
Finding minimum Tucker submatrices

Ján Maňuch ∗and Arash Rafiey †

Abstract

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be
ordered in such a way that all 1s on each row are consecutive. These matrices are
used for DNA physical mapping and ancestral genome reconstruction in computational
biology, on the other hand, they represent a class of convex bipartite graphs and are
of interest of algorithm graph theory researchers. Tucker gave a forbidden submartices
characterization of matrices that have the C1P property in 1972. Booth and Lucker
(1976) gave a first linear time recognition algorithm for matrices with C1P property,
and then in 2002, Habib, et al. gave a simpler linear time recognition algorithm. There
has been substantial amount of works on efficiently finding minimum size forbidden
submatrix. Our algorithm is at least n times faster than the existing algorithm where
n is the number of columns of the input matrix.

1 Introduction and Preliminaries

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in
such a way that all ones in each row are consecutive. Deciding if a matrix has the C1P can
be done in linear-time and linear space [4, 7, 8, 12, 13]. The problem of deciding if a matrix
has the C1P has been considered in genomic, for problems such as physical mapping [2, 9]
or ancestral genome reconstruction [1, 5, 11].

Let M be a m × n binary matrix. Let R = {ri : i = 1, . . . ,m} be the set of its rows
and C = {cj : j = 1, . . . , n} the set of its columns. Its corresponding bipartite graph
G(M) = (VM , EM) is defined as follows: VM = R ∪C, and two vertices ri ∈ R and cj ∈ C
are connected by an edge if and only if M [i, j] = 1. We will refer to the partition R and C
of G as black and white vertices, respectively. A bipartite graph G = (B,W) with black (B)
and white (W) vertices is called convex with respect to W ; if there exists a linear ordering
of the white vertices such that the neighborhood of each black vertex is an interval, i.e.
consecutive. A binary matrix M has the C1P property if and only if G(M) = (R,W) is a
convex bipartite graph with respect to W .

In the rest of this paper we consider convexity with respect to the white vertices unless
we specify.

For a graph H = (V,E), the set of neighbors of a vertex x ∈ V (H) will be denoted by
N(x). The i-the neighborhood of x, denoted by Ni(x), is the set of vertices at distance i

∗University of British Coloumbia and Simon Fraser University, BC,Canada, Eamil: jmanuch@cs.ubc.ca
†Simon Fraser University, BC, Canada and Indiana State University, IN, USA, Email: arashr@sfu.ca

1

from x. All these sets, for a fixed x, can be computed in time O(e) using the bread-first
search algorithm where e denotes the number of edges of H. A subgraph of H induces by
vertices x1, . . . , xk will be denoted by H[x1, . . . , xk].

For simplicity, we denote the edge u, v of a graph H by uv .
Let G be a bipartite graph. A subset M of the edges G is called an induced matching

if G[V (M)] is isomorphic to M . Here V (M) is the endpoints vertices of the edges in M
and G[V (M)] is the induced subgraph of G by V (M). For example, two edges uv, u′v′ of G
where u, u′ are in the same partition form an induced matching if uv′, u′v are not edges of
G.

An asteroidal triple is an independent set of three vertices such that each pair is connected
by a path that avoids (does not go through) the neighborhood of the third vertex. A white
asteroidal triple is an asteroidal triple on white (column) vertices.

The following result of Tucker links the C1P of matrices to asteroidal triples of their
bipartite graphs.

Theorem 1 ([14]). A binary matrix has the C1P if and only if its corresponding bipartite
graph does not contain any white asteroidal triples.

Theorem 2 ([14]). A binary matrix has the C1P if and only if its corresponding bipartite
graph does not contain any of the forbidden subgraphs in T = {GIk , GIIk , GIIIk : k ≥ 1} ∪
{GIV, GV}, depicted in Figure 1. We will refer to these subgraphs as type I, II, III, IV and
V, respectively.

The author in [10] developed an algorithm for finding one of the obstructions in linear
time. However, their algorithm does not guarantee to find the minimum size obstruction.
The characterization can be used to determine whether a given binary matrix M has the
C1P in time O(∆mn2 + n3), where ∆ is the maximum number of ones per row, i.e., the
maximum degree of the black vertices in G(M), as explained by the following result in [6].

Lemma 1 ([6]). A white asteroidal triple u, v, w with the smallest sum of the three paths can
be computed in time O(∆mn2 + n3).

For practical purposes, there is a much faster algorithm that uses PQ-trees for determin-
ing whether a binary matrix has the C1P, cf. [4].

One of the reasons that the authors in [6] were in these obstructions was to developed
faster approximation algorithms and fixed-parameterized algorithms for consecutive ones
submatrix problems. Our goal in this paper is to improve the algorithms in [3, 6].

2 Summary of known results and new results

We first summarize the running time of the previous known algorithms for finding each of
the forbidden subgraphs. Let G be a bipartite graph. We denote the maximum degree of G
by ∆.

2

...........

........

...........

.........

k + 1k

...........

........

k + 1

GI GII

GIII GIV GV

x

y z

x

y z

x

y z y

y

z

z

x x

Figure 1: The set of Tucker’s forbidden subgraphs.

3

Known Results: The known results regarding how fast one can find one of the obstruc-
tions to a matrix with the C1P property can be summarize in the following theorem.

Theorem 3. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices,
and e edges. Then we have the following.

1. One can find a minimum size induced subgraph GI , (type I obstruction) in G in time
O(∆4m3) if one exists [3].

2. One can find a minimum size induced subgraph GII , (type II obstruction) of G in time
O(∆4m3) = O(ne3) [3].

3. One can find a minimum size induced subgraph GIII , (type III obstruction) of G in
time O(∆2m2n2) if one exists [3].

4. One can find a minimum size induced subgraph GIV , (type IV obstruction) of G in
time O(∆3m2n3) if one exists [6].

5. One can find a minimum size induced subgraph GV , (type V obstruction) of G in time
O(∆4m2n2) if one exists [6].

Now combining the results from [3] and [6], we have the following theorem.

