Lower Bounds against Weakly-Uniform
Threshold Circuits

Ruiwen Chen!, Jeff Kinne?, and Valentine Kabanets®

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
ruiwenc@sfu.ca
2 Indiana State University, USA
jkinne@cs.indstate.edu
3 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
kabanets@cs.sfu.ca

Abstract. A family of Boolean circuits {Cy, }n>0 is called v(n)-weakly-
uniform if there is a polynomial-time algorithm for deciding the direct-
connection language of every Cp, given advice of size y(n). This is a
relaxation of the usual notion of uniformity, which allows one to inter-
polate between complete uniformity (when «(n) = 0) and complete non-
uniformity (when y(n) > |Cr|). Weak uniformity is essentially equivalent
to succinctness introduced by Jansen and Santhanam [JS11].

Our main result is that PERMANENT is not computable by polynomial-
size n°M-weakly-uniform TC circuits. This strengthens the results by
Allender [ATI99] (for uniform TC®) and by Jansen and Santhanam [JS11]
(for weakly-uniform arithmetic circuits of constant depth). Our approach
is quite general, and can be used to extend to the “weakly-uniform” set-
ting all currently known circuit lower bounds proved for the “uniform”
setting. For example, we show that PERMANENT is not computable by
polynomial-size (log n)o(l)—weakly—uniform threshold circuits of depth
o(loglogn), generalizing the result by Koiran and Perifel [KP09].

Keywords: advice complexity classes, alternating Turing machines, count-
ing hierarchy, permanent, succinct circuits, threshold circuits, uniform
circuit lower bounds, weakly-uniform circuits

1 Introduction

Understanding the power and limitation of efficient algorithms is the major
goal of complexity theory, with the “P vs. NP” problem being the most famous
open question in the area. While proving that no NP-complete problem has a
uniform polynomial-time algorithm would suffice for separating P and NP, a
considerable amount of effort was put into the more ambitious goal of trying to
show that no NP-complete problem can be decided by even a nonuniform family
of polynomial-size Boolean circuits.

More generally, an important goal in complexity theory has been to prove
strong (exponential or super-polynomial) circuit lower bounds for “natural” com-
putational problems that may come from complexity classes larger than NP, e.g.,

the class NEXP of languages decidable in nondeterministic exponential time.
By the counting argument of Shannon [Sha49], a randomly chosen n-variate
Boolean function requires circuits of exponential size. However, the best cur-
rently known circuit lower bounds for explicit problems are only linear for NP
problems [LRO1IIMO02], and polynomial for problems in the polynomial-time hi-
erarchy PH [Kan82] and counting hierarchy CH [Tod91]. Super-polynomial lower
bounds are known only for classes such as MAEXP [BET98/MVW99].

To make progress, researchers introduced various restrictions on the circuit
classes. In particular, for Boolean circuits of constant depth, with NOT and
unbounded fan-in AND and OR gates (AC? circuits), exponential lower bounds
are known for the PARITY function [FSS84Yao85Has86]. For constant-depth
circuits that additionally have (unbounded fan-in) MOD,, gates, one also needs
exponential size to compute the MOD, function, for any distinct primes p and
q [Raz87/Smo87]. With little progress for decades, Williams [Willl] has recently
shown that a problem in NEXP is not computable by polynomial-size ACC"
circuits, which are constant-depth circuits with NOT gates and unbounded fan-
in AND, OR and MOD,, gates, for any integer m > 1. However, no lower
bounds are known for the class TCY of constant-depth threshold circuits with
unbounded fan-in majority gate a class of circuits that includes ACC® circuits
as a sub-class (see, e.g., [BIS90]).

To make more progress, another restriction has been added: uniformity of
circuits. Roughly speaking, a circuit family is called uniform if there is an effi-
cient algorithm that can construct any circuit from the family. There are two
natural variations of this idea. One can ask for an algorithm that outputs the
entire circuit in time polynomial in the circuit size; this notion of uniformity
is known as P-uniformity. In the more restricted notion, one asks for an algo-
rithm that describes the local structure of the circuit: given two gate names,
such an algorithm determines if one gate is the input to the other gate, as
well as determines the types of the gates, in time linear (or polynomial) in
the input size (which is logarithmic or polylogarithmic time in the size of the
circuit described by the algorithm); such an algorithm is said to decide the
direct-connection language of the given circuit. This restricted notion is called
DLOGTIME- (or POLYLOGTIME-) uniformity [Ruz81/BISIOJAGI4]. We will use
the notion of POLYLOGTIME-uniformity by default, and, for brevity, will omit
the word POLYLOGTIME.

It is easy to show (by diagonalization) that, for any fixed exponential function
s(n) = 2" for a constant ¢ > 1, there is a language in EXP (deterministic ex-
ponential time) that is not computable by a uniform (even P-uniform) family of
Boolean s(n)-size circuits[’] Similarly, as observed in [AII99], a PSPACE-complete
language requires exponential-size uniform TCP circuits — due to the space hierar-

4 A plausible explanation of this “barrier” is given by the “natural proofs” framework
of [RRI7], who argue it is hard to prove lower bounds against the circuit classes that
are powerful enough to implement cryptography.

5 Unlike the nonuniform setting, where every n-variate Boolean function is computable
by a circuit of size about 2" /n [Lup58|, uniform circuit lower bounds can be > 2".

chy theorem and the fact that TCY circuits can be decided by a logarithmic space
Turing machine. For the smaller complexity class #P C PSPACE, Allender and
Gore [AG94] showed PERMANENT (which is complete for #P [Val79]) is not com-
putable by uniform ACC? circuits of sub-exponential size. Later, Allender [A1199]
proved that PERMANENT cannot be computed by uniform TCY circuits of size
s(n) for any function s such that, for all k, s%*) (n) = 0(2") (where s(*) means the
function s composed with itself k times). Finally, Koiran and Perifel [KP09] ex-
tended this result to show that PERMANENT is not computed by polynomial-size
uniform threshold circuits of depth o(loglogn).

Recently, Jansen and Santhanam [JS11] have proposed a natural relaxation of
uniformity, termed succinctness, which allows one to interpolate between non-
uniformity and uniformity. According to [JS11], a family of s(n)-size circuits
{C,,} is succinct if the direct-connection language of C,, is decided by some circuit
of size 5(n)°(M). In other words, while there may not be an efficient algorithm for
describing the local structure of a given s(n)-size circuit C,,, the local structure
of C,, can be described by a non-uniform circuit of size s(n)°"). Note that if
we allow the non-uniform circuit to be of size s(n), then the family of circuits
{C,,} would be completely non-uniform. So, intuitively, the restriction to the
size s(n)°1) makes the notion of succinctness close to that of non-uniformity.

The main result of [JS11] is that PERMANENT does not have succinct polynomial-
size arithmetic circuits of constant depth, where arithmetic circuits have un-
bounded fan-in addition and multiplication gates and operate over integers.
While relaxing the notion of uniformity, [JSTI] were only able to prove a lower
bound for the weaker circuit class, as polynomial-size constant-depth arithmetic
circuits can be simulated by polynomial-size TC® circuits. A natural next step
was to prove a super-polynomial lower bound for PERMANENT against succinct
TCP circuits. This is achieved in the present paper.

1.1 Owur main results

We improve upon [JSII] by showing that PERMANENT does not have succinct
polynomial-size TCO circuits. In addition to strengthening the main result from
[JS11], we also give a simpler proof. Our argument is quite general and allows
us to extend to the “succinct” setting all previously known uniform circuit lower
bounds of [AGI4[ATI99IKP09].

Recall that the direct-connection language for a circuit describes the local
structure of the circuit; more precise definitions will be given in the next section.
For a function o : N — N, we say that a circuit family {C,} of size s(n)
is a-weakly-uniform if the direct-connection language Lg. of {C,} is decided
by a polynomial-time algorithm that, in addition to the input of L4, of size
m € O(log s(n)), has an advice string of size a(m); the advice string just depends
on the input size m. The notion of a-weakly uniform is essentially equivalent to
the notion of a-succinct introduced in [JS11]; see the next section for details.

We call a circuit family subexp-weakly-uniform if it is a-weakly-uniform for
a(m) € 2°0™) . Similarly, we call a circuit family poly-weakly-uniform if it is

a-weakly-uniform for a(m) € m@®. Observe that for m = O(logs), we have
20(m) = (1) and mPM) = polylog s.
Our main results are as below. First, we strengthen the lower bound of [JS11].

Theorem 1. PERMANENT is not computable by subexp-weakly-uniform poly-
size TCY circuits.

Let us call a function s(n) sub-subexponential if, for any constant k > 0,
we have that the k-wise composition s*)(n) < 27" We use subsubexp to
denote the class of all sub-subexponential functions s(n). We extend a result of
Allender [AII99)] to the “weakly-uniform” setting.

Theorem 2. PERMANENT is not computable by poly-weakly-uniform subsubexp-
size TCY circuits.

We extend the result of [KP09| to the weakly-uniform setting as well.

Theorem 3. PERMANENT is not computable by poly-weakly-uniform poly-size
threshold circuits of depth o(loglogn).

