
File I/O

Arash Rafiey

November 7, 2017

Arash Rafiey File I/O

Files

File is a place on disk where a group of related data is stored.

C provides various functions to handle files on the storage devices.

Arash Rafiey File I/O

Files

File is a place on disk where a group of related data is stored.

C provides various functions to handle files on the storage devices.

Arash Rafiey File I/O

Files

File is a place on disk where a group of related data is stored.

C provides various functions to handle files on the storage devices.

Arash Rafiey File I/O

File Pointer

File pointer is used to let the program keep track of the file being
accessed.

Example:

FILE *filepointer name;

File pointer points to a structure that contains information about
the file, such as:

current character position in the buffer

whether file is being read or written

whether errors or end of file have occurred .

The header file <stdio.h> includes FILE structure declaration.

Arash Rafiey File I/O

File Pointer

File pointer is used to let the program keep track of the file being
accessed.

Example:

FILE *filepointer name;

File pointer points to a structure that contains information about
the file, such as:

current character position in the buffer

whether file is being read or written

whether errors or end of file have occurred .

The header file <stdio.h> includes FILE structure declaration.

Arash Rafiey File I/O

File Pointer

File pointer is used to let the program keep track of the file being
accessed.

Example:

FILE *filepointer name;

File pointer points to a structure that contains information about
the file, such as:

current character position in the buffer

whether file is being read or written

whether errors or end of file have occurred .

The header file <stdio.h> includes FILE structure declaration.

Arash Rafiey File I/O

File Pointer

File pointer is used to let the program keep track of the file being
accessed.

Example:

FILE *filepointer name;

File pointer points to a structure that contains information about
the file, such as:

current character position in the buffer

whether file is being read or written

whether errors or end of file have occurred .

The header file <stdio.h> includes FILE structure declaration.

Arash Rafiey File I/O

File Pointer

File pointer is used to let the program keep track of the file being
accessed.

Example:

FILE *filepointer name;

File pointer points to a structure that contains information about
the file, such as:

current character position in the buffer

whether file is being read or written

whether errors or end of file have occurred .

The header file <stdio.h> includes FILE structure declaration.

Arash Rafiey File I/O

File Access

Opening a file:

fopen() function can be used to create a new file or to open an
existing file.

Syntax:

FILE *fopen(char * filename, char * mode);

It returns a pointer to structure FILE.

If the file is successfully opened then fopen()returns a pointer to
file and if it is unable to open a file then it returns NULL.

Filename is a string that holds the name of the file on disk
(including a path like /cs/course if necessary).

Arash Rafiey File I/O

File Access

Opening a file:

fopen() function can be used to create a new file or to open an
existing file.

Syntax:

FILE *fopen(char * filename, char * mode);

It returns a pointer to structure FILE.

If the file is successfully opened then fopen()returns a pointer to
file and if it is unable to open a file then it returns NULL.

Filename is a string that holds the name of the file on disk
(including a path like /cs/course if necessary).

Arash Rafiey File I/O

File Access

Opening a file:

fopen() function can be used to create a new file or to open an
existing file.

Syntax:

FILE *fopen(char * filename, char * mode);

It returns a pointer to structure FILE.

If the file is successfully opened then fopen()returns a pointer to
file and if it is unable to open a file then it returns NULL.

Filename is a string that holds the name of the file on disk
(including a path like /cs/course if necessary).

Arash Rafiey File I/O

File Access

Opening a file:

fopen() function can be used to create a new file or to open an
existing file.

Syntax:

FILE *fopen(char * filename, char * mode);

It returns a pointer to structure FILE.

If the file is successfully opened then fopen()returns a pointer to
file and if it is unable to open a file then it returns NULL.

Filename is a string that holds the name of the file on disk
(including a path like /cs/course if necessary).

Arash Rafiey File I/O

File Access

Opening a file:

fopen() function can be used to create a new file or to open an
existing file.

Syntax:

FILE *fopen(char * filename, char * mode);

It returns a pointer to structure FILE.

If the file is successfully opened then fopen()returns a pointer to
file and if it is unable to open a file then it returns NULL.

Filename is a string that holds the name of the file on disk
(including a path like /cs/course if necessary).