Theorem 4. Let G = (B,W) be a bipartite graph with m black vertices and n white vertices.
Then one can find a minimum size obstruction to G being convex (respect to the white
vertices), in time O(∆3m2(∆m+ n3)).

Our Results : We will consider two problems: (1) detecting a smallest forbidden sub-
graph of each type (Section 3.1), and (2) detecting a smallest forbidden subgraph of any
type (Section 3.2).

Theorem 5. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices,
and e edges. Then we have the following.

1. One can find a minimum size induced subgraph GI , (type I obstruction) in G in time
min{O(∆e2),O(∆3m2)} if one exists.

2. One can find a minimum size induced subgraph GIII , (type III obstruction) of G in
time min{O(e3),O(∆3m3)} if one exists.

3. One can find a minimum size induced subgraph GIV , (type IV obstruction) of G in
time min{O(m3e),O(∆m4)} if one exists.

4. One can find a minimum size induced subgraph GV , (type V obstruction) of G in time
min{O(m3e),O(∆m4)} if one exists.

We further can refine Theorem 5 and obtain the following theorem.

4

Subgraph type Time complexity
Previous result Our result (Exact) Our result

I O(∆4m3) [3] O(∆e2) = O(∆3m2) O(n2e) [6]
II O(∆4m3) = O(ne3) [3] — O(n2e) [6]
III O(∆2m2n2) [3] O(e3) = O(∆3m3) O(ne2)
IV O(∆3m2n3) [6] O(m3e) = O(∆m4) O(n3e)
V O(∆4m2n) [6] O(m3e) = O(∆m4) O(n3e)

Any O(∆3m2(∆m+ n3)) O(ne(n2 + e)) = O(∆mn(∆m+ n2))

Table 1: Comparison of our results with the previous results.

Theorem 6. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices,
and e edges. Suppose G is not convex, i.e. G has one of induced sub-digraphs depicted in
Figure 1. Then we have the following.

1. Suppose the minimum size forbidden obstruction X of G is of type I or type II. Then
X can be found in time O(n2e) [6].

2. Suppose the minimum size forbidden obstruction X of G is of type III. Then X can
be found in time O(ne2).

3. Suppose the minimum size forbidden obstruction X of G is of type IV . Then X can
be found in time O(n3e).

4. Suppose the minimum size forbidden obstruction X of G is of type V . Then X can be
found in time O(n3e).

Theorem 7. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices,
and e edges. Then there is a polynomial time algorithm that decides whether G is convex.
If G is not a convex then the algorithms outputs a smallest forbidden subgraph of G. The
running time of the algorithm is min{O(ne(n2 + e)),O(∆mn(∆m+ n2))}.

3 Proofs

Note that without loss of generality we can assume that M does not contain any all-zero
columns or rows, as such columns does not affect whether the matrix has the C1P or the for-
bidden submatrices of M . It follows that ∆m ≥ n. We will use this assumption throughout
this paper. Also note that the number of edges in G(M) is the same as the number of ones
in M , which we denote by e. Note that e = O(∆m) and that e ≥ m,n (since we assume
that there are no all-zero columns or rows in M).

We will use the following auxiliary lemma.

Lemma 2. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices, and
e edges. Then deciding whether G has an induced matching of size two can be done in time
O(e+m+ n).

5

Proof. Order the (white) vertices in W by their degrees: deg(w1) ≤ deg(w2) ≤ · · · ≤
deg(wn). For every i = 1, . . . , n − 1, check if N(wi) \ N(wi+1) is non-empty. If for some
i, N(wi) \ N(wi+1) 6= ∅, then also N(wi+1) \ N(wi) 6= ∅. In this case, we can pick any
a ∈ N(wi) \ N(wi+1) and any b ∈ N(wi+1) \ N(wi), and return edges awi, bwi+1 as an
induced matching of G.

Now, assume that for every i, N(wi)\N(wi+1) = ∅, i.e., N(wi) ⊆ N(wi+1). We will show
that there is no induced matching of G of size two. Assume for contradiction that awi, and
buj, where i < j, is such an induced matching. We have N(wi) ⊆ N(wi+1) ⊆ · · · ⊆ N(wj),
i.e., a ∈ N(wj), a contradiction. Hence, in this case we can report that there is no such
matching.

Vertices of W can be sorted by their degrees in time O(n + m) using a count sort. For
each i, checking if N(wi) \ N(wi+1) is non-empty can be done in time O(deg(w1)), hence,
the total time spent on checking is O(

∑n−1
i=1 deg(wi)) = O(e).

3.1 Detection of smallest forbidden subgraphs for each type

We will present four algorithms which find a smallest subgraph of type I, III, IV and V,
respectively, each improving the complexity of the best known such algorithm, cf. [3]. For
type II, we refer the reader to the O(ne3) algorithm1 in [3].

3.1.1 Type I, Proof of Theorem 5 (1)

The proof of Theorem 5 (1) follows from the following lemma.

Lemma 3. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices, and
e edges. Then one can find a minimum size induced subgraph GI , (type I obstruction) of G
in time min{O(∆e2),O(∆3m2)} if there exists one.

Proof. We apply Algorithm 1 to find a smallest forbidden subgraph of type I in time O(∆e2).

Algorithm 1: Find a smallest GIk subgraph.
Input : G = (B,W)
Output: A smallest subgraph GIk of G

1 for b ∈ B do
2 for x, y ∈ N(b) do
3 construct the subgraph Gb,x,y of G induced by vertices (B \ (N(x) ∩N(y))) ∪ (W \N(b)) ∪ {x, y};
4 find a shortest path between x and y in Gb,x,y ;
5 if the length of the path is smaller than any observed so far then
6 remember b and the vertices of the path;
7 end

8 end

9 end
10 return subgraph of G induced by the remembered set of vertices (if any)

Correctness of Algorithm 1. We are looking for induced cycles of length 6 or more in
G. For each black vertex b and its two neighbors x, y, we find a shortest induced cycle of

1The authors of [3] showed that the complexity of their algorithm is O(∆4m3), however, it is easy to
check that their algorithm works in time O(ne3).

