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Abstract. An n-partite tournament is an orientation of a complete n-partite graph. An
n-partite tournament is a tournament, if it contains exactly one vertex in each partite set.
Douglas, Proc. London Math. Soc. 21 (1970) 716–730, obtained a characterization of strongly
connected tournaments with exactly one Hamilton cycle (i.e., n-cycle). For n ≥ 3, we charac-
terize strongly connected n-partite tournaments that are not tournaments with exactly one
n-cycle. For n ≥ 5, we enumerate such non-isomorphic n-partite tournaments.

1. Introduction

We use terminology and notation of [1]; all necessary notation and a large part of
terminology used in this paper are provided in the next section.

The problems of characterizing strongly connected tournaments having a unique
Hamilton cycle and finding the number of such tournaments have attracted sev-
eral researches. R.J. Douglas [4] gave a structural characterization of tournaments
having a unique Hamilton cycle. This result implies a formula for the number sn of
non-isomorphic tournaments of order n with a unique Hamilton cycle. This charac-
terization as well as the formula are rather complicated. G.P. Egorychev [5] obtained
a simplification by considering a generating function for the number of tournaments
with unique Hamiltonian cycle. M.R. Garey [6] showed that sn could be expressed as
a Fibonacci number (sn = f2n−6); his derivation was based on Douglas’s character-
ization. J.W. Moon [13] obtained a direct proof of Garey’s formula that is essentially
independent of Douglas’s characterization.

A classical result of J.A. Bondy [3] on short cycles in strong n-partite tourna-
ments implies that every strong n-partite tournament contains an n-cycle.

In this paper, we provide a characterization of strongly connected n-partite tour-
naments (n ≥ 3) that are not tournaments with a unique n-cycle. We show that our
characterization is polynomial time verifiable. The characterization allows us to
find easily the number of such non-isomorphic n-partite tournaments for n ≥ 5.

Thus, our work is a natural continuation of the papers mentioned in the previous
paragraph.

Our result is also related to a question of L. Volkmann [14]: let n ≥ 4, is there a
strongly connected n-partite tournament with at least two vertices in some partite
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set and with exactly n − m + 1 cycles of length m for each fixed m ∈ {4, 5, . . . , n}?
The first two authors [12] gave an affirmative answer to this question and raised a
natural problem of characterizing such n-partite tournaments. Our paper solves the
problem for n = m, which seems the most interesting case.

A recent paper [14] of L. Volkmann is the latest survey on cycles in multipar-
tite tournaments. Cycles in multipartite tournaments were earlier overviewed in
[2, 8, 10].

2. Terminology and Notation

A digraph obtained from an undirected graph G by replacing every edge of G with
a directed edge (arc) with the same end-vertices is called an orientation of G. An
oriented graph is an orientation of some undirected graph. A tournament is an ori-
entation of a complete graph, and an n-partite tournament is an orientation of a
complete n-partite graph. Partite sets of complete multipartite graphs become par-
tite sets of n-partite tournaments.

The terms cycle and path mean simple directed cycle and path. A cycle of length
k is a k-cycle. For a cycle C = v1v2 . . . vkv1, C[vi, vj ] denotes the path vivi+1 . . . vj

which is part of C. A digraph D is strong (or, strongly connected) if for every ordered
pair x, y of vertices in D there exists a path from x to y. For a set X of vertices of a
digraph D, D〈X〉 denotes the subdigraph of D induced by X.

For sets T , S of vertices of a digraph D = (V , A), T →S means that for every
vertex t ∈ T and for every vertex s ∈ S, we have ts ∈ A, and T ⇒S means that
for no pair s ∈ S, t ∈ T , we have st ∈ A. While for oriented graphs T →S implies
T ⇒S, this is not always true for general digraphs. If u→v (i.e., uv ∈ A), we say that
u dominates v and v is dominated by u.

For a digraph D = (V , A) and a vertex x ∈ V , N+(x) = {y ∈ V : xy ∈ A}.
Similarly, N−(x) = {y ∈ V : yx ∈ A}. We denote, by UCn, the set of all strong
n-partite tournaments, n ≥ 3, which are not themselves tournaments, with exactly
one cycle of length n.

We call X = X1 ∪X2 ∪ . . .∪Xs a partition of X and denote it by X = X1 �X2 �
. . . � Xs , if Xi ∩ Xj = ∅ for each i �= j.

3. The Case of n ≥ 4

We start from two known results.