Arash Rafiey File I/O

File Access

Modes of fopen() can be the following values:

Arash Rafiey File I/O

File Access

Modes of fopen() can be the following values:

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

File Access

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”r”);

//This will open the file xyz.txt in read mode.

Closing a file:

After reading/writing of a file, the file should be closed.

Closing of a file is performed using library function fclose().

Syntax:

int fclose(FILE *file pointer);

fclose() returns zero on success and returns EOF (end of file) if
there is an error in closing the file.

EOF is a constant defined in the header file stdio.h.

Example: fclose(fp);

Arash Rafiey File I/O

Writing to a file

Writing to a file:
When a file is opened for writing, it is created if it does not already
exist.

If the file already exists then its old contents are discarded.

The function fprintf can be used to write to a file.

It is similar to printf except that it takes a file pointer as its first
argument.

Syntax:

int fprintf(FILE *fp,char *format, ...);

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”w”);

fprintf(fp, ”HELLO \n”);

Arash Rafiey File I/O

Writing to a file

Writing to a file:
When a file is opened for writing, it is created if it does not already
exist.

If the file already exists then its old contents are discarded.

The function fprintf can be used to write to a file.

It is similar to printf except that it takes a file pointer as its first
argument.

Syntax:

int fprintf(FILE *fp,char *format, ...);

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”w”);

fprintf(fp, ”HELLO \n”);

Arash Rafiey File I/O

Writing to a file

Writing to a file:
When a file is opened for writing, it is created if it does not already
exist.

If the file already exists then its old contents are discarded.

The function fprintf can be used to write to a file.

It is similar to printf except that it takes a file pointer as its first
argument.

Syntax:

int fprintf(FILE *fp,char *format, ...);

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”w”);

fprintf(fp, ”HELLO \n”);

Arash Rafiey File I/O

Writing to a file

Writing to a file:
When a file is opened for writing, it is created if it does not already
exist.

If the file already exists then its old contents are discarded.

The function fprintf can be used to write to a file.

It is similar to printf except that it takes a file pointer as its first
argument.

Syntax:

int fprintf(FILE *fp,char *format, ...);

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”w”);

fprintf(fp, ”HELLO \n”);

Arash Rafiey File I/O

Writing to a file

Writing to a file:
When a file is opened for writing, it is created if it does not already
exist.

If the file already exists then its old contents are discarded.

The function fprintf can be used to write to a file.

It is similar to printf except that it takes a file pointer as its first
argument.

Syntax:

int fprintf(FILE *fp,char *format, ...);

Example:

FILE *fp;

fp = fopen(”xyz.txt”, ”w”);

fprintf(fp, ”HELLO \n”);

Arash Rafiey File I/O

Writing to a file

fputc() is used to write a single character at a time.

Syntax:

int fputc (char c, FILE *fp);

It writes a character to the file and returns success, or EOF if an
error occurs.

Example:

FILE *fp;

char c;

fp = fopen(”xyz.txt”, ”w”);

for (c = ’A’ ; c <= ’Z’ ; c++)

fputc (c , fp);

Arash Rafiey File I/O

Writing to a file

fputc() is used to write a single character at a time.

Syntax:

int fputc (char c, FILE *fp);

It writes a character to the file and returns success, or EOF if an
error occurs.

Example:

FILE *fp;

char c;

fp = fopen(”xyz.txt”, ”w”);

for (c = ’A’ ; c <= ’Z’ ; c++)

fputc (c , fp);

Arash Rafiey File I/O

Writing to a file

fputc() is used to write a single character at a time.

Syntax:

int fputc (char c, FILE *fp);

It writes a character to the file and returns success, or EOF if an
error occurs.

Example:

FILE *fp;

char c;

fp = fopen(”xyz.txt”, ”w”);

for (c = ’A’ ; c <= ’Z’ ; c++)

fputc (c , fp);

Arash Rafiey File I/O

Writing to a file

fputc() is used to write a single character at a time.

Syntax:

int fputc (char c, FILE *fp);

It writes a character to the file and returns success, or EOF if an
error occurs.