6

length at least 6 containing xb, by as two consecutive edges of such a cycle. Such cycle cannot
contain any vertex incident with b other than x and y, and any vertex incident with both x
and y other than b. Hence, a shortest such cycle C can be obtained from a shortest x − y
path P in Gb,x,y by adding two edges xb, yb . This cycle cannot be of length 4, otherwise P
would contain a vertex in N(x)∩N(y). It remains to show that C is induced. Assume that
there is a chord uv in C. Since P does not contain N(b) \ {x, y}, we conclude that u, v 6= b.
Hence, we could use the chord as a shortcut to find a shorter cycle containing edges xb, yb,
and hence, a shorter path between x and y in Gb,x,y, a contradiction.

Complexity of Algorithm 1. We will show that the complexity of Algorithm 1 is O(∆e2).
The first loop executes m times and the second deg(b)2 executed times. Hence, the body of
the second loop executes

∑
b∈B deg(b)2 = O(∆e) times. Constructing graph Gb,x,y takes time

O(e) and finding a shortest path in Gb,x,y can be done in time O(e) using the Breadth-first
search algorithm. Therefore the running time of Algorithm 1 is min{O(∆e2),O(∆3m2)}.

3.1.2 Type III, Proof of Theorem 5 (2)

The proof of Theorem 5 (2) follows from the following lemma.

Lemma 4. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices, and
e edges. Then one can find a minimum size induced subgraph GIII , (type III obstruction)
in G in time min{O(e3),O(∆3m3)} if there exists one.

Proof. We apply Algorithm 2 to find a smallest forbidden subgraph of type III in O(e3).

Algorithm 2: Find a smallest GIIIk subgraph.
Input : G = (B,W,E)
Output : A smallest subgraph GIIIk of G

1 for xw ∈ E, where x ∈W and w ∈ B do
2 for ya ∈ E, where y ∈W \N(w) and a ∈ B \N(x) do
3 construct the subgraph Gx,w,y,a of G induced by vertices (B \N(x)\N(y))∪{a}∪ (N(w)\{x})∪ (W \N(a));
4 find a shortest path P between a and set W \N(w) \N(a) in Gx,w,y,a with |P | ≥ 5 (using modified BFS) ;
5 if the P exists and is shorter than any observed so far then
6 remember w, x, y and P ;
7 end

8 end

9 end
10 return subgraph of G induced by the remembered set of vertices (if any)

Correctness of Algorithm 2. Let us first verify that the vertices of a shortest path P
found in line 4 and w, x, y induce a subgraph of type III. Obviously, x is connected to only
w, w is not connected to y and the last vertex z of P . On the other hand, w must be
connected to all other white vertices of P , since any such white vertex that is not in N(w)
is in W \N(a) and hence, also W \N(w) \N(a), i.e., we would have a shorter path ending
at this vertex. Since the path is a shortest path, all black vertices on the path are connected
only to its predecessor and successor on the path. In addition a is connected to y and no
other black vertex on the path is connected to y since Gx,w,y,a does not contain any other
neighbors of y. It follows that the vertices w, x, y and the vertices of a shortest path induce

7

a subgraph of type III. We also note that by just modifiying Breadth First Search to make
sure P has at least 5 edges.

Second, consider a smallest subgraph of type III in G. We will show it is considered
by the algorithm. Assume the algorithm is in the iteration, where it picked edges xw, ya
of this subgraph. Then the rest of the vertices must lie in Gx,w,y,a: the remaining black
vertices are not connected to x, y and the remaining white vertices are either in N(w) \ {x}
and z is W \ N(a). These vertices together with a must form a shortest path from a to
W \N(w) \N(a) in Gx,w,y,a, hence, Algorithm 2 finds this subgraph or a subgraph with the
same number of vertices.

Complexity of Algorithm 2. We will show that the complexity of Algorithm 2 is O(e3).
The first loop executes e times. The second loop executes O(e) times. Constructing graph
Gx,w,y,a takes time O(e). Finding a shortest path in Gx can be done in time O(e) using
a “modified-breadth-first” search algorithm. Therefore the running time of Algorithm 2 is
min{O(∆e3),O(∆3m3)}.

3.1.3 Type IV, Proof of Theorem 5 (3)

The proof of Theorem 5(3) follows from the following lemma.

Lemma 5. Let G = (B,W) be a bipartite graph with m black vertices and n white vertices.
Then one can find a minimum size induced subgraph GIV , (type IV obstruction) of G in
time min{O(m3e),O(∆m4)} if one exists.

Proof. We apply Algorithm 3 to find a smallest forbidden subgraph of type IV in O(m3e)
if one exists.

Algorithm 3: Find a GIV subgraph.
Input : G = (B,W)
Output: A subgraph GIV of G

1 for distinct a, b, c, d ∈ B do
2 find UX = N(a) \ (N(b) ∪N(c));
3 find V Y = N(b) \ (N(a) ∪N(c));
4 find WZ = N(c) \ (N(a) ∪N(b));
5 find U = UX ∩N(d) and X = UX \N(d);
6 find V = V Y ∩N(d) and Y = V Y \N(d);
7 find W = WZ ∩N(d) and Z = WZ \N(d);
8 if each of the sets X,Y, Z, U, V,W is non-empty then
9 pick any x ∈ X, y ∈ Y, z ∈ Z, u ∈ U, v ∈ V,w ∈W ;

10 return G[a, b, c, d, x, y, z, u, v, w]

11 end

12 end
13 return not found

Correctness of Algorithm 3. It is easy to see that once a, b, c, d are picked, each of
x, y, z, u, v, w has to belong to computed set X, Y, Z, U, V,W , respectively, and that once
they are picked from those sets, the returned vertices induce GIV.

Complexity of Algorithm 3. We will show that the complexity of Algorithm 3 is O(m3e).
The time complexity of the steps inside the loop depends on the degrees of nodes a, b, c, d, i.e.,
it isO(deg(a)+deg(b)+deg(c)+deg(d)). Hence, the overall complexity is

∑
a,b,c,d∈RO(deg(a)+

8

deg(b) + deg(c) + deg(d)) = 4
∑

a,b,c,d∈RO(deg(d)) = 4
∑

a,b,c∈RO(e) = m3e. Therefore the

running time of Algorithm 3 is min{O(m3e),O(∆m4)}.

