
Pointers and Arrays

Arash Rafiey

October 3, 2017

Arash Rafiey Pointers and Arrays

Memory and pointers

Operating System runs programs, assigns physical addresses.

Memory is set of cells, that can be combined into groups.

Pointer is group of cells, holding address.

Let variable v have type short; pointer p points to v:

8 memory cells (8 bytes) can hold:

1 one instance of long long int //64 bits.
2 one - double
3 two - int //2 * 32 = 64 bits.
4 four - short
5 eight - char

Arash Rafiey Pointers and Arrays

Memory and pointers

Operating System runs programs, assigns physical addresses.

Memory is set of cells, that can be combined into groups.

Pointer is group of cells, holding address.

Let variable v have type short; pointer p points to v:

8 memory cells (8 bytes) can hold:

1 one instance of long long int //64 bits.
2 one - double
3 two - int //2 * 32 = 64 bits.
4 four - short
5 eight - char

Arash Rafiey Pointers and Arrays

Memory and pointers

Operating System runs programs, assigns physical addresses.

Memory is set of cells, that can be combined into groups.

Pointer is group of cells, holding address.

Let variable v have type short; pointer p points to v:

8 memory cells (8 bytes) can hold:

1 one instance of long long int //64 bits.
2 one - double
3 two - int //2 * 32 = 64 bits.
4 four - short
5 eight - char

Arash Rafiey Pointers and Arrays

Memory and pointers

Operating System runs programs, assigns physical addresses.

Memory is set of cells, that can be combined into groups.

Pointer is group of cells, holding address.

Let variable v have type short; pointer p points to v:

8 memory cells (8 bytes) can hold:

1 one instance of long long int //64 bits.
2 one - double
3 two - int //2 * 32 = 64 bits.
4 four - short
5 eight - char

Arash Rafiey Pointers and Arrays

Memory and pointers

Operating System runs programs, assigns physical addresses.

Memory is set of cells, that can be combined into groups.

Pointer is group of cells, holding address.

Let variable v have type short; pointer p points to v:

8 memory cells (8 bytes) can hold:

1 one instance of long long int //64 bits.
2 one - double
3 two - int //2 * 32 = 64 bits.
4 four - short
5 eight - char

Arash Rafiey Pointers and Arrays

Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.

Arash Rafiey Pointers and Arrays

Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.

Arash Rafiey Pointers and Arrays

Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.

Arash Rafiey Pointers and Arrays

Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.

Arash Rafiey Pointers and Arrays

Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.

Arash Rafiey Pointers and Arrays

Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.

Arash Rafiey Pointers and Arrays

Pointers and addresses

The unary operator & (ampersand) gets the address of a variable.

The address is known at run-time only.
Dereferencing operator * returns the value the pointer points to.

Example:
int days = 25;
int* address = &days; //Address now points to days
* address += 1; //The days value becomes 26.
int count = * address; //Value of count will be 26.

The last line of the above example can be read as “count is equal
to value pointed to by address”.

Arash Rafiey Pointers and Arrays

Pointers and addresses

The unary operator & (ampersand) gets the address of a variable.
The address is known at run-time only.

Dereferencing operator * returns the value the pointer points to.

Example:
int days = 25;
int* address = &days; //Address now points to days
* address += 1; //The days value becomes 26.
int count = * address; //Value of count will be 26.

The last line of the above example can be read as “count is equal
to value pointed to by address”.

Arash Rafiey Pointers and Arrays

Pointers and addresses

The unary operator & (ampersand) gets the address of a variable.
The address is known at run-time only.
Dereferencing operator * returns the value the pointer points to.

Example:
int days = 25;
int* address = &days; //Address now points to days
* address += 1; //The days value becomes 26.
int count = * address; //Value of count will be 26.

The last line of the above example can be read as “count is equal
to value pointed to by address”.

Arash Rafiey Pointers and Arrays

Pointers and addresses

The unary operator & (ampersand) gets the address of a variable.
The address is known at run-time only.
Dereferencing operator * returns the value the pointer points to.

Example:
int days = 25;
int* address = &days; //Address now points to days
* address += 1; //The days value becomes 26.
int count = * address; //Value of count will be 26.