We also state a single parameterized result that implies a tradeoff between
the amount of non-uniformity, circuit size, and depth. The precise statement is
given in Section [and implies Theorems [T} 2] and [3]

Finally, we obtain lower bounds for weakly-uniform ACC’, AC, and general
circuits. These results are stated and proved in Section [6]

1.2 Our techniques

We give two different proofs of our main results. The two proofs are similar, but
each implies corollaries that cannot be achieved by the other.
At a high level, both proofs use the method of indirect diagonalization.

(i) We begin with a language in the counting hierarchy that is “hard” for a
certain class of algorithms.

(ii) Assuming PERMANENT is easy, we show that the above “hard” language
is actually “easy” — as the easiness of PERMANENT collapses the counting
hierarchy in much the same way that NP = P implies the collapse of the
polynomial hierarchy — which is a contradiction.

The key technical hurdle in using this approach is to deal appropriately with
non-uniformity. To see the structure of the proofs, we give an outline of how each
comes to a contradiction if we assume the permanent has n°")-weakly-uniform
poly-size constant-depth threshold circuits (Theorem .

First Proof The first proof is naturally viewed from the perspective of threshold
Turing machines, which are one method for defining the counting hierarchy. It
is well-known that uniform threshold circuits can be transformed into threshold
Turing machines that run in time logarithmic in the size of the original circuit.
We extend this correspondence to include weakly-uniform threshold circuits.
Thus a small weakly-uniform threshold circuit for PERMANENT can be used
to make arguments about hard languages in the counting hierarchy. The proof
follows the following main steps.

1. Hierarchy theorem. For any constant k > 1, there is a language Lpq.-q decided
by a threshold Turing machine running in polynomial time that differs from
all languages decided by threshold Turing machines using the same number
of majority states, running in time n*, and using o(n) bits of advice.

2. Hardness of Lparq if PERMANENT is easy. If the permanent has constant-
depth n°M-weakly-uniform threshold circuits of polynomial size, then P also
does, and in particular every language in P can be computed by a threshold
machine running in time n* and using advice n°), for some constant k > 1.
Thus Lj g is hard for P computations that use n°M bits of advice. Note that
Lparq is computable by a fixed-polynomial time threshold Turing machine
and is hard for P computations of any polynomial running time.

3. Collapse of counting hierarchy. PERMANENT is complete for the first level
of the counting hierarchy, and if PERMANENT is easy then threshold Turing
machine computations can be converted into deterministic computations. We
show this holds also in the setting of a small amount of advice, so that given
the assumed weakly-uniform threshold circuits for PERMANENT, we conclude
that Lparq is contained within P with n°™®) bits of advice — a contradiction.

Second Proof For the second proof, we begin with a different hard language.
We let Lp,-q be a language that is unconditionally known to require large non-
uniform circuits. There exists such a language in the second level of the counting
hierarchy. Given the different hard language as a starting point, the rest of the
argument is somewhat different. The key steps are the following.

— Non-uniformly hard language. It is known that for any constant k, PPP con-
tains a language Lpqrq that does not have circuits of size n*.

— Threshold circuit for Lpqrq- By the PP-completeness of PERMANENT, if PER-
MANENT has n°(")-weakly-uniform constant-depth threshold circuits of poly-
nomial size, then Lj,.q does as well.

— Collapse of threshold circuit. Let Charq be the threshold circuit for Lpgrqg
at input length n from the last step. By viewing the threshold gates within
Chard as questions about PERMANENT, we shrink the circuit as follows. The
first level of threshold gates closest to the inputs in Cjq4rq can be viewed
as PP questions of size poly(log(n) + n°1); using the assumed easiness of
PERMANENT a circuit C; of size n°") can be used in place of the threshold
gates on the first level. A similar argument shows that the second level
of threshold gates reduce to PP questions of size poly(]Cy]|), which can be

replaced by a circuit of size poly(poly(|C1|)) using the assumed easiness of
the permanent. This process is repeated for each level of threshold gates in
Chard- If Charq has depth d, we obtain a circuit of size p(%) (n"(l)) + O(n) for
some polynomial p after iterating for each level of threshold gates in Cpqpq.
The conclusion is a contradiction — we have constructed a circuit of size O(n)

for computing Cq,q although it should require size n*.

The last parts of both proofs are the same. If PERMANENT is easy then the
counting hierarchy collapses, even in the presence of n°() bits of advice. Equiv-
alently, weakly-uniform circuits for PERMANENT imply the collapse of weakly-
uniform threshold circuits.

The same basic argument as those given above is used for each of Theorems|1]
and 3| In fact, for our second proof we prove a single parameterized statement
that implies the theorems as corollaries.

We have phrased our first proof in terms of threshold Turing machines with
advice, and our second proof in terms of weakly-uniform threshold circuits. Due
to the equivalence between the two models, both proofs could be given in terms
of either model. The Turing machine model is natural for the first proof due to
the reliance on a hierarchy theorem for Turing machines for Lpj4.q. The circuit
model is natural for the second proof due to its use of a circuit lower bound for
Lha'rd~

1.3 Relation to the previous work

A similar indirect-diagonalization strategy was used (explicitly or implicitly)
in all previous papers showing uniform or weakly-uniform circuit lower bounds
for PERMANENT [AG94JATI99/KP09/JST11]. Our proofs are most closely related to
those of [AII99/KP09]. The main difference is that we work in the weakly-uniform
setting, which means that we need to handle a certain amount of non-uniform
advice. To that end, we have adapted the method of indirect diagonalization,
making it modular (as outlined above) and sufficiently general to work also in
the setting with advice. Due to this generality of our proof argument, we are
able to extend the aforementioned lower bounds from the uniform setting to the
weakly uniform setting.

The approach adopted by [JS11] goes via the well-known connection be-
tween derandomization and circuit lower bounds (cf. [HS82IKI04/Agr05]). Since
the authors of [JSTI] work with the algebraic problem of Polynomial Identity
Testing (given an arithmetic circuit computing some polynomial over integers,
decide if the polynomial is identically zero), their final lower bounds are also in
the algebraic setting: for weakly-uniform arithmetic constant-depth circuits. By
making the diagonalization arguments in [JSI1I] more explicit (along the lines of
[AII99/KP09]), we are able to get the lower bound for weakly-uniform Boolean
(TCO) circuits, thereby both strengthening the results and simplifying the proofs
from [JS11].

Preliminary publications of this work Extended abstracts of the main results of
this paper appeared in two separate papers [Kin12/CK12]. The two earlier papers
independently came to the same main results. The present paper combines both
of the earlier works.

The remainder of the paper. We give the necessary background in Section
Section [3| provides the tools needed for our proofs. These tools are then used
in Sections [4| and [5| to give the two proofs of our main results (Theorems
above). We give other weakly-uniform circuit lower bounds in Section@ We give
concluding remarks in Section

2 Preliminaries

We refer to [I] for the basic complexity notions.

2.1 Circuits

Recall that a Boolean circuit C, on n inputs z1,...,z, is a directed acyclic
graph with one single output gate (the node of out-degree 0), n nodes of in-
degree 0 (input gates labeled z1,...,2,), and internal nodes of in-degree 2 (for
AND and OR gates) or 1 (for NOT gates). The size of the circuit C), is defined
to be the number of gates, and is denoted by |C,,|. For a function s : N — N and
a circuit family {C),},>0, we say that the circuit family is in SIZE(s), if for all
sufficiently large n we have |C,,| < s(n).

The depth of a circuit C,, is defined as the length of a longest path from some
input gate to the output gate. We will be talking about constant-depth circuits,
in which case we allow all gates (other than the NOT gates) to have unbounded
fan-in. In addition to AND and OR, we may have other types of gates: MAJ
(which is 1 iff more than half of its inputs are 1), or MOD,,, gate for some integer
m > 0 (which is 1 iff the integer sum of the inputs is divisible by m).

AC circuits are constant-depth Boolean circuits with NOT gates and un-
bounded fan-in AND and OR gates. ACC® circuits are constant-depth Boolean
circuits with unbounded fan-in AND, OR and MOD,,, gates for some posi-
tive integer m. Finally, TCO circuits are constant-depth Boolean circuits with
unbounded fan-in AND, OR and MAJ (or threshold) gates. For a function
s:N — N and a circuit type C € {AC?, ACC°, TC?}, we denote by C(s) the class
of families of s(n)-size n-input circuits of type C. When s(n) is a polynomial
in n, we may drop it and simply write C to denote the class of polynomial-size
C-circuits. Finally, we drop the superscript 0 in AC?, ACC°, and TC", when we
want to talk about the corresponding type of circuits where the depth d(n) may
be a function of the input size n.

2.2 Weakly-uniform circuit families

Following |[Ruz81JAG94], we define the direct connection language of a circuit
family {C,,} as Lg. = {(n,g,h): g = h and g is a gate in C,, or g # h and h

is an input to g}, where n is in binary representation, and g and h are binary
strings encoding the gate types and names. The type of a gate could be constant
0 or 1, Boolean logic gate NOT, AND, or OR, majority gate MAJ, modulo gate
MOD,, for some integer m, or input z1,xs,...,z,. For a circuit family of size
s(n), we need ¢ log s(n) bits to encode (n, g, h), where ¢ is a small constant at
most 4.

A circuit family {C,} is uniform [BIS90JAG94] if its direct connection lan-
guage is decidable in time polynomial in its input length |(n,g,h)|; this was
referred to as POLYLOGTIME-uniformity in [AG94].