3.1.4 Type V, Proof of Theorem 5(4)

The proof of Theorem 5(4) follows from the following lemma.

Lemma 6. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices, and
e edges. Then one can find a minimum size induced subgraph GIV , (type IV obstruction) of
G in time min{O(m3e),O(∆m4)} if one exists.

Proof. We apply Algorithm 4 to find a smallest forbidden subgraph of type V in O(m3e) if
one exists.

Algorithm 4: Find a GV subgraph.
Input : G = (B,W)
Output: A subgraph GV of G

1 for distinct a, b, c, d ∈ B do
2 find UY = N(b) ∩N(d) \N(c);
3 find V Z = N(b) ∩N(c) \N(d);
4 find U = UY ∩N(a) and Y = UY \N(a);
5 find V = V Z ∩N(a) and Z = V Z \N(a);
6 find X = N(a) \ (N(b) ∪N(c) ∪N(d));
7 if each of the sets X,Y, Z, U, V is non-empty then
8 pick any x ∈ X, y ∈ Y, z ∈ Z, u ∈ U, v ∈ V ;
9 return G[a, b, c, d, x, y, z, u, v]

10 end

11 end
12 return not found

Correctness of Algorithm 4. It is easy to see that once a, b, c, d are picked, each of
x, y, z, u, v has to belong to computed sets X, Y, Z, U, V , respectively, and that once they are
picked from those sets, the returned vertices induce GV.

Complexity of Algorithm 4. The complexity of Algorithm 4 is O(m3e). This follows
by the same argument as for Algorithm 4. Therefore the running time of Algorithm 3 is
min{O(m3e),O(∆m4)}.

3.2 Detection of a smallest forbidden subgraph

Overall, we will use Dom et al. ([6]) approach to find the smallest forbidden subgraph in G.
We will first find a shortest-paths (the sum of the lengths of the three paths) white asteroidal
triple A in time O(n2e) = O(∆mn2) using the algorithm in [6]. For completeness, we are
including this algorithm in this paper as Algorithm 5.

9

Algorithm 5: Find a smallest white asteroidal triple.

Input : G = (B,W)
Output: A smallest white asteroidal triple G

1 for x ∈W do
2 construct a subgraph Gx of G induced by (B \N(x)) ∪ (W \ {x});
3 for y ∈W \ {x} do
4 use BFS to determine the shortest distance dx(y, z) from y to any other

z ∈W \ {x} in Gx;

5 end

6 end
7 return minargx,y,z∈W(dx(y, z) + dy(x, z) + dz(x, y))

It is easy to check that the complexity of Algorithm 5 is O(n2e+ n3) = O(n2e).
A shortest-paths white asteroidal triple A must be in T , but does not need to be a

smallest forbidden subgraph. Let ` be the sum of the lengths of the three paths of A. If A
is of

• type I or II, then it contains ` vertices;

• type III, it contains `− 5 vertices;

• type IV, it contains 10 = `− 8 vertices;

• type V, it contains 9 = `− 1 vertices.

It follows that if one of the smallest forbidden subgraphs is of type I or II, then each shortest-
paths asteroidal triple is of type I or II and is a smallest forbidden subgraph. For the
remaining cases, we need to determine the smallest forbidden subgraphs of type III, IV and
V. However, we only need to find a smallest subgraph of type X if it is a smallest forbidden
subgraph. Hence, for types IV and V, if we find during the search that there is a smaller
forbidden subgraph of some other type, we can stop searching for this type. For type III,
since it has a variable size, we cannot stop searching, however, we can abandon the branch
which would yield a larger or even the same size subgraph of type III than we have observed.
We will use this in what follows to obtain faster algorithms for types III, IV and V than the
ones presented in the previous section.

3.2.1 Type III, Proof of Theorem 6(1)

Lemma 7. Let G = (B,W) be a bipartite graph with m black vertices and n white vertices.
Let O be a minimum size forbidden obstruction in G. Then in O(ne2), one can find O if it
is of type III or report O is of type I or V .

Proof. Algorithm 6 guarantees to find a smallest subgraph of type III in time O(ne2) if it
is smaller than other types of forbidden subgraphs. If there is a smaller subgraph of type I
or there is a smaller of the same size subgraph of type V in G, it either reports that or it
could report a subgraph of type III which is not the smallest. It will first determine whether

10

GIII1 is a subgraph of G. If not it continues to the second phase, where it assumes that the
smallest subgraph of type III (if it exists) has at least 9 vertices.

Algorithm 6: Find a smallest GIIIk subgraph if it is smaller than other types of sub-
graphs.

Input : G = (B,W,E)
Output: A smallest subgraph GIIIk of G or report there is a subgraph of other type (I or V) of equal or smaller size

1 for w ∈ B do
2 for x, u ∈ N(w) do
3 construct the subgraph Gx,w,u of G induced by vertices (N(u) \N(x)) ∪ (W \N(w));
4 find induced matching of size two using Lemma 2;
5 if induced matching exists then
6 return subgraph of G induced by x,w, u and the induced matching (GIII1)
7 end

8 end

9 end
/* We can now assume that there is no GIII1 in G */

10 set imin =∞;
11 for xw ∈ E, where x ∈W and w ∈ B do
12 find D = N2(w) \N(x) and Y = N(D) \N(w);
13 for y ∈ Y do
14 construct the subgraph Gx,w,y of G induced by vertices N(w) \ {x} ∪ {y} ∪D;
15 find Di = Ni(y) in Gx,w,y , for i ≥ 1;
16 find Y ′ = {y′ ∈ Y : D1 \N(y′) 6= ∅} and D′ = D ∩N(Y ′);
17 find smallest odd i ≥ 3 such that Di ∩D′ 6= ∅ (if possible);
18 if found then
19 pick any di ∈ Di ∩D′, any y′ ∈ Y ′ ∩N(di) ;
20 find a path P from di to some d1 ∈ D1 in Gw,w,y of length i− 1;
21 if y′d1 /∈ E and i < imin then
22 set imin to i;
23 remember x,w, y, y′ and vertices of P ;

24 end

25 end

26 end

27 end
28 if imin =∞ then
29 return subgraph of type III not found or there is a subgraph of type I or V of the size at most the size of the

smallest type III subgraph
30 else
31 return subgraph of G induced by remembered set of vertices
32 end

Correctness of Algorithm 6. It is easy to check that the first phase of the algorithm finds
GIII1 subgraph if it exists in G. Assume that GIII1 is not an induced subgraph of G., i.e., that
a smallest subgraph of type III (if it exists) has at least 9 vertices. The algorithm continues
to the second phase.