Example:

FILE *fp;

char c;

fp = fopen(”xyz.txt”, ”w”);

for (c = ’A’ ; c <= ’Z’ ; c++)

fputc (c , fp);

Arash Rafiey File I/O

Writing to a file

The function fputs() writes a string to the file.

Syntax:

int fputs (char *s, FILE *fp);

It returns a non-negative value on success or EOF in case of any
error.

Example:

FILE *fp;

char c[] = ”Hello”;

fp = fopen(”xyz.txt”, ”w”);

fputs (c , fp);

Arash Rafiey File I/O

Writing to a file

The function fputs() writes a string to the file.

Syntax:

int fputs (char *s, FILE *fp);

It returns a non-negative value on success or EOF in case of any
error.

Example:

FILE *fp;

char c[] = ”Hello”;

fp = fopen(”xyz.txt”, ”w”);

fputs (c , fp);

Arash Rafiey File I/O

Writing to a file

The function fputs() writes a string to the file.

Syntax:

int fputs (char *s, FILE *fp);

It returns a non-negative value on success or EOF in case of any
error.

Example:

FILE *fp;

char c[] = ”Hello”;

fp = fopen(”xyz.txt”, ”w”);

fputs (c , fp);

Arash Rafiey File I/O

Writing to a file

The function fputs() writes a string to the file.

Syntax:

int fputs (char *s, FILE *fp);

It returns a non-negative value on success or EOF in case of any
error.

Example:

FILE *fp;

char c[] = ”Hello”;

fp = fopen(”xyz.txt”, ”w”);

fputs (c , fp);

Arash Rafiey File I/O

Example:

FILE *fp;

int n = 2017;

fp = fopen(”xyz.txt”, ”w”);

fprintf(fp, ”%s %s %s %d ”, ”We”, ”are”, ”in”, n);

Arash Rafiey File I/O

Reading a file

Reading a file:
A file can be opened for reading, only if it already exist.

Reading a file that does not exist is an error.

fscanf can be used to read from a file.

It is similar to scanf except that it takes a file pointer as its first
argument.

Syntax:

int fscanf(FILE *fp,char *format, ...);

Example:

FILE *fp;
char buff[100];

fp = fopen(”xyz.txt”, ”r”);

fscanf(fp, ”%s”, buff);

Arash Rafiey File I/O

Reading a file

Reading a file:
A file can be opened for reading, only if it already exist.

Reading a file that does not exist is an error.

fscanf can be used to read from a file.

It is similar to scanf except that it takes a file pointer as its first
argument.

Syntax:

int fscanf(FILE *fp,char *format, ...);

Example:

FILE *fp;
char buff[100];

fp = fopen(”xyz.txt”, ”r”);

fscanf(fp, ”%s”, buff);

Arash Rafiey File I/O

Reading a file

Reading a file:
A file can be opened for reading, only if it already exist.

Reading a file that does not exist is an error.

fscanf can be used to read from a file.

It is similar to scanf except that it takes a file pointer as its first
argument.

Syntax:

int fscanf(FILE *fp,char *format, ...);

Example:

FILE *fp;
char buff[100];

fp = fopen(”xyz.txt”, ”r”);

fscanf(fp, ”%s”, buff);

Arash Rafiey File I/O

Reading a file

Reading a file:
A file can be opened for reading, only if it already exist.

Reading a file that does not exist is an error.

fscanf can be used to read from a file.

It is similar to scanf except that it takes a file pointer as its first
argument.

Syntax:

int fscanf(FILE *fp,char *format, ...);

Example:

FILE *fp;
char buff[100];

fp = fopen(”xyz.txt”, ”r”);

fscanf(fp, ”%s”, buff);

Arash Rafiey File I/O

Reading a file

Reading a file:
A file can be opened for reading, only if it already exist.

Reading a file that does not exist is an error.

fscanf can be used to read from a file.

It is similar to scanf except that it takes a file pointer as its first
argument.

Syntax:

int fscanf(FILE *fp,char *format, ...);

Example:

FILE *fp;
char buff[100];

fp = fopen(”xyz.txt”, ”r”);

fscanf(fp, ”%s”, buff);

Arash Rafiey File I/O

Reading a file

fgetc() is used to read a single character from the file.

Syntax:
char fgetc (FILE *fp);

It returns the character that is read from the file, or EOF if an
error occurs.

