
Name:

CS 620 Fall 2010 at ISU, Exam 3 SAMPLE

Prepared by assistant professor Jeff Kinne on November 30, 2010. You have until 4:00pm to finish
the exam. The exam itself and blank paper I provide are all you will have to use (no computer,
textbook, notes, cellphone, calculator, etc.). I have put point values on the problems so the total
adds up to 28. I WILL collect the exams at 4:00pm, so budget your time so you have time to
answer each question.

Problem 1 (3 points) Show the following function is not a one-way function.
Addition: f(x, y) = x + y.

Problem 2 (3 points) Show the following is not a one-way function.
Factoring: f(n) = (p1, p2, ..., pk) where these are the prime factors of n in order from smallest to
largest and there may be duplicates if needed.

1



Problem 3 (5 points) Let f be any function that is computable in polynomial time. Show that
if f is a one-way function, then P 6= NP. Let f be any function that is computable in polynomial
time. Show that if f is a one-way function, then P 6= NP.

Problem 4 (5 points) Let G be a one-one function that maps n bits to n + 1 bits. Define f , a
function from n + 1 bits to 1 bit such that f(y) = 1 iff y is in the range of G (namely, f(y) = 1
iff there is an x such that G(x) = y). Show that if you can compute f correctly on 1

2 + 1/ poly
fraction of inputs, then you can distinguish the output of G from uniform with 1/poly advantage.

In other words, if G is pseudorandom, then f is hard to compute. It can also be shown that PRGs
imply one-way functions.

2



Problem 5 (5 points) Explain why every language in BPP has a zero-knowledge proof system. In
particular, what is the prover, what is the verifier, and what is the simulator?

Problem 6 (3 points) Let f be a poly-time 1-1 length-preserving function from n bits to n bits,
and let b be a poly-time function from n bits to 1 bit. Show that if b is hard-core for f , then f is
a one-way function.

Problem 7 (5 Points) Let f be a one-way function, and let f ′ be a function from k · n bits to k · n
bits defined by f ′(x1, x2, ..., xk) = f(x1), f(x2), ..., f(xk). If we use the naive strategy of trying to
invert f ′ by using some poly-time algorithm to independently invert f on each of f(x1), ..., f(xk),
then give an upper bound on the probability of success of this strategy.

3


