NAME ____________________________________________

CS 420/520 Theory of Computation, Spring 2019 at Indiana State University, taught by Jeff Kinne
Quiz 7 / Exam 1 - regular languages

Points - each part is graded as 1 point, half credit is possible. Total # points = 10

1) For each of these, if the following language is regular, give an RE, DFA, or NFA for the language. If it is not regular, prove it is not regular using the pumping lemma.  SKIP ONE.

1a.
   L = {strings of a's and b's without three b's in a row}
   In the language:     empty string, aabab, bbabbab, ababa, aaa
   Not in the language: bbb, abbababbbaab

See exam1-1a-dfa.jff


1b.
   L = {strings of a's and b's with more b's than a's}
   In the language:     bba, abb, bbaababab
   Not in the language: bbaa, aaa, a, aba

Claim: L is not a regular language.

Proof: Suppose L is regular (for the purpose of contradiction).  Let p be from the pumping lemma for L.  

Let w = ap bp+1.  Note that w is in L.  

Then the pumping lemma guarantees that w can be written as w = xyz with |xy| <= p, |y| >= 1, and xyiz is in L for all i >= 0.

Consider xyiz for i=3.  Since |xy| <= p, y is ak for some k >= 1.  Then
xy3z = ap+j bp+1 for some j >= 2.  Since this has more a’s than b’s, it is not in L.

This would violate the pumping lemma, which means L cannot be regular.


1c.
   L = {strings of a's and b's that do not contain the string abb}
   In the language:     abab, ab, a, b, bbab, abaab
   Not in the language: babb, ababba, babba, baabba


See exam1-1c-dfa.jff



1d.
   L = {strings of 0's and 1's that cannot be written as www,
        that is - first third = middle third = last third}
   In the language:     010100, 010010011, 00, 010, 10101
   Not in the language: 010010010
   
Claim: L is not regular.

Proof: Suppose L is regular (for the purpose of contradiction).  And let p be the pumping length for L from the pumping lemma.

Let w = 0p1p 0p1p 0p1p   Note that w is in L.  Then w can written as w = xyz with 
|xy| <= p, |y| >=1, and xyiz is in L for any i >= 0.

Consider xy0z = xz.  Note that xy is all 0’s, meaning y = 0j for some j >= 1.
Then xz = 0p-j1p 0p1p 0p1p   Since there are fewer 0’s in the first part than the other 2, xz is not w’ w’ w’ for some w’.  Then xz is not in L.  Therefore it must be that L is not regular.


2) For each of the following, give a Python3 regular expression for the given
   language.  Include the begin and end marker symbols.  SKIP ONE.

2a. Integers
    In the language:     0001, 1010101, 1341343, -123, -0, 0
    Not in the language: 1.2, pi, -,

"-?(\\d)+"
Or 
r"-?(\d)+"
or
import re
re.match("-?(\\d)+", "123")



2b. Fractions
    In the language:	 1/2, 3/4, 0/4, -1/3, 234234/2342334
    Not in the language: 1.2, pi, -, 4/0, 234/, 2/-3, 234

"-?(\\d)+/([1-9](\\d)*)" # note this would not allow 1/023



2c. Sentence of the form - "What is your name?  NAME.  Hello NAME."
    Note - NAME can be any combination of letters, first letter upper case and the rest lower.  
    Note – you should match “What is your name?” and “Hello “ literally – don’t make up RE’s for sentences like that, just match those exact sentences.


"What is your name?  ([A-Z][a-zA-Z]*).  Hello \\1."








3) Prove by induction or contradiction.  SKIP ONE.

3a. The cube root of 7 is irrational.


Proof by contradiction.  Assume 71/3 is rational, so 71/3 = a/b where a and b are integers with no common factors.  Then 7 = a3 / b3, so 7 b3 = a3.  Then there must be a 7 in the prime factorization for a, so a = 7k.  7 b3 = (7k)3 = 73 k3, so b3 = 72 k3 , so there must be a 7 in the prime factorization of b.  This contradicts our assumption that a and b don’t have any common factors, so it must be that 71/3 is not rational.


3b. 1/2 + 1/(2*3) + 1/(3*4) + ... + 1/(n*(n+1)) = n/(n+1) for every integer n >= 1

Proof by induction.

Base case 
– check for n=1.  LHS is 1/(1 * (1+1)) = 1/2.  RHS = 1/(1+1) = 1/2.
- check for n=2.  LHS is 1/2 + 1/(2*3).  RHS = 2/3.  LHS = 1/2+1/6 = 4/6 = 2/3.

Inductive step.  Assume true for all n up to k.  Show it’s true for n = k+1.

  1/2 + 1/(2*3) + ... + 1/(k*(k+1)) + 1/((k+1)*(k+2)) 
=              k/(k+1)              + 1/((k+1)*(k+2))     // by inductive assump
=              (k(k+2) + 1) / ((k+1)*(k+2))
=              (k*k +2*k + 1) / ((k+1)*(k+2))
=              ((k+1)(k+1)) / ((k+1)*(k+2))
=                    (k+1)  / (k+2) = (k+1) / ( (k+1) + 1)


3c. For all integers k, if k*k is even then k is even.
                              p         =>     q

Proof by contrapositive.  Contrapositive of p => q is (not q) => not p.  And these are equivalent.  We will show if (not k is even) => (not k*k is even).

Let k be an integer that is not even, so k is odd and can written k = 2n + 1.
k * k = (2n + 1) * (2n + 1) = 4n*n + 4n + 1 = 2(2*n*n + 2*n) + 1, which means that k*k is odd.  In other words (not k*k is even).

Therefore done.










4) Write a table for the transition function of the following NFA or DFA.  Let the third state have the label “c”, so the set of states is Q = {a, b, c}
https://www.tutorialspoint.com/automata_theory/images/dfa_graphical_representation.jpg
[image: https://www.tutorialspoint.com/automata_theory/images/dfa_graphical_representation.jpg]

0.     1

a   a.     b

b.  c.     a

c.  b.     c

And initial state is a, final states = {c}



5) Describe the language accepted by the following NFA or DFA.
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/either01nfa-1.png
[image: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/either01nfa-1.png]

Along the top – 01 (0 | 1)*
Along the bottom – (0 | 1) (0 | 1)* 01

Language is: starts with 01, or is at least three characters and ends with 01
Simpler: starts or ends with 01




6) Prove the following.  The class of regular languages is closed under
   intersection.

Note: need to show that if L and L’ are two regular languages, then so is 
(L intersect L’).  (L intersect L’) – the “yes” instances must be “yes” for both L and L’.  

Proof: Given two regular languages L and L’, we must construct DFA or NFA or RE for 
(L intersect L’).  

Proof idea: assume a DFA D for L and a DFA D’ for L’.  We’ll construct a DFA D’’ that recognizes (L intersect L’).  D’’ will keep track of what is happening in both D and D’.  How many different states does D’’ need?  # states in D * # states in D’.
Each state for D’’ is written like (q,q’) for q from D and q’ from D’.  

Transition function for D’’
delta( (q,q’), x) = ( delta_D(q, x), delta_D’(q’, x) )

And check the book again.

After describing D’’, need to show:
[bookmark: _GoBack]If x accepted by both D and D’, then it is accepted by D’’.
If either D or D’ rejects, then D’’ rejects.
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