
DETERMINISTIC SIMULATIONS AND HIERARCHY THEOREMS

FOR RANDOMIZED ALGORITHMS

by

Jeffrey J. Kinne

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2010



i

ABSTRACT

In this dissertation, we present three research directions related to the question whether

all randomized algorithms can be derandomized, i.e., simulated by deterministic algorithms

with a small loss in efficiency.

Typically-Correct Derandomization A recent line of research has considered “typically-

correct” deterministic simulations of randomized algorithms, which are allowed to err on few

inputs. Such derandomizations may be easier to obtain and/or be more efficient than full

derandomizations that do not make mistakes. We further the study of typically-correct

derandomization in two ways.

First, we develop a generic approach for constructing typically-correct derandomizations

based on seed-extending pseudorandom generators, which are pseudorandom generators

that reveal their seed. We use our approach to obtain both conditional and unconditional

typically-correct derandomization results in various algorithmic settings. For example, we

present a typically-correct polynomial-time simulation for every language in BPP based on

a hardness assumption that is weaker than the ones used in earlier work.

Second, we investigate whether typically-correct derandomization of BPP implies circuit

lower bounds. We establish a positive answer for small error rates and in doing so provide a

proof for the zero-error setting that is simpler and scales better than earlier arguments.

Monotone Computations Short of derandomizing all efficient randomized algorithms,

we can ask to derandomize more restricted classes of randomized algorithms. Because a

strong connection has been proved between circuit lower bounds and derandomization, and
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there has been success proving worst-case circuit lower bounds for monotone circuits, ran-

domized monotone computations are a natural candidate to consider. We show that, in fact,

any derandomization of randomized monotone computations would derandomize all ran-

domized algorithms, whether monotone or not. We prove similar results in the settings of

pseudorandom generators and average-case hard functions – that a pseudorandom generator

secure against monotone circuits is also secure with somewhat weaker parameters against

general circuits, and that an average-case hard function for monotone circuits is also hard

with somewhat weaker parameters for general circuits.

Hierarchy Theorems For any computational model, a fundamental question is whether

machines with more resources are strictly more powerful than machines with fewer resources.

Such results are known as hierarchy theorems. The standard techniques for proving hierarchy

theorems fail when applied to bounded-error randomized machines and for other so-called

“semantic” models of computation for which a machine must satisfy some promise to be

valid. If all randomized algorithms can be efficiently derandomized in a uniform way, hierar-

chies for bounded-error randomized algorithms would follow from the deterministic hierarchy

theorems. But can hierarchies be proved short of proving derandomization?

A recent line of work has made progress by proving time hierarchies for randomized and

other semantic models that use one bit of advice. We adapt the techniques to prove results

in the setting of space, proving space hierarchy results that are as tight as possible for typical

space bounds between logarithmic and linear for randomized and other semantic models that

use one bit of advice.
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Chapter 1

Introduction

Computational complexity asks how efficiently problems can be solved on computers.

For some problems we know of efficient solutions, and for others we know that there can be

no efficient solution. For many important problems, we do not yet know whether there exist

fast algorithms to solve the problem or not, and it is on these problems that we focus our

attention. In particular, we focus on the class of problems that admit efficient “randomized

algorithms”, and we ask whether these algorithms can be “derandomized” – converted into

deterministic algorithms without much loss in efficiency.

Dialog on Identity Testing There are some problems for which we know of fast algo-

rithms that use random bits, but we do not yet know if the random bits are truly necessary

to solve these problems efficiently. We begin by introducing one such problem, polynomial

identity testing, and the concept of a randomized algorithm through a lesson that a teacher

devises to engage a pupil in this fascinating topic.

Teacher: Today we study an incredibly exciting topic, algebraic identities!

Pupil: [While texting ] uh huh.

Teacher: No cell phones today, the world of mathematics will keep us company.

Pupil: Alright, let’s get this over with.

Teacher: Very well, let us start off easy for you. Please factor the polynomial x2 − 1.

Pupil: Easy, (x + 1) · (x− 1).
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Teacher: Prove it.

Pupil: We can use the properties of the real numbers to show that if we multiply this out...

Teacher: Yes, that is one way to do it. How would you prove

(x−1) · (x+1) · (x2−2) · (x2 +2) · (x3−3) · (x3 +3) = x12−5x6−x10 +9x4−4x8 +36x2−36?

Pupil: Plug it into my calculator.

Teacher: Then you are trusting whoever programmed the calculator, not good enough.

Pupil: Do I really have to apply the properties of real numbers to show that multiplying out

that big mess has that result? That seems like a lot of work.

Teacher: I agree with you.

Pupil: What? I thought your job was to make me do busy work.

Teacher: No, I want you to think. What if you move everything to the left-hand side.

Pupil: If you are not lying to me, then

(x−1)·(x+1)·(x2−2)·(x2+2)·(x3−3)·(x3+3)−(x12−5x6−x10+9x4−4x8+36x2−36) = 0.

Univariate Polynomial Identity Testing

Teacher: Let us call the left hand side p(x). If I am telling the truth, then p is identically 0,

so p(x) = 0 for all x. And what does its graph look like?

Pupil: Straight horizontal line on the x axis.

Teacher: And what if I lied to you?

Pupil: [Thinking, thinking...] Well, it is some kind of degree 12 polynomial. It can have at

most 12 roots, so it might look something like this.
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Teacher: So to verify my claimed identity you need to determine whether p is the zero

polynomial or some other degree at most 12 polynomial.

Pupil: [Thinking, thinking...] I can evaluate the polynomial on 13 different points. If you

were telling the truth, p(x) = 0 for all the points I choose. If you made a mistake, at least

one of those 13 points will evaluate to non-zero. That is so cool! And it is so much easier

than multiplying out the polynomial!

Teacher: Indeed. Are you interested in continuing this discussion longer?

Pupil: You got me teacher, I am interested now.

Multi-variate Polynomial Identity Testing

Teacher: Okay, how will you verify this identity?

(u2 + v2 + x2 + y2)2 = (u2 + v2 − x2 − y2)2 + (2ux + 2vy)2 + (2uy − 2vx)2

Pupil: Easy, I look at the polynomial

p(u, v, x, y) = (u2 + v2 + x2 + y2)2 − (u2 + v2 − x2 − y2)2 − (2ux + 2vy)2 − (2uy − 2vx)2.

The total degree of any monomial in the expanded polynomial would be at most 4, so I just

evaluate p on 5 different points and see if they all evaluate to 0. Right?

Teacher: Try the points (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 0, 4), and (0, 0, 0, 5). And also

try them on the polynomial q(u, v, x, y) = p(u, v, x, y) + u · v · x · y.

Pupil: Both p and q evaluate to 0 on all 5 points. [Thinking, thinking, ...] That cannot be

right. Since q(u, v, x, y)− p(u, v, x, y) = u · v · x · y is a non-zero polynomial, at least one of

p or q should be non-zero too. What am I missing?

Teacher: Is it true that a multi-variate polynomial of total degree at most 4 has at most 4

roots?

Pupil: Oh, I see. That is only true for single variable polynomials.

Teacher: But all is not lost. Think up a few random points to plug into the polynomials,

and see what you get.
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Pupil: I will try (0, 1, 2, 3), (5, 2, 10, 100), and (3, 3, 3, 3). I see that p evaluates to 0 on all of

these points, but q evaluates to non-zero on the last two. So at least I know q is non-zero.

But what about p? Can we do better than just picking points at random to try?

Teacher: You could just multiply everything out...

Pupil: But that would take sooo long.

Teacher: If you can figure out a significantly faster way to verify polynomial identities then

make sure to let me know! In the meantime, let us see what we can say about the strategy

of picking points at random to plug into the polynomial.

Pupil: [Thinking, thinking...] If the polynomial is not zero, then it evaluates to non-zero on

at least one point. But can we say it evaluates to non-zero on most points?

A Randomized Algorithm

Teacher: Yes! Suppose the polynomial is non-zero with total degree at most d. If we pick

each variable at random from a set S, then the probability we are unfortunate and land on

one of the roots of the polynomial is at most d
|S| .

Pupil: Cool. [Thinking, thinking...] I guess we can prove that by induction on the number

of variables, with single variable polynomials being the base case?

Teacher: [Wipes away a tear.] I am so proud of you, that’s right. So what do we know?

Pupil: We have a fast randomized algorithm to test polynomial identities. It makes a mis-

take with only very small probability as long as we choose our variables at random from a

very large set S. This is pretty cool! Back to my earlier question, can we get rid of the

randomness? And are there other problems we can solve with neat randomized algorithms?

What else can I learn about randomized algorithms today?

Teacher: I am glad you are so excited about this now. Now that I have you motivated, you

can learn more on your own and we can discuss your findings next time we meet. To start
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off with, here is a dissertation that explores randomized algorithms from a more generic

perspective...

1.1 The Power of Randomized Algorithms

The teacher in the above dialog has drawn the pupil into the intriguing world of ran-

domized algorithms, the main focus of this dissertation. Randomness has been a valuable

algorithm design tool, and intriguingly, many important problems can be solved by ran-

domized algorithms that are either much more efficient or much simpler to implement than

the best-known deterministic algorithms. The example from the teacher and pupil dialog,

polynomial identity testing, is an example of both – the best-known deterministic algorithms

are much more complicated and much less efficient than the simple randomized algorithm

described in the dialog. The important question is the following.

Are randomized algorithms truly more powerful than deterministic algorithms, or

can every randomized algorithm be derandomized – converted into a deterministic

algorithm without much loss in efficiency?

Early canonical examples of problems solvable much more efficiently with randomness

than without include primality testing and connectivity on undirected graphs: relatively

simple randomized algorithms solve primality testing in polynomial time [Mil76, Rab80] and

undirected connectivity in logarithmic memory space [AKL+79]. In two famous separate

works, both of these problems have been derandomized – Agrawal et al. [AKS04] giving

a deterministic polynomial-time algorithm for primality and Reingold [Rei08] giving a de-

terministic logarithmic-space algorithm for undirected connectivity. Whether polynomial

identity testing can be efficiently derandomized remains an open and much-studied question

(see [Sax09] for a survey of recent progress).

General-Purpose Derandomization The derandomization results for primality testing

and undirected connectivity employ techniques that are very specific to the problems being

solved. A natural question is whether there are more generic methods that can be applied
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to any randomized algorithm. Let M(x, r) be a randomized polynomial-time machine that

takes input x, uses random bits r, and outputs a certain Boolean value f(x) for most choices

of r but may output ¬f(x) for some choices of r. The trivial deterministic simulation of

M outputs the majority vote over all random strings and takes time exponential in the

number of random bits. A more efficient simulation follows if we can shrink the number

of random bits needed by constructing a pseudorandom generator G secure against M , a

function that takes a short “seed” s and outputs a longer “pseudorandom string” G(s) with

the property that algorithms with similar complexity to M cannot tell the difference between

the uniform distribution on pseudorandom strings and the uniform distribution on all strings.

