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Memory and pointers

Operating System runs programs, assigns physical addresses.

Memory is set of cells, that can be combined into groups.

Pointer is group of cells, holding address.

Let variable v have type short; pointer p points to v:

8 memory cells (8 bytes) can hold:

1 one instance of long long int //64 bits.
2 one - double
3 two - int //2 * 32 = 64 bits.
4 four - short
5 eight - char
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Variables and pointers

Variable has name (identifier) and value (in computer’s memory).

Abstraction: Using variables allows manipulating their values,
ignoring where the variable will be stored physically.

Pointer is a variable storing the address of another variable.

Pointers are powerful tool like ... - be careful!

Pointer declaration syntax uses asterisk *:

type * name;

Pointer declaration examples:

1 int* count;
2 char* name;
3 double* ratio;
4 void* data; //Pointer to void is generic pointer.
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Pointers and addresses

The unary operator & (ampersand) gets the address of a variable.

The address is known at run-time only.
Dereferencing operator * returns the value the pointer points to.

Example:
int days = 25;
int* address = &days; //Address now points to days
* address += 1; //The days value becomes 26.
int count = * address; //Value of count will be 26.

The last line of the above example can be read as “count is equal
to value pointed to by address”.
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Pointer dereference

Pointer points to specific data type except for void * which
cannot be dereferenced.

Consider:
int days = 25;
int* p = &days;
To increment the value p points to:

1 *p = *p + 1;
2 *p = 1 + *p;
3 *p += 1;
4 ++*p;
5 ++(*p); //This is a safer way.
6 (*p)++;

Parentheses are mandatory in previous line because *p++ will
increment p by 1 instead of incrementing days. This is because
dereference * associate right-to-left and postfix increment has
highest precedence.
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Quick review of C Operator Precedence
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Constant pointers

Solution for previous slide example is to use constant pointers:

1 Constant pointers can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Example:
int days = 25;
int* const p = &days;

++(*p); //days is 26.
*p = 27; //days is 27.

*(++p) = 28; //Compilation error.
*p++; //Cannot assign value to const variable p.

The two last lines of this example will not compile.
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Pointers to constant

Constant pointers:

1 Can change the value they point to.

2 But the pointers themselves cannot change (are const).

3 They are declared as *const.

Pointers to constant:

1 Cannot change the value they point to (value is const).

2 But the pointers can be changed.

3 They are declared as const*.

Example: int days = 25;
int month = 1;
const int* p = &days;
++p; //p would probably point to month - do not do this.
*p = 26; //Compilation error.
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Pointers and function arguments

C passes function arguments by value.

There is no direct way for a called function to alter a variable in
the calling function.

Example:
void swap( int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}

swap( a, b ) interchanges only copies of a and b, but does not
change the actual arguments a and b.

Solution is to use pointers.
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Pointers and function arguments

Example:
void swap(int ∗px, int ∗py);
{
int temp;
temp = ∗px;
∗px = ∗py;
∗py = temp;
}

swap(&a, &b) sends the address of a and b as arguments.

So void swap(int ∗pa, int ∗pb) function interchanges the actual
arguments a and b.
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Swap via pointers

Example:

# include<stdio.h>

void swap( int ∗a, int ∗b);

void main() {

int x = 10, y = 20;

printf(”Values before swap in main x = %d, y = %d \n”,x,y);

//x=10 y=20

swap(&x,&y);

printf(”Values after swap in main x = %d, y = %d \n”,x,y);

//x=20 y=10

}
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Swap via pointers

void swap( int ∗a, int ∗b )

{

int temp;

temp = ∗a;

∗a = ∗b;

∗b = temp;

printf(” Values after swap inside swap function: x = %d, y =
%d”, ∗a, ∗b);

//x=20 y=10

}
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Pointers and arrays

Array is block of objects of same type, stored consecutively in
memory.

Instead of declaring many variables, such as a0, a1, ..., a9, declare
one array variable: int a[10];

n-th element in array is accessed by index n, that starts from 0.

1 a[0] is zeroth element, n is zero.

2 a[n] is the n-th element.

3 a[9] is the last element, n is 9.

int *pa = &a[0];

pa points to element zero of array a, or pa contains address of a[0].

int b = *pa; //Copy the contents of a[0] into b.
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Pointer arithmetic

int a[10];

int *pa = &a[0];

int *pa5 = a + 5;

1 pa points to 0-th element of array a.

2 pa5 points to 5-th element of a.

3 (pa5 + 1) points to next (6-th) element.

4 (pa5 - n) points n elements before pa5.

5 *(pa+1) refers to contents of a[1].
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Pointer arithmetic operations

Pointer manipulations automatically consider size of the type.

Allowed pointer operations are:

1 Assignment of pointers of same type.
Example: int a[10];
int *p1 = &a[9];
int *p2;
p2 = p1;//Both p1 and p2 will point to the same memory
location.

2 Subtraction and addition of pointer and integer type.
If p1 points to a particular element of an array , then p1+1
points to the next element.

3 Subtraction or comparison of two pointers to same array.
Example: int a[10];
int *p1 = a + 2;
int *p2 = a + 5;
printf(”%d”, p2-p1);// prints 3
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Pointer arithmetic operations

Prohibited pointer operations:

1 Add/multiply/divide/shift/mask (+, *, /, << or >>, | or &
or ˆ) two pointers .

2 Add/multiply/divide a float or double to pointer.

3 Pointer of one type cannot be assigned to pointer of another
type.

Example:
int*p1;
char*b = p1; //Error
char*valid cast = (char*)p1;
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Array name

Pointer to array:

int a[10];
int *pa = &a[0];

Difference between array name and pointer:

Pointer is a variable. So

1 pa = a;

2 pa ++;

are legal.

Array name is not a variable, but points to initial element. So

1 a = pa;

2 ++ a;

are illegal.
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Character pointers

Character strings are accessed through character pointers.

char *pmsg;
pmsg = ”HELLO”;

Character pointer points to the first element.

This is not string copying. C does not provide operators for
processing entire string of characters as unit.

1 char a1[] = ”good news”;

2 char *p2 = ”good news”;

What is the difference between the two?

1 a1 is an array of 10 chars that always refers to same storage,
although characters within array may be changed.

2 p2 is pointer to string constant. If this string constant is
modified, result is undefined.
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Character pointers and functions

The C library function strcpy(dest,src) copies the string pointed by
src to dest.

void *strcpy(char *dest, char *src)

strcpy using array:
void strcpy1(char *t, char const*s) {

int i = 0;
while (’\0’ != (t[i] = s[i]))

++i; }
strcpy using pointers:
void strcpy2(char *t, char const*s) {

while (’\0’ != (*t = *s)) {
++s;
++t; }

}
String is copied each character at a time, until ’\0’.
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strcmp - string compare

strcmp(s, t) compares the string pointed by s to the string
pointed by t.

It returns:

zero if the strings are equal.

negative if s is lexicographically less than t

positive if s is lexicographically greater than t

strcmp using array:
int strcmp1(char *s, char const*t) {

int i;
for(i=0; s[i] && t[i]; i++ )

if(s[i] != t[i] )
retun 0;

if( s[i] == ’\0’ && t[i] ) return 0;
else return 1;

}
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