Multipartite tournaments with small number of cycles

Gregory Gutin and Arash Rafiey Department of Computer Science
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
Gutin(Arash)@cs.rhul.ac.uk

Abstract

L. Volkmann, Discrete Math. 245 (2002) 19-53 posed the following question. Let $4 \leq m \leq n$. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly $n-m+1$ cycles of length m ? We answer this question in affirmative. We raise the following problem. Given $m \in\{3,4, \ldots, n\}$, find a characterization of strong n-partite tournaments having exactly $n-m+1$ cycles of length m.

Keywords: Multipartite tournaments; cycles; tournaments

1 Introduction

We use terminology and notation of [1]; all necessary notation and a large part of terminology used in this paper are provided in the next section.

A very informative paper [11] of L. Volkmann is the latest survey on cycles in an important class of digraphs, multipartite tournaments. Cycles in multipartite tournaments were earlier overviewed in $[2,6,8]$. Along with description of a large number of results on cycles in multipartite tournaments, L. Volkmann [11] poses several open problems. In this paper, we solve one of them.

Problem 1.1 (Problem 2.27 in [11]) Let $4 \leq m \leq n$. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly $n-m+1$ cycles of length m ?

This problem is a natural question due to the following reasons:
(i) According to Theorem 2.24 in [11], every strong n-partite tournament, $n \geq 3$, has at least $n-m+1$ cycles of length m for $3 \leq m \leq n$;
(ii) By reversing the arcs of the unique Hamilton path of the transitive tournament on n vertices, we obtain a strong tournament with exactly $n-m+1$ cycles of length m for every $3 \leq m \leq n$ (see [9]);
(iii) For every odd $n \geq 3$, there exists a strong n-partite tournament with $n-2$ cycles of length 3 (see [5] or Theorem 2.26 in [11]).

One may wish to strengthen Problem 1.1 as follows.
Problem 1.2 Let $3 \leq m \leq n$ and $n \geq 4$. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly $n-m+1$ cycles of length m for two values of m ?

In Section 3, we solve Problem 1.1 in affirmative. We do it by exhibiting a simple family of multipartite tournaments. We also show that such multipartite tournaments cannot have m-cycles with a pair of vertices from the same partite set. This result might well be of interest for solving the following open problem: Given $m \in\{3,4, \ldots, n\}$, find a characterization of strong n-partite tournaments having exactly $n-m+1$ cycles of length m. In Section 4 we show that Problem 1.2 has a negative answer for $m \in\{n-1, n\}$.

2 Terminology, notation and known results

A digraph obtained from an undirected graph G by replacing every edge of G with a directed edge (arc) with the same end-vertices is called an orientation of G. An oriented graph is an orientation of some undirected graph. A tournament is an orientation of a complete graph, and an n-partite tournament is an orientation of a complete n-partite graph. Partite sets of complete graphs become partite sets of n-partite tournaments.

The terms cycles and paths mean simple directed cycles and paths. A cycle of length k is a k-cycle. A digraph D is strongly connected (or strong) if for every ordered pair x, y of vertices in D there exist paths from x to y. For a set X of vertices of a digraph $D, D\langle X\rangle$ denotes the subdigraph of D induced by X.

For sets T, S of vertices of a digraph $D=(V, A), T \rightarrow S$ means that for every vertex $t \in T$ and for every vertex $s \in S$, we have $t s \in A$, and $T \Rightarrow S$ means that for no pair $s \in S, t \in T$, we have $s t \in A$. While for oriented graphs $T \rightarrow S$ implies $T \Rightarrow S$, this is not always true for general digraphs. If $u \rightarrow v$ (i.e., $u v \in A$), we say that u dominates v and v is dominated by u.

The following three results on cycles in strong n-partite tournaments are of interest for this paper.

Theorem 2.1 [7] Every partite set of a strong n-partite tournament, $n \geq 3$, contains a vertex which lies on an m-cycle for each $m \in\{3,4, \ldots, n\}$.

Theorem 2.2[5] Every vertex in a strong n-partite tournament, $n \geq 3$, belongs to a cycle that contains vertices from exactly q partite sets for each $q \in\{3,4, \ldots, n\}$.

Theorem 2.3 [11] Every strong n-partite tournament, $n \geq 3$, has at least $n-m+1$ cycles of length m for $3 \leq m \leq n$.

3 Results related to Problem 1.1

The following theorem solves Problem 1.1 in affirmative.

Proposition 3.1 Let D be an n-partite tournament and let $4 \leq m \leq n$. Let $V_{1}, V_{2}, \ldots, V_{n}$ be partite sets of D and let $v_{i} \in V_{i}, i=1,2, \ldots, n$. If D satisfies the following conditions, then it has exactly $n-m+1$ cycles of length m.