First, assume that i is not found, i.e., for all odd i ≥ 3, Di ∩ D′ = ∅. This implies
that any path starting at y in Gx,w,y cannot be extended with a white vertex y′ that is
not adjacent to w and not adjacent to the second vertex d1 ∈ D1 of this path. Hence, the
algorithm correctly continues with examining another selection of vertices x,w, y. Assume
that i was found. Now, assume that G does not contain edge y′d1. Let us verify that vertices
x,w, y, y′ and the vertices of P induce GIII(i−1)/2

. It is clear that x is connected only to
w and w only to white vertices on P except the first vertex y. By the construction, each
vertex on P can be adjacent only to its predecessor or successor on P . Since i > 2 is the
smallest odd integer such that Di∩D′ 6= ∅, y′ is not adjacent to any black vertex on P other
than the last one. Hence, the vertices induce a subgraph of type III. Finally, assume that
y′d1 ∈ E. If i ≥ 5 then the vertices of P without y and y′ induce a cycle of length i+1, i.e., a
subgraph GI(i−3)/2

, which is smaller than a subgraph of type III we could get for this selection

11

of x,w, y (by choosing a different di, y
′ or path P , or searching for another odd i such that

Di ∩D′ 6= ∅). If i = 3, consider d′1 ∈ D1 that is not adjacent to y′ and let P = y, d1, u, d3. If
d′1 is adjacent to u, vertices x,w, u, d′1, y, d3, y

′ induce GIII1 , a contradiction. Hence, assume
d′1u /∈ E. Since d′1 ∈ D ⊆ N2(w), there exists u′ ∈ N(w) adjacent to d′1. If d1u

′ ∈ E, then
vertices x,w, u, u′, d1, d

′
1, d3, y, y

′ induce GV. Otherwise, vertices w, u, d1, y, d
′
1, u
′ induce a

cycle of length 6. In any case, there exists a subgraph of other type of size equal or smaller
than it would be possible to find for this choice of x,w, y, hence, the algorithm correctly
moves to the next choice.

Complexity of Algorithm 6. We will show that the complexity of Algorithm 6 is O(ne2) =
O(∆2m2). The body of the loop in lines 2–7 will execute O(∆e) times and each step of the
body takes O(e) time. Hence, the complexity of the first phase is O(∆e2) = O(ne2). The
main loop of the second phase will execute O(e) times. Determining D and Y takes time
O(e). The nested loop in lines 13–26 will execute O(n) times. Each step of the body of this
loop will take time O(e). Hence, the complexity of the second phase is O(ne2).

3.2.2 Type IV, Proof of Theorem 6(2)

In this subsection we give two algorithms. Each of them finds a minimum sized induced
subgraph GIV of G or they report the minimum size forbidden subgraph of G is of type I
or III.

Algorithm 7: Find a GIV subgraph or report that there is a smaller subgraph of type
I or III.

Input : G = (B,W)
Output: A subgraph GIV of G or report that GIV is not a smallest subgraph

1 for distinct x, y, z ∈W do
2 find A = N(x) \ (N(y) ∪N(z));
3 find B = N(y) \ (N(x) ∪N(z));
4 find C = N(z) \ (N(x) ∪N(y));
5 find D = W \ (N(x) ∪N(y) ∪N(z));
6 find U = N(A) \ {x, y, z};
7 find V = N(B) \ {x, y, z};
8 find W = N(C) \ {x, y, z};
9 if all sets A,B,C,D,U, V,W are non-empty then

10 for d ∈ D do
11 if there exists distinct u ∈ U ∩N(d), v ∈ V ∩N(d) and w ∈W ∩N(d) then
12 find a ∈ A ∩N(u), b ∈ B ∩N(v) and c ∈ C ∩N(w);
13 if none of the edges av, aw, bu, bw, cu, cv exists then
14 return G[x, y, z, u, v, w, a, b, c, d] = GIV

15 else
16 return there is a smaller subgraph of type I or III
17 end

18 end

19 end

20 end

21 end
22 return not found

Lemma 8. Let G = (B,W,E) be a bipartite graph with m black vertices, n white vertices,
and e edges. Let O be a minimum size forbidden obstruction in G. Then one can find O in
time min{O(n3e),O(∆mn3)} if O is of type IV otherwise reports O is of type I or III.

12

Proof. Algorithm 7 finds the subgraph GIV in time O(n3e), if it exists and if it is a smallest
forbidden subgraph. If there is a smaller forbidden subgraph of type I or III, it might find
an instance of GIV or it might report that there is a smaller forbidden subgraph instead.

Correctness of Algorithm 7. Correctness of the algorithm follows by the following claim.

Claim 1. Consider a subgraph G′ of G induced by vertices x, y, z, u, v, w, a, b, c, d that con-
tains edges xa, yb, zc, au, bv, cw, ud, vd, wd and does not contain edges xd, yd, zd.

Then either G′ is an instance of GIV or G′ contains either GI1, GIII1 or GIII2 as an
induced subgraph.

Proof. We will use the following two partial maps: R(x) = a, R(y) = b, R(z) = c, R(a) = u,
R(b) = v and R(c) = w, and L = R−1.

If none of the edges in E ′ = {av, aw, bu, bw, cu, cv} is present in G′, then G′ is isomorphic
to GIV.

If exactly one edge µ in E ′ is present in G′ then we have an induced subgraph GIII1

centered at the vertex r = µ ∩ {u, v, w}. In particular, vertices d, r, L(r), L(L(r)), `, L(`), z,
where ` = µ ∩ {a, b, c} and z ∈ {u, v, w} \ {r, R(`)}, induce GIII1 .