The last line of the above example can be read as “count is equal
to value pointed to by address”.

Arash Rafiey Pointers and Arrays

Pointers and addresses

The unary operator & (ampersand) gets the address of a variable.
The address is known at run-time only.
Dereferencing operator * returns the value the pointer points to.

Example:
int days = 25;
int* address = &days; //Address now points to days
* address += 1; //The days value becomes 26.
int count = * address; //Value of count will be 26.

The last line of the above example can be read as “count is equal
to value pointed to by address”.

Arash Rafiey Pointers and Arrays

Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;
To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.

Arash Rafiey Pointers and Arrays

Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;
To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.

Arash Rafiey Pointers and Arrays

Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;

To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.

Arash Rafiey Pointers and Arrays

Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;
To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.

Arash Rafiey Pointers and Arrays

Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;
To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.

Arash Rafiey Pointers and Arrays

Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;
To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.

Arash Rafiey Pointers and Arrays

Quick review of C Operator Precedence

Arash Rafiey Pointers and Arrays

Constant pointers

Solution for previous slide example is to use constant pointers:

1 Constant pointers can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Example:
int days = 25;
int* const p = &days;

++(*p); //days is 26.
*p = 27; //days is 27.

*(++p) = 28; //Compilation error.
*p++; //Cannot assign value to const variable p.

The two last lines of this example will not compile.

Arash Rafiey Pointers and Arrays

Constant pointers

Solution for previous slide example is to use constant pointers:

1 Constant pointers can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Example:
int days = 25;
int* const p = &days;

++(*p); //days is 26.
*p = 27; //days is 27.

*(++p) = 28; //Compilation error.
*p++; //Cannot assign value to const variable p.

The two last lines of this example will not compile.

Arash Rafiey Pointers and Arrays

Constant pointers

Solution for previous slide example is to use constant pointers:

1 Constant pointers can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Example:
int days = 25;
int* const p = &days;

++(*p); //days is 26.
*p = 27; //days is 27.

*(++p) = 28; //Compilation error.
*p++; //Cannot assign value to const variable p.

The two last lines of this example will not compile.

Arash Rafiey Pointers and Arrays

Constant pointers

Solution for previous slide example is to use constant pointers:

1 Constant pointers can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Example:
int days = 25;
int* const p = &days;

++(*p); //days is 26.
*p = 27; //days is 27.

*(++p) = 28; //Compilation error.
*p++; //Cannot assign value to const variable p.

The two last lines of this example will not compile.

Arash Rafiey Pointers and Arrays

Constant pointers

Solution for previous slide example is to use constant pointers:

1 Constant pointers can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Example:
int days = 25;
int* const p = &days;

++(*p); //days is 26.
*p = 27; //days is 27.

*(++p) = 28; //Compilation error.
*p++; //Cannot assign value to const variable p.

The two last lines of this example will not compile.

Arash Rafiey Pointers and Arrays

Pointers to constant

Constant pointers:

1 Can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Pointers to constant:

1 Cannot change the value they point to (value is const).

2 But the pointers can be changed.

3 They are declared as const*.

Example: int days = 25;
int month = 1;
const int* p = &days;
++p; //p would probably point to month - do not do this.
*p = 26; //Compilation error.

Arash Rafiey Pointers and Arrays

Pointers to constant

Constant pointers:

1 Can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Pointers to constant:

1 Cannot change the value they point to (value is const).

2 But the pointers can be changed.

3 They are declared as const*.

Example: int days = 25;
int month = 1;
const int* p = &days;
++p; //p would probably point to month - do not do this.
*p = 26; //Compilation error.

Arash Rafiey Pointers and Arrays

Pointers to constant

Constant pointers:

1 Can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Pointers to constant:

1 Cannot change the value they point to (value is const).

2 But the pointers can be changed.

3 They are declared as const*.

Example: int days = 25;
int month = 1;
const int* p = &days;
++p; //p would probably point to month - do not do this.
*p = 26; //Compilation error.