1) $\left|V_{i}\right|=1$ for every $i \neq n-m+2$.
2) $C=v_{1} v_{2} \ldots v_{n} v_{1}$ is an n-cycle.
3) For every $s \in\{1,2, \ldots, n-2\}$ and $r \in\{s+2, s+3, \ldots, n\}$, we have $v_{r} \rightarrow v_{s}$.
4) $v_{n} \rightarrow\left(V_{n-m+2}-\left\{v_{n-m+2}\right\}\right) \Rightarrow\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.

Proof: By the conditions 2 and 3, the only path from vertex v_{s} to $v_{r}, r>s$ in $D\langle V(C)\rangle$ is $v_{s} v_{s+1} \ldots v_{r}$, which has $r+1-s$ vertices. Therefore, $D\langle V(C)\rangle$ has $n-m+1$ cycles of length m. It is remain to show that there is no m-cycle C^{\prime} that contains a vertex $x \in V_{n-m+2}-\left\{v_{n-m+2}\right\}$. Assume that $C^{\prime}=x x_{1} x_{2} \ldots x_{m-1} x$ is an m-cycle through x. By the conditions 1 and 4 the only vertex that dominates a vertex in $V_{n-m+2}-\left\{v_{n-m+2}\right\}$ is v_{n}. Therefore all the vertices in $V\left(C^{\prime}\right)-\{x\}$ are in $V(C)$. Also $x_{m-1}=v_{n}$.

Let $x_{1}=v_{k}$. By the conditions 2 and 3 the only path in $D\langle V(C)\rangle$ from v_{k} to v_{n} is $v_{k} v_{k+1} \ldots v_{n}$, which has $n+1-k$ vertices. So we have $n+1-k=m-1$, i.e., $k=n-m+2$. But we have $x \rightarrow x_{1}=v_{n-m+2}$. This is a contradiction because v_{n-m+2} and x are in the same partite set. From the above we conclude that D has exactly $n-m+1$ cycles of length m.

It would be interesting to solve the following natural problem.

Problem 3.2 Let $m \in\{3,4, \ldots, n\}$. Find a characterization of strong n-partite tournaments having exactly $n-m+1$ cycles of length m.

This problem seems to be especially interesting for the case of Hamilton cycles, i.e., $m=n$. Tournaments with a unique Hamilton cycle were first characterized by Douglas
[3]. Douglas's characterization is not simple even though the number of such tournaments on n vertices equals exactly the $(2 n-6)$ th Fibonacci number $[4,10]$.

The following theorem might well be of interest for solving Problem 3.2.
Theorem 3.3 Let $m \in\{3,4, \ldots, n\}$ and let D be a strong n-partite tournament that has an m-cycle C containing vertices from less than m partite sets. Then D has more than $n-m+1$ cycles of length m.

Proof: If $m=n$, then by Theorem 2.1, there is another m-cycle that contains vertices from the partite set that does not have intersection with $V(C)$.

We prove the theorem by induction on $\ell=n-m+1 \geq 1$. The above argument provides the basis of our induction $(\ell=1)$. Now assume that $\ell \geq 2$. Let V^{\prime} be a maximal set such that $V(C) \subseteq V^{\prime}, V^{\prime}$ does not contains vertices from all partite sets, and $D\left\langle V^{\prime}\right\rangle$ is strong. If $D\left\langle V^{\prime}\right\rangle$ contains vertices from $n-1$ partite sets then by induction hypothesis $D\left\langle V^{\prime}\right\rangle$ has more than $\ell-1=n-m$ cycles of length m. By Theorem 2.1 the remaining partite set has a vertex that is contained in an m-cycle. These imply that D has more than $n-m+1$ cycles of length m. In particular, this argument extends the basis of our induction to $\ell=2$.

Now we may assume that $\ell \geq 3$ and V^{\prime} contains vertices from $q \leq n-2$ partite sets. Let t_{1} be a vertex in $V(D)-V^{\prime}$. Without loss of generality, assume that $V^{\prime} \Rightarrow t_{1}$. Since D is strong there is a path from t_{1} to a vertex $x \in V^{\prime}$. Let $P=t_{1} t_{2} \ldots t_{r} x$ be such a path and assume that P is of minimum length. Therefore, we have $V^{\prime} \Rightarrow\left\{t_{2}, t_{3}, \ldots, t_{r-1}\right\}$. If t_{r-1} and t_{r} are in partite sets that have intersection with V^{\prime}, then we can add t_{r-1} and t_{r} to V^{\prime}, a contradiction. Therefore one of them is in a partite set that does not have intersection with V^{\prime}. If $q \leq n-3$ we can still add t_{r-1} and t_{r} to V^{\prime}, a contradiction.