Theorem 3.1. [9] Every partite set of a strong n-partite tournament, n ≥ 3, contains a
vertex which lies on an m-cycle for each m ∈ {3, 4, . . . , n}.

Theorem 3.2. [7] Every vertex in a strong n-partite tournament, n ≥ 3, belongs to a
cycle that contains vertices from exactly q partite sets for each q ∈ {3, 4, . . . , n}.
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Lemma 3.3. Let D be a digraph with a cycle C. If for some vertices x, y ∈ V (D)−V (C)

we have |N+(x) ∩ V (C)| + |N−(y) ∩ V (C)| > |V (C)|, then there is an (x, y)-path of
length l in D, for all l = 2, 3, . . . , |V (C)| + 1.

Proof. Suppose that there was no (x, y)-path of length l in D. Let z ∈ N−(y)∩V (C)

and letube the vertex onC such that the path fromu to z inC has length l−2.Observe
that u does not dominate x. Thus, |N+(x) ∩ V (C)| ≤ |V (C)| − |N−(y) ∩ V (C)|, a
contradiction.

Lemma 3.4. If n ≥ 3, D ∈ UCn and C is the unique n-cycle in D, then C contains
vertices from all partite sets. There is a vertex y ∈ D − V (C) such that D〈V (C) ∪ y〉
is strong.

Proof. Let D ∈ UCn and let C be its unique n-cycle. If C contains vertices from less
than n partite sets, then by Theorem 3.1 there exists another n-cycle, which is impos-
sible. Therefore C contains a vertex from every partite set of D. Let V1, V2, . . . , Vn

be partite sets of D and let C = v1v2 . . . vnv1, vi ∈ Vi, i = 1, 2, . . . , n.

Assume that there is no vertex y ∈ D − V (C) for which D〈V (C) ∪ y〉 is strong.
Then the following two sets S and T are non-empty: S (T ) is the set of vertices in
D − V (C) that do not dominate (are not dominated by) any vertex in C. Since D

is strong, there exist vertices u ∈ S and v ∈ T such that u → v. By Lemma 3.3 we
obtain an n-cycle containing u and v, a contradiction.

Lemma 3.5. Let n ≥ 4, let D ∈ UCn and let C be the unique n-cycle in D. We may
order the partite sets in D such that C = v1v2 . . . vnv1, where vi ∈ Vi and vi→vj for
all 1 < j + 1 < i ≤ n. If y ∈ V (D) − V (C) such that D〈V (C) ∪ y〉 is strong, then
one of the following statements hold.

(i): y ∈ V2, y→({v1} ∪ {v3, v4, . . . , vn−1}) and vn→y.
(ii): y ∈ Vn−1, ({vn} ∪ {vn−2, vn−3, . . . , v2})→y and y→v1.

Proof. By Lemma 3.4 D〈V (C)〉 is a tournament and there exists a vertex y ∈ V (D)−
V (C) such that D〈V (C) ∪ y〉 is strong. Let C = w1w2 . . . wnw1 and assume that
y belongs to the same partite set as wi . By Theorem 3.2, y lies in a cycle C′ of
D〈V (C) ∪ y〉 that contains vertices from exactly n − 1 partite sets. If C′ contains
wi , then the length of C′ is n, a contradiction. Thus, C′ does not contain wi and a
vertex wj , j �= i. Let T = D〈V (C′) ∪ wj 〉; T is a tournament. If T is strong, then
it has a Hamilton cycle, which is an n-cycle in D distinct from C, a contradiction.
Therefore we may assume that T is not strong.

Thus, either C′→wj or wj→C′. First assume that C′→wj (we will show that
this implies (i) above). Since every vertex in C dominates a vertex, C′→wj implies
wj = wi−1. Let C′ = z1z2 . . . zn−1z1 where zn−1 = y. Note that if wi→zr , for
any r > 1, then wiC

′[zr , zr−2]wi−1wi is an n-cycle containing y = zn−1, and thus
distinct from C, a contradiction. Therefore z1 = wi+1 and V (C′) − {wi+1}⇒wi .