If the pseudorandom generator has logarithmic seed length then there are polynomially many

pseudorandom strings to consider, and the algorithm Majorityy(M(x, G(y)) that takes the

majority vote over the pseudorandom strings is a polynomial-time deterministic simulation

that outputs the correct value f(x).

A long line of research (see [Mil01] for an introduction) has shown that a very reasonable

complexity-theoretic hardness assumption can be used to construct such pseudorandom gen-

erators sufficient to derandomize all time-efficient randomized algorithms, and in particular

sufficient to yield an efficient deterministic algorithm for polynomial identity testing. The

hardness assumption states that there is a problem that can be solved in time 2Θ(n) but

cannot be solved by a family of circuits that uses only 2o(n) gates for inputs of length n. We

call such a hardness condition a “circuit lower bound”. Given the hardness assumption, all

problems solvable by polynomial-time randomized algorithms that have error bounded by a

constant less than one half on every input, called BPP problems, can be solved in polynomial

time on deterministic machines. More concisely, given the hardness assumption, BPP = P.

In practice, this approach to derandomization may be too inefficient because the random-

ized algorithm needs to be executed once for each of a polynomial number of pseudorandom

strings. Further, the circuit lower bound hardness assumption, though plausible and widely

believed in the community, has been notoriously difficult to prove and recent work [KI04] has
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shown that in fact any non-trivial derandomization of polynomial identity testing implies

circuit lower bounds that will likely be difficult to prove.

Making Progress Towards Full Derandomization This dissertation contains three

main research directions that are aimed at making progress towards full derandomization of

efficient randomized algorithms. By full derandomization, we mean deterministic simulations

that are correct on all inputs. One question is what can be accomplished short of proving

full derandomization. Each of the three research directions contained in this thesis aims

to answer important open questions that would follow easily from full derandomization but

nonetheless have proved elusive in their own right. We hope that making progress on these

intermediate goals can shed light on fundamental properties of randomized algorithms that

could be a part of a solution to the ultimate question of the power of randomized algorithms.

• A recent line of research has considered the possibility of “typically-correct” deran-

domizations – deterministic simulations that are allowed to make a small number of

mistakes. Whereas previous approaches were based on extractors, we develop a new

approach to typically-correct derandomization based on pseudorandom generators. We

use the new approach to prove unconditional results for a number of classes of algo-

rithms and also prove a conditional result for all time-efficient randomized algorithms

that is based on a weaker hardness assumption than previous work. We also initiate

the study of whether typically-correct derandomization implies circuit lower bounds,

showing that this is indeed true for small error rates.

These results are introduced further in Section 1.2

• Our results on typically-correct derandomization use a paradigm that utilizes circuit

lower bounds to construct pseudorandom generators for the purpose of derandomiza-

tion. One area where strong worst-case circuit lower bounds are known is that of

monotone functions. We study the possibility of using these circuit lower bounds to

derandomize monotone computations. We show that derandomization of randomized
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monotone computations would imply derandomization of general non-monotone ran-

domized computations. We show similar results for pseudorandom generators and

average-case hard functions – that a pseudorandom generator secure against monotone

circuits is also pseudorandom against general circuits and that a function average-case

hard for monotone circuits is also average-case hard for general circuits.

These results are introduced further in Section 1.3

• Finally, we consider hierarchy theorems for randomized computations. If indeed ran-

domized algorithms can be derandomized in a uniform way, then good time and space

hierarchy theorems for randomized algorithms would follow from the deterministic

time and space hierarchies. Thus hierarchies for randomized algorithms are a neces-

sary step towards proving general-purpose derandomization. A recent line of work has

made progress by proving time hierarchy theorems for randomized and other models

of computation that use one bit of advice. We use similar techniques to prove space

hierarchy theorems for randomized and other models of computation that use one bit

of advice.

These results are introduced further in Section 1.4

1.2 Typically-Correct Derandomization

The ultimate goal in the study of derandomization is to obtain deterministic simulations

that are always correct and efficient. An intermediate goal has been studied in which the

deterministic simulation is allowed to err on some inputs. Impagliazzo and Wigderson were

the first to consider derandomizations that succeed with high probability on any efficiently

samplable distribution; related notions have subsequently been investigated in [Kab01, TV07,

GSTS03, SU07]. Goldreich and Wigderson [GW02] introduced a weaker notion in which

the deterministic simulation only needs to behave correctly on most inputs of any given

length. We refer to such simulations as “typically-correct derandomizations”. The hope is

to construct typically-correct derandomizations that are more efficient than the best-known
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everywhere-correct derandomizations, or to construct them under weaker assumptions than

the hypotheses needed for everywhere-correct derandomization.

A number of works have continued the study initiated by [GW02] in the standard setting

of time-bounded randomized algorithms and in other settings [MS05, Zim08, Sha09]. Each of

these works takes an approach suggested by Goldreich and Wigderson [GW02] of obtaining

typically-correct derandomizations by “extracting randomness from the input”. An extractor

E is a procedure that takes a source of imperfect randomness and produces a distribution

close to uniform. To derandomize an algorithm M(x, r) taking input x and randomness r,

r′ = E(x) is extracted in a deterministic way such that D(x) = M(x, E(x)) behaves correctly

on most inputs. The works diverge in the analysis and the conditions under which D indeed

makes a small number of mistakes.

Our Approach In this dissertation we develop an alternative generic approach for con-

structing typically-correct derandomizations. The approach builds on “seed-extending pseu-

dorandom generators” rather than “extractors”. A seed-extending pseudorandom gener-

ator is a generator G which outputs the seed as part of the pseudorandom string, i.e.,

G(s) = (s, E(s)) for some function E. The well-known Nisan-Wigderson pseudorandom

generator construction [NW94] can easily be made seed-extending. We show that when-

ever a seed-extending pseudorandom generator passes certain statistical tests defined by the

randomized procedure M(x, r), the deterministic procedure D(x) = M(x, E(x)) forms a

typically-correct derandomization of M , where the error rate depends on the error probabil-

ity of the original randomized algorithm and on the error of the pseudorandom generator.

Note that this approach differs from the standard use of pseudorandom generators in

derandomization, where the pseudorandom generator G is run on every seed. As the latter

induces a time overhead that is exponential in the seed length, one aims for pseudorandom

generators that are computable in time exponential in the seed length. A polynomial-time

simulation is achieved only in the case of logarithmic seed lengths. In contrast, we run G

only once, namely with the input x of the randomized algorithm as the seed. We use the
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pseudorandom generator to select one “coin toss sequence” r = E(x) on which we run the

randomized algorithm. As opposed to the traditional derandomization setting, our approach

benefits from pseudorandom generators that are computable in time less than exponential

in the seed length. With a pseudorandom generator computable in time polynomial in the

output length, we obtain nontrivial polynomial-time typically-correct derandomizations even

when the seed length is superlogarithmic, and indeed any subpolynomial seed length suffices.

1.2.1 Applications of Our Approach

One of the main advantages of our approach over previous approaches to typically-correct

derandomization is that we can rely on weaker hardness assumptions. In some settings we

derive conditional results that are based on weaker hardness assumptions than the earlier

works, and in some settings we even obtain new unconditional results because suitable hard

functions are known to exist.

For the setting of randomized bounded-error polynomial time algorithms we obtain the

following typically-correct derandomization based on a function that is mildly hard on av-

erage for small circuits. In the following, we say that D computes L to within 1
nc if D is

correct, i.e., D(x) = L(x), on all but a 1
nc fraction of inputs at length n; H is 1

nc -hard for

circuits of size nd if no circuit of size nd computes H to within 1
nc .

Theorem 1.1 Let L be a language that is computed by a randomized bounded-error

polynomial-time machine M . For any positive constant c, there is a positive constant d (de-

pending on c and the running time of M) such that the following holds. If there is a language

H in P that is 1
nc -hard for circuits of size nd, then there is a deterministic polynomial-time

machine D that computes L to within 1
nc .

[GW02] and [Sha09] also prove conditional typically-correct derandomization results for

BPP, but both require hardness conditions stronger than that of Theorem 1.1.

We can similarly relax the hardness assumption in a host of other settings. For some

settings, for example Arthur-Merlin protocols and space-bounded algorithms, we obtain con-

ditional typically-correct derandomization results based on reasonable hardness conditions.
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Unconditional Results In some settings, using our approach allows us to establish new

unconditional typically-correct derandomizations, namely for models where functions that

are very hard on average are not known but functions which are mildly hard on average are

known unconditionally. One such model is that of constant-depth circuits that are allowed

a small number of arbitrary symmetric gates, i.e., gates that compute functions which only

depend on the Hamming weight of the input, such as parity and majority.

Theorem 1.2 Let L be a language and M a uniform randomized circuit of constant depth

and polynomial size that uses o(log2 n) symmetric gates such that M computes L with error

at most ρ. Then there is a uniform deterministic circuit D of constant depth and polynomial

size that uses exactly the same symmetric gates as M in addition to a polynomial number of

parity gates such that D computes L to within 3ρ + 1
nΩ(log n) .

We also derive an unconditional typically-correct derandomization result for multi-player

randomized communication protocols.

Comparison with the Extractor-Based Approach [Sha09] introduced a generic ap-

proach to typically-correct derandomization based on “extractors for recognizable distribu-

tions” and applied it to achieve unconditional results in a number of settings: streaming

algorithms, decision trees, 2-party communication protocols, and constant-depth circuits.

We demonstrate an interesting relationship between our approach and the extractor-based

approach. Ours is a strict generalization in that each of the results of [Sha09] can be obtained

using our approach while some of our results cannot be proved using the extractor-based

approach.

1.2.2 Typically-Correct Derandomization and
Circuit Lower Bounds

Hardness versus randomness tradeoffs have shown that strong enough circuit lower bounds

imply pseudorandom generators. The converse is also known, so that obtaining pseudoran-

dom generators strong enough to derandomize BPP is equivalent to proving circuit lower
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bounds which seem beyond the scope of current techniques. We may hope to derandomize

BPP algorithms in some other way that does not imply circuit lower bounds. But Kabanets

and Impagliazzo [KI04] showed that any subexponential-time derandomization of BPP im-

plies circuit lower bounds. The implied circuit lower bounds are not as strong as those needed

to construct pseudorandom generators but still seem out of the reach of current techniques.

