
CS 620 Fall 2010 at ISU, Model Solutions for Homework 1

Prepared by assistant professor Jeff Kinne on September 2, 2010.

Problem 1

This problem deals with big-O asymptotic notation, proving useful rules and providing practice.

Part a Let f and g be two functions that are polynomially-bounded asymptotically. We wish to
show that if we define h1 and h2 such that h1(n) = f(n) · g(n) and h2(n) = f(g(n)) then both h1

and h2 are polynomially-bounded asymptotically as well.
Let us argue informally first. By assumption we know that f(n) = O(ncf) and g(n) = O(ncg)

for some constants cf and cg (this is what I mean by “polynomially-bounded asymptotically”).
Then we have that h1(n) = f(n) · g(n) = O(ncf) · O(ncg) = O(ncf+cg) and h2(n) = f(g(n)) =
O((O(ncg))cf) = O(ncg ·cf). Then both h1 and h2 are big-O polynomial of slightly higher degree
than f and g.

Notice we have used the “rule” that O(ncf) · O(ncg) = O(ncf+cg) in the calculation for h1 and
have used similar reasoning in the calculation for h2. We need to justify that these “rules” with
big-O notation are correct. I see two ways to do this. One way would be to show that the “rules”
we wanted to apply really are valid. This could be done, and is not too difficult. The other way
is to apply the definitions more precisely in the calculations for h1 and h2, and this is what I will
show now.

Applying the definitions more precisely, we have that there exist constants kf , kg, nf , and ng

such that
f(n) ≤ kf · ncf

for all n ≥ nf and
g(n) ≤ kg · ncg

for all n ≥ ng. Then
h1(n) ≤ (kfkg) · ncf+cg

for all n greater than the maximum of nf and ng. So for n ≥ max(nf , ng), h is at most a constant
times ncf+cg ; in other words h1(n) = O(ncf+cg). Also,

h2(n) ≤ kf (kg · ncg)cf = (kfk
cf
g) · ncg ·cf

for all n greater than the maximum of ng and (nf/kg)1/cg . (The fact that n should be at least
max(ng, (nf/kg)1/cg) is slightly tricky – do you see why?) This means that h2(n) = O(ncg ·cf).

Part b We now want to show that if f and g are exponentially-bounded asymptotically (2O(nd)

for some constant d) then their product is exponentially-bounded asymptotically.
Again let us first argue informally. By assumption, we know that there exist constants cf and cg

such that f(n) = 2O(n
cf) and g(n) = 2O(ncg). If we let h1 again be defined as their product, then

h1(n) = 2O(n
cf) · 2O(ncg) = 2O(n

cf +ncg) and thus h1(n) = 2O(nd) for d = max(cf , cg).

1

As with part (a), we have implicitly used some “rules” of working with big-O, and we should
either prove those rules or argue more precisely. We again argue using the definitions more precisely.
We have that there exist constants kf , kg, nf , and ng such that f(n) ≤ 2kf n

cf for all n ≥ nf and
g(n) ≤ 2kgncg for all n ≥ ng. Then h1(n) ≤ 2kf n

cf +kgncg for all n ≥ max(nf , ng). Letting
k = max(kf , kg) and c = max(cf , cg) we have that h1(n) ≤ 22knc

for all n ≥ max(nf , ng) meaning
that h1(n) = 2O(nc).

Part (b) also asks if h2 defined by h2(n) = f(g(n)) is exponentially bounded. The answer is
that we do not know; let me explain why. If we applied similar logic as above, we can show that
h2(n) = 22O(nc)

for some constant c. We have said that “exponentially bounded” means the function
should be 2O(nd) for some constant d, and a function of the form 22nc

is definitely much bigger than
2O(nd). We call functions of the form 22nc

“doubly exponential”. So we have no reason to believe
that h2(n) is at most 2O(nd) for some constant d. But, note that it could be so. We have only said
that f(n) = 2O(n

cf) and g(n) = 2O(ncg). These are upper bounds on f and g but we have not stated
any lower bounds. It could be that f(n) = n and g(n) = n2. These are certainly upper-bounded
by 2O(nd) for any constant d, and in this case h1 would be also.

Note on what to do on future homeworks Most of the time in this course we will not be
so detailed in our application of big-O notation. We will generally be interested in the ques-
tion – “is the running time polynomial or not?” By part (a), we know that if we have a pro-
gram/algorithm/Turing Machine that has a polynomial number of steps, and each of those steps
could be a call to a subroutine that itself runs in polynomial time, then the overall program still
runs in polynomial time. So we will just generally use big-O in this way – each of the parts uses
polynomial time, and there are a polynomial number of them, so altogether we run in polynomial
time.

Problem 2

This problem provides some practice in giving big-O estimates of the running time of algorithms.

Part a In this part of the problem we give pseudocode for a brute-force algorithm to compute a
non-trivial factor of a number that is given in binary.

1. Input: x, an n-bit binary string which we interpret as a non-negative integer.

2. If x = 0 return “0”, and if x = 1 return “1”.

3. If x = 2 return “prime”.

4. Otherwise, for i = 2 up to x− 1 do the following. If i evenly divides x, then return i.

5. If no factors are found in the for loop, return “prime”.

A simple optimization would be to search only up to b
√

xc, but this optimization would make little
difference in the running time analysis that we perform in the next part.