We can assume that there are at least two edges in E ′ are present in G′. We will
distinguish two cases. Either (i) there exist two edges µ, µ′ of G′ in E ′ such that µ∩ µ′ 6= ∅,
or (ii) for each pair of such edges µ ∩ µ′ = ∅.

First, consider case (i) and suppose µ ∩ µ′ 6= ∅. Depending on whether the intersection
lies in {a, b, c} or {u, v, w}, we have two cases:

1. µ∩µ′ ∈ {a, b, c} (“edges joing on the left”), then vertices V (G′)\{µ∩µ′} induce GIII2 ;

2. µ∩µ′ ∈ {u, v, w} (“edges joing on the right”), then vertices x, y, z, a, b, c, µ∩µ′ induce
GIII1 .

Now, consider case (ii). Note the number of edges in E ′ that are edges of G′ is at most
three. We will consider two cases depending on the number of such edges:

1. |E ′ ∩ E(G′)| = 2: Without loss of generality we can assume that µ ∩ {a, b, c} =
L(µ′∩{u, v, w}) for µ, µ′ ∈ E ′ present in G′. Then the same collection of vertices as in
the case of one edge µ induces GIII1 , since one end of µ′ lies outside of this collection.

2. |E ′ ∩ E(G′)| = 3: Then the vertices a, b, c, u, v, w induce C6, i.e., GI1 .

Complexity of Algorithm 7. We will show that the complexity of Algorithm 7 is
O(n3e) = O(∆mn3). The first loop executes O(n3) times, determining A,B,C,D takes
time O(m), determining sets U, V,W time O(e). The loop for d ∈ D is executed O(m)
times and each execution takes time O(deg(d)), i.e., the total time spent in this loop is∑

d∈D O(deg(d)) = O(e).

In what follow we present a different algorithm to find a minimum size obstruction of
type IV .

13

Algorithm 8: Find a GIV subgraph or report that there is a smaller subgraph of type
I or III.
Input : G = (B,W)
Output: A subgraph GIV of G or report that GIV is not a smallest subgraph

1 for x, y ∈ W do
2 find and store N(N(x) \N(y)) \ {x} ;

3 end
4 for d ∈ B do
5 for distinct u, v, w ∈ N(d) do
6 find X = N(u) \ (N(v) ∪N(w));
7 find Y = N(v) \ (N(u) ∪N(w));
8 find Z = N(w) \ (N(u) ∪N(v));
9 if N(u) ∩N(v) \N(w) 6= ∅ and N(u) ∩N(w) \N(v) 6= ∅ and

N(v) ∩N(w) \N(u) 6= ∅ then
10 return there is a smaller subgraph of type I (GI1)

11 end
/* W.l.o.g. assume that N(u) ∩N(w) \N(v) = ∅ */

12 pick any x ∈ N(N(u) \N(v)) \N(d) if possible;
13 pick any y ∈ N((N(v) \N(w)) \N(d) if possible;
14 pick any z ∈ N(N(w) \N(v)) \N(d) if possible;
15 if x, y, z exist then
16 pick any a ∈ X ∩N(x);
17 pick any b ∈ Y ∩N(y) if possible;
18 if b does not exists then
19 return there is a smaller subgraph of type III (GIII1)
20 end
21 pick any c ∈ Z ∩N(z);
22 if any of the edges av, aw, bu, bw, cu, cv exists then
23 return there is a smaller subgraph of type I (GI1)

24 end
25 return G[x, y, z, u, v, w, a, b, c, d] = GIV

26 end

27 end

28 end
29 return not found

14

Lemma 9. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices, and
e edges. Let O be a minimum size forbidden obstruction in G. Then one can find O in time
O((n2 + ∆3 + ∆2m)e) if O is of type IV otherwise reports O is of type I or III.

Proof. Correctness of Algorithm 8. Note that in order to save time the algorithm does not
try all possibilities for x, y, z and a, b, c, but rather picks one choice (if possible). After this
choice is made, it will either find GIV or it will report that there is a smaller forbidden
subgraph. Let us now verify that decisions algorithm makes are correct:

• First, assume that the algorithm stops in line 10. Let a′ ∈ N(u) ∩ N(v) \ N(w),
b′ ∈ N(u) ∩ N(w) \ N(v) and c′ ∈ N(v) ∩ N(w) \ N(u). The vertices u, a′, v, b′, w, c′

induce C6 = GI1 , i.e., there is a smaller induced subgraph of type I.

• Otherwise, we will argue that in line 16, X ∩ N(x) is always non-empty, i.e, there is
always a choice for a. Since x ∈ N(N(u) \N(v)) \N(d), there is a ∈ N(u) \N(v) such
that a and x are adjacent. If we have also a ∈ N(w), then a ∈ N(u) ∩ N(w) \ N(v),
which is empty. Hence, a /∈ N(w), and thus, a ∈ X. The similar argument implies
that in line 21, Z ∩N(z) 6= ∅.

• Next, assume that the algorithm stops in line 25. Since y ∈ N(N(v) \ N(w)) \ N(d),
there is b′ ∈ N(v) \ N(w) such that b′ and y are adjacent. Since there is no b ∈=
N(v)\(N(u)∪N(w)) such that b and y are adjacent, we have b′ ∈ N(v)∩N(u)\N(w).
It follows that the vertices y, d, w, a, x, b′, y induce GIII1 .

• If the algorithm stops in line 23, at least one of the edges av, aw, bu, bw, cu, cv is present.
Consider any such edge and follow its endpoints through set X∪Y ∪Z∪{u, v, w} back
to d. We have an induced C6 = GI1 .

• Finally, it is easy to check that if the algorithm outputs an induced subgraph in line 25,
it is GIV.

On the other hand, if GIV is a smallest forbidden subgraph of G, then the algorithm cannot
finish in lines 10, 19 and 23, and hence, it will eventually output GIV in line 25.