We say a function f(n) is constructible if there is a deterministic TM that
computes f(n) in binary in time O(f(n)), when given n in binary as the inputlﬂ

Following [JSTT], for a constructible function o : N — N, we say that a
circuit family {C,} of size s(n) is a-succinct if its direct connection language
Lg. is in SIZE(«); i.e., L. has (non-uniform) Boolean circuits of size a(m), where
m = cplog s(n) is the input size for Lg.. Trivially, for a(m) > 2™, every circuit
family is a-succinct. The notion becomes nontrivial when a(m) < 2™/m. We
will use a(m) = 2°0™ (slightly succinct) and a(m) = m®® (highly succinct).

We stress that here we have parameterized the succinctness as a function
of the logarithm of the size of the circuit. As a function of the input length
n, a circuit of size s(n) is slightly succinct if the direct connection language is
decided by a circuit of size s°(!) (n), and is highly succinct if the direct connection
language is decided by a circuit of size poly — log(s(n)).

We recall the definition of Turing machines with advice from [2]. Given func-
tions t: NxN — N and o: N — N, we say that a language L is in DTIME(¢)/a, if
there is a deterministic Turing machine M and a sequence of advice strings {a, }
of length «(n) such that, for any = € {0,1}", machine M on inputs (z,a,) de-
cides whether € L in time t(n, a(n)). If the function ¢(n, m) is upper-bounded
by a polynomial in n + m, we say that L € P/a.

Definition 1. A circuit family {Cy} of size s(n) is a-weakly-uniform if its di-
rect connection language is decided in P/a; recall that the input size for the
direct-connection language describing Cy, is m = cologs(n), and so the size of
the advice string needed in this case is a(colog s(n)).

The two notions are closely related.

Lemma 1. In the notation above, a(m)-succinctness implies a(m)loga(m)-
weak uniformity, and conversely, a(m)-weak uniformity implies (a(m)+m)° ™M) -
succinctness.

Proof (sketch). A Boolean circuit of size s can be represented by a binary string
of size O(slog s); and a Turing machine running in time ¢ can be simulated by
a circuit family of size O(tlogt). O

6 We note that f(n) is constructible in our sense if and only if 2 is constructible
according to Allender’s definition in [AlI99)].

The notion of weak uniformity (succinctness) interpolates between full unifor-
mity on one end and full non-uniformity on the other end. For example, 0-weak
uniformity is the same as uniformity. On the other hand, a-weak uniformity for
a(m) = 2™ is the same as non-uniformity. For that reason, we will assume that
the function « in “a-weakly-uniform” is such that 0 < a(m) < 2™.

Definition 2. We say a circuit family {C,} is subexp-weakly-uniform if it is a-
weakly-uniform for a(m) € 2°0™) ; similarly, we say {C,} is poly-weakly-uniform
if it is a-weakly-uniform for a(m) € mO™).

2.3 Alternating Turing machines

Both the counting hierarchy and uniform threshold circuits can equivalently be
defined using threshold Turing machines, which are generalizations of alternat-
ing Turing machines. As we use this view in some of our proofs, we recall the
definitions — and state the equivalence in the next subsection.

Following |[CKSS8IIPS86/AGY4], an alternating Turing machine (ATM) is a
nondeterministic Turing machine with two kinds of states: universal states and
existential states. In the usual definition of an ATM, each configuration has
either zero or two successor configurations; configurations with no successors,
which are called leaves, are halting configurations; a configuration in universal
(existential) state is accepting iff all (at least one) of its successors are accept-
ing. We also consider the generalized ATMs where each configuration has an
unbounded number of successors, obtained by replacing a subtree of “bounded
branching” configurations by a single configuration. We assume an ATM has
random access to the input.

A threshold Turing machine is an ATM with majority (MAJ) states; a con-
figuration in a majority state may have an unbounded number of successors,
and it is accepting iff more than half of its successors are accepting. We denote
by Thge) TIME(t(n)) the class of languages accepted by threshold Turing ma-
chines having at most d(n) alternations and running in time O(t(n)). Note that
the class Thy(,,) TIME(t(n)) is closed under complement, since the negation of
majority is the majority of negated inputsﬂ

Recall that a language A is in PP (C_P) if there is a nondeterministic
polynomial-time Turing machine M such that z € A iff the number of accept-
ing paths of M on input z is greater than (equal to) the number of rejecting
paths. The counting hierarchy [Wag86l[Tor91] is defined as CH = Ug>oCH, where
CHo = P and CHgyy = PPH4. This definition is unchanged if we replace PP with
C_P. The counting hierarchy can be equivalently defined via threshold Turing
machines: CHg = Thy TIME(n®W).

Alternating Turing machines can be also equipped with modulo states MOD,,,
for some fixed m; a MOD,,, configuration is accepting iff the number of its accept-
ing successors is 0 modulo m. We denote by Modg(,,) TIME(%(n)) the class of lan-
guages decided by ATMs with MOD,,, states for some fixed m > 0 dependent on

" This is true for MAJ with an odd number of inputs, which is easily achieved by
replacing M AJ(z1, %2, ..., zr) with MAJ(x1,21, 22,2, ..., Tk, Tk, 0).

the language, making at most d(n) alternations and running in time O(t(n)). Fol-
lowing [GKRST95JATI99], we denote by ModPH the class UgsoMody TIME(n© (1),
It is well-known that threshold states can be used to simulate MOD,, states,
and thus also ModPH C CH.

In general, on different inputs, an ATM may follow computation paths with
different sequences of alternations; however, by introducing dummy states, it is
always possible to transform the machine into an equivalent machine such that
all computation paths on inputs of the same size will follow the same sequence
of alternations, whereas the number of alternations and the running time will
change only by a constant factor; see [AG94] for details.

2.4 Weak uniformity vs. alternating Turing machines with advice

It is well-known that uniform AC0(2P°'V(")) corresponds to the polynomial-time
hierarchy PH [FSS84]. Similarly, the correspondence exists between uniform
ACC®(2PY(™)) and ModPH [GKRSTIS/AGY4], as well as between uniform TC? (2P0 (n))
and the counting hierarchy CH [PS86IBIS90/AII99]; see Table [I| below for the
summary. More precisely, for constructible ¢(n) such that t(n) = 2(logn), we
have UgsoModgTIME(poly(t(n))) is precisely the class of languages decided by
uniform ACCY (2P (™)) "and UgsoTha TIME(poly(t(n))) is precisely the class of
languages decided by uniform TCY(2PO (7)),

Table 1. Correspondence between hierarchies and uniform circuit classes.

lAlternation [Hierarchy[Circuits [Reference ‘
a,v PH uniform AC” [[FSS84]
3,V,MODz, MOD3, .. .[ModPH [uniform ACCP|[[GKRST95[AG94]
3,V,MAJ CH uniform TC” |[PSS6IBIS90JATIY]

The following lemma gives the correspondence between weakly-uniform thresh-
old circuits and threshold TMs with advice.

Lemma 2. Let L be any language decided by a family of a-weakly-uniform d(n)-
depth threshold circuits of size s(n). Then L is decidable by a threshold Turing
machine with d'(n) = 3d(n) 4+ 2 alternations, taking advice of length a(m) for
m = cglog s(n), and running in time t(n) = d'(n) - poly(m + a(m)).

Proof. The proof follows directly from [AG94] where ACCY circuits are consid-
ered. Let {C,,} be the circuit family deciding L. Its direct connection language
L. is accepted by some Turing machine U, on input size m = ¢g log s(n), taking
advice a,, of size a(m) and running in time poly(m + a(m)) . We will construct
a threshold Turing machine M which takes advice and decides L. For any input
z of length n, machine M takes advice b, = a,,, and does the following:

— (3) guess gate g of C,,, and check that U accepts (n, g,9), i.e., g is a gate in
Ch;

— (V) guess gate h and check that U rejects (n, h, g), i.e., g is the output;

— Call Eval(g), which is a recursive procedure defined below.

The procedure Eval(g) is as follows:

— (3) If g is an OR gate, then guess its input h; if U rejects (n, g, h) then reject,
otherwise call Eval(h).

— (V) If g is an AND gate, then guess its input h; if U rejects (n, g, h) then
accept, otherwise call Eval(h).

— (MAJ) If g is a MAJ gate, then guess its input h and a bit b € {0,1}; if U
rejects (n, g, h), then accept when b = 1 and reject when b = 0, otherwise
call Eval(h).

— If g is a constant gate, then accept iff it is 1.

— If g is an input, then accept iff the corresponding input bit is 1.

It is easy to verify that M with advice b,, accepts z iff C),(x) = 1. The number
of alternations that M takes on any computation path is at most d(n) + 2.
However, each path may follow a different sequence of states. To resolve this,
we replace each state on each path by a sequence of three states (3,V,MAJ),
where two of them are dummy. This gives a machine with each computation
path following the same alternations, and the total number of alternations is at
most 3d(n)+ 2. The access to inputs is only at the last step of each computation
path (corresponding to the bottom level of the circuit).

At each alternation, the machine simulates U and runs in time poly(m +
a(m)). Therefore, the total running time is bounded by d’(n) - poly(m + a(m)).
O

Similar to Lemma [2, we have the following correspondence between weakly-
uniform ACC circuits and alternating Turing machines with modulo states.

