
Pointers II

Arash Rafiey

October 5, 2017

Arash Rafiey Pointers II

Pointer to pointer

A pointer to a pointer is a chain of pointers.

Pointer contains the address of a variable.

When we define a pointer to a pointer, the first pointer contains
the address of the second pointer, which points to the location
that contains the actual value of a variable.

Declaration:
type ** pointer name;

Example:
int x = 0;
int *ptr;
int **pptr;

Arash Rafiey Pointers II

Pointer to pointer

A pointer to a pointer is a chain of pointers.

Pointer contains the address of a variable.

When we define a pointer to a pointer, the first pointer contains
the address of the second pointer, which points to the location
that contains the actual value of a variable.

Declaration:
type ** pointer name;

Example:
int x = 0;
int *ptr;
int **pptr;

Arash Rafiey Pointers II

Pointer to pointer

A pointer to a pointer is a chain of pointers.

Pointer contains the address of a variable.

When we define a pointer to a pointer, the first pointer contains
the address of the second pointer, which points to the location
that contains the actual value of a variable.

Declaration:
type ** pointer name;

Example:
int x = 0;
int *ptr;
int **pptr;

Arash Rafiey Pointers II

Pointer to pointer

A pointer to a pointer is a chain of pointers.

Pointer contains the address of a variable.

When we define a pointer to a pointer, the first pointer contains
the address of the second pointer, which points to the location
that contains the actual value of a variable.

Declaration:
type ** pointer name;

Example:
int x = 0;
int *ptr;
int **pptr;

Arash Rafiey Pointers II

Pointer to pointer

A pointer to a pointer is a chain of pointers.

Pointer contains the address of a variable.

When we define a pointer to a pointer, the first pointer contains
the address of the second pointer, which points to the location
that contains the actual value of a variable.

Declaration:
type ** pointer name;

Example:
int x = 0;
int *ptr;
int **pptr;

Arash Rafiey Pointers II

Pointer to pointer

ptr = &x; //points to the address of x

pptr = &ptr // points to the address of ptr

Here the address of pptr variable will have type of int ***.

Consider an array has many lines of text.

Each line can be accessed by a pointer to its first character and the
pointers can be stored in an array.

To swap 2 lines, the pointers are exchanged, not the lines
themselves.

This eliminates complicated storage management and high
overhead associated with moving the lines.

Arash Rafiey Pointers II

Pointer to pointer

ptr = &x; //points to the address of x

pptr = &ptr // points to the address of ptr

Here the address of pptr variable will have type of int ***.

Consider an array has many lines of text.

Each line can be accessed by a pointer to its first character and the
pointers can be stored in an array.

To swap 2 lines, the pointers are exchanged, not the lines
themselves.

This eliminates complicated storage management and high
overhead associated with moving the lines.

Arash Rafiey Pointers II

Pointer to pointer

ptr = &x; //points to the address of x

pptr = &ptr // points to the address of ptr

Here the address of pptr variable will have type of int ***.

Consider an array has many lines of text.

Each line can be accessed by a pointer to its first character and the
pointers can be stored in an array.

To swap 2 lines, the pointers are exchanged, not the lines
themselves.

This eliminates complicated storage management and high
overhead associated with moving the lines.

Arash Rafiey Pointers II

Pointer to pointer

ptr = &x; //points to the address of x

pptr = &ptr // points to the address of ptr

Here the address of pptr variable will have type of int ***.

Consider an array has many lines of text.

Each line can be accessed by a pointer to its first character and the
pointers can be stored in an array.

To swap 2 lines, the pointers are exchanged, not the lines
themselves.

This eliminates complicated storage management and high
overhead associated with moving the lines.

Arash Rafiey Pointers II

Initialization of pointer arrays

Consider a function month name(n) returns a pointer to a
character string containing the name of the n-th month.

month name contains an array of character strings, and returns a
pointer to the proper string when called.

char *month name(int n) {

static char *name[] = {

”Illegal month”,

”January”, ”February”, ”March”,

”April”, ”May”, ”June”,

”July”, ”August”, ”September”,

”October”, ”November”, ”December”

}; //pointer to each string is stored in name[]

Arash Rafiey Pointers II

Initialization of pointer arrays

Consider a function month name(n) returns a pointer to a
character string containing the name of the n-th month.

month name contains an array of character strings, and returns a
pointer to the proper string when called.

char *month name(int n) {

static char *name[] = {

”Illegal month”,

”January”, ”February”, ”March”,

”April”, ”May”, ”June”,

”July”, ”August”, ”September”,

”October”, ”November”, ”December”