We initiate the study of whether subexponential-time typically-correct derandomizations

imply such lower bounds. We provide an affirmative answer in the case of the error rates

considered by Goldreich and Wigderson, namely algorithms that make at most 2nε
mistakes

for all positive ε. We show that such a typically-correct derandomization of the BPP problem

polynomial-identity testing implies either super-polynomial Boolean circuit lower bounds

for nondeterministic exponential time (NEXP) or super-polynomial arithmetic circuit lower

bounds for the permanent over the integers (Perm).

Theorem 1.3 If for every positive constant ε there exists a nondeterministic Turing ma-

chine which runs in time 2nε
and correctly decides ACZ, the language of all arithmetic circuits

that compute the zero polynomial over the integers, on all but at most 2nε
of the inputs of

length n for almost every n, then

(i) NEXP does not have Boolean circuits of polynomial size, or

(ii) Perm does not have arithmetic circuits of polynomial size.

This result is a strengthening of [KI04] from the everywhere-correct setting to the typically-

correct setting. In developing it, we also obtain a simpler proof for the everywhere-correct

setting that scales better than the one in [KI04].

Relativization and Algebrization The fact that typically-correct derandomization of

BPP with very low error rates implies circuit lower bounds indicates that any such deran-

domization of BPP must have ingredients that prove circuit lower bounds. It remains open

whether typically-correct derandomization of BPP with higher error rates implies circuit

lower bounds. However, we show that such weaker derandomization of BPP must contain
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ingredients that do not algebrize – a notion developed by Aaronson and Wigderson [AW09]

that includes both relativizing proof techniques as well as techniques based on arithmetiza-

tion. Thus we know that a typically-correct derandomization of BPP with larger error rates

cannot be proved with only relativizing techniques and arithmetization.

1.3 Derandomization of Monotone Computations

As discussed earlier, in many settings we know that the existence of hard functions implies

pseudorandom generators suitable for derandomizing randomized algorithms. Strong enough

hardness conditions imply efficient full derandomization, for example BPP = P. As discussed

in Section 1.2, weaker hardness conditions imply efficient typically-correct derandomization.

A natural question then is, for which algorithmic settings do we have hard functions

that yield derandomization? Monotone functions are one of the notable settings where

hard functions are known. In this section we describe our work in considering whether

these hardness results imply derandomization; and we ask the broader question of how

derandomization of monotone computations relates to the derandomization of general non-

monotone computations.

Monotone Boolean Functions Monotone circuits are one area where we know of very

good worst-case lower bounds. A monotone Boolean function is one such that flipping an

input bit from 0 to 1 can only change the output of the function from 0 to 1. Monotone

functions can be computed by monotone circuits – circuits consisting of AND and OR gates

but with no NOT gates. There are many examples of natural monotone languages based on

graph properties – such as clique, connectivity, or perfect matchings – where adding edges can

only make the property easier to satisfy. One hope in studying monotone Boolean functions

is that the property of monotonicity can be used in proving interesting results. This hope

has come to fruition in the area of circuit lower bounds. A long line of research has proved

that various explicit monotone functions require monotone circuits of super-polynomial size

(perfect matchings) or even exponential size (clique) (see [BS91] and [Kor03] for surveys).
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Derandomizing Monotone Circuits An immediate question is whether these exponen-

tial worst-case lower bounds can be converted into average-case lower bounds of a sufficient

quality for use in hardness-based pseudorandom generators to derandomize bounded-error

randomized monotone circuits. The latter are monotone circuits C that take two inputs x

and r such that for every x, PrR[C(x, R) = 1] ≥ 2
3

or PrR[C(x, R) = 1] ≤ 1
3
. Including a

uniformity condition – that there is a deterministic polynomial-time machine that on input

1n outputs the circuit C – gives a natural monotone version of the complexity class BPP.

Consider the requirements needed to apply a hardness-based pseudorandom generator to

derandomize monotone circuits. The proofs for hardness-based pseudorandom generators all

argue the contrapositive: if the generator is not secure against small circuits, a reduction is

given that uses those small circuits to approximately compute the presumed hard function.

In the setting of monotone circuits, we would assume a small monotone circuit that dis-

tinguishes the output of the generator from uniform, and with this monotone distinguisher

we should construct a small monotone circuit that approximately computes the presumed

hard function. The reduction from the distinguisher to the circuit approximating the hard

function should preserve monotonicity. Let us consider two different generator constructions

that have been developed to derandomize time-bounded computations – the Shaltiel-Umans

generator [SU05, Uma03] and the Nisan-Wigderson generator [NW94]. The Shaltiel-Umans

generator uses elements such as list-decodable codes and finite field arithmetic that perform

non-monotone operations such as parity, and it is unclear if these elements can be made

monotone.

On the other hand, as observed in [Kar09], an examination of the reduction for proving

the Nisan-Wigderson reveals that only a single negation is needed, and a monotone function

hard for both monotone circuits and their negations could be used in this generator to

derandomize monotone circuits. To derandomize a circuit of size nk, the known proof of the

generator requires a function that is (1
2
− 1

nk )-hard for small circuits. We ask, then, whether

the known circuit lower bounds proofs for monotone circuits can be adapted to prove this level

of average-case hardness. If so, this would add to the few classes of randomized algorithms for
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which we have good unconditional derandomization. In fact [Kar09] poses such average-case

lower bounds for monotone functions as an open problem.

A negative answer comes from work in learning theory. A series of results has culminated

in the result of [OW09] that for any monotone function f , one of {0, 1, x1, ..., xn, Majority}

is within distance 1
2
− Ω(log n/

√
n) of f . In particular, no monotone function has hardness

greater than this amount for circuits large enough to compute majority – linear-size general

circuits or O(n log n) size monotone circuits. We observe that this barrier is close to tight

by showing the existence of a monotone function that is (1
2
− 1

n1/2−η )-hard for circuits with

2nΩ(1)
gates, for any positive constant η.

1.3.1 Our Results

From the discussion above, we know that there can be no monotone function with high

enough average-case hardness to be used in known hardness-based pseudorandom generators

to derandomize monotone circuits. But the question remains open for general non-monotone

functions, namely whether we can prove high average case hardness for some explicit non-

monotone function for monotone circuits. We consider this goal and other questions related

to derandomizing monotone circuits in this dissertation.

Hard on Average Functions First, we show that a function that is hard on average for

monotone circuits is hard on average for general circuits with somewhat weaker parameters.

We prove the contrapositive – that a general circuit approximating any function can be

converted into a monotone circuit without too much loss in parameters. In the following, an

anti-monotone circuit is the negation of a monotone circuit.

Theorem 1.4 Let f be any function. If there is a general circuit C with s gates that

computes f to within 1
2
− ε, then there is either a monotone or anti-monotone circuit with

2s+O(n log2 n) gates that computes f to within 1
2
− ε′ for ε′ = max( ε

n+1
, c√

n log(1/ε)
) for c > 0

an absolute constant.
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We observe that Theorem 1.4 is tight to within a constant factor for the parity function.

Parity can be computed exactly, so ε = 1
2
, by a small general circuit. Applying Theorem

1.4 to this circuit gives a monotone circuit computing parity to within 1
2
− Ω( 1√

n
). But it is

well-known that no monotone function can compute parity to within more than 1
2
−O( 1√

n
),

a fact which we prove for completeness. Thus Theorem 1.4 is tight at least for large values

of ε.

Pseudorandom Generators Theorem 1.4 shows that one particular method of construct-

ing a pseudorandom generator secure against monotone circuits – namely constructing a hard

function for use in the Nisan-Wigderson generator – would also yield results for general non-

monotone circuits. We show that in fact any method for constructing a pseudorandom

generator secure against monotone circuits also implies a generator secure against general

circuits with somewhat weaker parameters. A slightly weaker version of Theorem 1.5 was

independently discovered by Karakostas [Kar09], namely with ε′ = ε
2(n+1)

.

Theorem 1.5 Let C be a circuit of size s that ε-distinguishes some distribution D from

uniform. Then there is a monotone circuit C ′ of size 2s + O(n log2 n) that ε′-distinguishes

D from uniform for ε′ = max( ε
2(n+1)

, c√
n log(1/ε)

) for c > 0 an absolute constant.

In particular, if D is the output distribution of a pseudorandom generator G, then a

distinguisher for G can be converted into a monotone circuit without too much loss in the

distinguishing probability. We observe that Theorem 1.5 is nearly tight for pseudorandom

generators with small stretch as follows. We prove that the generator which simply outputs

its seed and the parity of the seed is ε = O( 1√
n
) indistinguishable for monotone circuits. On

the other hand this generator can be distinguished with ε = 1
2

by a small general circuit, and

applying Theorem 1.5 to this circuit gives a monotone circuit distinguishing the generator

with ε = Ω( 1√
n
).



17

Derandomization in General Constructing pseudorandom generators is one method to

derandomize (monotone) randomized circuits. We show that any method of derandomiz-

ing monotone randomized circuits can also be used to derandomize general non-monotone

randomized computations.

Theorem 1.6 Let L be any language computable by polynomial-time bounded-error random-

ized machines. There is a language Lmon computable by uniform monotone bounded-error

polynomial-size randomized circuits such that L poly-time mapping reduces to Lmon. In par-

ticular, if Lmon ∈ P then L ∈ P.

1.4 Space Hierarchy Theorems

Hierarchy Theorems A hierarchy theorem states that the power of a machine increases

with the amount of resources it can use. Time hierarchy theorems on deterministic Turing

machines follow by direct diagonalization: a machine N diagonalizes against every machine

Mi running in time t by choosing an input xi, simulating Mi(xi) for t steps, and then doing

the opposite. Deriving a time hierarchy theorem for computational models not known to

be efficiently closed under complement, such as nondeterministic machines, is more compli-

cated. A variety of techniques can be used to overcome this difficulty, including translation

arguments and delayed diagonalization [Coo73, SFM78, Žàk83]. These techniques allow us

to prove time hierarchy theorems for just about any syntactic model of computation. We

call a model syntactic if there exists a computable enumeration of all machines in the model.

For example, we can enumerate all nondeterministic Turing machines by representing their

transition functions as strings and then iterating over all such strings to discover each non-

deterministic Turing machine.

Hierarchy Theorems on Semantic Models Many models of computation of interest

are not syntactic but semantic. A semantic model is defined by imposing a promise on

a syntactic model. A machine belongs to the model if it is output by the enumeration

of the underlying syntactic model and its execution satisfies the promise on every input.
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Bounded-error randomized Turing machines, the machine model underlying the complexity

class BPP, are an example of a non-syntactic semantic model. There does not exist a

computable enumeration consisting of exactly all randomized Turing machines that satisfy

the promise of bounded error on every input, but we can enumerate all randomized Turing

machines and attempt to select among them those that have bounded error. In general

promises make diagonalization problematic because the diagonalizing machine must satisfy

the promise everywhere but has insufficient resources to determine whether a given machine

from the enumeration against which it tries to diagonalize satisfies the promise on a given

input.