We will now show that zq→zk for all 1 < k + 1 < q ≤ n − 1. To prove this
claim, assume that zk→zq for some 1 < k + 1 < q ≤ n − 1. If q = k + 2, then the
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cycle wiC
′[z1, zq−2]C′ [zq, zn−1]wi−1wi gives us a contradiction. Assume that q is

maximum, and subject to that k is maximum. Then the cycle wiC
′[z1, zk]C′[zq, zn−1]

C′[zk+2, zq−1]wi−1wi gives us a contradiction. Since C = wiC
′[z1, zn−2]wi−1wi , we

have proved the first part of the lemma by letting v1 = wi−1, v2 = wi , . . ., vn = wi−2.
In order to prove (i), we observe that y ∈ V2 follows immediately from the fact that
y and wi = v2 lie in the same partite set. The facts that y→{v1, v3, v4, . . . , vn−1}
and vn→y also follow from the above as y = zn−1, which dominates wi−1 and all
zk with 1 ≤ k ≤ n − 3.

The case when wj→C′ can be considered analogously to the above and, in
particular, implies (ii).

In what follows, D ∈ UCn and C = v1v2 . . . vnv1 is the unique n-cycle of D.

Assume that the ordering of the partite sets satisfies the conditions of Lemma 3.5.
Let us partition the vertices of Vi − vi (1 ≤ i ≤ n) into four classes. We say that

x ∈ Vi − {vi} is of type 1 if it satisfies condition (i) of Lemma 3.5, x is of type 2 if
it satisfies condition (ii) of Lemma 3.5, and x is of type 3 if V (C)⇒x and finally x

is of type 4 if x⇒V (C). Let Ti denote the set of vertices of type i (1 ≤ i ≤ 4) in
D − V (C).

Remark. From the last lemma, we have that the vertices of type 1 are all in one
partite set, V2, the vertices of type 2 are all in the same partite set, Vn−1.

Lemma 3.6. If n ≥ 4, then (T1 ∪ T4)⇒(T2 ∪ T3).

Proof. If there is an arc uw from T2 ∪ T3 to T1 ∪ T4, then we observe that |N+(w) ∩
V (C)| + |N−(u) ∩ V (C)| ≥ (n − 2) + (n − 2) ≥ n. We are now done by Lemma 3.3,
unless equality holds, in which case n = 4, u ∈ T2 and w ∈ T1. However in this case
the 4-cycle uwv1v2u, gives us the desired contradiction.

Remark. It is possible that T1 or T2 is empty, but by Lemmas 3.4 and 3.5 at least
one of them is non-empty.

Lemma 3.7. Let n ≥ 4. Let R0 = T1 and Q0 = T2, and define Ri and Qi , i ≥ 1, as
follows.

Ri = {r ∈ T4 : the shortest path from R0 to r in D−V (C)−T2−T3 has length i}.
Qi = {q ∈ T3 : the shortest path from q to Q0 in D−V (C)−T1−T4 has length i}.
Note that Rj⇒Ri and Qi⇒Qj for all j > i + 1 ≥ 1, by definition. The following

must also hold for i ≥ 0.

(a) Ri ⊆ V
(i mod n−1)+2

(b) Qi ⊆ V
(n−2−i mod n−1)+1

Proof. We start of by proving (a) by induction on i. The claim (a) is clearly true for
i = 0, by Lemma 3.5, so we may assume that i > 0. Also assume that i < n − 1. If
there exists a vertex ri ∈ Ri −Vi+2, then let P be a path of length i from r0 ∈ R0 to ri
and observe that PC[vi+2, vn]r0 is an n-cycle, a contradiction. Therefore Ri ⊆ Vi+2
when i < n − 1.
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If i ≥ n − 1, then Ri⇒Ri−(n−1) by the definition of sets Ri . This would give
us an n-cycle different from C, unless all vertices in Ri belong to the same par-
tite set as all vertices in Ri−(n−1). We are now done by induction hypothesis as
Ri−(n−1) ⊆ V

((i−(n−1) mod n−1)+2 = V
(i mod n−1)+2.

(b) can be proved analogously to (a).

Lemma 3.8. Consider Ri and Qi as defined in Lemma 3.7. The following now holds.

(a) If n ≥ 5 then Ri→Ri+1 and Qi+1→Qi for all i ≥ 0.
(b) If n ≥ 6 and |Ri | > 0 then |Ri−2| = 1 for all i ≥ 2.

Furthermore if |Qi | > 0 then |Qi−2| = 1 for all i ≥ 2.

