Problem: The Traveling Salesman Problem (TSP)

Claim: TSP is NP complete

Problem description.

Consider a salesman who must visit n cities labeled $v_1, v_2, v_3, ..., v_N$. He desires to start in his home city v_1 , visit all other cities exactly once and return home - (call this a tour). He also wants to minimize the total distance covered - (call this cost).

Problem formulation.

Given a set of distances on N cities and a bound D, is there a tour of length (cost) at most D?

Proof of NP completeness

We now proceed to show that TSP is NP complete.

This problem is a naturally occurring form of the Hamiltonian cycle problem (HCP). The difference is that of cost. Literally, We can solve TSP by by using HCP as a black box that will give us a permutation of the various cities that forms a hamiltonian cycle - in our case, a tour. This produces a certificate that a TSP certifier can then check its cost and assert whether it lies below the threshold D or not.

We must show that $HCP \leq p TSP$

Let G = (V, E) be a graph.

Define TSP_0 s.t $\forall v_i \in G$, $v_i \in \mathsf{TSP}_0$, an instance of TSP .

Define:

$$d(v_i, v_j) = 1$$
, if $(v_i, v_j) \in G$
 $d(v_i, v_j) = 2$, if Otherwise.

Claim:

G has a hamiltonian cycle $H_0 \Leftrightarrow \exists T_0$, a tour in TSP s.t $|T_0| \le N$.

- (\Rightarrow) Suppose G has a hamiltonian cycle, H_0 . Then we let $T_0 = H_0$, and thus $|T_0| = |H_0| = N$.
- (\Leftarrow) Suppose $\exists T_0 \in TSP \text{ s.t } |T_0| \leq N$.

Let
$$T_0 = vi_1$$
, vi_2 , vi_3 , ..., vi_N . With $vi_1 = vi_N$.

Then
$$|T_0| = \sum_j d(v_{i_j}, v_{i_{j+1}}) + d(v_{i_N}, v_{i_1})$$

= N -1 + 1 = N.

Therefore, $\forall v_i, v_j \in G$ s.t $(v_i, v_j) \in T_0$, $(v_i, v_j) \in G$. This proves that the ordering of corresponding nodes in G must form a hamiltonian cycle. \Diamond

Sources:

Jon Kleinberg, Eva Tardos. Algorithm Design PEARSON