u)), and of P−1(w, s(w)) with
P (w, b(u)). Recall the proof that each end contains a
strong end. It can be checked that for this particular
end, the resulting smaller end (which is strong), con-
nects two pairs from C (cf. Theorem 3.2), contradict-
ing Corollary 4.2. (Consider the position of the vertex
x from that proof: if x is in P (v, b(u)), Theorem 3.2
applies; and x cannot be in P−1(v, b(w)) because we
would obtain an N from the fact that P (w, s(w)) avoids
P (v, b(w)).)

On the other hand, we now proceed to show that
a DAT-free digraph H has a tractable LHOM(H). We
will again use Theorem 2.1, cf. also [4].

Specifically, we shall show that a DAT-free digraph
H admits two special conservative polymorphisms - a
binary polymorphism f and a ternary polymorphism
g - such that for all pairs u, v of vertices of H , the
restriction f |u,v is a semi-lattice, or the restriction g|u,v
is a majority. It will then follow from Theorem 2.1 that
for DAT-free digraphs H , the problem LHOM(H) is
polynomial time solvable. It will also follow, using also
Theorem 5.1, that we may omit the mention of Maltsev
polymorphisms from the statement of Theorem 2.1, to
obtain Corollary 2.1.

Theorem 5.2. Suppose H is a DAT-free digraph.
Then H admits a binary polymorphism f and a

ternary polymorphism g such that

• if u, v is not invertible then f |u,v is semi-lattice,
and

• if u, v is invertible then g|u,v is majority.

Corollary 5.1. If H is DAT-free, then LHOM(H) is
polynomial time solvable.

Proof. The rest of this section is devoted to the proof of
Theorem 5.2. Thus we shall assume for the remainder
of the section that H is a DAT-free digraph. We will
first define the binary polymorphism f . To start, we
define f(x, x) = x for all vertices x. It remains to define
f on pairs (x, y) that are vertices of H+.

We say that the pair (x, y) is a special vertex of H+

if there is a directed walk in H+ from (x, y) to (y, x).
Note that skew-symmetry of H+ implies that if (x, y)
has a directed walk to a special vertex, then (x, y) is also
special. In particular, a strong component either has all
its vertices special (in which case we say it is a special
component), or none of its vertices are special. For each
component C of H+ we define the coupled component
C′ = {(u, v) : (v, u) ∈ C}. We say that C is co-special
if C′ is special. It is possible that C = C ′, in which
case we say that C is self-coupled. Note that a strong



component C is self-coupled if and only if it is both
special and co-special; this happens if and only if all
pairs in C are invertible.

The condensation of a digraph H is obtained from
H by identifying each strong component of H to a
vertex and placing an arc between the shrunk vertices
just if there was an arc between the corresponding
strong components. The condensation of any digraph
H is acyclic. The condensation of H+ has a particular
structure, arising from the properties of special and
co-special strong components. Recall that if C1 is
special and reachable from C2, then C2 is also special;
thus by skew-symmetry, if C1 is co-special and can
reach C2, then C2 is also co-special. This means
that following any directed path in the condensation
of H+ we first encounter some (possibly none) special
strong components, followed by at most one self-coupled
strong component, and then by the co-special strong
components corresponding to the initial special strong
components, in the reverse order.

Recall that (cf. the proof of Theorem 3.1) if f is
any binary polymorphism of H and (x, y) has an arc to
(x′, y′) in H+, then f(x, y) = x implies f(x′, y′) = x′.
This suggests the following definition. If (x, y) lies in a
co-special strong component which is not self-coupled,
we set f(x, y) = x. If (x, y) lies in a special strong
component which is not self-coupled, we set f(x, y) = y.
For all pairs (x, y) in self-coupled strong components,
we set f(x, y) = y. It remains to define f(x, y) for pairs
(x, y) in strong components that are neither special nor
co-special.

Consider now the subgraph X of the condensation
of H+ induced by vertices corresponding to strong
components that are neither special not co-special. It is
easy to see that this subgraph has a topological sort, i.e.,
a linear ordering of its vertices (strong components of
H+), C1, C2, . . . Ck, Ck+1, . . . , C2k such that any arc of
H+ goes from some Ci to some Cj with i < j, and such
that each Ci, i ≤ k, is coupled with the corresponding
C2k+1−i. (To see this, set C2k be any vertex of out-
degree zero in X , and let C1 be the strong component
of H+ coupled to C2k. Then remove C1 and C2k from
X and repeat.) Now we set f(x, y) = y for all strong
components C1, C2, . . . Ck and f(x, y) = x for all (x, y)
in strong components Ck+1, . . . C2k, and f(x, y) = y for
all (x, y) in strong components C1, C2, . . . Ck.