}; //pointer to each string is stored in name[]

Arash Rafiey Pointers II

Initialization of pointer arrays

Consider a function month name(n) returns a pointer to a
character string containing the name of the n-th month.

month name contains an array of character strings, and returns a
pointer to the proper string when called.

char *month name(int n) {

static char *name[] = {

”Illegal month”,

”January”, ”February”, ”March”,

”April”, ”May”, ”June”,

”July”, ”August”, ”September”,

”October”, ”November”, ”December”

}; //pointer to each string is stored in name[]

Arash Rafiey Pointers II

Initialization of pointer arrays

if (n < 1 || n > 12) retrun name[0];
else
return name[n];

}

name[] is an array of character pointers.

Each character string is assigned to a position in the memory.

A pointer to each string is stored in the pointer array: name[].

Each pointer points to the start position of the string.

The i-th string can be can be accessed through name[i]

Arash Rafiey Pointers II

Initialization of pointer arrays

if (n < 1 || n > 12) retrun name[0];
else
return name[n];

}
name[] is an array of character pointers.

Each character string is assigned to a position in the memory.

A pointer to each string is stored in the pointer array: name[].

Each pointer points to the start position of the string.

The i-th string can be can be accessed through name[i]

Arash Rafiey Pointers II

Initialization of pointer arrays

if (n < 1 || n > 12) retrun name[0];
else
return name[n];

}
name[] is an array of character pointers.

Each character string is assigned to a position in the memory.

A pointer to each string is stored in the pointer array: name[].

Each pointer points to the start position of the string.

The i-th string can be can be accessed through name[i]

Arash Rafiey Pointers II

Initialization of pointer arrays

if (n < 1 || n > 12) retrun name[0];
else
return name[n];

}
name[] is an array of character pointers.

Each character string is assigned to a position in the memory.

A pointer to each string is stored in the pointer array: name[].

Each pointer points to the start position of the string.

The i-th string can be can be accessed through name[i]

Arash Rafiey Pointers II

Initialization of pointer arrays

if (n < 1 || n > 12) retrun name[0];
else
return name[n];

}
name[] is an array of character pointers.

Each character string is assigned to a position in the memory.

A pointer to each string is stored in the pointer array: name[].

Each pointer points to the start position of the string.

The i-th string can be can be accessed through name[i]

Arash Rafiey Pointers II

Multi-dimensional arrays

Multi-dimensional array declaration:

type arrayName [d1][d2]...[dN];

//These two definitions of two-dimensional array are the
same:

int costs[2][3] = {1, 2, 3, 4, 5, 6};

int costs[2][3] = { {1, 2, 3,} , //Row 0.
{4, 5, 6}, }; // Row 1.

To access the array: int value = costs[0][2]; //value = 3

This is not legal: costs[0, 1].

Three dimensional array: int seconds[24][60][60];

Arash Rafiey Pointers II

Multi-dimensional arrays

Multi-dimensional array declaration:

type arrayName [d1][d2]...[dN];

//These two definitions of two-dimensional array are the
same:

int costs[2][3] = {1, 2, 3, 4, 5, 6};

int costs[2][3] = { {1, 2, 3,} , //Row 0.
{4, 5, 6}, }; // Row 1.

To access the array: int value = costs[0][2]; //value = 3

This is not legal: costs[0, 1].

Three dimensional array: int seconds[24][60][60];

Arash Rafiey Pointers II

Multi-dimensional arrays

Multi-dimensional array declaration:

type arrayName [d1][d2]...[dN];

//These two definitions of two-dimensional array are the
same:

int costs[2][3] = {1, 2, 3, 4, 5, 6};

int costs[2][3] = { {1, 2, 3,} , //Row 0.
{4, 5, 6}, }; // Row 1.

To access the array: int value = costs[0][2]; //value = 3

This is not legal: costs[0, 1].

Three dimensional array: int seconds[24][60][60];

Arash Rafiey Pointers II

Day of year example

Convert the month and day into the day of the year.

For example:

February 29 is converted to 60

//i.e february 29th is the 60th day of the year.

Since the number of days differ for non-leap and leap year, we use
two rows of a two dimensional array.

static char dayTab[2][13] = {
//Non leap year.
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },

//Leap year.
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

Arash Rafiey Pointers II

Day of year example

Convert the month and day into the day of the year.

For example:

February 29 is converted to 60

//i.e february 29th is the 60th day of the year.

Since the number of days differ for non-leap and leap year, we use
two rows of a two dimensional array.

static char dayTab[2][13] = {
//Non leap year.
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },

//Leap year.
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

Arash Rafiey Pointers II

Day of year example

Convert the month and day into the day of the year.