Example:

FILE *fp;
char c;

fp = fopen(”xyz.txt”, ”r”);

while(c!=EOF) {

c = fgetc(fp);

printf(”%c”,c);
}

Arash Rafiey File I/O

Reading a file

fgetc() is used to read a single character from the file.

Syntax:
char fgetc (FILE *fp);

It returns the character that is read from the file, or EOF if an
error occurs.

Example:

FILE *fp;
char c;

fp = fopen(”xyz.txt”, ”r”);

while(c!=EOF) {

c = fgetc(fp);

printf(”%c”,c);
}

Arash Rafiey File I/O

Reading a file

fgetc() is used to read a single character from the file.

Syntax:
char fgetc (FILE *fp);

It returns the character that is read from the file, or EOF if an
error occurs.

Example:

FILE *fp;
char c;

fp = fopen(”xyz.txt”, ”r”);

while(c!=EOF) {

c = fgetc(fp);

printf(”%c”,c);
}

Arash Rafiey File I/O

Reading a file

fgetc() is used to read a single character from the file.

Syntax:
char fgetc (FILE *fp);

It returns the character that is read from the file, or EOF if an
error occurs.

Example:

FILE *fp;
char c;

fp = fopen(”xyz.txt”, ”r”);

while(c!=EOF) {

c = fgetc(fp);

printf(”%c”,c);
}

Arash Rafiey File I/O

Reading a file

The function fgets() is used to read a line from the file.

Syntax:

char *fgets (char *s, int n, FILE *fp);

fgets reads a line until (n-1) characters are read or new line
character is read, and stores it in the string pointed by s.

It returns the parameter s on success or a null pointer in case of
any error.

Example:

FILE *fp;
char c[100];

fp = fopen(”xyz.txt”, ”r”);

if(fgets(c,100,fp) != NULL)

printf(”%s”,c);

Arash Rafiey File I/O

Reading a file

The function fgets() is used to read a line from the file.

Syntax:

char *fgets (char *s, int n, FILE *fp);

fgets reads a line until (n-1) characters are read or new line
character is read, and stores it in the string pointed by s.

It returns the parameter s on success or a null pointer in case of
any error.

Example:

FILE *fp;
char c[100];

fp = fopen(”xyz.txt”, ”r”);

if(fgets(c,100,fp) != NULL)

printf(”%s”,c);

Arash Rafiey File I/O

Reading a file

The function fgets() is used to read a line from the file.

Syntax:

char *fgets (char *s, int n, FILE *fp);

fgets reads a line until (n-1) characters are read or new line
character is read, and stores it in the string pointed by s.

It returns the parameter s on success or a null pointer in case of
any error.

Example:

FILE *fp;
char c[100];

fp = fopen(”xyz.txt”, ”r”);

if(fgets(c,100,fp) != NULL)

printf(”%s”,c);

Arash Rafiey File I/O

Reading a file

The function fgets() is used to read a line from the file.

Syntax:

char *fgets (char *s, int n, FILE *fp);

fgets reads a line until (n-1) characters are read or new line
character is read, and stores it in the string pointed by s.

It returns the parameter s on success or a null pointer in case of
any error.

Example:

FILE *fp;
char c[100];

fp = fopen(”xyz.txt”, ”r”);

if(fgets(c,100,fp) != NULL)

printf(”%s”,c);

Arash Rafiey File I/O

Example:

FILE *fp;
int n;

fp = fopen(”xyz.txt”, ”r”);

fscanf(fp, ”%d”, &n); // reading an integer n from xyz.txt

fclose(fp);

Arash Rafiey File I/O

Example

Program to copy contents of one file to another (Using fgetc and
fputc).

include <stdio.h>

void main() {
FILE *fp1, *fp2;

char a;

fp1 = fopen(”xyz.txt”, ”r”);

if (fp1 == NULL) {
printf(”cannot open this file”);

exit(1);

}
fp2 = fopen(”abc.txt”, ”w”);

Arash Rafiey File I/O

Example

Program to copy contents of one file to another (Using fgetc and
fputc).