This defines a mapping of V (H)2 to V (H). The
definition ensures that if f(x, y) = x, then f(x′, y′) = x′

for any (x′, y′) with an arc from (x, y).
It is easy to see that f is a polymorphism; indeed,

suppose if xx′, yy′ are arcs of H and f(x, y)f(x′, y′) is
not an arc ofH . Asume f(x, y) = x, f(x′, y′) = y′. (The
other case f(x, y) = y, f(x′, y′) = x′ is similar.) Then

there is an arc inH+ from (x, y) to (x′, y′), contradicting
the property of f mentioned just above.

It also follows from the definition that f(x, y) =
f(y, x) for all pairs (x, y) in special but not co-special
strong components, co-special but not special strong
components, and all strong components that are neither
special not co-special. In other words, f(x, y) = f(y, x)
holds unless (x, y) is in a self-coupled component, i.e.,
unless x, y is an invertible pair.

Thus f is a conservative polymorphism of H which
is commutative on pairs that are not invertible. It fol-
lows that it is semi-lattice on those pairs. (For con-
servative polymorphisms, associativity for pairs follows
easily from commutativity.)

Lemma 5.1. The mapping f is a polymorphism of H,
and is semi-lattice on all pairs (x, y) that are not
invertible.

We now proceed to define the ternary conservative
polymorphism g. It also depends on the location of
the pairs of arguments in the condensation of H+, but
it will be more convenient to define it in terms of the
polymorphism f (which itself was defined in terms of
the condensation of H+).

The proof has some similarity to that of Theorem
4.1. Consider three vertices u, v, w . Let x be one
vertex of u, v, w, and y, z the other two vertices. We say
that x is a weak distinguisher for x, y, z, if for any three
mutually congruent walks from x, y, z to s(x), b(x), b(x)
respectively, such that s(x), b(x) is an invertible pair,
the first walk does not avoid one of the other two walks.
Since there is no DAT, at least one of u, v, w must be a
weak distinguisher for u, v, w.

Given a triple (x, y, z) of vertices of H , we consider
the six-tuple of values

G(x, y, z) = [f(x, y), f(y, x), f(y, z), f(z, y), f(x, z), f(z, x)]

each value being a vertex x, y, or z. Note that each
value can occur at most four times, for instance z can
not occur in the first or second coordinate of G(x, y, z).
Moreover, our definition of f ensures that if f(x, y) 6=
f(y, x), then f(x, y) = y, f(y, x) = x. We set g(x, y, z)
to be the value which occurs most frequently in the six-
tuple G(x, y, z). If there is a tie, we choose as g(x, y, z)
the first vertex amongst the tied vertices, in the order
of preference, first x, then y, then z, that is a weak
distinguisher for x, y, z. (The detailed consideration
of cases below shows such a weak distinguisher always
exists.)

Note that if x fails to be a weak distinguisher of
x, y, z, then the pairs (x, y) and (x, z) have similar
directed walks in H+ to some (s(x), b(x)) that lies



in a self-coupled strong component. It follows from
our definition of f that this implies that f(x, y) =
y, f(x, z) = z. This is helpful in deciding whether or
not x, y, or z can fail to be a weak distinguisher. In
particular, it implies that the value g(x, y, z) chosen is
always a weak distinguisher of x, y, z.

Lemma 5.2. The mapping g is a polymorphism of H,
and is majority on all pairs (x, y) that are invertible.

Proof. For ease of reference, we list here all the possible
six-tuples G(x, y, z) and the resulting g(x, y, z) (written
after the / sign). In the first case, we grouped several
possibilities together by using ”?” as a wild card.

1. [x, x, ?, ?, x, x]/x, [y, y, y, y, ?, ?]/y, [?, ?, z, z, z, z]/z

2. [x, x, z, z, z, x]/x, [y, x, y, y, x, x]/x, [y, y, z, y, z, z]/y

3. [x, x, y, y, z, x]/x, [x, x, z, y, z, z]/z, [y, y, z, y, x, x]/y

[y, y, z, z, z, x]/z, [y, x, y, y, z, z]/y, [y, x, z, z, x, x]/x

4. [y, x, z, y, x, x]/x, [y, x, z, y, z, z]/z, [x, x, z, y, z, x]/x

[y, y, z, y, z, x]/y, [y, x, y, y, z, x]/y, [y, x, z, z, z, x]/z

5. [x, x, y, y, z, z]/x, [y, y, z, z, x, x]/x

6. [y, x, z, y, z, x]: in this case any of x, y, z could fail
to be a weak distinguisher; since each occurs twice
in the six-tuple, g(x, y, z) is just the first weak
distinguisher of x, y, z, in the order x, y, z.