Arash Rafiey Pointers and Arrays

Pointers to constant

Constant pointers:

1 Can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Pointers to constant:

1 Cannot change the value they point to (value is const).

2 But the pointers can be changed.

3 They are declared as const*.

Example: int days = 25;
int month = 1;
const int* p = &days;
++p; //p would probably point to month - do not do this.
*p = 26; //Compilation error.

Arash Rafiey Pointers and Arrays

Pointers to constant

Constant pointers:

1 Can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Pointers to constant:

1 Cannot change the value they point to (value is const).

2 But the pointers can be changed.

3 They are declared as const*.

Example: int days = 25;
int month = 1;
const int* p = &days;
++p; //p would probably point to month - do not do this.
*p = 26; //Compilation error.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

C passes function arguments by value.

There is no direct way for a called function to alter a variable in
the calling function.

Example:
void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}

swap(a, b) interchanges only copies of a and b, but does not
change the actual arguments a and b.

Solution is to use pointers.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

C passes function arguments by value.

There is no direct way for a called function to alter a variable in
the calling function.

Example:
void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}

swap(a, b) interchanges only copies of a and b, but does not
change the actual arguments a and b.

Solution is to use pointers.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

C passes function arguments by value.

There is no direct way for a called function to alter a variable in
the calling function.

Example:
void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}

swap(a, b) interchanges only copies of a and b, but does not
change the actual arguments a and b.

Solution is to use pointers.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

C passes function arguments by value.

There is no direct way for a called function to alter a variable in
the calling function.

Example:
void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}

swap(a, b) interchanges only copies of a and b, but does not
change the actual arguments a and b.

Solution is to use pointers.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

C passes function arguments by value.

There is no direct way for a called function to alter a variable in
the calling function.

Example:
void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}

swap(a, b) interchanges only copies of a and b, but does not
change the actual arguments a and b.

Solution is to use pointers.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

Example:
void swap(int ∗px, int ∗py);
{
int temp;
temp = ∗px;
∗px = ∗py;
∗py = temp;
}

swap(&a, &b) sends the address of a and b as arguments.

So void swap(int ∗pa, int ∗pb) function interchanges the actual
arguments a and b.

Arash Rafiey Pointers and Arrays

Pointers and function arguments

Example:
void swap(int ∗px, int ∗py);
{
int temp;
temp = ∗px;
∗px = ∗py;
∗py = temp;
}

swap(&a, &b) sends the address of a and b as arguments.

So void swap(int ∗pa, int ∗pb) function interchanges the actual
arguments a and b.

Arash Rafiey Pointers and Arrays

Swap via pointers

Example:

include<stdio.h>

void swap(int ∗a, int ∗b);

void main() {

int x = 10, y = 20;

printf(”Values before swap in main x = %d, y = %d \n”,x,y);

//x=10 y=20

swap(&x,&y);

printf(”Values after swap in main x = %d, y = %d \n”,x,y);

//x=20 y=10

}

Arash Rafiey Pointers and Arrays

Swap via pointers

void swap(int ∗a, int ∗b)

{

int temp;

temp = ∗a;

∗a = ∗b;

∗b = temp;

printf(” Values after swap inside swap function: x = %d, y =
%d”, ∗a, ∗b);

//x=20 y=10

}

Arash Rafiey Pointers and Arrays

Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.

Arash Rafiey Pointers and Arrays

Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.

Arash Rafiey Pointers and Arrays

Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.

Arash Rafiey Pointers and Arrays

Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.

Arash Rafiey Pointers and Arrays

Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.

Arash Rafiey Pointers and Arrays

Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.

Arash Rafiey Pointers and Arrays

Pointer arithmetic

int a[10];

int *pa = &a[0];

int *pa5 = a + 5;

1 pa points to 0-th element of array a.

2 pa5 points to 5-th element of a.

3 (pa5 + 1) points to next (6-th) element.

4 (pa5 - n) points n elements before pa5.

5 *(pa+1) refers to contents of a[1].

Arash Rafiey Pointers and Arrays

Pointer arithmetic

int a[10];

int *pa = &a[0];

int *pa5 = a + 5;

1 pa points to 0-th element of array a.

2 pa5 points to 5-th element of a.

3 (pa5 + 1) points to next (6-th) element.