Lemma 3. Let L be any language decided by a family of a-weakly-uniform d(n)-
depth ACC circuits of size s(n) with MOD,. gates, for some integer r > 0. Then
L is decidable by an alternating Turing machine with MOD,. states and d'(n) =
O(d(n)) alternations, taking advice of length a(m) where m = cglogs(n), and
running in time d'(n) - poly(m + a(m)).

2.5 Permanent

The main property of PERMANENT needed for our results is PP-hardness. [Zan91],
building on [Val79], implies that any language in PP reduces to the 0-1 perma-
nent with a quasi-linear size uniform AC® reduction, where quasi-linear means

n - polylog(n).

3 Indirect diagonalization

Here we establish the components needed for our indirect diagonalization, as
outlined in Section 2

First, in Section we give the ingredients needed for our first proof. One
result is a diagonalization argument against alternating Turing machines with
advice, getting a language in the counting hierarchy CH that is “hard” against
weakly-uniform TC® circuits of certain size. Another result shows that using
the assumption that a canonical P-complete problem has small weakly-uniform
TCO circuits, we conclude that the “hard” language given by our diagonalization
step is actually hard for a stronger class of algorithms: weakly-uniform Boolean
circuits of some size s’ without any depth restriction.

Section [3.2|contains the tools needed for the second proof of our main results.
In particular we state and prove the circuit lower bound that is used in the
second proof: that EPP contains a language that requires non-uniform circuits of
size 20(").

Finally, in Section we state and prove the key lemma that is used in
both proofs. Namely, using the assumption that PERMANENT has small weakly-
uniform TC? circuits, we show that CH collapses, and our assumed hard lan-
guages are in fact decidable by weakly-uniform s’-size Boolean circuits, which
is a contradiction. Our actual argument is more general: we consider threshold
circuits of not necessarily constant depth d(n), and non-constant levels of the
counting hierarchy.

3.1 Ingredients for First Proof
Diagonalization against ATMs with advice

Lemma 4. For any constructible functions a,d,t,T : N — N such that a(n) €
o(n) and t(n)logt(n) = o(T'(n)), there is a language D € Thy,) TIME(T(n))
which is not decided by threshold Turing machines with d(n) alternations running
in time t(n) and taking advice of length a(n).

Proof. The proof is by diagonalization. Define the language D consisting of those
inputs z of length n that have the form x = (M, y) (using some pairing function)
such that the threshold TM M with advice y, where |y| = a(n), rejects input
(M,y) in time t(n) using at most d(n) alternations. Language D is decided in
Thy() TIME(T'(n)) by simulating M and flipping the resuhﬁ

For contradiction, suppose that D is decided by some threshold Turing ma-
chine My with d(n) alternations taking advice {a,} of size a(n). Consider the

8 Thy(n TIME(T'(n)) is closed under complement since the negation of MAJ is MAJ of
negated inputs when MAJ has an odd number of inputs; the latter is easy to achieve
by replacing M AJ(x1,...,z,) with MAJ(z1,21,. .., Tk, Tk, 0). Allender [AII99] uses
a lazy diagonalization argument [Zak83|] for nondeterministic TMs. However, that
argument seems incapable of handling the amount of advice we need. Fortunately,
the basic diagonalization argument we use here is sufficient for our purposes.

input (Mo, a,) with |Mp| = n — a(n); we assume that each TM has infinitely
many equivalent descriptions (by padding), and so for large enough n, there must
exist such a description of size n —«(n). By the definition of D, we have (M, a,,)
is in D iff My with advice a,, rejects it; but this contradicts the assumption that
My with advice {a,} decides D. O

The following diagonalization result, combing with Lemma [3] says that the
hierarchy ModPH contains languages that are “hard” against weakly-uniform
ACC circuits of certain size.

Lemma 5. For any constructible functions «a,d,t,T : N — N such that a(n) €
o(n) and t(n)logt(n) = o(T(n)), and for any integer m > 1, there is a language
D € Modg(n)+1 TIME(T'(n)) which is not decided by alternating Turing machines
with MOD,,, states and d(n) alternation running in time t(n) and taking advice
of length a(n).

Proof (sketch). The proof is similar to the proof of Lemma [4] except that when
flipping the result, the negation can be simulated by a MOD,,, state, using the
identity ~z = MOD,, (). O

If P is easy Let Lg be a P-complete language under uniform projections (func-
tions computable by uniform Boolean circuits with NOT gates only). For exam-
ple, the standard P-complete set {(M,x,1"): M accepts z in time ¢} works.

Lemma 6. Suppose Lg is decided by a family of a-weakly-uniform d(n)-depth
threshold circuits of size s(n). Then, for any constructible function t(n) = n and
0 < B(m) < 2™, every language L in B-weakly-uniform SIZE(t(n)) is decided
by p(n)-weakly-uniform d(poly(t(n)))-depth threshold circuits of size s'(n) =
s(poly(t(n))) on n inputs, where p(n) = a(cglog s’ (n)) + B(cologt(n)).

Proof. Let U be an advice-taking algorithm deciding the direct-connection lan-
guage for the t(n)-size circuits for L. For any string y of length 3(m) for
m = cg logt(n), we can run U with the advice y to construct some circuit C¥ of
size t(n) on n inputs. We can construct the circuit C? in time at most poly(¢(n)),
and then evaluate it in time poly(¢(n)) on any given input of size n.

Consider the language L' = {(z,y, 1"™) | |z| = n, |y| = B(m), C¥(x) = 1}.
By the above, we have L’ € P. Hence, by assumption, L’ is decided by an a-
weakly-uniform d()-depth threshold circuits of size s(1), where I = |(x, y, 11™)| <
poly(t(n)). To get a circuit for L, we simply use as y the advice of size 5(m)
needed for the direct-connection language of the ¢(n)-size circuits for L. Overall,
we need a(cglogs(l)) + B(m) amount of advice to decide L by weakly-uniform
d(poly(t(n)))-depth threshold circuits of size s(poly(t(n))). O

3.2 Ingredients for Second Proof

The second proof uses the following to obtain a hard language in the indirect
diagonalization. For completeness, we provide a proof.

Theorem 4 ([Aar06]). Let ¢ > 0 be a constant such that there are at most
2(Mm)° circuits of size h(n) at input length n. Let h(n) be a time-constructible
function such that for all n, n < h(n), (h(n))® < 2™, and h(n) is less than the
mazimum circuit complexity. There is a language Liqarq in TIME™ (poly(h(n)))
that does not have circuits of size h(n).

Proof. Let x1, ..., Z(h(n))e+1 be the (h(n))¢ + 1 lexicographically smallest inputs
of length n. The PP language we use as oracle is

O ={(1",7,b1,..., bin(n))e+1)| C(x;j) = b; for at most 1/2
of the circuits C of size h(n) that satisfy C(x;) =b; for all 1 <i < j.}

O can be decided in PP by a machine as follows. The machine guesses a circuit of
size h(n); if the circuit does not agree with one of the b; between 1 and j—1 then
the PP machine splits into two nondeterministic paths with one accepting and
one rejecting; otherwise the PP machine accepts iff C(x;) # b;. Then there are
at least half accepting paths iff at least half of the circuits in question disagree
with b; on x;. As we can evaluate a circuit of size h(n) in poly(h(n)) time, the
running time for O is poly(h(n)), which is polynomial in the input length, so
O € PP.

Lpara is defined as follows. Lpgrq(z1) = O(1™,1,0,0,...,0), and already
Lparq differs from at least half of the circuits of size h(n). Lpgra(za) =
O(1™, Lhara(z1),1,0,...,0). So now Ljpgrq differs from at least 3/4 of the cir-
cuits of size h(n). And so on. As there are at most 2(*(")° circuits of size h(n),
we will have differed from all in at most (h(n))¢+ 1 steps. For inputs not in the
set {21, ..., Th(n)+1} We can define Lyqrq arbitrarily (e.g., set it to 0). Notice that
Lpara can be decided in poly(h(n)) time with access to the PP oracle O.

O

Since separations for high resources imply separations for low resources, it
will be optimal to set h(n) large. Because there exist languages that require
circuits of size 2€(™ [Sha49] we have the following corollary, which we use in the
second proof of our main results.

Corollary 1. There exists a constant ¢ > 0 such that there is a language Lpqrq
n DTIMEPP(QO(”)) that does not have circuits of size 2™/°.

3.3 Key Lemma for Both Proofs — Collapse of CH if Permanent is
easy

Since PERMANENT is hard for the first level of the counting hierarchy CH, assum-
ing that PERMANENT is “easy” implies the collapse of CH (see, e.g., [AII99]). Tt
was observed in [KP09] that it is also possible to collapse super-constant levels of
CH, under the same assumption. Below we argue the collapse of super-constant
levels of CH by assuming that PERMANENT has “small” weakly-uniform circuits.

We use the notation f o g to denote the composition of the functions f and
g, and the notation f() is used to denote the composition of f with itself for i
times; we use the convention that f(%) is the identity function.

Lemma 7. Suppose that PERMANENT is in v-weakly-uniform SIZE(s(n)), for
some y(m) < 2°0™) . For every d(n) < n°WY, every language A in Thg(n) TIME(poly)
is also in (2d(n)-~)-weakly-uniform SIZE((soq)(™+ (n)), for some polynomial
q dependent on A.