Because of these difficulties good time hierarchies for semantic models are known only

when the model has been shown equivalent to a syntactic model. These hierarchies result

from equalities such as IP = PSPACE [Sha92], MIP = NEXP [BFL91], BP.⊕P = Σ2.⊕P

[Tod91], and PCP(log n,1) = NP [ALM+98]. Similarly, if BPP computations can be de-

randomized in a uniform way then a good time hierarchy for bounded-error randomized

machines would follow as well. But can we prove a good time hierarchy short of proving

derandomization?

A recent line of research [Bar02, FS04, GST04, FST05, MP07] has provided progress

toward proving time hierarchy results for non-syntactic models, including bounded-error

randomized machines. Each of these results applies to semantic models that take advice,

where the diagonalizing machine is only guaranteed to satisfy the promise when it is given the

correct advice. Many of the results require only one bit of advice. For some of these results,

namely those of [MP07], at a high level the advice bit is used by the diagonalizing machine

to avoid simulating a machine on an input for which that machine breaks the promise.

Our Results In this dissertation we consider hierarchy theorems for the amount of memory

space rather than time used by randomized and other semantic models of computation. Our

results adapt to the space-bounded setting techniques that had previously been developed in

the time-bounded setting. Like the time hierarchy results in this line of research, our space
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hierarchy results have a number of parameters: (1) the gap needed between the two space

bounds, (2) the amount of advice that is needed for the diagonalizing machine N , (3) the

amount of advice that can be given to the smaller space machines Mi, and (4) the range of

space bounds for which the results hold.

We consider (1) and (2) to be of the highest importance. We focus on space hierarchy

theorems with an optimal separation in space – where any super-constant gap in space

suffices. This is an improvement over corresponding time hierarchy results for semantic

models [Bar02, FS04, GST04, FST05, MP07], which are not as tight with respect to time

as the best time hierarchies for syntactic models. The ultimate goal for (2) is to remove the

advice altogether and obtain uniform hierarchy results. As in the time-bounded setting, we

do not achieve this goal but get the next best result – a single bit of advice for N suffices in

each of our results. Given that we strive for space hierarchies that are tight with respect to

space and require only one bit of advice for the diagonalizing machine, we aim to optimize

parameters (3) and (4).

1.4.1 Randomized Models with Advice

Our strongest results apply to randomized models. For two-sided error machines, we

can handle a large amount of advice and any typical space bound between logarithmic and

linear.

Theorem 1.7 Let s(n) be any space-constructible monotone function such that s(n) =

Ω(log n), and let s′(n) be any function that is ω(s(n + as(n))) for all constants a. There

exists a language computable by two-sided error randomized machines using s′(n) space and

one bit of advice that is not computable by two-sided error randomized machines using s(n)

space and min(s(n), n) bits of advice.

For s(n) = log(n), Theorem 1.7 gives a two-sided error machine using only slightly larger

than log n space that uses one bit of advice and differs from all two-sided error machines using

O(log n) space and O(log n) bits of advice. Space-constructibility is a standard assumption

in hierarchy theorems that is true of typical space bounds.
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If s(n) is a space-constructible monotone function that is at most linear, we show the

condition on s′(n) in the above can be relaxed to s′(n) = ω(s(n+1)), giving a hierarchy that

is as tight with respect to space as the space hierarchies for generic syntactic models. In fact,

typical space bounds s(n) that are O(n) satisfy s(n + 1) = O(s(n)), meaning the condition

on s′(n) can be relaxed further to s′(n) = ω(s(n)). Thus we obtain space hierarchies that

are tight with respect to space for typical space bounds that are at most linear.

Our second main result, Theorem 1.8, gives a separation result with similar parameters as

those of Theorem 1.7 but for the cases of one- and zero-sided error randomized machines. A

randomized machine computes a language with one-sided error if the machine has bounded-

error for inputs in the language and is always correct for inputs not in the language. A

zero-sided error machine may output “don’t know” with probability less than half, must

never output an incorrect answer, and must output the correct answer with probability at

least half. We point out that the separation result for zero-sided error machines is new to

the space-bounded setting as the techniques used to prove stronger separations in the time-

bounded setting do not work for zero-sided error machines. In fact, we show a single result

that captures space separations for one- and zero-sided error machines – that a zero-sided

error machine suffices to diagonalize against one-sided error machines.

Theorem 1.8 Let s(n) be any space-constructible monotone function such that s(n) =

Ω(log n), and let s′(n) be any function that is ω(s(n + as(n))) for all constants a. There

exists a language computable by zero-sided error randomized machines using s′(n) space and

one bit of advice that is not computable by one-sided error randomized machines using s(n)

space and min(s(n), n) bits of advice.

As in the case of two-sided error, the condition on s′(n) can be relaxed to s′(n) =

ω(s(n+1)) for space-constructible monotone space bounds s(n) = O(n) and relaxed further

to s′(n) = ω(s(n)) for space bounds that satisfy s(n + 1) = O(s(n)) as do typical space

bounds that are at most linear.
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1.4.2 Generic Semantic Models with Advice

The above results take advantage of specific properties of randomized machines that

are not known to hold for arbitrary semantic models. Our next results involve a generic

construction of [MP07] that applies to a wide class of semantic models which the authors

term reasonable and that can be safely complemented with a limited overhead in space.

The requirements for a reasonable model are very basic; we refer to Section 3.2.3 for the

precise conditions but besides randomized two-, one-, and zero-sided error machines, the

notion also encompasses bounded-error quantum machines, unambiguous machines, Arthur-

Merlin games and interactive proofs, etc. For discussion and definitions of these models, see

Chapter 2. A safe complementation is – loosely speaking – a machine that always satisfies

the semantic conditions of the model, takes as its input a machine-input pair, and has the

opposite behavior whenever the machine-input pair satisfies the semantic conditions; we refer

to Definition 3.5 for the exact meaning. Most reasonable models, including all the above,

can be safely complemented with a linear-exponential overhead in space.

Theorem 1.9 (follows from [MP07]) Fix any reasonable semantic model of computa-

tion that can be safely complemented with a linear-exponential overhead in space. Let s′(n)

be any function with s′(n) = ω(log n). There exists a language computable using s′(n) space

and one bit of advice that is not computable using O(log n) space and O(1) bits of advice.

The performance of the generic construction is poor on the last two parameters we men-

tioned earlier – it allows few advice bits on the smaller space side and is only tight for

s(n) = O(log n). Either of these parameters can be improved for models that can be safely

complemented with only a polynomial overhead in space – models for which the simple

translation argument works. Examples of such models include randomized machines with

bounded error and unambiguous machines. In fact, there is a trade-off between (a) the

amount of advice that can be handled and (b) the range of space bounds for which the result

is tight. By maximizing (a) we get the following.
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Theorem 1.10 Fix any reasonable semantic model of computation that can be safely com-

plemented with a polynomial overhead in space. Let d be a rational upper bound on the

degree of the latter polynomial. Let s′(n) be any function with s′(n) = ω(log n). There exists

a language computable using s′(n) space and one bit of advice that is not computable using

O(log n) space and O(log1/d n) bits of advice.

In fact, a tight separation in space can be maintained while allowing O(log1/d n) advice

bits for s(n) any poly-logarithmic function, but the separation in space with this many advice

bits is no longer tight for larger s(n). By maximizing (b), we obtain a separation result that

is tight for sufficiently smooth space bounds between logarithmic and polynomial. We state

the result for polynomial space bounds.

Theorem 1.11 Fix any reasonable semantic model of computation that can be safely com-

plemented with a polynomial overhead in space. Let d be a rational upper bound on the degree

of the latter polynomial, let r be any positive constant, and let s′(n) be any space bound that

is ω(nr). There exists a language computable in space s′(n) with one bit of advice that is not

computable in space O(nr) with O(1) bits of advice.

When applied to randomized machines, Theorem 1.11 gives a tight separation result for

slightly higher space bounds than Theorems 1.7 and 1.8, but the latter can handle more

advice bits.

1.4.3 Promise Problems for Generic Semantic Models

Our proofs use advice in a critical way to derive hierarchy theorems for languages com-

putable by semantic models. We can obviate the need for advice by considering promise

problems rather than languages. A promise problem only specifies the behavior of a machine

on a subset of the inputs; the machine may behave arbitrarily on inputs outside of this set.

For semantic models of computation, one can associate in a natural way a promise problem

to each machine in the underlying enumeration. For example, for randomized machines with

bounded error, the associated promise problem only specifies the behavior on inputs on which
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the machine has bounded error. The ability to ignore problematic inputs allows traditional

techniques to demonstrate good space and time hierarchy theorems for the promise problems

computable by semantic models. This is a folklore result, but there does not appear to be a

correct proof in the literature; we include one in this dissertation.

Theorem 1.12 (folklore) Fix any reasonable semantic model of computation that can

be safely complemented with a computable overhead in space. Let s(n) and s′(n) be space

bounds with s(n) = Ω(log n) and s′(n) space-constructible. If s′(n) = ω(s(n + 1)) then there

is a promise problem computable within the model using space s′(n) that is not computable

as a promise problem within the model using space s(n).

1.5 Organization

For the remainder of this dissertation, we present our results in the chronological order

of their discovery.

• Chapter 2 introduces the notation, terminology, and machine models used throughout

the dissertation. A reader familiar with the basics of complexity theory may wish to

skip this chapter and refer back to it as needed.

• Chapters 3 and 4 contain our results on hierarchy theorems for randomized and other

semantic models. Chapter 3 contains our hierarchy results that apply to generic seman-

tic models of computation, and Chapter 4 contains our stronger results that apply to

bounded-error randomized machines. A preliminary version of the results of Chapters

3 and 4 was presented at the 25th International Symposium on Theoretical Aspects

of Computer Science (Bordeaux, February 2008) [KM08]. The full version containing

a more refined analysis of a number of the results is in press to be published in the

journal Computational Complexity [KM10].

• Chapter 5 introduces the pseudorandom generator approach to typically-correct de-

randomization and applies this approach to a number of settings. Chapter 6 considers
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whether typically-correct derandomization of BPP implies circuit lower bounds; we an-

swer in the affirmative for very small error rates. A preliminary version of the results in

Chapters 5 and 6 was presented at the 13th International Workshop on Randomization

and Computation (Berkeley, August 2009) [KMS09]. A full version has been accepted

to the special issue of the journal Computational Complexity for selected papers from

the conference.