4 (pa5 - n) points n elements before pa5.

5 *(pa+1) refers to contents of a[1].

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Pointer manipulations automatically consider size of the type.

Allowed pointer operations are:

1 Assignment of pointers of same type.
Example: int a[10];
int *p1 = &a[9];
int *p2;
p2 = p1;//Both p1 and p2 will point to the same memory
location.

2 Subtraction and addition of pointer and integer type.
If p1 points to a particular element of an array , then p1+1
points to the next element.

3 Subtraction or comparison of two pointers to same array.
Example: int a[10];
int *p1 = a + 2;
int *p2 = a + 5;
printf(”%d”, p2-p1);// prints 3

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Pointer manipulations automatically consider size of the type.

Allowed pointer operations are:

1 Assignment of pointers of same type.
Example: int a[10];
int *p1 = &a[9];
int *p2;
p2 = p1;//Both p1 and p2 will point to the same memory
location.

2 Subtraction and addition of pointer and integer type.
If p1 points to a particular element of an array , then p1+1
points to the next element.

3 Subtraction or comparison of two pointers to same array.
Example: int a[10];
int *p1 = a + 2;
int *p2 = a + 5;
printf(”%d”, p2-p1);// prints 3

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Pointer manipulations automatically consider size of the type.

Allowed pointer operations are:

1 Assignment of pointers of same type.
Example: int a[10];
int *p1 = &a[9];
int *p2;
p2 = p1;//Both p1 and p2 will point to the same memory
location.

2 Subtraction and addition of pointer and integer type.
If p1 points to a particular element of an array , then p1+1
points to the next element.

3 Subtraction or comparison of two pointers to same array.
Example: int a[10];
int *p1 = a + 2;
int *p2 = a + 5;
printf(”%d”, p2-p1);// prints 3

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Pointer manipulations automatically consider size of the type.

Allowed pointer operations are:

1 Assignment of pointers of same type.
Example: int a[10];
int *p1 = &a[9];
int *p2;
p2 = p1;//Both p1 and p2 will point to the same memory
location.

2 Subtraction and addition of pointer and integer type.
If p1 points to a particular element of an array , then p1+1
points to the next element.

3 Subtraction or comparison of two pointers to same array.
Example: int a[10];
int *p1 = a + 2;
int *p2 = a + 5;
printf(”%d”, p2-p1);// prints 3

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Pointer manipulations automatically consider size of the type.

Allowed pointer operations are:

1 Assignment of pointers of same type.
Example: int a[10];
int *p1 = &a[9];
int *p2;
p2 = p1;//Both p1 and p2 will point to the same memory
location.

2 Subtraction and addition of pointer and integer type.
If p1 points to a particular element of an array , then p1+1
points to the next element.

3 Subtraction or comparison of two pointers to same array.
Example: int a[10];
int *p1 = a + 2;
int *p2 = a + 5;
printf(”%d”, p2-p1);// prints 3

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Prohibited pointer operations:

1 Add/multiply/divide/shift/mask (+, *, /, << or >>, | or &
or ˆ) two pointers .

2 Add/multiply/divide a float or double to pointer.

3 Pointer of one type cannot be assigned to pointer of another
type.

Example:
int*p1;
char*b = p1; //Error
char*valid cast = (char*)p1;

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Prohibited pointer operations:

1 Add/multiply/divide/shift/mask (+, *, /, << or >>, | or &
or ˆ) two pointers .

2 Add/multiply/divide a float or double to pointer.

3 Pointer of one type cannot be assigned to pointer of another
type.

Example:
int*p1;
char*b = p1; //Error
char*valid cast = (char*)p1;

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Prohibited pointer operations:

1 Add/multiply/divide/shift/mask (+, *, /, << or >>, | or &
or ˆ) two pointers .

2 Add/multiply/divide a float or double to pointer.

3 Pointer of one type cannot be assigned to pointer of another
type.

Example:
int*p1;
char*b = p1; //Error
char*valid cast = (char*)p1;

Arash Rafiey Pointers and Arrays

Pointer arithmetic operations

Prohibited pointer operations:

1 Add/multiply/divide/shift/mask (+, *, /, << or >>, | or &
or ˆ) two pointers .

2 Add/multiply/divide a float or double to pointer.

3 Pointer of one type cannot be assigned to pointer of another
type.

Example:
int*p1;
char*b = p1; //Error
char*valid cast = (char*)p1;

Arash Rafiey Pointers and Arrays

Array name

Pointer to array:

int a[10];
int *pa = &a[0];

Difference between array name and pointer:

Pointer is a variable. So

1 pa = a;

2 pa ++;

are legal.