The claim about being majority on invertible pairs
follows directly from the definition of g. In fact, the six-
tuples G(x, x, y), G(x, y, x), and G(y, x, x) each contain
two values f(x, x) = x, and in case of invertible pairs
x, y the other four values are evenly divided between x
and y. Therefore g(x, x, y) = g(x, y, x) = g(y, x, x) = x
if x, y is an invertible pair. (We observe in passing,
although we do not need it, that in fact g(x, x, y) =
g(x, y, x) = g(y, x, x) = x on all pairs x, y except those
where f(x, y) = f(y, x) = y.)

We proceed to prove that g is a polymorphism of
H . Thus we consider two triples (x, y, z), (x′, y′, z′)
where xx′, yy′, zz′ are arcs of H , and show that
g(x, y, z)g(x′, y′, z′) is also an arc of H . If instead
x′x, y′y, z′z are arcs of H , then g(x′, y′, z′)g(x, y, z) is
also an arc of H , by a proof that is literally the same,
except it reverses all arcs listed here as going from the
unprimed to the primed vertices. (In other words, the
arcs we consider here as forward arcs are viewed as back-
ward arcs.) We proceed by contradiction, and assume
that g(x, y, z)g(x′, y′, z′) is not an arc of H . The proof
is technical, but the arguments in most cases are very
similar. Hence we will focus here only on the case when

g(x, y, z) = x, g(x′, y′, z′) = y′. (By symmetry, this cov-
ers also the case when g(x, y, z) = y, g(x′, y′, z′) = x′.
The other cases, checked by very similar arguments,
are g(x, y, z) = x, g(x′, y′, z′) = z′, and g(x, y, z) =
y, g(x′, y′, z′) = z′.)

Thus we shall assume throughout this proof that
the pair (x, y) has an arc to (x′, y′) in H+.

If four of the values in G(x, y, z) are x, and four
of the values in G(x′, y′, z′) are y′, i.e., if both six-
tuples are in case (1), then in particular f(x, y) =
x, f(x′, y′) = y′. Since (x, y) has an arc to (x′, y′) in
H+, this contradicts the fact that f is a polymorphism.

This argument still applies if four of the values in
G(x, y, z) are x and three of the values in G(x′, y′, z′) are
y′, i.e., if the six-tuple of primed vertices is in cases (2, 3,
4), because we must either have f(x, y) = x, f(x′, y′) =
y′ or f(y, x) = x, f(y′, x′) = y′. The latter case similarly
contradicts the fact that f is a polymorphism, since
skew-symmetry implies that (y′, x′) has an arc to (y, x)
in H+.

In the case three of the values in G(x, y, z) are x
and three of the values in G(x′, y′, z′) are y′, i.e., both
six-tuples are in the cases (2, 3, 4), similar arguments
handle all situations except when f(y, x) = x, f(x, y) =
y, and f(x′, y′) = y′, f(y′, x′) = x′. In this situation,
we would have f(x, z) = f(z, x) = x, and f(y′, z′) =
f(z′, y′) = y′. We must not have the arc xz′ in H ,
else (y′, z′) would dominate (y, x) while f(y′, z′) =
y′, f(y, x) = x. Now (x, z) dominates (x′, z′) and hence
f(x′, z′) = f(z′, x′) = x′. This means that G(x′, y′, z′)
contains three x′ and three y′, and since both are weak
distinguishers, we should have had g(x′, y′, z′) = x′.

This leaves us to consider the cases where at least
one of the triples x, y, z or x′, y′, z′, say the first one, has
two occurrences of each x, y, z. These are the situations
in cases (5, 6), i.e., [x, x, y, y, z, z], [y, y, z, z, x, x], and
[y, x, z, y, z, x].

We continue to assume that g(x, y, z) = x and
g(x′, y′, z′) = y′ and xy′ is not an arc of H ; recall that
the pair (x, y) dominates the pair (x′, y′) in H+.

In case G(x, y, z) = [x, x, y, y, z, z], from f(x, y) = x
we obtain f(x′, y′) = x′ which further implies that
f(y′, x′) = x′. Now there are at most two values y′

in the six-tuple G(x′, y′, z′), and at least two values x′.
Since f(x′, y′) = x′, the vertex x′ is a weak distin-
guisher of x′, y′, z′, and this contradicts the definition
of g(x′, y′, z′).