include <stdio.h>

void main() {
FILE *fp1, *fp2;

char a;

fp1 = fopen(”xyz.txt”, ”r”);

if (fp1 == NULL) {
printf(”cannot open this file”);

exit(1);

}
fp2 = fopen(”abc.txt”, ”w”);

Arash Rafiey File I/O

Example

if (fp2 == NULL) {
printf(”Not able to open this file”);

fclose(fp1);

exit(1);

}
do {
a = fgetc(fp1);

fputc(a, fp2);

} while (a != EOF);

fcloseall();

}

Arash Rafiey File I/O

Example

Program to open a file and count the occurrence of the word
”system” in the file.

include <stdio.h>

include <string.h>

int main() {
FILE *fp;

char w[] = ”system”;

char ch[100];

int i, count=0;

fp = fopen(”xyz.txt”, ”r”);

if (fp == NULL) {
printf(”cannot open this file”);

return(1);

}

Arash Rafiey File I/O

Example

Program to open a file and count the occurrence of the word
”system” in the file.

include <stdio.h>

include <string.h>

int main() {
FILE *fp;

char w[] = ”system”;

char ch[100];

int i, count=0;

fp = fopen(”xyz.txt”, ”r”);

if (fp == NULL) {
printf(”cannot open this file”);

return(1);

}
Arash Rafiey File I/O

Example

while (!feof(fp)) { //while end of file is not reached

fscanf(fp,”%s”,ch);

if(strcmp(w,ch)==0)

count++;

}
printf(”%s occurs %d times in the file \n”,w,count);

fclose(fp);

return(0);

}

Arash Rafiey File I/O

fseek function

char fseek (FILE * stream, long int offset, int origin)
origin could be :
SEEK SET : Beginning of file
SEEK CUR : Current position of the file pointer
SEEK END : End of file

include <stdio.h>
int main ()
{

FILE * pf;
pf = fopen (”example.txt” , ”w”);
fputs (”This is a test” , pf);
fseek (pf , 10 , SEEK SET);
fputs (”book ” , pf);
fclose (pf);
return 0;

}

Arash Rafiey File I/O

fseek function

char fseek (FILE * stream, long int offset, int origin)
origin could be :
SEEK SET : Beginning of file
SEEK CUR : Current position of the file pointer
SEEK END : End of file
include <stdio.h>
int main ()
{

FILE * pf;
pf = fopen (”example.txt” , ”w”);
fputs (”This is a test” , pf);
fseek (pf , 10 , SEEK SET);
fputs (”book ” , pf);
fclose (pf);
return 0;

}

Arash Rafiey File I/O

Example

Program to open a file and modify the third line to “Hello World”

include <stdio.h>

include <string.h>

int main() {
FILE *fp;

int i, len, count=0;

fp = fopen(”xyz.txt”, ”r”);

if (fp == NULL) {
printf(”cannot open this file”);

return(1);

}

Arash Rafiey File I/O

Example

Program to open a file and modify the third line to “Hello World”

include <stdio.h>

include <string.h>

int main() {
FILE *fp;

int i, len, count=0;

fp = fopen(”xyz.txt”, ”r”);

if (fp == NULL) {
printf(”cannot open this file”);

return(1);

}

Arash Rafiey File I/O

Example

char Buffer[100], *buffpointer;

while (!feof(fp)) { //while ! end of file and not three lines read

getline(&Buffer, &len, fp);

buffpointer= Buffer; counter++;

if (counter == 3) {
fseek(fp , -strlen(buffpointer) , SEEK CUR) ;

fputs (”Hello World \n ”, fp);

fclose(fp);

break;

}
}

Arash Rafiey File I/O

Changing a particular word in a file

Write a program that reads a file and change all the words “book”
to “cook”.
include <stdio.h>

include <string.h>

int main() {
FILE *fp;

fp = fopen(”example.txt”, ”r+”);

if (fp == NULL) {
printf(”cannot open this file”);

return(1);

}

Arash Rafiey File I/O

char oneword[100];

while (!feof(fp)) {
fscanf(fp,”%s”,oneword);

if (strcmp(oneword, ”book”) == 0) {
fseek(fp , -4 , SEEK CUR) ;

fputs (”cook”, fp);

}
}
fclose(fp);
}

Arash Rafiey File I/O