Proof. The language A is computable by a uniform threshold circuit family {C), }
of depth d(n) and size poly(n). Let M be a polynomial-time TM deciding the
direct-connection language of {C,, }. More precisely, we identify the gates of the
circuit with the configurations of the given threshold TM for A; the output gate
is the initial configuration; leaf (input) gates are halting configurations; deciding
if one gate is an input to the other gate is deciding if one configuration follows
from the other according to our threshold TM, and so can be done in polynomial
time (dependent on A); finally, given a halting configuration, we can decide if it
is accepting or rejecting also in polynomial time (dependent on A).

Consider an arbitrary n. Let d = d(n). For a gate g of C, we denote by C,
the subcircuit of C that determines the value of the gate g. We say that g is at
depth 7, for 1 < 4 < d, if the circuit C, is of depth i. Note that each gate at
depth ¢ > 1 is a majority gate.

For every 0 < ¢ < d, let B; be a circuit that, given z € {0,1}™ and a gate g
at depth 7, outputs the value Cy(x).

Claim. There are polynomials ¢ and ¢’ dependent on A such that, for each
0 < i < d, there are 2iy-weakly-uniform circuits B; of size (s 0 q)® o¢’.

Proof. We argue by induction on ¢. For i = 0, to compute By(z,g), we need to
decide if the halting configuration g of our threshold TM for A on input x is
accepting or not; by definition, this can be done by the TM M in deterministic
polynomial time. Hence, By can be decided by a completely uniform circuit of
size at most ¢'(n) for some polynomial ¢’ dependent on the running time of M.

Assume we have the claim for 7. Let s’ be the size of the v'-weakly-uniform
circuit B;, where s’ < (s0¢)® o ¢’ and 4/ < 2iy. Consider the following TM N:

“On input z = (x,9,U, y, 15'/2), where |z| = n, g is a gate of C, |U| =
Y(eologs'), |yl = v (colog '), interpret U as a Turing machine that takes
advice y to decide the direct-connection language of some circuit D of
size s’ on inputs of length |(z, g)|. Construct the circuit D using U and y,
where to evaluate U on a given input we simulate U for at most s’ steps.
Enter the MAJ state. Nondeterministically guess a gate h of C' and a bit
b€ {0,1}. If h is not an input gate for g, then accept if b = 1 and reject
if b = 0; otherwise, accept if D(x,h) =1 and reject if D(z,h) =0.”

We will be interested in the case where U is a polynomial-time TM. For any
such U, the running time on any input is bounded by poly(cg log s’ ++(co log s')),
which is less than s’ by our assumptions that v(m) < 2°0™) and d < (s')°™).
Thus, to evaluate U on a particular input, it suffices to simulate U for at most s’
steps, which is independent of what the actual polynomial time bound of U is. It
follows that we can construct the circuit D (given U and y) in time p(s’), where

p is a polynomial that does not depend on U. Also, to decide if h is an input gate
to g, we use the polynomial-time TM M. We conclude that NV is a PP machine
which runs in some polynomial time (dependent on A). Since PERMANENT is
PP-hard [Val79Zan91], we have a uniform reduction mapping z (an input to N)
to an instance of PERMANENT of size ¢(|z|), for some polynomial ¢ (dependent
on A).

By our assumption on the easiness of PERMANENT, we get that the language
of N is decided by y-weakly-uniform circuits Cy of size at most s” = s(g(s’)). If
we plug in for U and y the actual TM description and the advice needed to decide
the direct-connection language of B;, we get from Cy the circuit B;41. Note that
the direct-connection language of this circuit B;y; is decided in polynomial time
(using the algorithm for direct-connection language of Cy) given the advice
needed for Cy plus the advice needed to describe U and y. The total advice size
is at most y(cglog s”) + v(cplog s”) + v/ (colog s) < 2(i + 1)7y(co log s”). O

Finally, we take the circuit By and use it to evaluate A(z) by computing
the value By(x,g) where g is the output gate of C, which can be efficiently
constructed (since this is just the initial configuration of our threshold TM for A
on input). By fixing ¢ to be the output gate of C, we get the circuit for A which
is 2dy-weakly-uniform of size at most (s o ¢)¥(r(n)), where the polynomial
depends on the language A. Upper-bounding r by (s o q) yields the result. O

4 First proof of main results

Here we use the technical tools from the previous section in order to give the
first proof of our main results, as outlined in Section Recall that L is the
P-complete language defined earlier.

4.1 Proof of Theorem [I]
First, assuming Ly is easy, we construct a hard language in CH.

Lemma 8. Suppose Lq is in subexp-weakly-uniform TCY of depth d. Then, for
a constant d' dependent on d, there is a language Lgiqq € CHar which is not in
subexp-weakly-uniform SIZE(poly).

Proof. Let a(m) € 2°0™ be such that Ly is in a-weakly-uniform TC? of depth d.
Consider an arbitrary language L in S-weakly-uniform SIZE(poly), for an arbi-
trary B(m) € 2°0™). By Lemma@ L has p(n)-weakly uniform threshold circuits
of depth d and polynomial size, where p(n) = a(O(logn)) + B(O(logn)) < n°M.
By Lemma [2] we have that L is decided by a threshold Turing machine with
d’ = O(d) alternations, taking advice of length p(n) < n°") < n/log?n, and run-
ning in time d’-poly(O(log n)+n°M) < n°M < n/log? n. We conclude that every
language in subexp-weakly-uniform SIZE(poly) is also decided by some threshold
TM in time n/log® n, using d’ alternations and advice of size n/log? n.

Using Lemma (4] define Ly;q, to be the language in Thy TIME(n) which is
not decidable by any threshold Turing machine in time n/log® n, using d’ alter-
nations and advice of size n/ log2 n. It follows that Lgjag is different from every
language in subexp-weakly-uniform SIZE(poly). a

Next, assuming PERMANENT is easy, we have that every language in CH is
easy. The proof is immediate by Lemma [7]

Lemma 9. If PERMANENT is in subexp-weakly-uniform SIZE(poly), then every
language in CH is in subexp-weakly-uniform SIZE(poly).

We now show that Ly and PERMANENT cannot both be easy. The proof is
immediate by Lemmas [§] and [9}

Theorem 5. At least one of the following must be false:

1. Ly is in subexp-weakly-uniform TC°;
2. PERMANENT s in subexp-weakly-uniform SIZE(poly).

To unify the two items in Theorem [5] we use the next lemma and its corollary.

Lemma 10 ([Val79JAG94]). For every language L € P, there are uniform
AC®-computable function M (mapping a binary string to a poly-size Boolean

matriz) and Boolean function [such thatl, for every x, we have x € L iff
f(PERMANENT(M (2)) = 1.

This lemma immediately yields the following.

Corollary 2. If PERMANENT has a-weakly-uniform d(n)-depth threshold cir-
cuits of size s(n), then Ly has a-weakly-uniform (d(n®M) +O(1))-depth thresh-
old circuits of size s(n®™)).

Now we prove Theorem (1} which we re-state below.
Theorem 6. PERMANENT is not in subexp-weakly-uniform TCP.

Proof. Otherwise by Corollary [2, both claims in Theorem [5| would hold, which
is impossible. ad

4.2 Proof of Theorem [2

Recall that a function r(n) is sub-subexponential if, for every constant k >
0, r®(n) < 27 Also recall that subsubexp denotes the class of all sub-
subexponential functions r(n). Below, we will use the simple fact that, for every
constant k > 0, the composition of k sub-subexponential functions is also sub-
subexponential.

Lemma 11. Suppose that Lg is in poly-weakly-uniform TC (subsubexp) of depth
d. Then, for a constant d' = O(d), there is a language Lgiag € CHar which is not
in poly-weakly-uniform SIZE(subsubexp).

Proof. The proof is similar to that of Lemmal[g] Let a(m) € poly(m) and s(n) €
subsubexp be such that L is in a-weakly-uniform d-depth TC(s(n)).

Consider an arbitrary language L in (§-weakly-uniform SIZE(t(n)), for ar-
bitrary B(m) € poly(m) and t(n) € subsubexp. By Lemma [6 L is in p(n)-
weakly uniform d-depth TC%(s'(n)), where s'(n) = s(poly(t(n))) and u(n) =
a(cologs’(n)) + Blcologt(n)) < n°M) (since s’ and t are sub-subexponential).
By Lemma [2] we have that L is decided by a threshold Turing machine with
d’ = O(d) alternations, taking advice of length u(n) < n°® < n/log®n, and
running in time d’ - poly(colog s'(n) + a(cologs’(n))) < n°M) < n/log?n. We
conclude that every language in poly-weakly-uniform SIZE(subsubexp) is also de-
cided by some threshold Turing machine in time n/ log? n, using d’ alternations
and advice of size n/log®n.

Using Lemma {4} define Lg;qq to be the language in Thg TIME(n) which is
not decidable by any threshold Turing machine in time n/ log® n, using d’ alter-
nations and advice of size n/ log2 n. It follows that Lg;qg is different from every
language in poly-weakly-uniform SIZE(subsubexp). a

Now we are ready to prove Theorem [2} which we re-state below.

Theorem 7 (Theoremrestated). PERMANENT is not in poly-weakly-uniform
TC°(subsubexp).

