

CS 202 fall 2017, exam 1 on paper part

cs202 login: _________________________ Name: ______________________

Each question is 1 point and is graded as right, wrong, or half credit. 43 points total.

For stack questions, delete means pop (and ignore parameter #) and lookup means top.
For queue questions, delete means dequeue (and ignore parameter #) and lookup means front
For the following sequence of operations, write what each data structure would look like at the end.
Insert 50, insert 40, insert 60, insert 70, insert 80, insert 20, insert 10, insert 30, delete 10, delete 40, insert 90

stack

queue

BST

unsorted array

sorted array

hash table (with hash function h(x) = x % 9)

Complete the following table to give the “big O expression” for the worst-case running times. For hash table,
put the “normal case ” running times. (1 point per row)

 lookup insert delete (after lookup is
already done)

stack

queue

unsorted array

sorted array

BST (for balanced tree)

hash table

Complete the following for using gcc on CS. 1 point per row.

 # bytes Min value Max value

char

unsigned short int

int

unsigned long int

float NA NA

double NA NA

unsigned char

Give an extremely short phrase (at most 10 words) describing what each keyword does. 1 point each.

const

static

if

switch

return

For each, give the value(s) printed. 2 points each.

printf("%c", (96 >> 3) << 2);

printf("%i, %i, %f\n",
 10/3, 10 % 3, 10/3);

int x = 1;
if ((x = 0) && (x++)) x++;
printf("%i", x);

int x = 35;
while (x > 0) {
 printf("%i", x % 3);
 x /= 3;
}

int x[5] = {5, 6, 7, 8, 9};
int * y = &x; *x /= 3;
y++; y[1] = 3;
int * z = y++;
printf("%i, %i, %i", x[0], *y, *z);

Play computer. Keep track of what happens to each variable. 3 points. If you have the final values of the
variables in main correct you get full credit.

int fun1(char *s) {

 if (s[0] == ‘\0’) return 0;
 char *next = & (s[1]);

 if (s[0] == ‘a’) return fun1(next) + 1;

 else if (s[0] == ‘b’) return fun1(next) + 2;

 else return fun1(next) + 0;
}

int fun2(char *s) {

 if (s[0] == ‘\0’) return 0;

 for(int i=0; s[i] != ‘\0’; i++)
 s[i] ++;

 return fun1(s);
}

int main(int argc, char *argv[]) {
 char s1[10] = “aaabbb”,
 S2[10] = “ababab”;
 int x = fun1(s1);

 int y = fun2(s2);

 x = y;

 y = x;

 return 0;
}

Write a C program. 3 points each

Write a complete C program (including #include and everything) that: prints how many command-line
arguments were given, and prints them in reverse order. For example, running ./a.out hello there
would print
 # arguments: 3
 there
 hello
 ./a.out

Write the main function for a C program that reads an integer, reads that many integers, and prints the average
of the odd #’s. For example, running ./a.out and then typing the values 5, 2, 4, 7 would print
 Average of odds: 6.0