Complexity of Algorithm 8. We will show that the complexity of Algorithm 8 is O((n2 +
∆3 + ∆2m)e) = O((n2 + ∆3 + ∆2m)∆m). The loop in lines 1–3 executes O(n2) times and
each run takes O(e) time, i.e., the total time spent on computing second neighborhoods
N2(x)y is O(n2e). The loop in lines 4–28 will execute O(m) times and the loop in lines 5–
27 O(deg(d)3) times. Finding X, Y, Z as well as testing condition in line 9 can be done
in time O(m). Picking x, y, z can be done in time O(∆): for example, to pick x, we can
enumerate through vertices in N(N(u) \ N(v)) and check each if it is not adjacent to d.
Since |N(d)| ≤ ∆, the x will be picked (or it will be determined that no such x exists) in
at most ∆ + 1 steps. Picking a, b, c can be done in time O(m) and testing for presence of
edges in line 22 takes a constant time. Hence, the complexity of the loop in lines 4–28 is∑

d∈B deg(d)3(O(m+ ∆)) = O(∆2e(m+ ∆)).

15

3.2.3 Type V

In this subsection we give two algorithms, Algorithm 9 and Algorithm 10. Each of them
finds a minimum sized induced subgraph GV of G or they report the minimum size forbidden
subgraph of G is of type I or III. We will show that the complexity of Algorithm 9 is O(n3e)
and the complexity of Algorithm 10 is O(me2). Hence, the subgraph of type V (if it is a
smallest forbidden subgraph) can be found in time min{O(n3e),O(me2)}.

Lemma 10. Let G = (B,W) be a bipartite graph with m black vertices and n white vertices.
Let O be a minimum size forbidden obstruction in G. Then one can find O in time O(n3e)
if O is of type V otherwise reports O is of type I or III.

Algorithm 9: Find a GV subgraph or report that there is a smaller subgraph of type
I or III.

Input : G = (B,W)
Output: A subgraph GV of G or report that GV is not a smallest subgraph

1 for distinct x, y, z ∈W do
2 find X = N(x) \ (N(y) ∪N(z));
3 find Y = N(y) \ (N(x) ∪N(z));
4 find Z = N(z) \ (N(x) ∪N(y));
5 find U = (N(y) ∩N(z)) \N(x);
6 pick any u ∈ N(X) ∩N(Y) ∩N(U) if possible;
7 pick any v ∈ N(X) ∩N(Z) ∩N(U) if possible;
8 if u and v has been picked then
9 if u ∈ N(Z) or v ∈ N(Y) then

10 return there is a smaller subgraph of type III (GIII1)
11 end
12 find X′ = X ∩N(u) ∩N(v) and U ′ = U ∩N(u) ∩N(v);
13 if X′ = ∅ or U ′ = ∅ then
14 return there is a smaller subgraph of type I (GI1 or GI2)
15 end
16 pick any a ∈ X′, b ∈ Y ∩N(u), c ∈ Z ∩N(v) and d ∈ U ′;
17 return G[x, y, z, u, v, a, b, c, d]

18 end

19 end
20 return not found

Proof. Correctness of Algorithm 9. The algorithm is able to reduce time complexity by
avoiding trying all possible choices for u, v and a, b, c, d, but rather picking one choice (if
possible), and then either finding GV or a smaller forbidden subgraph. Let us verify that
decisions algorithm makes are correct:

• First, assume that the algorithm stops in line 10. Then there exists w ∈ N(X) ∩
N(Y)∩N(Z)∩N(U) (either u or v). Then there exists a ∈ X ∩N(w), b ∈ Y ∩N(w)
and c ∈ Z ∩N(w). Vertices x, y, z, a, b, c, w induce GIII1 .

• Assume that the algorithm stops in line 14. If X ′ = ∅ and U ′ = ∅, there exists
a ∈ X ∩ N(u), a′ ∈ X ∩ N(v), d ∈ U ∩ N(u) and d′ ∈ U ∩ N(v). Note that a 6= a′,
d 6= d′, a, d /∈ N(v) and a′, d′ 6∈ N(u). It is easy to check that vertices x, a, u, d, y, d′, v, a′

induce C8. Similarly, if either X ′ = ∅ or U ′ = ∅, we can find vertices that induce C6.

• Finally, it is easy to check that if the algorithm outputs an induced subgraph in line 17,
it is GV.

16

On the other hand, if GV is a smallest forbidden subgraph of G, then the algorithm cannot
finish in lines 10 and 14, and hence, it will eventually output GIV in line 17.

Complexity of Algorithm 9. We will show that the complexity of Algorithm 9 is O(n3e) =
O(∆mn3). The first loop executes O(n3) times, determining X, Y, Z, U takes time O(m),
picking u, v time O(e), picking a, b, c, d time O(m). Hence, the total time used by the
algorithm is O(n3(O(m) +O(e))) = O(n3e).

Lemma 11. Let G = (B,W) be a bipartite graph with m black vertices, n white vertices,
and e edges. Let O be a minimum size forbidden obstruction in G. Then one can find O in
time O(me2) if O is of type V otherwise reports O is of type I or III.

Algorithm 10: Find a GV subgraph or report that there is a smaller subgraph of type
I, II or III.

Input : G = (B,W)
Output: A subgraph GV of G or report that GV is not a smallest subgraph

1 for distinct a, d ∈ B do
2 find X = N(a) \N(d);
3 find UV = N(a) ∩N(d);
4 find Y Z = N(d) \N(a);
5 for x ∈ X do
6 find BC = N(Y Z) ∩N(UV) \ {d} \N(x);
7 pick any induced matching yb and zc such that y, z ∈ Y Z and b, c ∈ BC if

possible;
8 if edges yb, zc exist then
9 if both edges bx, cx exist then

10 return there is a smaller subgraph of type I (GI1)
11 end
12 if exactly one of bx, cx exists then
13 return there is a smaller subgraph of type I or II (GI1 or GII1)
14 end
15 pick any u ∈ UV ∩N(b);
16 if uc is an edge then
17 return there is a smaller subgraph of type III (GIII1)
18 end
19 pick any v ∈ UV ∩N(c);
20 return G[x, y, z, u, v, a, b, c, d]

21 end

22 end

23 end
24 return not found

Proof. Correctness of Algorithm 10. Let us verify that the decisions the algorithm makes
are correct:

17

• First, assume that the algorithm stops in line 10, then vertices d, y, b, x, c, z induce
C6 = GI1 .