• Chapter 7 contains our results relating monotone and general computation in the

settings of randomized algorithms, pseudorandom generators, and average-case hard

functions. These results have not yet been published.
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Chapter 2

Preliminaries

Here we introduce the notation, terminology, and machine models used throughout the

dissertation and state relevant properties. A reader familiar with the basics of computational

complexity may wish to skip this section and refer back to it as needed. For a more thorough

treatment of these concepts and properties, see [AB09] and [Gol08].

2.1 Deterministic Algorithms and Turing Machines

As is standard, we use the multi-tape deterministic Turing machine as our base machine

model. We use the notation M(x) = 1 to indicate that M halts and accepts x, M(x) = 0 to

indicate that M halts and rejects x, and M(x) =↑ to indicate that M on input x does not

terminate. A language L, also known as a decision problem, is a subset of strings. When

x ∈ L we also write L(x) = 1, and when x /∈ L we say that L(x) = 0. Thus if M(x) = L(x)

then M halts and decides L correctly on input x.

The space usage of machine M on input x is defined as the number of work-tape cells

that are touched during the computation; the space usage of M at input length n is defined

as the maximum over all x of length n. For a space bound s : N→ N, we say M uses space

at most s if M uses space at most s(n) at input length n, for all n ∈ N. Time usage of M

is similarly defined based on the number of steps in M ’s execution.

We restrict ourselves to machines M that use the binary alphabet for their input and

output tapes. However, M may have a number of work tapes and work-tape alphabet of

its own choosing; for a fixed machine M its work-tape alphabet and number of work tapes
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are of constant size. Allowing machines with arbitrary alphabet sizes has the following

consequence. Suppose M uses space s(n). Then for any constant c > 0, there exists a

machine M ′ that uses at most max(c · s(n), 1) space and behaves as M on every input. For

c < 1, M ′ uses a larger alphabet size than M and compresses each block of roughly 1/c

tape cells of M into one tape cell using its larger alphabet size. The ability to compress

space usage by any constant factor implies machines that run in space s(n) and O(s(n)) are

equally powerful.

We can represent each Turing machine M as a binary string by encoding its number of

work tapes, size of alphabet, transition function, etc. as binary strings. We use M to denote

both the machine and the binary string that represents the machine. We can assume without

loss of generality that a Turing machine M has a unique accepting configuration (internal

state, tape contents, and tape head locations) by ensuring it clears its tape contents and

resets its tape heads before entering a unique accepting state. We can similarly assume that

M has a unique rejecting configuration. These transformations do not increase the space

usage of the machine.

Conversely, we can assume that every string is a description of some Turing machine.

This follows by taking a standard encoding of Turing machines and mapping any string that

is not valid in that encoding to a default Turing machine, for example the Turing machine

that immediately rejects on all inputs. We point out that this trivially makes deterministic

Turing machines computably enumerable, as defined next.

Definition 2.1 (computable enumeration) A set S is computably enumerable if there

exists a Turing machine M such that

1. on input i, M(i) outputs a string y with y ∈ S,

2. for any y ∈ S, there exists an i such that M(i) outputs y, and

3. M(i) halts for every input i.

We note that in standard enumerations (Mi)i=1,2,3,... of deterministic Turing machines,

each machine Mi appears infinitely often as different encodings of the same machine. Each
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of these encodings, though, has the same number of work tapes, the same tape alphabets,

the same internal states, and the same behavior on any given input. Typical diagonalization

arguments proceed by having a diagonalizing machine N iterate over each machine Mi in

turn and ensure that N computes a language different than Mi. As Mi appears infinitely

often within the enumeration, N has an infinite number of opportunities to successfully

differentiate itself from Mi.

There exists a space-efficient universal Turing machine U to simulate other Turing ma-

chines. Namely, given input (M, x), U(M, x) = M(x) and if M(x) uses space s then U uses

at most a · s space where a is a constant that only depends on the control characteristics of

M – its number of tapes, work-tape alphabet size and number of states – but is the same for

each of the infinitely many different occurrences Mi of the machine M in the enumeration

of machines. We can equip the universal machine U with a space counter to keep it from

using more space than we want. For any space-constructible function s (defined next), there

exists a universal machine Us such that Us(M, x) = M(x) if M(x) uses at most s space, and

Us(M, x) uses at most a′ · s(|x|) space where a′ is a constant depending only on s and the

control characteristics of M . We implicitly use the universal machine throughout this paper

whenever the diagonalizing machine needs to simulate another machine.

Definition 2.2 (space-constructible) A space bound s is defined as space-constructible

if there exists a Turing machine using O(s(n)) space which on input 1n produces as output

s(n) many 1’s.

Most common space bounds we work with are space-constructible, including polynomials,

exponentials, and logarithms.

Turing-Machine with Advice We can also equip Turing machines with advice. Turing

machines with advice are a non-uniform model of computation in which the machine has

access to an advice string that varies depending on the input length. This so-called advice

is given as an additional input to the Turing machine. We use α and β to denote infinite

sequences of advice strings.
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Definition 2.3 (computation with advice) A Turing machine M with advice sequence

α decides on an input x by performing the computation M(x; α|x|), denoted M(x)/α|x|. M

with advice sequence α, denoted M/α, computes a language L if for every x, M(x)/α|x| =

L(x). If |αn| = a(n) for all n, we say that L can be computed with a(n) bits of advice.

When we are interested in the execution of M/α on inputs of length n, we write M/a

where a = αn.

Oracle Turing-Machine A Turing Machine can also be given access to an oracle for some

language L. The effect is that the machine has access to answers to the language L with

only unit time cost per query. This is achieved by augmenting the machine with an oracle

tape and a special “query oracle” state of its internal transition function; upon entering the

query state, the machine in one time step places the answer to the query (1 if the query is

a member of L, and 0 otherwise) at the current location of the first work-tape and clears

the query tape. There are subtleties involved when considering space-bounded oracle Turing

machines, but we will only require time-bounded oracle Turing machines so do not discuss

those subtleties here.

We write PL for the set of languages that can be solved in polynomial time with oracle

access to L. For a complexity class C, we write PC for the set of languages that can be

solved in polynomial time given oracle access to some language L ∈ C. In other words,

PC = ∪L∈CP
L.

2.2 Randomized Algorithms and Turing Machines

A randomized Turing machine is a deterministic Turing machine that in addition is given

a read-only one-way infinite tape of random bits in addition to the usual input, work, and

output tapes. With the contents of the random bit tape fixed to some value, a randomized

Turing machine behaves as a standard Turing machine. The behavior of a randomized

Turing machine M on a given input x with the random bits r unfixed is a random variable

M(x; r) over the probability space of the random bit tape with the uniform distribution. In
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particular, the contents of the output tape and whether the machine enters the accept or

reject states are random variables.

We say that a randomized Turing machine M uses space s(|x|) and time t(|x|) if M(x; r)

uses at most s(|x|) space and t(|x|) time for every possible choice of randomness r.

In the case of space-bounded randomized Turing machines, it may be possible that a

machine uses at most space s but nevertheless does not terminate for some values of the

random bit tape. Allowing space-bounded randomized machines to execute indefinitely

gives them significant power, namely the power of nondeterminism. We only consider space-

bounded randomized machines which are guaranteed to halt for all possible contents of the

random bit tape. One implication of this assumption is that a randomized machine M

using space s = Ω(log n) runs in 2as time for a constant a that depends only on the control

characteristics of M . This follows from the fact that the number of configurations of a space

s machine is O(n2O(s)), which is 2O(s) for s = Ω(log n), and none of these configurations

can be repeated for a machine which always halts. For more on the basic properties of

space-bounded randomized machines, see [Sak96].

Intuitively, a randomized machine computes a function f if for every input x, M(x; r) =

f(x) with high probability over r. In this paper we focus on decision problems f , or equiv-

alently, languages L. We consider three different types of error behavior for a randomized

machine computing a language: two-, one-, and zero-sided error.

Definition 2.4 (two-sided error) A randomized machine M computes a language L

with two-sided error if for every x, Prr[M(x; r) = L(x)] ≥ 2
3
.

If Prr[M(x; r) = 1] < 2
3

and Prr[M(x; r) = 0] < 2
3

we say that M breaks the promise of

two-sided error on input x; otherwise we say M satisfies the promise of two-sided error on

input x. The complexity class BPL consists of the languages that can be computed by a

logarithmic-space two-sided error Turing machine that always halts.
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Definition 2.5 (one-sided error) A randomized machine M computes a language L

with one-sided error if

1. for every x ∈ L, Prr[M(x; r) = 1] ≥ 1
2
, and

2. for every x /∈ L, Prr[M(x; r) = 0] = 1.

If Prr[M(x; r) = 1] < 1
2

and Prr[M(x; r) = 0] < 1 we say that M breaks the promise of

one-sided error on input x. The complexity class RL consists of the languages that can be

computed by a logarithmic-space one-sided error Turing machine that always halts.

To define zero-sided error, we consider three possible outcomes of the computation: 1

meaning accept, 0 meaning reject, or ? meaning unsure.

Definition 2.6 (zero-sided error) A randomized machine M computes L with zero-

sided error if

1. for every x, Prr[M(x; r) /∈ {0, 1}] ≤ 1
2
, and

2. for every x, Prr[M(x; r) = ¬L(x)] = 0.

If Prr[M(x; r) /∈ {0, 1}] > 1
2

or (Prr[M(x; r) = 1] > 0 and Prr[M(x; r) = 0] > 0) we

say that M breaks the promise of zero-sided error on input x. The complexity class ZPL

consists of the languages that can be computed by a logarithmic-space zero-sided error Turing

machine that always halts.

When speaking of a two-sided error (respectively one- or zero-sided error) randomized

machine M , we say that M(x) = 1 if the acceptance condition of M on input x is met –

namely that Prr[M(x; r) = 1] ≥ 2
3

(respectively Prr[M(x; r) = 1] ≥ 1
2

or (Prr[M(x; r) /∈

{0, 1}] ≤ 1
2

and Prr[M(x; r) = 0] = 0)). Similarly, we say that M(x) = 0 if the rejection

condition of M on input x is met.

Properties As a randomized machine has at its base a deterministic Turing machine, many

of the properties of deterministic Turing machines carry over. We can assume that there are

unique accepting and rejecting configurations. We can encode randomized Turing machines



31

as binary strings such that every randomized Turing machine has infinitely many different

encodings and every string represents some randomized Turing machine. This trivially gives

a computable enumeration of randomized Turing machines where each machine appears

infinitely often.

The space-efficient universal machine U also carries over from the class of deterministic

Turing machines to the class of randomized Turing machines. In particular, this machine U

allows for space-efficient simulations of randomized machines with two-, one-, or zero-sided

error. However, U itself does not satisfy the promise of two-, one-, or zero-sided error on all

inputs and therefore is not universal for two, one-, or zero-sided error machines. In fact, the

existence of a space-efficient universal machine for two-, one-, or zero-sided error machines

remains open, and if one exists then known diagonalization techniques immediately give

tight space hierarchies for these models without advice.