Array name is not a variable, but points to initial element. So

1 a = pa;

2 ++ a;

are illegal.

Arash Rafiey Pointers and Arrays

Array name

Pointer to array:

int a[10];
int *pa = &a[0];

Difference between array name and pointer:

Pointer is a variable. So

1 pa = a;

2 pa ++;

are legal.

Array name is not a variable, but points to initial element. So

1 a = pa;

2 ++ a;

are illegal.

Arash Rafiey Pointers and Arrays

Array name

Pointer to array:

int a[10];
int *pa = &a[0];

Difference between array name and pointer:

Pointer is a variable. So

1 pa = a;

2 pa ++;

are legal.

Array name is not a variable, but points to initial element. So

1 a = pa;

2 ++ a;

are illegal.

Arash Rafiey Pointers and Arrays

Array name

Pointer to array:

int a[10];
int *pa = &a[0];

Difference between array name and pointer:

Pointer is a variable. So

1 pa = a;

2 pa ++;

are legal.

Array name is not a variable, but points to initial element. So

1 a = pa;

2 ++ a;

are illegal.

Arash Rafiey Pointers and Arrays

Array name

Pointer to array:

int a[10];
int *pa = &a[0];

Difference between array name and pointer:

Pointer is a variable. So

1 pa = a;

2 pa ++;

are legal.

Array name is not a variable, but points to initial element. So

1 a = pa;

2 ++ a;

are illegal.

Arash Rafiey Pointers and Arrays

Character pointers

Character strings are accessed through character pointers.

char *pmsg;
pmsg = ”HELLO”;

Character pointer points to the first element.

This is not string copying. C does not provide operators for
processing entire string of characters as unit.

1 char a1[] = ”good news”;

2 char *p2 = ”good news”;

What is the difference between the two?

1 a1 is an array of 10 chars that always refers to same storage,
although characters within array may be changed.

2 p2 is pointer to string constant. If this string constant is
modified, result is undefined.

Arash Rafiey Pointers and Arrays

Character pointers

Character strings are accessed through character pointers.

char *pmsg;
pmsg = ”HELLO”;

Character pointer points to the first element.

This is not string copying. C does not provide operators for
processing entire string of characters as unit.

1 char a1[] = ”good news”;

2 char *p2 = ”good news”;

What is the difference between the two?

1 a1 is an array of 10 chars that always refers to same storage,
although characters within array may be changed.

2 p2 is pointer to string constant. If this string constant is
modified, result is undefined.

Arash Rafiey Pointers and Arrays

Character pointers

Character strings are accessed through character pointers.

char *pmsg;
pmsg = ”HELLO”;

Character pointer points to the first element.

This is not string copying. C does not provide operators for
processing entire string of characters as unit.

1 char a1[] = ”good news”;

2 char *p2 = ”good news”;

What is the difference between the two?

1 a1 is an array of 10 chars that always refers to same storage,
although characters within array may be changed.

2 p2 is pointer to string constant. If this string constant is
modified, result is undefined.

Arash Rafiey Pointers and Arrays

Character pointers

Character strings are accessed through character pointers.

char *pmsg;
pmsg = ”HELLO”;

Character pointer points to the first element.

This is not string copying. C does not provide operators for
processing entire string of characters as unit.

1 char a1[] = ”good news”;

2 char *p2 = ”good news”;

What is the difference between the two?

1 a1 is an array of 10 chars that always refers to same storage,
although characters within array may be changed.

2 p2 is pointer to string constant. If this string constant is
modified, result is undefined.