For example:

February 29 is converted to 60

//i.e february 29th is the 60th day of the year.

Since the number of days differ for non-leap and leap year, we use
two rows of a two dimensional array.

static char dayTab[2][13] = {
//Non leap year.
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },

//Leap year.
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

Arash Rafiey Pointers II

Day of year example

Convert the month and day into the day of the year.

For example:

February 29 is converted to 60

//i.e february 29th is the 60th day of the year.

Since the number of days differ for non-leap and leap year, we use
two rows of a two dimensional array.

static char dayTab[2][13] = {
//Non leap year.
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },

//Leap year.
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

Arash Rafiey Pointers II

Day of year example continued

//set day of year from month and day

int day of year(int year, int month, int day)

{
int i, leap;

leap = (year%4 == 0) && (year%100 ! = 0) || (0 ==
year%400);

//leap is either 0 or 1

for(i = 1; i < month; i++);

day + = dayTab [leap] [i];

return day;

}

Arash Rafiey Pointers II

Pointers vs. Multi-dimensional arrays

Difference between a two-dimensional array and an array of
pointers.

int a[10][20];

int *b[10];

a is a two-dimensional array with 200 int-sized locations set
aside.

For b, 10 pointers are allocated. Initialization of these
pointers must be done explicitly.

Each element of b can be of different length.

Arash Rafiey Pointers II

Pointers vs. Multi-dimensional arrays

Difference between a two-dimensional array and an array of
pointers.

int a[10][20];

int *b[10];

a is a two-dimensional array with 200 int-sized locations set
aside.

For b, 10 pointers are allocated. Initialization of these
pointers must be done explicitly.

Each element of b can be of different length.

Arash Rafiey Pointers II

Pointers vs. Multi-dimensional arrays

Difference between a two-dimensional array and an array of
pointers.

int a[10][20];

int *b[10];

a is a two-dimensional array with 200 int-sized locations set
aside.

For b, 10 pointers are allocated. Initialization of these
pointers must be done explicitly.

Each element of b can be of different length.

Arash Rafiey Pointers II

Pointers vs. Multi-dimensional arrays

Difference between a two-dimensional array and an array of
pointers.

int a[10][20];

int *b[10];

a is a two-dimensional array with 200 int-sized locations set
aside.

For b, 10 pointers are allocated. Initialization of these
pointers must be done explicitly.

Each element of b can be of different length.

Arash Rafiey Pointers II

Pointers vs. Multi-dimensional arrays

Difference between a two-dimensional array and an array of
pointers.

int a[10][20];

int *b[10];

a is a two-dimensional array with 200 int-sized locations set
aside.

For b, 10 pointers are allocated. Initialization of these
pointers must be done explicitly.

Each element of b can be of different length.

Arash Rafiey Pointers II

Dynamic memory allocation

User specifies the file size to create at run-time - it is not possible
to know it in advance.

1 If file size is small, program may preallocate a very large
chunk of memory.

2 Otherwise, big file won’t fit in memory.

Possible solution: allocate memory dynamically when it is needed.

C can allocate memory statically (e.g. global variables once when
program starts), dynamically (malloc, on heap), automatically
(when function is executed, on stack).

When memory block is no longer needed, it should be released to
return it to the Operating System.

Function signature to free the memory, previously allocated by
malloc, calloc, realloc:
void free (void* ptr);

Arash Rafiey Pointers II

Dynamic memory allocation

User specifies the file size to create at run-time - it is not possible
to know it in advance.

1 If file size is small, program may preallocate a very large
chunk of memory.

2 Otherwise, big file won’t fit in memory.

Possible solution: allocate memory dynamically when it is needed.

C can allocate memory statically (e.g. global variables once when
program starts), dynamically (malloc, on heap), automatically
(when function is executed, on stack).

When memory block is no longer needed, it should be released to
return it to the Operating System.

Function signature to free the memory, previously allocated by
malloc, calloc, realloc:
void free (void* ptr);

Arash Rafiey Pointers II

Dynamic memory allocation

User specifies the file size to create at run-time - it is not possible
to know it in advance.

1 If file size is small, program may preallocate a very large
chunk of memory.

2 Otherwise, big file won’t fit in memory.

Possible solution: allocate memory dynamically when it is needed.

C can allocate memory statically (e.g. global variables once when
program starts), dynamically (malloc, on heap), automatically
(when function is executed, on stack).

When memory block is no longer needed, it should be released to
return it to the Operating System.