Randomized Machines with Advice Randomized machines take advice in much the

same way that deterministic Turing machines take advice – as an additional input. We refer

to Section 2.7 for the precise meaning of a bounded-error machine with advice as a special

case of semantic models with advice.

2.2.1 Error Reduction

Given a randomized machine deciding a language L, majority voting allows us to decrease

the probability the machine errors. One way to view this is as an application of the Chernoff

bound. We use the following instantiation (see, for example, [MR95, Theorem 4.2 and

Theorem 4.3]).

Theorem 2.7 (Chernoff bound) Let Xi be independent identically distributed 0/1 ran-

dom variables, and let Sτ =
∑τ

i=1 Xi. Let µ = τ · E[X1] be the mean of Sτ .

1. For any ∆ > 0, Pr[Sτ < µ−∆] ≤ e−∆2/(2µ).

2. For 0 ≤ ∆ ≤ (2e− 1)µ, Pr[Sτ > µ + ∆] ≤ e−∆2/(4µ).
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Consider a randomized machine M on input x, and assume that Prr[M(x; r) = L(x)] =

1
2
+ γ for some γ > 0. We run M(x) some number τ times independently, that is, with fresh

random bits for each execution. For i = 1, 2, ..., τ , we let Xi = 1 if the ith execution of M(x)

produces the correct result, and Xi = 0 otherwise. Theorem 2.7 tells us that the number of

correct outputs in the τ trials does not stray far from the expected number. By applying

both Theorems 1 and 2, the probability that the fraction of correct outputs lies outside of

the range [1
2
, 1

2
+ 2γ] is at most e−τγ2/4 + e−τγ2/2 ≤ 2e−τγ2/4. In particular, the probability

that the majority vote of τ independent trials of M is incorrect is exponentially small in τ .

For one- and zero-sided error machines, we can reduce the error somewhat more efficiently.

For a one-sided error machine M , we take the OR of τ independent trials of M(x). This

preserves the one-sided error condition and if Prr[M(x; r) = 1] ≥ 1
2

then the probability

that the OR of τ independent trials is incorrect is at most 1
2τ . The error of a zero-sided

error machine M is similarly reduced to 1
2τ by taking τ independent trials and outputting

0 if M(x) outputs 0 on any of the trials, 1 if M(x) outputs 1 on any of the trials, and ?

otherwise.

2.2.2 Deterministic Simulations

A space s = Ω(log n) randomized Turing machine Mi that always halts can be simulated

by a deterministic Turing machine D that runs in time 2as(n) for some constant a that only

depends on the control characteristics of Mi. D on input x accepts if Prr[Mi(x; r) = 1] ≥ 1
2

and rejects otherwise.

We sketch this simulation. To achieve D, we first view Mi as defining a Markov chain

whose states are the t = 2O(s(n)) possible configurations of Mi and whose transition proba-

bilities are governed by the transition function of Mi. As Mi on input x halts within t time

steps, we determine if Prr[Mi(x; r) = 1] is at least 1/2 by taking the tth power of the Markov

chain’s transition matrix and examine the resulting probability for the state corresponding

to the unique accepting configuration of Mi. The main task of D is to compute an entry in
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the product of the tth power of the t × t transition matrix of the Markov chain, which can

be done in polynomial time in t, i.e., in time 2O(s(n)).

We point out that deterministic simulations of bounded-error randomized machines are

known which use smaller space [Nis92, SZ99], but the above suffices for most of our purposes.

When we require the more efficient simulations, we explicitly state this in the text.

2.3 Nondeterministic and Unambiguous Machines

If we remove the requirement of bounded error in part 1 of Definition 2.5 for one-sided

error randomized machines, we are left with a syntactic model of computation, namely

nondeterministic Turing machines, which is at least as powerful as the semantic model of one-

sided error machines. When viewed as a nondeterministic machine, the random bits from the

random bit tape are now viewed as “guess bits” from a nondeterministic tape. We say that

a nondeterministic machine M computes a language L if for every x, Prr[M(x; r) = 1] > 0 if

and only if x ∈ L. The complexity class NP consists of the languages that can be computed

by a polynomial-time nondeterministic Turing machine; NEXP consists of the languages

solvable by exponential-time nondeterministic Turing machines; in general NTIME(t(n))

denotes languages solvable by time t nondeterministic machines. The language of satisfiable

Boolean formulas, denoted SAT, is one of many languages that are known to be complete for

NP. The complexity class NL consists of the languages that can be computed by a log-space

nondeterministic Turing machine, and reachability on directed graphs is a complete problem

for NL.

Unambiguous machines are a semantic model of nondeterministic Turing machines where

accepting paths are required to be unique. That is, a nondeterministic machine M computes

a language L unambiguously if the following hold.

(i) For every x ∈ L, M(x; r) = 1 for exactly one choice of r.

(ii) For every x /∈ L, M(x; r) = 0 for every choice of r.
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We define the complexity class UP as the class of languages accepted by polynomial-time

unambiguous machines, and similarly define UL for logarithmic-space unambiguous machines

[BJLR91]. Unambiguous machines have been studied in the time-bounded setting due to

the relation between the assumptions P 6= UP and NP 6= UP and the existence of various

cryptographic primitives (see, e.g., [HT03]). In the log-space setting, certain restrictions

of graph connectivity have been shown to be computable within UL (see, e.g., [BTV09,

PTV10]), and an interesting question is the relation between UL and NL (see, e.g., [RA00]).

2.4 Other Randomized Models and Quantum Machines

The randomized computations discussed above are achieved by adding randomness to

deterministic Turing machines. We can also add randomness to other types of computations.

For a complexity class C, we define the complexity class BP.C as all languages L such that

for some constant k and L′ ∈ C the following holds.

(i) For every x ∈ L, PrR←U
nk

[(x, R) ∈ L′] ≥ 2
3
.

(ii) For every x /∈ L, PrR←U
nk

[(x, R) ∈ L′] ≤ 1
3
.

Arthur-Merlin Protocols The class of Arthur-Merlin protocols, denoted AM, was defined

in [Bab85] and can be seen as an extension of NP proofs to include randomness. On input

x, an efficient randomized procedure Arthur seeks to verify membership of x in a language L

with the assistance of an all-powerful prover Merlin. Arthur and Merlin exchange a constant

number of messages, viewed as Arthur sending questions or challenges that Merlin must

answer to convince Arthur that x ∈ L, and at the end of the protocol Arthur decides to

accept or reject. The protocol must satisfy the following properties.

(i) For every x ∈ L, with probability at least 2
3

over Arthur’s random bits, there are

answers Merlin can give to Arthur’s challenges that cause Arthur to accept.

(ii) For every x /∈ L, Arthur rejects with probability at least 2
3

regardless of Merlin’s

behavior.
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The complexity class AM is defined by allowing Arthur to run in polynomial time. It can

be shown that this definition of AM is equivalent to AM = BP.NP. Arthur-Merlin protocols

have received attention in part due to the fact that AM contains certain problems, such

as graph non-isomorphism, that are not known to be solvable with non-randomized proof

systems, i.e., not known to be contained in NP.

[Con93] surveys the properties of log-space bounded Arthur-Merlin protocols and related

interactive protocols which allow an arbitrary rather than constant number of messages.

Randomized Oracle Machines A randomized Turing machine can be equipped with an

oracle in the same way that a deterministic Turing machine can be equipped with an oracle.

For a language L, BPPL denotes the set of languages that can be solved by a polynomial-

time bounded-error randomized machine that has access to an oracle for L. It can be shown

that for any language L, BP.L ⊆ BPPL. In particular, AM = BP.NP ⊆ BPPSAT.

Quantum Machines The complexity class BQP is a semantic model of computation

defined as the class of problems solvable by polynomial-time quantum Turing machines that

have error bounded by 1
3

on every input. We do not state the precise definition of a quantum

Turing machine here because it is not central to this dissertation. Quantum machines are

defined to allow computers to take advantage of the effects of quantum mechanics, using

“qubits” rather than random bits. Quantum algorithms have received attention in large

part due to the fact that factoring and discrete-log can be solved in BQP [Sho97]. Watrous

[Wat03] defined a space-bounded version of quantum Turing machines and investigated their

properties.

2.5 Distance and Hardness

We say that a language L′ is within distance δ of another language L if their characteristic

functions are within Hamming distance δ, i.e., differ on at most δ fraction of inputs for each

input length n. Distance between a language and a class of languages is similarly defined,
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and we say a language L is δ-hard for a class of languages if no language in the class is within

δ of L.

Definition 2.8 (hardness on average) A language L is δ(·)-hard for a class of lan-

guages C if no language L′ ∈ C is within Hamming distance δ(n) of L for almost all input

lengths n.

Notice that worst-case hardness corresponds to setting δ(n) = 1
2n . We use the term “mild

hardness” when δ(n) = 1
nc for some constant c > 0, and the term “very high hardness” when

δ(n) = 1
2
− 1

2nε for some constant ε > 0.

For many of our results the relevant class of languages C are the languages computable

by circuits or branching programs of a certain size. These are discussed in Section 2.6.

2.6 Circuits

Boolean Circuits and Branching Programs A Boolean circuit is a directed acyclic

graph with each internal node labeled as an AND, OR, or NOT gate and with each root

node labeled as either some input bit xi or one of the constants 0 or 1. One of the leaf nodes

is labeled as the output of the circuit, and this output is computed in the natural way.

A branching program is a directed acyclic graph where internal nodes and the root node

are labeled with variables, edges correspond to either 0 or 1, leaves are labeled either “accept”

or “reject”, and the computation on a given input is performed as follows: at a given node

labeled xi, if xi = 0 then proceed along the edge labeled 0 and otherwise proceed along the

edge labeled 1, repeat this process until a leaf is reached.

We measure the size of a circuit or branching program by the string length of its standard

description, and assume the description mechanism is such that the description of a circuit

or branching program of size s can easily be padded into the description of an equivalent

circuit or branching program of size s′ for any s′ > s. Note that up to a logarithmic factor,

this measure corresponds to the number of connections in the circuit or branching program.

For any function s(n) we denote by SIZE(s(n)) the class of languages L such that L at length
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n can be decided by a Boolean circuit of size s(n) for almost all input lengths n; we use the

notation BP-SIZE(s(n)) for the class of languages decidable by branching programs of size

s(n).

It can be shown that polynomial-size circuits correspond in power to non-uniform

polynomial-time deterministic Turing machines: a polynomial-size circuit can simulate a

polynomial-time machine that is allowed a polynomial amount of advice, and vice versa.