Proof. Suppose that, for some «(m) € poly(m) and s(n) € subsubexp, PERMA-
NENT is in a-weakly-uniform TC’(s(n)); this also implies that PERMANENT is
in a-weakly-uniform SIZE(poly(s(n)). By Corollary |2} Ly is in a-weakly-uniform
TC"(poly(s(n))), and so, by Lemma L1} there is a language Laio, € CH which is
not in poly-weakly-uniform SIZE(subsubexp). But, by Lemma [7] every language
L in CH is in poly-weakly-uniform SIZE(subsubexp). A contradiction. O

4.3 Proof of Theorem [3]

Lemma 12. Suppose Lg is computable by poly-weakly-uniform poly-size thresh-
old circuits of depth o(loglogn). Then there is a language Liiag € Thiggiogn TIME(n)
which is not computable by poly-weakly-uniform SIZE(nPoY(osn)),

Proof. Let a(m) € poly(m), s(n) € poly(n), and d(n) € o(loglogn) be such that
Ly is computable by a-weakly-uniform d(n)-depth threshold circuits of size s(n).

Consider an arbitrary language L in (-weakly-uniform SIZE(t(n)), for arbi-
trary B(m) € poly(m) and t(n) € nP?Y(°e”) By Lemma @ L is in p(n)-weakly
uniform d’(n)-depth threshold circuits of size s’(n), where d’(n) = d(poly(t(n))) <
o(loglogn), s'(n) = s(poly(t(n))) < nP¥1e™ and pu(n) = a(cylogs'(n)) +
B(cologt(n)) < poly(logn).

By Lemma[2] we have that L is decided by a threshold Turing machine with at
most O(d'(n)) < loglogn alternations, taking advice of length u(n) < n°® <
n/log?n, and running in time O(d’(n)) - poly(cologs’'(n) + a(cologs’(n))) <
n°M < n/ log>n. We conclude that every language in poly-weakly-uniform

SIZE(nPoY(°8™)) s also decided by some threshold TM in time n/log?n, us-
ing loglogn alternations and advice of size n/ log? n.

Using Lemma define Lg;qq to be the language in Thigg1og » TIME(n) which is
not decidable by any threshold TM in time n/log? n, using log log n alternations
and advice of size n/ log® n. Tt follows that Lgiag is the required language. 0O

Now we prove Theorem |3 restated below.

Theorem 8 (Theorem (3| restated). PERMANENT is not computable by poly-
weakly-uniform poly-size threshold circuits of depth o(loglogn).

Proof. Assume otherwise. Then PERMANENT is also in poly-weakly-uniform SIZE(poly),
and so, by Lemma m every language in Thiggiogn TIME(n) is in poly-weakly-
uniform SIZE(nP°Y(°8™)) On the other hand, by Corollary Ly is computable
by poly-weakly-uniform threshold circuits of poly-size and depth o(loglogn), and
so, by Lemma there is a language Lgiag € Thiogiogn TIME(n) such that Lgjag
is not in poly-weakly-uniform SIZE(nP°Y(1°87)) A contradiction. O

5 Second proof of main result

In this section we give a second proof of our main results. Both proofs use the
same key ingredient — the collapse of the counting hierarchy under the assumed
easiness of PERMANENT (Lemma [7)). The proofs differ in how this collapse is
used to derive a contradiction to a known lower bound.

5.1 Parameterized Statement and Proof

Our second proof yields the following parameterized result. This result is proved
using the strategy outlined in Section but letting the circuit size, depth,
and amount of advice be parameters. Let Ly be the P-complete language used
earlier.

Theorem 9. Let s(n) be time-constructible, and let m = O(logs(n)) be the
input length for a uniformity Turing machine for a circuit of size s(n). Let s(n) >
n, a(m), and d(n) be non-decreasing functions such that a(m) and d(n) < s(n)
for all n. Assume also that a(m) < 2°0™) and d(n) < (log s(n))°™).

Let N = poly(s(O(2"))), M = O(log s(N)) and

s' = (50¢)7™) (log(s(N)) + a(M))

where each big-O constant is an absolute constant independent of the other pa-
rameters. If s < 2"/¢ then either

— PERMANENT does not have o(m)-weakly-uniform SIZE(s(n)) circuits,
— Or Ly dos not have a(m)-weakly-uniform threshold circuits of size s(n) and

depth d(n).

Since L¢ reduces to PERMANENT, a corollary is that unconditionally PER-
MANENT does not have weakly-uniform threshold circuits with the given param-
eters. Each of Theorems and [3] can be obtained by setting the parameters
in Theorem [9] appropriately.

To prove Theorem [0} we combine the hard language Lpqrq resulting from
Corollary (which is in EPP and requires circuits of size 2°() with the following
two claims.

Claim 1 Let s(n) be time-constructible, and let m = O(logs(n)) be the input
length for a uniformity Turing machine for a circuit of size s(n). Let s(n) > n,
a(m), and d(n) be non-decreasing functions such that a(m) and d(n) < s(n) for
all n.

Suppose PERMANENT is in a(m)-weakly-uniform SIZE(s(n)), and Ly has
a(m)-weakly-uniform threshold circuits of size s(n) and depth d(n). Then Lpard
has O(a(M))-weakly uniform threshold circuits of depth O(d(N)) and size
O(s(N)), for N = poly(s(O(2™))) and M = O(log s(N)).

Proving Claim [I]amounts to plugging in the assumed computations for PER-
MANENT and Lg into the EP? computation of Lyqpq.

Proof. Consider the EPP computation of Ljq.q of Corollary which asks at
most 2™ queries of its PP oracle on any given input. From the proof of Theorem
[the PP oracle O from the definition of Ljeqq is computable in polynomial
PPTIME, and the instances of O needed to solve Lj..q are of size O(2"). These
can be reduced to instances of PERMANENT that are also of some length np =
o(2™) ﬂ Given the assumed easiness of PERMANENT, the oracle queries can
be decided by a weakly-uniform circuit Co of size poly(s(O(2"))) with advice
a(O(log s(0(2")))).

Deciding membership in Lj,-¢ amounts to querrying the oracle O on at most
2™ inputs. This gives an oracle circuit that makes exponentially many adaptive
queries to O. In this circuit we replace each oracle gate with the circuit Co,
obtaining a single circuit deciding Lpqrq that is of size poly(2™ - s(O(2™))) that
uses a(O(logs(O(2™)))) bits of advice. This circuit can be viewed as a circuit
value problem of size poly(2™ - s(O(2"))). By the P-completeness of Lo, this
computation can be reduced to an instance of Lg of size N = poly(2™-s(O(2"))).
Let M = O(logs(N)). By using a uniform AC’ reduction to Ly and using the
assumed weakly-uniform threshold circuits for Ly, Lp.rq can be computed by a
weakly-uniform threshold circuit of depth O(d(N)) and size O(s(N)) that uses
a(O(log s(O(2™)))) advice for the creation of the circuit Cy and a(O(log s(N)))
advice from the application of the easiness assumption for Lg. The total advice is
O(a(O(log s(N)))). N can be simplified to N = poly(s(O(2™))) since s(n) = n.

O

9 We can assume all queries are the same size because there are paddable PP-complete
languages, including PERMANENT. A language is paddable if queries of smaller length
can efficiently, e.g. by a uniform AC° reduction, be made longer to match the longest
query.

Claim 2 Let s(n) be time-constructible, and let m = O(log s(n)) be the input
length for a uniformity Turing machine for a circuit of size s(n). Let s(n) > n,
a(m), and d(n) be non-decreasing functions such that a(m) and d(n) < s(n) for
all n. Assume also that a(m) < 2°0™) and d(n) < (logs(n))°M).

Suppose PERMANENT is in a(m)-weakly-uniform SIZE(s(n)), and Ly has
a(m)-weakly-uniform threshold circuits of size s(n) and depth d(n).

Then Lyara is contained in SIZE(s o0 q)? @) (O(log s(N) +a(O(log s(N)))))
for some polynomial q, for N = poly(s(O(2"))).

To prove Claim [2], we use the threshold circuit from Claim [1| and use the
assumed easiness of PERMANENT to “collapse” the threshold circuit. For the
latter we apply Lemma [7]— the same key step in both proofs of the main result.

Proof. Under the assumptions of the claim, we have a threshold circuit for Ljqrq
due to Claim [} We would like to apply Lemma [7] To do so, we need the com-
putation for Lpqrq to be contained in Thg () TIME(poly(n')) for some d' and n’
such that d’(n’) < n°M). Due to the equivalence of weakly-uniform threshold
circuits and threshold Turing machines with advice, we have that Ljq-q is in
Thoany) TIME(d(N) - poly(log S(N) + a(M))) using O(a(M)) advice, with N
and M from Claim |1} We set n’ = d(N) + log(s(N)) + a(M). Then the run-
ning time for the threshold computation of Ljg-q from Claim 1| I is poly(n') with
depthO(d(N)). Assuming d(N) < (log s(N))°(), we have that the depth is n/(}).
We have also assumed that the amount of advice a(m) in the weakly-uniform
circuit for PERMANENT is < 2°0™) which is required to apply Lemma |ﬂ

The only remaining issue before applying Lemma [7] is that the lemma does
not allow for the initial threshold computation for Lj,.q to use advice. An ex-
amination of the proof of Lemma [7] shows that a linear amount of advice does
not change the parameters — the advice is passed through the argument and
is added onto the amount of advice needed by the final circuit. In the current
application, the threshold computation for Lyjqq uses O(a(M)) advice, which is
indeed O(n').