In case G(x, y, z) = [y, y, z, z, x, x], we first suppose
that zy′ is not an arc. Then (z, y) dominates (z′, y′), and
we have f(y′, z′) = f(z′, y′) = z′ (as f(y, z) = f(z, y) =
z). On the other hand since (x, y) dominates (x′, y′) and
f(x, y) = f(y, x) = x, we have f(x′, y′) = f(y′, x′) = x′.
This contradicts the definition of g(x′, y′, z′) = y′, since



x′ occurs at least as frequently as y′. If zy′ is an
arc, then (x, z) dominates (x′, y′) and since f(x, z) =
f(z, x) = z, we have f(x′, y′) = f(y′, x′) = x′. It follows
that either z′ occurs more frequently than y′, or x′ is a
weak distinguisher and occurs at least as frequently as
y′, contradicting the definition of g(x′, y′, z′) = y′.

Finally, in case of [y, x, z, y, z, x], as (y′, x′) domi-
nates (y, x) inH+, we have f(y, x) = x imply f(y′, x′) =
x′. It is readily checked from (1-6) that now only the
following cases from (3, 4, 6) lead to g(x′, y′, z′) = y′:

• [y′, x′, y′, y′, z′, z′]

• [y′, x′, y′, y′, z′, x′]

• [y′, x′, z′, y′, z′, x′]

In the first case, [y′, x′, y′, y′, z′, z′], we have
f(z′, x′) = z′ and f(z, x) = x, thus xz′ must be an
arc of H . Now there are congruent walks (with one arc)
in H from y′, x′, z′ to y, x, x respectively, such that the
first avoids the other two and x, y is an invertible pair
(f is non-commutative only on invertible pairs); this
means that y′ is not a weak distinguisher of x′, y′, z′

and contradicts the choice of g(x′, y′, z′) = y′.
In the second case, [y′, x′, y′, y′, z′, x′], similarly, we

must have the arc zy′ in H , and so we again have
congruent walks (with one arc) in H from x, y, z to
x′, y′, y′ respectively, such that the first avoids the other
two and x′, y′ is an invertible pair, implying that x is
not a weak distinguisher of x, y, z, and contradicting the
assumption that g(x, y, z) = x.

In the last case, we have all pairs in x, y, z and in
x′, y′, z′ invertible. Since x′ is not a weak distinguisher
of x′, y′, z′, but x is a weak distinguisher of x, y, z, we
must have in H the arc xz′; this arc yields congruent
(one-arc) walks in H from y′, x′, z′ to y, x, x, and x, y is
an invertible pair. This again contradicts the choice of
g(x′, y′, z′) = y′.

Theorem 5.2 now follows from Lemmas 5.1 and 5.2.

6 Conclusions and Future Directions.

We have several applications of Theorem 3.3, classifying
the complexity of problems LHOM(H) for digraphs H
restricted to some natural classes of digraphs. In these
cases, it turns out that either a conservative semi-lattice
or a conservative majority polymorphism suffices to
cover all the tractable cases. In this note we shall only
state some results without proof.

Theorem 6.1. Let H be a digraph whose underlying
graph is a tree.

If H has a min-ordering, then LHOM(H) is poly-
nomial time solvable.

Otherwise H contains a DAT and LHOM(H) is
NP-complete.

Theorem 6.2. Let H be a digraph whose underlying
graph is a cycle.

If H has a conservative majority function, then
LHOM(H) is polynomial time solvable.

Otherwise H contains a DAT and LHOM(H) is
NP-complete.

Feder [13] studied the complexity of the (non-
list) homomorphism problem for digraphs H whose
underlying graph is a cycle; the result was quite complex
and no concrete description was given. (Larose and
Zadori [33] did classify the cases in terms of types
[36].) The situation for list homomorphisms turned out
to be significantly simpler; we will provide a concrete
description of the tractable cases.

For reflexive digraphs, Conjecture 5.5 in [24] (cf.
[21]) states that conservative semi-lattice polymor-
phisms suffice to cover the tractable cases. A plausible
algebraic approach to this is in progress [10].

We close with a few open problems.

1. Investigate the class of DAT-free digraphs.

2. Find a more efficient algorithm to recognize if a
digraph is DAT-free.

3. Find an algorithm for LHOM(H) when H is a
DAT-free digraph without using [4, 8].

Regarding 1, 2, we point out that in the undi-
rected case the class of AT-free graphs is quite popu-
lar, as it unifies several known graph classes, has inter-
esting structural properties, and allows efficient algo-
rithms for computational problems intractable in gen-
eral [6, 11, 12]. The recognition problem for AT-free
graphs is easily seen to be polynomial, but the search
for really efficient recognition of AT-free graphs appears
to be continuing [30]. For 3, one could perhaps show di-
rectly that DAT-free graphs admit a list homomorphism
algorithm of width (2, 3).
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