Branching programs can be shown to correspond to non-uniform space-bounded computa-

tions: polynomial-size branching programs can simulate a log-space deterministic Turing

machine that is given a polynomial amount of advice, and vice versa.

Arithmetic Circuits We also consider arithmetic circuits, which have internal nodes

representing addition, subtraction, and multiplication, and leaves representing variables and

the constants 0 and 1. We denote by ASIZE(a(n)) the class of families (pn)n∈N of polynomials

over Z where pn has n variables and can be computed by an arithmetic circuit of size a(n)

for almost all n ∈ N.

Oracle Circuits We let SIZEO(s(n)) refer to the languages computable by Boolean circuits

of size s(n) that have access to oracle gates for the language O. For an oracle circuit, an

oracle gate contributes its number of inputs to the size of the circuit.

Uniform Circuits and Branching Programs Both circuits and branching programs

as stated so far are non-uniform models of computation – a different circuit or branching

program is given for each input length n. We say a circuit or branching program of size s

is polynomial-time (respectively log-space) uniform if the circuit or branching program can

be computed by a polynomial-time (respectively log-space) machine, that on input (1n, i)

outputs the ith bit of the description in poly(s(n)) time (respectively O(log s(n)) space).

Other more strict notions of uniformity could be considered, but we restrict our attention to

these two basic notions to avoid delving into details which are orthogonal to the main ideas

of the dissertation. For more information on circuits, issues of uniformity, etc., see [Vol99].
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Constant-Depth Circuits The complexity class AC0 consists of the set of languages that

can be computed by non-uniform circuits of polynomial size and constant depth. This is

a natural definition of languages that can be computed in constant time by parallel ma-

chines. We use the terminology “uniform AC0” to refer to the languages solvable by uniform

constant-depth circuits.

2.6.1 Hardness Amplification

For circuits and branching programs, hardness can be amplified using the XOR lemma.

Several versions of the XOR lemma exist (see [GNW95] for an overview); we use the following

instantiation for circuits.

Lemma 2.9 (XOR Lemma for circuits [Imp95]) Let H : {0, 1}n → {0, 1} be a language

and define H ′ : {0, 1}k·n → {0, 1} by H ′(x1, ..., xk) = H(x1) ⊕ H(x2) ⊕ ... ⊕ H(xk). For

any γ > 0, if H is δ-hard for size s circuits at input length n, then H ′ is δ′-hard for size s′

circuits at input length k · n, where δ′ = 1
2
− (1− δ)k − γ and s′ = Ω( γ2

log(1/(δγ))
) · s.

In some settings, the XOR Lemma may not be sufficient as a means for amplifying hard-

ness. In particular, if the types of algorithms in question are not known to be efficiently

closed under taking parities (often equivalent to being efficiently closed under complemen-

tation), then the amplified hard function would not have comparable complexity to H. A

notable example is the setting of nondeterministic algorithms, which are not efficiently closed

under taking parities unless NP=coNP. To obtain a hardness amplification lemma for NP

algorithms, O’Donnell [O’D04] showed that a monotone combining function can be used in

place of parity with some loss in parameters. Because the combining function is monotone,

the technique can also be used in the setting of monotone functions, giving Theorem 2.10.

A function is balanced if it outputs 0 and 1 with equal probability.

Theorem 2.10 (follows from [O’D04]) Let H be a monotone function that is balanced

and 1
nc -hard for circuits of size s, for some positive constant c. There is a polynomial p and
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poly-time computable monotone function C such that H ′ : {0, 1}n·p(n) → {0, 1} defined as

H ′(x1, x2, ..., xp(n)) = C(H(x1), H(x2), ..., H(xp(n)))

is (1
2
− 1

(n·p(n))1/2−η )-hard for circuits of size s
nd on inputs of length n · p(n), where d is a

constant that depends on c.

2.7 Semantic Models of Computation

A syntactic model of computation is defined by a computable enumeration of machines

M1, M2, . . ., and a mapping that associates with each Mi and input x the output Mi(x)

(if any). Deterministic Turing machines and randomized Turing machines are examples of

syntactic models, where for a randomized machine M on input x we can define M(x) = 1 if

Prr[M(x; r) = 1] ≥ 1
2
, and M(x) = 0 otherwise.

A semantic model is obtained from a syntactic model by imposing a promise π, which is

a Boolean predicate on pairs consisting of a machine Mi from the underlying enumeration

and an input x. We say that Mi satisfies the promise on input x if π(Mi, x) = 1. A machine

Mi is termed valid, or said to fall within the semantic model, if it satisfies the promise on

all inputs. The models of randomized machines with two-, one- and zero-sided error are

examples of semantic models. They can be obtained by imposing the promise of two-, one-,

and zero-sided error on randomized Turing machines.

In fact, these models are examples of non-syntactic semantic models, i.e., there does not

exist a computable enumeration that consists exactly of all machines within the model. To see

that the class of bounded-error randomized Turing machines is not computably enumerable,

we note that the complement of the halting problem reduces to the set of bounded-error

randomized machines. Given a deterministic machine M and input x, the reduction maps

(M, x) to a randomized Turing machine M ′ that behaves as follows. M ′ on input t simulates

M(x) for at most t steps; if M(x) halts before this point then M ′ outputs 1 with probability

1/2 and 0 with probability 1/2, and if M(x) does not halt within t steps then M ′ on input

t outputs 1 with probability 1. Note that M ′ satisfies the promise of bounded error on
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all inputs if and only if M(x) does not halt. Thus, the complement of the halting problem

reduces to the set of bounded-error randomized machines. Since the former is not computably

enumerable, the latter cannot be either.

Other examples of non-syntactic semantic models include bounded-error quantum ma-

chines [Wat03], unambiguous machines [BJLR91], Arthur-Merlin games and interactive proofs

[Con93], etc. We refer to [MP07] for a more formal treatment of syntactic versus semantic

models.

We can equip a semantic model with advice and define advice within semantic models in

much the same way we have for deterministic machines.

Definition 2.11 (semantic model with advice) Given a semantic model, a machine

M from the underlying enumeration with advice sequence α decides on input x by performing

the computation M(x; α|x|), denoted M(x)/α|x|. M with advice sequence α, denoted M/α,

computes a language L within the model if for every x, M(x)/α|x| satisfies the underlying

promise and M(x)/α|x| = L(x).

We do not require that M satisfy the promise when given an “incorrect” advice string. We

note that this differs from the notion of advice introduced in [KL82], where the machine must

satisfy the promise no matter which advice string is given. We point out that a hierarchy

for a semantic model with advice under the stronger Karp-Lipton notion would imply the

existence of a hierarchy without advice. Indeed, suppose we have a hierarchy with a(n) bits

of advice under the Karp-Lipton notion. Then there is a valid machine M ′ running in space

s′(n) and an advice sequence α′0, α′1, ... with |α′n| = a(n) such that for all valid machines

M running in space s(n), and for all advice sequences α0, α1, ... with |αn| = a(n), there

is an input x such that M ′(x)/α′|x| and M(x)/α|x| disagree. In particular, we have that M ′

and M disagree on z = (x; α′|x|). Thus M ′ is a valid machine using space s′(n) on inputs of

length n + a(n) which differs from all valid machines that use space s(n) on inputs of length

n + a(n).
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2.8 Promise Problems

Promise problems are computational problems that are only specified for a subset of all

possible input strings, namely those that satisfy a certain promise. We will only deal with

promise decision problems, which can be defined formally as follows.

Definition 2.12 (promise problem) A promise problem is a pair of disjoint sets (ΠY , ΠN)

of strings.

The set ΠY in Definition 2.12 represents the set of “yes” instances, i.e., the inputs for

which the answer is specified to be positive. Similarly, ΠN denotes the set of “no” instances.

The sets ΠY and ΠN must be disjoint for consistency, but do not need to cover the space of

all strings. If they do, we are in the special case of a language. Otherwise, we are working

under the nontrivial promise that the input string lies in ΠY ∪ ΠN .

A machine solving a promise problem is like a program with a precondition – we do not

care about its behavior on inputs outside of ΠY ∪ΠN . In particular, for the time and space

complexity of the machine we only consider inputs in ΠY ∪ ΠN . In the case of semantic

models, the machine is only required to satisfy the promise π underlying the semantic model

on inputs x that satisfy the promise x ∈ ΠY ∪ ΠN of the promise problem.
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Chapter 3

Hierarchy Theorems for Generic Semantic Models

In this chapter, we consider hierarchy theorems for generic semantic models of compu-

tation. We begin by reviewing one of the techniques – delayed diagonalization – that is

known to give good time and space hierarchies for syntactic models such as nondeterministic

machines, and we see that the technique encounters difficulties for semantic models such

as bounded-error randomized machines. We then present two different ways to overcome

these difficulties. In Section 3.1, we show that delayed diagonalization proves hierarchies for

the promise problems computed by semantic models. In Section 3.2, we show how to adapt

delayed diagonalization to semantic models that use one bit of advice. In Chapter 4 we

demonstrate yet another way to adapt delayed diagonalization to bounded-error randomized

machines that gives even stronger results for these models.

Direct and Delayed Diagonalization Recall that direct diagonalization suffices to prove

good time and space hierarchy theorems for deterministic machines.

Direct Diagonalization: A machine N diagonalizes against every machine Mi

running in time t by choosing an input xi, simulating Mi(xi) for t steps, and then

doing the opposite.

This technique fails to prove a time hierarchy for nondeterministic machines because

complementation cannot be performed time-efficiently within the model (unless NP=coNP).

Delayed diagonalization is one of the techniques that can be used to overcome this prob-

lem. We demonstrate the technique by sketching the proof in [Žàk83] of a time hierarchy
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for nondeterministic machines. The reader may find it helpful to consult an illustration in

Figure 3.1 while reading the following proof sketch. We wish to demonstrate a nondetermin-

istic machine N using slightly more than t(n) time which differs from all nondeterministic

machines that use t(n) time. For each machine Mi, N allocates an interval of input lengths

[ni, n
∗
i ] on which to diagonalize against Mi. The construction consists of two main parts.

(1) A delayed complementation at length n∗i of Mi’s behavior at length ni.

(2) A scheme to copy the complementary behavior down to smaller and smaller padded

input lengths all the way to ni.

For (1), we choose n∗i large enough so that N has sufficient time at length n∗i to comple-

ment the behavior of Mi at length ni. By using brute-force search to perform the comple-

mentation, we can set n∗i = 2Θ(ni). N performs a delayed complementation by ensuring that

N(0n∗i−nix) = ¬Mi(x) for x with |x| = ni.