Proof. We first prove the first part of (a). Assume that it is not true and that there
exists ri ∈ Ri and ri+1 ∈ Ri+1 with ri+1→ri . Let P = p0p1 . . . piri+1 be a path from
R0 to ri+1 in D − V (C) − T2 − T3 of length i + 1. Note that ri �∈ P . If i + 3 ≥ n,
then we obtain the n-cycle ri+1riP [pi−n+3, ri+1], a contradiction (as ri→pi−n+3, by
Lemma 3.7 and the fact that i − n + 3 ≤ i − 2). If i + 3 < n then we obtain the
n-cycle ri+1riC[vi+4, vn]P , a contradiction. This proves the first part of (a).

The second part of (a) can be proved analogously.
We now prove the first part of (b). Assume that it is not true. Let ri ∈ Ri be arbi-

trary and let P = p0p1 . . . pi−1ri be any path from R0 to ri in D−V (C)−T2 −T3 of
length i. Let ri−2 ∈ Ri−2 −pi−2 be arbitrary. If i +2 ≥ n, then we obtain the n-cycle
riri−2P [pi−n+2, ri ], a contradiction (as ri−2→pi−n+2, by Lemma 3.7 and the fact
that i − n + 2 ≤ i − 4). If i + 2 < n then we obtain the n-cycle riri−2C[vi+3, vn]P ,
a contradiction. This proves (b).

The second part of (b) is proved analogously.

Theorem 3.9. Let n ≥ 4 and let Z = {v1, v2, v3, . . . , vn}. Let R0, R1, . . . Ra and
Q0, Q1, . . . , Qb be disjoint non-empty sets (if a = −1 then there are no R-sets and if
b = −1 then there are no Q-sets). Let R = R0 � R1 � . . . � Ra and Q = Q0 � Q1 �
. . . � Qb.

Let D be a multipartite tournament with V (D) = Z�R�Q. Let V1, V2, . . . , Vn be
the partite sets of D, where vi ∈ Vi , Ri ⊆ V

(i mod n−1)+2 and Qi ⊆ V
(n−2−i mod n−1)+1

for all i. Furthermore assume that the following statements hold.

(a) For all i = 1, 2, . . . , n − 1 we have vi→vi+1.
(b) For all 1 ≤ j < i − 1 < n we have vi→vj .
(c) For all 0 ≤ j < i − 1 < a we have Ri⇒Rj , and for all 0 ≤ j < i − 1 < b we have

Qj⇒Qi .
(d) We have R⇒Z⇒Q and R⇒Q, except for Q0→v1 and vn→R0.
(e) If n ≥ 6, then |R0| = |R1| = . . . = |Ra−2| = 1 and |Q0| = |Q1| = . . . =

|Qb−2| = 1.
(f) If n ≥ 5, then Ri→Ri+1 for all i = 0, 1, 2, . . . , a − 1, and Qi+1→Qi for all

i = 0, 1, 2, . . . , b − 1.
(g) If n = 4, then the following holds. Every vertex in Ri+1 has an arc into it from

Ri , for all i = 0, 1, . . . , a − 1. Every vertex in Qi+1 has an arc into Qi , for all
i = 0, 1, . . . , b − 1. Furthermore there is no 4-cycle in D〈R〉 or D〈Q〉.
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Then D contains a unique n-cycle. Any n-partite tournament, which is not a tour-
nament, with a unique n-cycle, can be constructed as above.

Proof. We note that if D is a n-partite tournament, which is not a tournament,
containing a unique n-cycle, then all of the above must hold by the previous lemmas
(note that (g) follows trivially).

Now we prove that if D satisfies the above conditions then C = v1v2v3 . . . vnv1
is a unique n-cycle in D. Assume that C′ is another n-cycle. By (a) and (b), C′ is not
completely in D〈Z〉. We claim that D〈R〉 and D〈Q〉 do not contain an n-cycle. This
follows from (g) for n = 4, from (c), (e), (f) and the fact that two R-sets or Q-sets
with indices n apart are in the same partite set for n ≥ 5 (for n ≥ 6 (e) is important
to prevent an n-cycle visiting the same R-set or Q-set twice). As R⇒Q, this implies
that there is no n-cycle in D〈R ∪ Q〉. This implies that C′ must contain at least one
vertex from Z. We now consider the following cases.

Case 1. Assume that V (C′) ∩ R �= ∅ and V (C′) ∩ Q �= ∅. By (d), C′ must contain
vn followed by vertices in R, then by vertices in Q and then the vertex v1. However
then we must have a path from v1 to vn in D〈Z〉, and the only such path has length
n, a contradiction to the length of C′.

Case 2. Assume that V (C′)∩R �= ∅ and V (C′)∩Q = ∅. As before C′ must contain
vn followed by vertices in R, then by vertices in Z, ending in vn.