Therefore the remaining case is $q=n-2$, and t_{r-1} and t_{r} are in two different partite sets that do not have intersection with V^{\prime}. By our assumption we have $t_{r} \rightarrow V^{\prime} \rightarrow t_{r-1} \rightarrow t_{r}$. Now consider C. We can find two distinct m-cycles that contain t_{r-1} and t_{r}, and some vertices from C. By induction hypothesis, $D\left\langle V^{\prime}\right\rangle$ has more than $\ell-2=n-m-1$ distinct m-cycles. These imply that D has more than $n-m+1$ cycles of length m.

Corollary 3.4 Let D be a strong n-partite tournament and let D have exactly $n-m+1$ cycles of length m for some $m \in\{3,4, \ldots, n\}$. Then every m-cycle of D has no pair of vertices from the same partite set.

4 Results related to Problem 1.2

In this section we show that Problem 1.2 has a negative answer for $m \in\{n-1, n\}$. We denote, by $\mathcal{U C} \mathcal{C}_{n}$, the set of all strong n-partite tournaments, $n \geq 4$, which are not
themselves tournaments, with exactly one cycle of length n.

Lemma 4.1 If $D \in \mathcal{U C}_{n}, n \geq 4$, and C is its unique n-cycle, then there is a vertex $y \in D-V(C)$ such that $D\langle V(C) \cup\{y\}\rangle$ is strong.

Proof: Let $D \in \mathcal{U C} \mathcal{C}_{n}$ and let C be its unique n-cycle. By Corollary 3.4, C contains a vertex from every partite set of D. Let $V_{1}, V_{2}, \ldots, V_{n}$ be partite sets of D and let $C=v_{1} v_{2} \ldots v_{n} v_{1}, v_{i} \in V_{i}, i=1,2, \ldots, n$.

Assume that there is no vertex $y \in D-V(C)$ for which $D\langle V(C) \cup\{y\}\rangle$ is strong. Then the following two sets S and T are non-empty: $S(T)$ is the set of vertices in $D-V(C)$ that do not dominate (are not dominated by) any vertex in C. Since D is strong and $V(C) \cup S \cup T=V(D)$, there exist vertices $u \in S$ and $w \in T$ such that $u \rightarrow w$. Assume that $u \in V_{i}, w \in V_{j}(i \neq j)$. If $i \neq j-2$, then $u w v_{j+1} v_{j+2} \ldots v_{j-2} u$ is an n-cycle of D distinct from C, which is impossible. If $i=j-2$, then $u w v_{j-1} v_{j} \ldots v_{j-4} u$ is an n-cycle of D distinct from C, which is impossible.

Theorem 4.2 There are no strong n-partite tournaments, $n \geq 4$, which are not themselves tournaments, with exactly one cycle of length n and two cycles of length $n-1$.

Proof: Let $D \in \mathcal{U C}_{n}$. By Corollary 3.4, the unique n-cycle in D is $C=v_{1} v_{2} \ldots v_{n} v_{1}$, where $v_{i} \in V_{i}, i=1,2, \ldots, n$. Let y be a vertex in $D-V(C)$ such that $D\langle V(C) \cup\{y\}\rangle$ is strong. By Theorem 2.2, y lies in a cycle C^{\prime} of $D\langle V(C) \cup\{y\}\rangle$ that contains vertices from exactly $n-1$ partite sets. If C^{\prime} contains v_{i} and v_{i} belongs to the same partite set as y, then the length of C^{\prime} is n, a contradiction. Thus, C^{\prime} is an $(n-1)$-cycle. It remains to observe that $D\langle V(C)\rangle$ has at least two $(n-1)$-cycles by Theorem 2.3.

Acknowledgment We would like to thank Anders Yeo and the referee for helpful comments.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London, 2000.
[2] J. Bang-Jensen and G. Gutin, Generalizations of tournaments: a survey. J. Graph Theory 28 (1998) 171-202.
[3] R.J. Douglas, Tournaments that admit exactly one hamiltonian circuit. Proc. London Math. Soc. 21 (1970) 716-730.
[4] M.R. Garey, On enumerating tournaments that admit exactly one hamiltonian circuit. J. Combin. Theory B 13 (1972) 266-269.
[5] W.D. Goddard and O.R. Oellermann, On the cycle structure of multipartite tournaments. In Graph Theory Combin. Appl. 1 Wiley, New York (1991) 525-533.
[6] Y. Guo, Semicomplete multipartite digraphs: a generalization of tournaments. Habilitation thesis, RWTH Aachen, Germany, 1998.
[7] Y. Guo and L. Volkmann, Cycles in multipartite tournaments. J. Combin. Theory B 62 (1994) 363-366.
[8] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J. Graph Theory 19 (1995) 481-505.
[9] J.W. Moon, On subtournaments of a tournament. Canad. Math. Bull. 9 (1966) 297301.
[10] J.W. Moon, On the number of tournaments with a unique spanning cycle. J. Graph Theory 6 (1982) 303-308.
[11] L. Volkmann, Cycles in multipartite tournaments: results and problems. Discrete Math. 245 (2002) 19-53.