Arash Rafiey Pointers and Arrays

Character pointers

Character strings are accessed through character pointers.

char *pmsg;
pmsg = ”HELLO”;

Character pointer points to the first element.

This is not string copying. C does not provide operators for
processing entire string of characters as unit.

1 char a1[] = ”good news”;

2 char *p2 = ”good news”;

What is the difference between the two?

1 a1 is an array of 10 chars that always refers to same storage,
although characters within array may be changed.

2 p2 is pointer to string constant. If this string constant is
modified, result is undefined.

Arash Rafiey Pointers and Arrays

Character pointers and functions

The C library function strcpy(dest,src) copies the string pointed by
src to dest.

void *strcpy(char *dest, char *src)

strcpy using array:
void strcpy1(char *t, char const*s) {

int i = 0;
while (’\0’ != (t[i] = s[i]))

++i; }
strcpy using pointers:
void strcpy2(char *t, char const*s) {

while (’\0’ != (*t = *s)) {
++s;
++t; }

}
String is copied each character at a time, until ’\0’.

Arash Rafiey Pointers and Arrays

Character pointers and functions

The C library function strcpy(dest,src) copies the string pointed by
src to dest.

void *strcpy(char *dest, char *src)

strcpy using array:
void strcpy1(char *t, char const*s) {

int i = 0;
while (’\0’ != (t[i] = s[i]))

++i; }
strcpy using pointers:
void strcpy2(char *t, char const*s) {

while (’\0’ != (*t = *s)) {
++s;
++t; }

}
String is copied each character at a time, until ’\0’.

Arash Rafiey Pointers and Arrays

Character pointers and functions

The C library function strcpy(dest,src) copies the string pointed by
src to dest.

void *strcpy(char *dest, char *src)

strcpy using array:
void strcpy1(char *t, char const*s) {

int i = 0;
while (’\0’ != (t[i] = s[i]))

++i; }

strcpy using pointers:
void strcpy2(char *t, char const*s) {

while (’\0’ != (*t = *s)) {
++s;
++t; }

}
String is copied each character at a time, until ’\0’.

Arash Rafiey Pointers and Arrays

Character pointers and functions

The C library function strcpy(dest,src) copies the string pointed by
src to dest.

void *strcpy(char *dest, char *src)

strcpy using array:
void strcpy1(char *t, char const*s) {

int i = 0;
while (’\0’ != (t[i] = s[i]))

++i; }
strcpy using pointers:
void strcpy2(char *t, char const*s) {

while (’\0’ != (*t = *s)) {
++s;
++t; }

}
String is copied each character at a time, until ’\0’.

Arash Rafiey Pointers and Arrays

strcmp - string compare

strcmp(s, t) compares the string pointed by s to the string
pointed by t.

It returns:

zero if the strings are equal.

negative if s is lexicographically less than t

positive if s is lexicographically greater than t

strcmp using array:
int strcmp1(char *s, char const*t) {

int i;
for(i=0; s[i] && t[i]; i++)

if(s[i] != t[i])
retun 0;

if(s[i] == ’\0’ && t[i]) return 0;
else return 1;

}

Arash Rafiey Pointers and Arrays

strcmp - string compare

strcmp(s, t) compares the string pointed by s to the string
pointed by t.

It returns:

zero if the strings are equal.

negative if s is lexicographically less than t

positive if s is lexicographically greater than t

strcmp using array:
int strcmp1(char *s, char const*t) {

int i;
for(i=0; s[i] && t[i]; i++)

if(s[i] != t[i])
retun 0;

if(s[i] == ’\0’ && t[i]) return 0;
else return 1;

}

Arash Rafiey Pointers and Arrays

strcmp - string compare

strcmp(s, t) compares the string pointed by s to the string
pointed by t.

It returns:

zero if the strings are equal.

negative if s is lexicographically less than t

positive if s is lexicographically greater than t

strcmp using array:
int strcmp1(char *s, char const*t) {

int i;
for(i=0; s[i] && t[i]; i++)

if(s[i] != t[i])
retun 0;

if(s[i] == ’\0’ && t[i]) return 0;
else return 1;

}

Arash Rafiey Pointers and Arrays