Let r = |R ∩ V (C′)|. If n = 4 we get a contradiction by considering the cases
r = 1, 2, 3 separately. In particular, for r = 3, the path C′ ∩ R has both initial
and terminal vertices in R0 or the initial vertex in R0 and the terminal one in R2.
However, v4→R0, and v4 and R2 are in the same partite set.

If n = 5 and r = 4, then the predecessor of vn on C′ must lie in either R0 or R3,
a contradiction. If n ≥ 6, or r ≤ 3 and n = 5, then the only path with r vertices in
D〈R〉 starting at R0, has the form s0s1s2 . . . sr−1, where si ∈ Ri . Since the only path
into vn with n − r vertices in D〈Z〉 is vr+1vr+2 . . . vn, we get a contradiction (sr−1
and vr+1 lie in the same partite set).

Case 3. Assume that V (C′) ∩ R = ∅ and V (C′) ∩ Q �= ∅. We can obtain a contra-
diction analogously to Case 2.

Corollary 3.10. We can check whether a strong n-partite tournament, n ≥ 4, belongs
to UCn in polynomial time.

Proof. Let D be a strong n-partite tournament, n ≥ 4. The above mentioned result
of Bondy [3] implies that D has an n-cycle. The constructive proof in [3] implies a
polynomial algorithm to construct such a cycle C. If C has two or more vertices
from the same partite set, then by Theorem 3.1 D /∈ UCn. Otherwise, we have to
check the conditions of the above theorem that can be done in polynomial time.
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Corollary 3.11. The number of non-isomorphic strong n-partite tournaments, n ≥ 6,
with n + q vertices belonging to UCn is

t (n, q) = 2 + (q − 1)q +
q−1∑

j=1

(1 + j (j − 1)/2)(1 + (q − j)(q − j − 1)/2).

The number of non-isomorphic strong 5-partite tournaments, with q+5 vertices belong-
ing to UC5 is t (5, q) = (q + 3)2q−2.

Proof. It follows from Theorem 3.9 that t (n, q), for n ≥ 5, equals the number of
possible partitions of sets R and Q (or of the non-empty one, if one of them is
empty).

Let n ≥ 6. If R = ∅, then q vertices of Q may all be in Q0 or exactly one vertex
in each of Q0, Q1, . . . , Qb−2 and q − b + 1 vertices are in Qb−1 ∪ Qb. Since there
are exactly q − b ways to distribute q − b + 1 vertices among non-empty Qb−1
and Qb and 1 ≤ b ≤ q − 1, the overall number of possible partitions of Q equals
1 + (q − 1)q/2.

To compute t (n, q) for n ≥ 6, it suffice to observe that the number of possible
partitions of R also equals 1 + (q − 1)q/2, if Q = ∅, and if both R and Q are
non-empty, then the number of possible partitions of R and Q equals (1 + j (j −
1)/2)(1 + (q − j)(q − j − 1)/2) provided |R| = j.

Let n = 5. If R = ∅, then q vertices of Q may be distributed among the Q-sets
as follows: we “open” Q0 and put the first vertex in Q0, the second vertex goes into
Q0 or into Q1, but if it goes into Q1, we “close” Q0 and “open” Q1 (similarly to the
first fit heuristic in bin packing), etc. The kth vertex goes into the open Qj or we
“close” Qj and “open” Qj+1 and put the vertex there. This algorithm implies that
the number of possible partitions of Q equals 2q−1.

Similarly to the case of n ≥ 6, we see that t (5, q) equals 2 × 2q−1 + ∑q−1
j=1

2j−12q−j−1.

Remark. It is interesting to observe that while t (n, q) is polynomial for n ≥ 6, the
number is exponential, in q, for n = 5. Another interesting observation is that
we have been able to find the exact number of certain non-isomorphic n-partite
tournaments. For non-isomorphic acyclic and close to acyclic families of n-partite
tournaments, an exact enumeration was given in [11].

4. The Case of n = 3

Theorem 4.1. A strong 3-partite tournament D with partite sets V1, V2 and V3 contains
a unique 3-cycle if and only if it can be constructed in one of the following two ways.

(i) A partite set, say V1, has only one vertex x and there is exactly one arc from
N+(x) to N−(x).

