# rolling some die
d <- sample(6, 10000, replace = TRUE)
hist(d)
# mean value
mean(1:6)
mean(d)
# flipping coins
numHeads <- sapply(1:1e5,
function(x) {
#print(x)
c <- sample(2, 100, replace=TRUE)
sum(c == 1)
})
#View(numHeads)
hist(numHeads, breaks=100, xlim=c(0,100))
# note - that is called a bernoulli distribution
numHeads <- sapply(1:1e6,
function(x) {
rbinom(n=1, size=100, prob=0.5)
})
#View(numHeads)
hist(numHeads, breaks=100, xlim=c(0,100))
pbinom(q=30,size=100, prob=0.5)