Function signature to free the memory, previously allocated by
malloc, calloc, realloc:
void free (void* ptr);

Arash Rafiey Pointers II

Dynamic memory allocation

User specifies the file size to create at run-time - it is not possible
to know it in advance.

1 If file size is small, program may preallocate a very large
chunk of memory.

2 Otherwise, big file won’t fit in memory.

Possible solution: allocate memory dynamically when it is needed.

C can allocate memory statically (e.g. global variables once when
program starts), dynamically (malloc, on heap), automatically
(when function is executed, on stack).

When memory block is no longer needed, it should be released to
return it to the Operating System.

Function signature to free the memory, previously allocated by
malloc, calloc, realloc:
void free (void* ptr);

Arash Rafiey Pointers II

Dynamic memory allocation

User specifies the file size to create at run-time - it is not possible
to know it in advance.

1 If file size is small, program may preallocate a very large
chunk of memory.

2 Otherwise, big file won’t fit in memory.

Possible solution: allocate memory dynamically when it is needed.

C can allocate memory statically (e.g. global variables once when
program starts), dynamically (malloc, on heap), automatically
(when function is executed, on stack).

When memory block is no longer needed, it should be released to
return it to the Operating System.

Function signature to free the memory, previously allocated by
malloc, calloc, realloc:
void free (void* ptr);

Arash Rafiey Pointers II

Dynamic memory allocation

User specifies the file size to create at run-time - it is not possible
to know it in advance.

1 If file size is small, program may preallocate a very large
chunk of memory.

2 Otherwise, big file won’t fit in memory.

Possible solution: allocate memory dynamically when it is needed.

C can allocate memory statically (e.g. global variables once when
program starts), dynamically (malloc, on heap), automatically
(when function is executed, on stack).

When memory block is no longer needed, it should be released to
return it to the Operating System.

Function signature to free the memory, previously allocated by
malloc, calloc, realloc:
void free (void* ptr);

Arash Rafiey Pointers II

Dynamic memory allocation functions

When array is declared as int[10], it is allocated on the stack.
When function returns, that memory is “released” automatically.

To allocate block of memory on the heap, C uses malloc
functions.

void* malloc (size t size) is used to allocate block of “size” bytes
of memory and return pointer to block beginning.

1 The “size” is limited by the amount of available memory.

2 The allocated memory is uninitialized.

3 If function fails, NULL is returned.

Arash Rafiey Pointers II

Dynamic memory allocation functions

When array is declared as int[10], it is allocated on the stack.
When function returns, that memory is “released” automatically.

To allocate block of memory on the heap, C uses malloc
functions.

void* malloc (size t size) is used to allocate block of “size” bytes
of memory and return pointer to block beginning.

1 The “size” is limited by the amount of available memory.

2 The allocated memory is uninitialized.

3 If function fails, NULL is returned.

Arash Rafiey Pointers II

Dynamic memory allocation functions

When array is declared as int[10], it is allocated on the stack.
When function returns, that memory is “released” automatically.

To allocate block of memory on the heap, C uses malloc
functions.

void* malloc (size t size) is used to allocate block of “size” bytes
of memory and return pointer to block beginning.

1 The “size” is limited by the amount of available memory.

2 The allocated memory is uninitialized.

3 If function fails, NULL is returned.

Arash Rafiey Pointers II

Dynamic memory allocation functions

When array is declared as int[10], it is allocated on the stack.
When function returns, that memory is “released” automatically.

To allocate block of memory on the heap, C uses malloc
functions.

void* malloc (size t size) is used to allocate block of “size” bytes
of memory and return pointer to block beginning.

1 The “size” is limited by the amount of available memory.

2 The allocated memory is uninitialized.

3 If function fails, NULL is returned.

Arash Rafiey Pointers II

Dynamic memory allocation functions

When array is declared as int[10], it is allocated on the stack.
When function returns, that memory is “released” automatically.

To allocate block of memory on the heap, C uses malloc
functions.

void* malloc (size t size) is used to allocate block of “size” bytes
of memory and return pointer to block beginning.

1 The “size” is limited by the amount of available memory.

2 The allocated memory is uninitialized.

3 If function fails, NULL is returned.

Arash Rafiey Pointers II

include <stdio.h>
include <stdlib.h>
int main() {
int i,j;
char *ptr;
ptr= malloc(15);
ptr=”this is a test”;
int *p=malloc(15);
p[0]=17;
printf(”%s \n”, ptr);
printf(”first element is %d \n ”, p[0]);
// free(ptr); // don’t do it because ptr points to a constant string
free(p);
}

Arash Rafiey Pointers II