• Suppose the algorithm stops in line 13. Without loss of generality assume that {b, x}
is an edge and c and x are not connected in G. There must exists a v ∈ UV ∩ N(c).
If b and v are noc connected, then vertices d, y, b, x, a, v induce C6 = GI1 . If there is
edge bv in G, vertices y, b, d, x, v, z, a, c induce GII1 .

• Suppose the algorithm stops in line 17, then vertices u, a, x, b, y, c, z induce GIII1 .

• Finaly, it is easy to check that if the algorithms outputs an induced subgraph in line 20,
it is GV.

On the other hand, if GV is a smallest forbidden subgraph, the algorithm cannot finish in
lines 10, 13 and 17, and hence, it will eventually output GV in line 20.

Complexity of Algorithm 10. We will show that the complexity of the algorithm if
O(me2) = O(∆2m3). The main loop will execute O(m2) times, finding X,UV, Y Z will
take time O(deg(a) + deg(d)). The second loop will execute O(deg(a)) times. As before, the
running time of the algorithm is O(meT), where T is the time spend inside the second loop.
Finding BC takes time O(e). The following lemma shows that picking induced matching of
size two can be done in time O(e). The rest of the body of the second loop takes time O(∆),
hence, the complexity of the algorithm is O(me2).

3.2.4 Main algorithm, Proof of Theorem 7

The proof follows from the Algorithm 11 and the argument about it correctness and its
complexity. Algorithm 11 finds a smallest forbidden subgraph using the three algorithms
described above.

Algorithm 11: Find a smallest forbidden Tucker subgraph.
Input : G = (B,W)
Output: A smallest forbidden subgraph of G

1 find a smallest white asteroidal triple A using Lemma 1;
2 let ` be the sum of the lengths of three paths of A;
3 find a smallest subgraph of types III, IV and V (using the procedures described above);
4 let sIII, sIV, sV be the sizes of these subgraphs (or ∞ if not found), respectively;
5 if ` = min{`, sIII, sIV, sV} then
6 return A
7 else
8 let sX = min{`, sIII, sIV, sV};
9 return the smallest subgraph of type X

10 end

To verify the correctness of Algorithm 11, first consider that one of the smallest forbidden
subgraphs of G is of type I or II. By the above argument, asteroidal triple A is of type I or
II with size `, and since it is a smallest forbidden subgraph, we have ` = min{`, sIII, sIV, sV}.
Hence, the algorithm correctly outputs one of the smallest forbidden subgraphs. Second,
assume that all smallest forbidden subgraphs of G are of type III, IV and V. Let s =
min{sIII, sIV, sV}. If A is of type I or II, then the size of A is `, and hence, ` > s and

18

sX = min{`, sIII, sIV, sV}. If A is of type III, IV or V, then ` ≥ s + 1, and hence again
sX = min{`, sIII, sIV, sV}. It follows that Algorithm 11 correctly outputs one of the smallest
forbidden subgraphs.

It follows from Algorithm 11 that we do not need a special detection algorithms for
type I and II forbidden subgraphs. However, in some applications, there might be a need to
determine a smallest forbidden subgraph of each type. Therefore, we present such algorithms
for these two types of forbidden subgraphs as well.

References

[1] Zaky Adam, Monique Turmel, Claude Lemieux, David Sankoff: Common Intervals and
Symmetric Difference in a Model-Free Phylogenomics, with an Application to Strepto-
phyte Evolution. Journal of Computational Biology 14(4): 436-445 (2007)

[2] Farid Alizadeh, Richard M. Karp, Lee Aaron Newberg, Deborah K. Weisser: Physical
Mapping of Chromosomes: A Combinatorial Problem in Molecular Biology. Algorith-
mica 13(1/2): 52-76 (1995)

[3] Guillaume Blin and Romeo Rizzi and Stéphane Vialette: A Faster Algorithm for Finding
Minimum Tucker Submatrices. J. Theory Comput. Syst. (51) 270-281 (2012)

[4] Kellogg S. Booth and George S. Lueker: Testing for the Consecutive Ones Property,
Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci.
13(3): 335-379 (1976)

[5] Cedric Chauve, Eric Tannier: A Methodological Framework for the Reconstruction of
Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes.
PLoS Computational Biology 4(11) (2008)

[6] Michael Dom and Jiong Guo and Rolf Niedermeier : Approximation and fixed-parameter
algorithms for consecutive ones submatrix problems J.Computer and System Sciences
76 (3-4) 204-221 (2010)

[7] M.Habib, Ross M. McConnell, Christophe Paul, Laurent Viennot: Lex-BFS and par-
tition refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theor. Comput. Sci. 234(1-2): 59-84 (2000)

[8] Wen-Lian Hsu: A Simple Test for the Consecutive Ones Property. J. Algorithms 43(1):
1-16 (2002)

[9] Wei-Fu Lu, Wen-Lian Hsu: A Test for the Consecutive Ones Property on Noisy Data
- Application to Physical Mapping and Sequence Assembly. Journal of Computational
Biology 10(5): 709-735 (2003)

[10] Nathan Lindzey and Ross M. McConnell : On Finding Tucker Submatrices and
Lekkerkerker-Boland Subgraphs. WG 2013.

19

[11] Jian Ma, Louxin Zhang, Bernard B. Suh, Brian J. Raney, Richard C. Burhans, W.
James Kent, Mathieu Blanchette, David Haussler, and Webb Miller1 : Reconstructing
contiguous regions of an ancestral genome. GenomeRes 16(12) 1557–1565 (2006)

[12] Ross M. McConnell: A certifying algorithm for the consecutive-ones property. SODA
2004: 768-777

[13] Joao Meidanis, Oscar Porto, Guilherme P. Telles: On the Consecutive Ones Property.
Discrete Applied Mathematics 88(1-3): 325-354 (1998)

[14] A. C. Tucker: A structure theorem for the consecutive 1’s property. J. of Comb. Theory,
Series B 12 :153-162 (1972)

20