By our assumption that d(N) < (log s(N))°(") we have that n’ = O(log s(N)+
a(M). Plugging into Lemma [7| we obtain a circuit for Lpqrq that is of size
(5 0 q) PN (n!) = (s 0q)°@V)(O(logs(N) + a(M))) for some polynomial
q. O

If the size of the circuit for Ljqrq in Claim [2]is less than 2%/¢, we conclude
that one of the assumptions in the claim must be false. a
5.2 Corollary to the second proof

In this section we observe that Theorem [J] can be strengthened by examining
the proof more carefully, proving the following.

Corollary 3. Let s(n) be time-constructible, and let m = O(logs(n)) be the
input length for a uniformity Turing machine for a circuit of size s(n). Let s(n) >

n, a(m), and d(n) be non-decreasing functions such that a(m) and d(n) < s(n)
for all n. Assume also that a(m) < 2°™) and d(n) < (log s(n))°™).

Let N = poly(s(s(O(2")))), M = O(logs(N)) and s' = (s o
q)° M) (O(log s(N) + a(M))), where each big-O constant is an absolute con-
stant independent of the other parameters. If s' < 2™/¢ then either

— PERMANENT does not have non-uniform circuits of size s(n),
— Or SAT does not have a(m)-weakly-uniform threshold circuits of size s(n)
and depth d(n).

The easiness of PERMANENT is used in the proof of Theorem [J] for two key
purposes.

(i) Corollary [1) and Claim [I| show that if PERMANENT has weakly-uniform cir-
cuits and Ly has small-depth weakly-uniform threshold circuits, there is a
hard language Lpqrq with large weakly-uniform small-depth threshold cir-
cuits.

(ii) Claim [2] shows that if PERMANENT has small circuits, the circuit from (i)
can be iteratively made smaller by appealing to Lemma 7]

For step (i), we can replace the combination of PERMANENT and Ly by any
language that, if assumed to have small-depth threshold circuits, implies a small-
depth threshold circuit for a language with high circuit complexity. For example,
we can use an NP-complete language and the following fact.

Theorem 10 ([Kan82/MVW99]). There exists a constant ¢ > 0 such that

there is a language Lpqrq in TIMEEg(QO(”)) that does mot have circuits of size
on/c.

Using an NP-complete language such as SAT, Claim [1] becomes instead the
following.

Claim 3 Let s(n) be time-constructible, and let m = O(log s(n)) be the input
length for a uniformity Turing machine for a circuit of size s(n). Let s(n) > n,
a(m), and d(n) be non-decreasing functions such that a(m) and d(n) < s(n) for
all n.

Suppose SAT has a(m)-weakly-uniform threshold circuits of size s(n) and
depth d(n).

Then Lipgrqa has O(a(M))-weakly uniform threshold circuits of depth O(d(N))
and size O(s(N)), for N = poly(s(s(O(2™)))) and M = O(log s(N)).

The change in the value of N is due to working in the third level of the
exponential alternating hierarchy, whereas in Claim [1| the hard language was in
the second level of the exponential counting hierarchy.

For step (ii), the proof only requires that PERMANENT has small general
circuits — the small-depth and uniformity are not used in the argument.

Combining these two observations, we have a result stating that if both (1)
SAT has small weakly-uniform small-depth threshold circuits, and (2) PERMA-
NENT has small general circuits, then Lp,.q has small circuits. Specifically, we

have the following claim in place of Claim [2] For conciseness we have assumed
the same size for both SAT and PERMANENT; a more general statement could
be made that implies a tradeoff between the assumed circuit sizes for the two
different languages.

Claim 4 Let s(n) be time-constructible, and let m = O(logs(n)) be the input
length for a uniformity Turing machine for a circuit of size s(n). Let s(n) = n,
a(m), and d(n) be non-decreasing functions such that a(m) and d(n) < s(n) for
all n. Assume also that a(m) < 2°0™) and d(n) < (logs(n))°M).

Suppose PERMANENT is in non-uniform SIZE(s(n)), and SAT has a(m)-
weakly-uniform threshold circuits of size s(n) and depth d(n).

Then Lyara is contained in SIZE(s o0 q)? @) (O(log s(N) +a(O(log s(N)))))
for some polynomial q, for N = poly(s(s((O(2™))))).

If the resulting circuit is of size less than 2/¢, then the assumed circuits for
either SAT or PERMANENT must not exist.

6 Other lower bounds

Here we use diagonalization against advice classes to prove exponential lower
bounds for weakly-uniform circuits, of both constant and unbounded depth.

6.1 Lower bounds for ACC° and AC°

The following result generalizes the result in [AG94] on uniform ACC? circuits.

Theorem 11. PERMANENT is not in poly-weakly-uniform ACCO(Q”U(I)).

Proof. Tt is shown in [BT94/AG94] that every language L in uniform ACCO(Z”O(U)
is also decidable by uniform depth-two circuits of related size s'(n) € 2" where
(i) the bottom level consists of AND gates of fan-in (logs’(n))®™), and (i) the
top level is a symmetric gate (whose value depends only on the number of inputs
that evaluate to one). Using this fact as well as the #P-completeness of PERMA-
NENT [Val79], Allender and Gore [AG94] argue that L is in DTIME (n?)PPryanent(l]
(with a single oracle query to PERMANENT). This result can be easily generalized
to the case when L has weakly-uniform circuits. That is, for a(m) = m®1), any
language in a-weakly-uniform ACCO(Z”O(I)) is also in DTIME (n?)PPRMANENT[L] /1y (1)
for some y(n) = n°(M).

For the sake of contradiction, suppose that PERMANENT is in a-weakly-
uniform ACCO(Q”O(U). Consider a language L € DTIME(n!0)PPRUANENTIL] wwhich is
not in DTIME(ng)PF‘RMANF‘N"‘[l]/n"(l); the existence of such an L is easy to argue by
diagonalization (similarly to the proof of Lemma. Let M be the corresponding
oracle machine deciding L. Consider the following languages:

L' = {(z,y): M uses y as the answer of the oracle query and accepts z},

L" = {(z,1): the ith bit of the oracle query made by M on input x is 1}.

Clearly, both L’ and L” are in P. Since P is reducible to PERMANENT via
uniform AC® reduction, we get that both L’ and L” are in a-weakly-uniform
ACCO(Q"O(U). To construct circuits for L, on any input x, we use the circuit for
L" to construct the oracle query, use the circuit for PERMANENT to answer the
query, and then use the circuit for L' to decide whether x € L. Since L', L”
and PERMANENT all have a-weakly-uniform ACCO(Q"O(D) circuits, the result-
ing circuit is also in a-weakly-uniform ACCO(2”O(1)). This implies that L is in
DTIME(n?)PErRMaNent(l] /po(1) - A contradiction. O

We note that one can also show a lower bound for NP against weakly-uniform
AC® circuits.

Theorem 12. NP is not in poly-weakly-uniform AC®(subsubexp).

Proof (sketch). The proof is analogous to that of Theorem 2| by replacing PER-
MANENT with SAT, CH with PH, and threshold circuits with Boolean circuits.
O

Note, however, that this lower bound is weaker than the well-known result
that PARITY requires ezponential-size non-uniform AC® circuits [Has86].

6.2 Lower bounds for general circuits

We use the following diagonalization result.

Lemma 13 ([HM95,/Pol06]). For any constants ¢ and d, EXP € DTIME(Q”d)/nC,
and PSPACE ¢ DSPACE(n?)/ne.

The proof of Lemma [13| follows a very similar pattern as the proof that EPP
has a language that requires circuits of size 26" which was proved in Section

Bl

Theorem 13. EXP is not in poly-weakly-uniform SIZE(2"0(1>).

Proof. Let L be an arbitrary language in poly-weakly-uniform SIZE(27”O(1)). For

any input length n, given advice of length poly(log 2”0(1>) < n°M, we can con-

struct a circuit for L of size 2" in time at most 2"0(1), and evaluate it on any

given input of size n in time at most 2" Thus, L € DTIME(2""") /n°®.
Using Lemma construct Lg;qg € EXP which is not in DTIME(2")/n. By

the above, this Lg;q, is not in poly-weakly-uniform SIZE P a
g y y

Recall that a Boolean circuit is called a formula if the underlying DAG is a
tree (i.e., the fan-out of each gate is at most 1). We denote by FSIZE(s(n)) the
class of families of Boolean formulas of size s(n). We use a modified definition
of the the direct-connection language for bounded fan-in formulas with AND,
OR, and NOT gates: we assume that, for any given gate in the formula, we can

determine in polynomial time who its parent gate is, and who its left and right
input gates are.

Lynch [Lyn77] gave a log-space algorithm for the Boolean formula evaluation
problem, which can be adapted to work also in the case of input formulas given
by the direct connection language (instead of the usual infix notation).

Lemma 14 (implicit in [Lyn77]). Let {F,} be a uniform family of Boolean
formulas of size s(n). There is a poly(log s(n))-space algorithm that, on input x
of length n, computes F,(x).