(ii) Each partite set has at least two vertices. Letv1 ∈ V1,v2 ∈ V2 andV3 = {v3}�W1�
W2 (W1 or W2 may be empty). Let D contain arcs such that (V1∪W1)⇒(V2∪W2)
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and ((V1 ∪ v2) − v1)→v3→((V2 ∪ v1) − v2). The arcs between W1 and V1 as well
as between W2 and V2 are arbitrary.

Proof. It is not difficult to check that a digraph constructed as in (i) above has a
unique 3-cycle. Now let D be a digraph constructed as in (ii) above, and let S1 =
W1 ∪ V1 and S2 = W2 ∪ V2. Observe that D〈Si ∪ {v3}〉 is bipartite for i = 1, 2.
Therefore any 3-cycle must contain vertices from both S1 and S2. However, the only
path from S2 to S1 is v2v3v1, which gives us the unique 3-cycle v1v2v3v1.

Now assume that D is a strong 3-partite tournament containing a unique 3-cycle.
Let V1, V2 and V3 be partite sets of D. We first consider the case when some partite
set is of size 1. Without loss of generality assume that V1 = {x}. Clearly, every arc
from N+(x) to N−(x) results in a 3-cycle, and there must be at least one such arc as
D is strong. This implies that D can be constructed as in (i) above. So now consider
the case when all partite sets contain at least two vertices.

Let C = v1v2v3v1 be the unique 3-cycle in D, with vi belonging to the partite
set Vi . Note that if X ⊆ V (C) is non-empty then D − X is not strong, by Theorem
3.1. Let Q1, Q2, . . . Qs be the strong components of D − V (C), such that Qi⇒Qj

for all 1 ≤ i < j ≤ s. Observe that each Qi has vertices from at most two partite
sets. Let Q∗ contain all vertices in D − V (C) which have a path into it from Q1 and
a path from it to Qs . The set Q∗ �= ∅ since Q1 ∪ Qs are in Q∗.

Observe that Q∗ contains vertices from all three partite sets. As D is strong, there
is an arc from C to Q1. Without loss of generality assume that v1q1 is such an arc.
There is also an arc from Qs to C. Note that this arc must enter v2, as if it enters v1
then D〈Q∗ ∪ {v1}〉 is strong and if it enters v3 then D〈Q∗ ∪ {v1, v3}〉 is strong. Let
qsv2 be such an arc. By an analogous argument q1⇒V (C)− v1 and V (C)− v2⇒qs .
This implies that q1 and qs belong to the partite set V3, as we otherwise would obtain
the 3-cycles v1q1v3v1 and/or qsv2v3qs .

Now assume that there exists an arc r2r1 in D − V (C), where r2 ∈ V2 and
r1 ∈ V1. If r2→v3, then let P be any path from q1 to r2 in D − V (C) (which exists
as q1 ∈ Q1 ∩ V3). Thus, D〈V (P ) ∪ {v3, v1}〉 is strong and contains vertices from
three partite sets. By Theorem 3.1, it contains a 3-cycle, which does not include v2, a
contradiction. Therefore v3→r2. We can analogously prove that r1→v3. However,
this gives us the 3-cycle v3r2r1v3, a contradiction. Therefore (V1 − v1)→(V2 − v2).

This means, in particular, that there exists an index i ≥ 1, such that V1 − v1 ⊆
Q1 ∪ Q2 ∪ . . . ∪ Qi and V2 − v2 ⊆ Qi+1 ∪ Qi+2 ∪ . . . ∪ Qs (as all Q’ s can contain
vertices from at most two partite sets). Furthermore there is no r2 ∈ V2, such that
r2→v1 as we could then obtain the 3-cycle v1q1r2v1 not including v2 or v3. Similarly
there is no r1 ∈ V1, such that v2→r1. Setting W1 = (Q1 ∪ Q2 ∪ . . . ∪ Qi) ∩ V3 and
W2 = (Qi+1 ∪ Qi+2 ∪ . . . ∪ Qs) ∩ V3 and using the conclusions above, we obtain
(V1 ∪ W1)⇒(V2 ∪ W2).

Suppose there exists r1 ∈ V1 − v1 such that v3→r1. Let P be a path in D −V (C)

from r1 to qs. Then D〈V (P ) ∪ {v2, v3}〉 is strong and has vertices from three partite
sets. Thus, by Theorem 3.1, it has a 3-cycle. The 3-cycle does not include v1, a con-
tradiction. Hence, (V1 − v1)→v3. Similarly, we can prove that v3→(V2 − v2). This
completes the proof that D satisfies the conditions in (ii).
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