2

Part b In this part, we give a big-O running time analysis of the algorithm of part (a) assuming
that arithmetic operations on n-bit integers can be done in O(n2) time. The most important part
of the running time is to give a bound on how many iterations the for loop can run for. If x is
an n-bit string, then the value of x is at most 2n − 1 (this would correspond to the all 1’s string).
So we see right away that the algorithm runs in time that is exponential in the input length.
Being slightly more precise, we can look at home much time is taken for each iteration of the for
loop. The iteration consists of dividing x by i and checking if the remainder is 0. The division
is on numbers that are at most n bits, which we have assumed can be done in O(n2) time. The
remaining operations (checking if x = 0, 1, or 2) take constant time, and we have that the above
algorithm runs in time O(n2 · 2n).

If we performed the optimization of only checking factors up to b
√

xc, we would get a running
time of O((n/2)2 · 2n/2) = O(n2 · 2n/2). In fact the running time is 2Θ(n) because there are inputs
on which 2Ω(n) time is needed (e.g., if x = p · q for primes p and q that are roughly equal).

Note for future use In the future, it would likely be enough to simply state that the for loop runs
for at most 2n iterations, and each iteration takes polynomial time, so that overall the algorithm
runs in nO(1) · 2n time (at most exponential).

Problem 3

This problem gives practice in using induction proofs.

Part a We let A be any finite set, 2A denote the power set of A (the set of all subsets), and let
|A| denote the cardinality of A. We want to show that |2A|, the cardinality of the power set, is
equal to 2|A|. We prove this by induction. In computer science, we usually deal with discrete finite
objects and structures, so we will often use proofs by induction. In particular, when we need to
show that something is true for all of a particular type of object, it is a good idea to try a proof
by induction.

A proof by induction requires two parts: showing the claim holds for certain small “base cases”
and then showing that if the claim holds for objects of a certain size then it must also hold for
objects of one larger size. Here we use induction on the size of A.

For the base case, we let A be the smallest possible set – the empty set. Then |A| = 0, and the
power set of A consists of the empty set (remember that the power set of a set always includes the
empty set). So |2A| = 1 = 20 = 2|A|.

We now prove the inductive step. We assume the claim holds for all sets of size at most k and
want to show it must then hold for sets of size k +1. Let A be a set of size k +1, and let a be some
element of A. Because A is of size at least one, we know there must exist an element a of A. The
power set of A can be broken into (i) sets that contain a, and (ii) sets that do not contain a. We
can compute the size of 2A by adding the number of (i) sets and the number of (ii) sets. There is
a set in (i) for all possible subsets of A− {a}. A− {a} is of size k, so by our induction hypothesis
the number of possible subsets (the size of the power set) is equal to 2|A−{a}| = 2k. Similarly, there
is a set in (ii) for all possible subsets of A−{a} as well, so the number of sets in (ii) is equal to 2k.
The size of 2A is equal to the sum of the sizes of (i) and (ii), so equal to 2k + 2k = 2k+1 = 2|A|.

3

Part b In this part we prove how many binary strings there are that have exactly n bits. I will
describe two ways to do this. First, we can use part (a) of this problem. A binary string x with n
bits can be viewed as indicating a subset of {1, 2, 3, ..., n} – by placing i in the set X if and only
if the i-th bit of x is equal to 1. Thus the number of binary strings with exactly n bits is equal to
the number of possible subsets of {1, 2, 3, ..., n}. By part (a), we know this is equal to 2n.

We could prove this directly using the “product rule” of counting. Each bit of an n-bit string
can take two possible choices, so the total number of possibilities is equal to 2 · 2 · ... · 2 where there
are n two’s in the product, so 2n total.

Problem 4

In this problem we get some practice with two very common techniques we will use this semester.
We prove that one problem is “as hard as” another problem. That is, if we can solve the one
problem, then we could solve the other. This is called a “reduction”, but means just what I said
- we can solve the one problem using a solution to the other as a subroutine. We combine this
“reduction” with the fact that we already know the one problem is undecidable to conclude that
the other problem is also undecidable. We will write the proof as a “proof by contradiction”.

We know that the halting problem is undecidable. The halting problem takes as input a pair
(M,x) and asks whether the Turing Machine M halts in finite time when given x as the input.
We want to show that the “all strings problem” is also undecidable. This problem takes as input
the description of a Turing Machine M and asks if the Turing Machine computes the “all strings
language”, that is, does M halt in finite time and accept all possible input strings.

Suppose we could solve the all strings problem (by a Turing Machine that halts in finite time and
outputs the correct answer for all possible inputs). We will arrive at a contradiction, namely that
we could also solve the halting problem – which we know cannot be solved. Let A be the assumed
algorithm that solves the all strings problem. We want to use A to also solve the halting problem.
Let (M,x) be an input to the halting problem that we want to solve – we want to determine if M
halts in finite time when given x as an input. Let M ′ be the following Turing Machine: it ignores
its input, simulates M(x), and outputs “yes/accept” if and only if M(x) halts in finite time. Notice
that M ′ halts in finite time and accepts all possible input strings if and only if M(x) halts in
finite time. Thus we can use our assumed algorithm A for solving the all strings problem – A(M ′)
gives the correct answer to the halting problem on input (M,x). Because we know the halting
problem cannot be solved, then the assumed algorithm A cannot exist – the all strings problem is
undecidable.

Note. Note that in the above, I have not given Turing Machine code, C/Python/Java code; I
have not even given pseudocode for how to solve the halting problem if we had a solution to the all
strings problem. But from the description I have given, we could easily produce the pseudocode or
Turing Machine code (a tedious task, but easy). The level of detail given in the above argument is
about what I normally expect form you in this course.

4