Proof (sketch). The input formula can be viewed as a tree, where each node
has at most two children, and the evaluation algorithm will traverse the tree
following specific rules. We assume that the formula is well-formed, which can
be verified in poly(log s(n))-space.

The traversal starts from the left-most leaf, which can be identified in space
poly(log s(n)). Then, we traverse the tree such that, for each node A, (i) when
we arrive at A from its left child, we either go to its parent (if the value of the
left child fixes the value of A), or go to its right child and continue traversing the
tree; (%) when we arrive at A from its right child, we go directly to A’s parent
(the value of A is now determined by the value of the right child, as we know
the left child has already been visited). The final node in this traversal is the
root, which has no parent.

The traversal is in poly(log s(n))-space since we only need to remember the
current node of the tree (and the direct-connection language is decided in time,
and hence also in space, at most poly(log s(n))) . O

We have the following.

Theorem 14. PSPACE is not in poly-weakly-uniform FSIZE(Q"O“)).

Proof. Let L be an arbitrary language decided by a family {F,} of poly-weakly-
uniform Boolean formulas of size 2”0(1>; its direct connection language is decided
in deterministic time n°(") with advice of size n°(). Using Lemma (generalized
in the straightforward way to handle weakly-uniform formulas), we get that L
can be decided in DSPACE(nO(l))/nO(l). Appealing to Lemma completes the
proof. a

7 Conclusion

We have shown how to use indirect diagonalization to prove lower bounds against
weakly-uniform circuit classes. In particular, we have proved that PERMANENT
cannot be computed by polynomial-size TC? circuits that are only slightly uni-
form (whose direct-connection language can be efficiently computed using sub-
linear amount of advice). We have also extended to the weakly-uniform setting
other circuit lower bounds that were previously known for the uniform case.
One obvious open problem is to improve the TCY circuit lower bound for
PERMANENT to be exponential, which is not known even for the uniform case.

Another problem is to get super-polynomial uniform TC lower bounds for a lan-
guage from a complexity class below #P (e.g., PH). Strongly exponential lower
bounds even against uniform ACY would be very interesting. One natural prob-
lem is to prove a better lower bound against uniform AC° (say for PERMANENT)
than the known non-uniform ACY lower bound for PARITY.

A natural question is if our techniques allow the n°(Y) amount of non-uniformity
in our results to be pushed any higher. It seems progress in this direction will
need new ideas and/or a new framework. The framework used in this and pre-
vious papers all encounter a roughly inverse relationship between the size of
circuits in the lower bound and the amount of non-uniformity that can be han-
dled. In Theorem [9] hardness holds if the inequality stated in the theorem holds.
The inequality requires that the amount of advice be an inverse of s(4(™) This
arises in the proof due to the nature in which the assumed easiness of PERMA-
NENT is used repeatedly in Lemma @, and a similar issue arises in earlier work
in this area [ATI99JKPO9JISTI].

Furthermore, the proofs of our main results relativize, but it is known that
proving results with larger non-uniformity, say > n bits, requires non-relativizing
techniques. Thus to make progress we ought to look at utilizing techniques such
as the interactive proofs for the permanent, random self-reducibility, and com-
binatorial properties of threshold circuits.

Acknowledgments

While conducting this research the second author was partially supported by In-
diana State University, University Research Council grants #11-07 and #12-18.
The second author thanks Matt Anderson, Dieter van Melkebeek, and Dalibor
Zeleny for discussions that began this project, continued discussions since, and
comments on early drafts of this work; and in particular thanks Matt Anderson
for observations that refined the statement of Corollary

We also thank the reviewers for comments and suggestions that improved
the exposition of the paper.

References

Aar06. Scott Aaronson. Oracles are subtle but not malicious. In Proceedings of the
IEEE Conference on Computational Complexity (CCC), p 340-354, 2006.

Agr05. M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. of
the 25th Conf. on Foun. of Software Tech. and Theoretical Comp. Sci., p 92105,
2005.

All99. E. Allender. The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science, 1999.

AGY94. E. Allender and V. Gore. A uniform circuit lower bound for the permanent.
SIAM Journal on Computing, 23(5):1026-1049, 1994.

1. S. Arora and B. Barak. Complezity theory: a modern approach. CUP, NY, 2009.

BIS90. D.A.M. Barrington, N. Immerman, and H. Straubing. On uniformity within

NC*. JCSS, 41:274-306, 1990.

BT94. R. Beigel and J. Tarui. On ACC. Computational Complezity, 4:350-366, 1994.

BFT98. H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In
Proceedings of the IEEE Conference on Computational Complexity (CCC), pages
8-12, 1998.

CK12. R. Chen and V. Kabanets. Lower bounds against weakly uniform circuits. In
Joachim Gudmundsson, Julidgn Mestre, and Taso Viglas, editors, Computing and
Combinatorics - 18th Annual International Conference, COCOON 2012, Syd-
ney, Australia, August 20-22, 2012. Proceedings, volume 7434 of Lecture Notes in
Computer Science, p 408—419, 2012.

CKS81. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM, 28(1):114,
1981.

FSS84. M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13-27, April 1984.

GKRST95. F. Green, J. Kobler, K.W. Regan, T. Schwentick, and J. Toran. The power
of the middle bit of a #P function. JCSS, 50:456—467, 1995.

Has86. J. Hastad. Almost optimal lower bounds for small depth circuits. In STOC,
1986.

HS82. J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute.
L’Enseignement Mathématique, 30:237—254, 1982.

HM95. S. Homer and S. Mocas. Nonuniform lower bounds for exponential time classes.
In Proc. of the 20th Inte. Symp. on MFCS, p 159-168. 1995.

IM02. K. Iwama and H. Morizumi. An explicit lower bound of 5n — o(n) for boolean
circuits. In Proc. of the 27th Inte. Symp. on MFCS, p 353-364. 2002.

JS11. M. Jansen and R. Santhanam. Permanent does not have succinct polynomial
size arithmetic circuits of constant depth. In Proc. 38th ICALP, I, p 724-735,
2011.

JS12. Maurice Jansen and Rahul Santhanam. Marginal hitting sets imply super-
polynomial lower bounds for permanent. In Innovations in Theoretical Computer
Science, 2012.

KIO4. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complerity, 13(1-2):1-46,
2004.

Kan82. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control, 55:40-56, 1982.

2. R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(3-4):191-209, 1982.

Kin12. J. Kinne. On TC® lower bounds for the permanent. In Joachim Gudmundsson,
Julidan Mestre, and Taso Viglas, editors, Computing and Combinatorics - 18th
Annual International Conference, COCOON 2012, Sydney, Australia, August 20-
22, 2012. Proceedings, volume 7434 of Lecture Notes in Computer Science, p 420—
432, 2012.

KP09. P. Koiran and S. Perifel. A superpolynomial lower bound on the size of uniform
non-constant-depth threshold circuits for the permanent. In CCC, 2009.

LRO1. O. Lachish and R. Raz. Explicit lower bound of 4.5n — o(n) for boolean circuits.
In Proc. of the Thirty-Third ACM Symp. on Theory of Computing, p 399-408,
2001.

Lup58. O.B. Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk
SSSR, 119(1):23-26, 1958. English translation in Soviet Mathematics Doklady.

Lyn77. N.A. Lynch. Log space recognition and translation of parenthesis languages.
JACM, 24:583-590, 1977.

MVW99. P.B. Miltersen, N.V. Vinodchandran, and O. Watanabe. Super-polynomial
versus half-exponential circuit size in the exponential hierarchy. In Proceedings of
the Annual International Computing and Combinatorics Conference (COCOON),
p 210-220, 1999.

PS86. I. Parberry and G. Schnitger. Parallel computation with threshold functions.
In Proc. of the First IEEE Conf. on Structure in Complexity Theory, p 272-290,
1986.

Pol06. C. Pollett. Languages to diagonalize against advice classes. Computational
Complexity, 14:341-361, 2006.

Raz87. A.A. Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical Notes, 41:333-338, 1987.

RR97. A.A. Razborov and S. Rudich. Natural proofs. JCSS, 55:24-35, 1997.

Ruz81. W.L. Ruzzo. On uniform circuit complexity. JCSS, 22(3):365-383, 1981.

Sha49. C.E. Shannon. The synthesis of two-terminal switching circuits. Bell System
Technical Journal, 28(1):59-98, 1949.

Smo87. R. Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proc. of the Nineteenth ACM STOC, p 77-82, 1987.
Tod91. Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal

on Computing, 20(5):865-877, 1991.

Tor91. J. Torédn. Complexity classes defined by counting quantifiers. JACM, 38:752,
1991.

Val79. L. Valiant. The complexity of computing the permanent. T'CSS, 8:189-201, 1979.

Wag86. K.W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Informatica, 23:325—-356, 1986.

Willl. R. Williams. Non-uniform ACC circuit lower bounds. In CCC, 2011.

Yao85. A.C. Yao. Separating the polynomial-time hierarchy by oracles. In FOCS,
1985.

Zak83. S. Zak. A Turing machine hierarchy. T'CS, 26:327-333, 1983.

Zan91. V. Zanko. #P-Completeness via Many-One Reductions. IJFCS, 1:77, 1991.

	Lower Bounds against Weakly-Uniform Threshold Circuits