For (2), on inputs of the form 0jx with |x| = ni and 0 ≤ j < n∗i − ni, N simulates

Mi(0
j+1x) while Mi uses at most t(n) time, outputs a value if Mi does, and outright rejects

if Mi uses more than t(n) time. Suppose Mi is a machine which uses at most t(n) time and

computes the same language as N on all input lengths in [ni, n
∗
i ]. This assumption and N ’s

definition imply the following set of equalities for every input x of length ni

Mi(x) = N(x) = Mi(0x) = N(0x) = Mi(0
2x) = ...

= Mi(0
n∗i−nix) = N(0n∗i−nix) = ¬Mi(x).

As Mi(x) must take some definite value, we have reached a contradiction. Either N differs

from Mi on some input of length in [ni, n
∗
i ], or Mi uses more than t(n) time. We con-

clude that N indeed computes a language different than that computed by any time t(n)

nondeterministic machine.

The above proof takes advantage of only very basic properties of nondeterministic ma-

chines, in particular the following.
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...x 0
n∗

i
−nix

...

Input

...ni ni + 1 n∗i − 1 n∗iLength

...x 0
n∗

i
−nix

N

Mi

Figure 3.1 Illustration of delayed diagonalization for nondeterministic machines. The solid
arrows indicate that on inputs of the form 0jx, N simulates Mi(0

j+1x). The dashed line
indicates that on input 0n∗i−nix, N outputs the complement of Mi(x).

(a) The list of all nondeterministic machines Mi is computably enumerable. We can enu-

merate all nondeterministic Turing machines by representing their transition functions

as strings and then iterating over all such strings to discover each nondeterministic

Turing machine.

(b) Nondeterministic computations can be complemented with some computable blowup

in time (namely, an exponential blowup in time).

(c) A nondeterministic machine can efficiently simulate another.

Delayed diagonalization can be used to prove good time and space hierarchies for any

model of computation that has these basic properties. In particular, the technique applies

to just about any syntactic model of computation, a model such that the list of all machines

is computably enumerable.

Semantic Models Now let us see what happens when we attempt to apply the above

techniques of direct and delayed diagonalization to semantic models of computation. We

begin by focusing on two-sided error randomized machines. At first glance, it might seem we

can use direct diagonalization because a two-sided error computation can be complemented

within the model. If given a two-sided error randomized machine Mi and input x, a diag-

onalizing machine N can easily complement Mi(x) by simply simulating Mi(x) and always
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outputting the opposite value. If Pr[Mi(x) = 1] ≥ 2
3
, then Pr[N(x) = 0] ≥ 2

3
and likewise

if Pr[Mi(x) = 1] ≤ 1
3
. But any computable enumeration of randomized machines contains

some machines that do not have bounded error. If Mi(x) does not have bounded error, then

by simulating Mi(x) and outputting the opposite N also does not have bounded error. What

we need for argument to work is a method to complement machines that have bounded error

without falling into the above trap when we encounter a randomized machine that does not

have bounded error. We call such a procedure a safe complementation, defined as follows.

Definition 3.1 (safe complementation) Fix a semantic model of computation and let

N and M be two machines in the computable enumeration of the underlying syntactic model.

N on input y safely complements M on input x if N(y) satisfies the promise (even if M(x)

does not), and if M(x) satisfies the promise then N(y) 6= M(x).

A safe complementation in general incurs a blowup in space, even for models such as

two-sided error machines which are closed under complementation, because N must avoid

breaking the promise when working against a machine Mi which does break the promise.

One way to achieve this is for N(y) to deterministically simulate M(x) and flip the result.

For two-sided error randomized machines, the best known deterministic simulation incurs

an exponential overhead in time.

Space Hierarchies using Direct Diagonalization However, the situation is better

when we consider space as the resource. It is known [SZ99] that for any space-constructable

bound s(n), any randomized two-sided error computation running in space s(n) can be

simulated deterministically in space (s(n))1.5, meaning there is also a safe complementation

with this overhead in space. Using this safe complementation and direct diagonalization, we

have that for any space constructible s′(n) = ω((s(n))1.5) there are languages computable by

two-sided error randomized machines using space s′(n) that are not computable by two-sided

error randomized machines using space s(n).

In fact, a stronger result is known. The following simple translation argument suffices

to show that for any constant c > 1 there exists a language computable by two-sided error
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randomized machines using (s(n))c space that is not computable by such machines using

s(n) space [KV87], for any space-constructible s(n) that is Ω(log n). Suppose by way of

contradiction that every language computable by two-sided error machines in space (s(n))c

is also computable by such machines in space s(n). A padding argument then shows that

in that model any language computable in (s(n))c2 space is computable in space (s(n))c and

thus in space s(n). We can iterate this padding argument any constant number of times

and show that for any constant d, any language computable by two-sided error machines

in space (s(n))d is also computable by such machines in s(n) space. For d > 1.5 we reach

a contradiction with the result stated at the end of the previous paragraph. The same

argument applies to other non-syntactic semantic models where s(n) space computations

can be simulated deterministically in space (s(n))d for some constant d, including one- and

zero-sided error randomized machines and unambiguous machines.

This simple method of proving hierarchy theorems for semantic models – use the best

known deterministic simulation as a safe complementation together with direct diagonaliza-

tion and a simple translation argument – falls short of our ultimate goals for two reasons.

First, the technique only gives good results for models that are known to have efficient de-

terministic simulations. For many semantic models, for example Arthur-Merlin games, the

best known deterministic simulations incur an exponential overhead in both time and space.

Second, even for models such as bounded-error randomized algorithms where the results are

fairly good, they still fall short of the best possible. Since we can always reduce the space

usage by a constant factor by increasing the work-tape alphabet size, the tightest space

hierarchy result one can hope for is to separate space s′(n) from space s(n) for any space-

constructible function s′(n) = ω(s(n)). For models like nondeterministic machines, which

are known to be closed under complementation in the space-bounded setting [Imm88, Sze88],

such tight space hierarchies follow by direct diagonalization. For generic syntactic models,

very tight space hierarchies follow using techniques such as delayed diagonalization. This

begs the question whether delayed diagonalization can be applied to prove tight hierarchy

theorems for semantic models .
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Delayed Diagonalization on Semantic Models The diagonalizing machine in a de-

layed diagonalization argument has two main tasks: (1) perform a delayed complementation,

and (2) implement a copying scheme through simulations of the other machines Mi. When

applied to semantic models, for (1) we seek a safe complementation. A safe complementation

may incur a large overhead (exponential or more) in resources, but this is not a problem

because delayed diagonalization is specifically designed for models where complementation

cannot be achieved efficiently. For syntactic models, (2) is achieved by ensuring for certain

values of j that N(0jx) = Mi(0
j+1x) by simply simulating the computation of Mi. It is these

simulations which cause problems when operating in semantic models: if Mi(0
j+1x) does not

satisfy the promise underlying the semantic model, then N would likewise fail to satisfy the

promise.

In the next two sections, we show two different methods to overcome this problem.

Both methods begin with the following intuition. If Mi(0
j+1x) does not satisfy the promise

underlying the model, then N already computes differently on input 0j+1x and we should

abstain from the simulation N(0jx) = Mi(0
j+1x). We show how to achieve this intuition

using either promise problems or computations that use one bit of advice.

Our Results In this chapter, we use techniques that apply to a very wide class of non-

syntactic models, yielding tight space hierarchy results for promise problems and computa-

tions that use one bit of advice. In Section 3.2.3, after completing the proofs, we give a

precise definition of the properties required of a computational model for the proofs in this

chapter. These properties are very modest and are true of any “reasonable” semantic model

of computation – two-, one-, or zero-sided error randomized machines, quantum machines,

Arthur-Merlin games, interactive proofs, unambiguous machines, etc.
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3.1 Promise Problems

In this section, we prove good space hierarchies for the promise problems computed by

reasonable semantic models such as bounded-error randomized machines. For convenience,

we have restated the theorem that is proved in this section.

Theorem 1.12 (folklore) Fix any reasonable semantic model of computation that can

be safely complemented with a computable overhead in space. Let s(n) and s′(n) be space

bounds with s(n) = Ω(log n) and s′(n) space-constructible. If s′(n) = ω(s(n + 1)) then there

is a promise problem computable within the model using space s′(n) that is not computable

as a promise problem within the model using space s(n).

A promise problem is a pair of disjoint sets (ΠY , ΠN) of strings, and we say that a machine

from a semantic model solves the promise problem if for every x ∈ ΠY ∪ ΠN , the machine

decides correctly and satisfies the promise underlying the semantic model. For inputs outside

the promise of the problem, the machine can behave arbitrarily. See Section 2.8 for further

discussion of promise problems.

The precise definition of a reasonable semantic model is deferred to Section 3.2.3, but the

notion corresponds roughly to those semantic models where the underlying syntactic model

has the modest properties required of delayed diagonalization discussed at the beginning of

this chapter.

For concreteness, consider two-sided error randomized machines. A first attempt at

proving the hierarchy is to use direct diagonalization. Namely, construct a diagonalizing

machine that enumerates all randomized machines Mi, chooses a certain input xi for machine

Mi, and simulates Mi(xi) and does the opposite. But suppose Mi(xi) does not have two-sided

error. Then any promise problem which Mi computes must have xi /∈ {ΠY ∪ ΠN}, and the

same holds for our diagonalizing machine since it simulates and negates Mi(xi). As xi has

the same status with respect to both promise problems, we have not diagonalized against

Mi after all.
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Another complication arises when considering promise problems. In the context of two-

sided error for a randomized machine M , the natural promise problem to associate with M

is to set ΠY = {x|Pr[M(x) = 1] ≥ 2/3} and ΠN = {x|Pr[M(x) = 1] ≤ 1/3}. However,

there are many other valid promise problems that M decides by ignoring certain inputs even

though M has two-sided error on these. The diagonalizing machine N we construct must

work against each Mi in such a way that the promise problem we associate with N differs

from every promise problem which Mi solves.

To handle the latter problem, we will ensure there is an input y on which there is a safe

complementation – N(y) has two-sided error, and either M(y) does not have two sided error

or N(y) 6= M(y) – in either case, the status of y with respect to the two promise problems

is different. To achieve this goal, we use delayed diagonalization to initiate a delayed safe

complementation. The rest of the argument amounts to carrying through the standard

delayed diagonalization proof and verifying that the goal is achieved. For completeness, we

sketch the complete argument.

3.1.1 Proof of Theorem 1.12

We first prove Theorem 1.12 for the particular case of two-sided error randomized ma-

chines. Let N be the machine we build to diagonalize against promise problems computable

by two-sided error space s(n) machines. For each randomized machine Mi, we allocate an

interval of input lengths [ni, n
∗
i ] on which to diagonalize against Mi. The first part of the

construction is a delayed complementation, which is achieved on input 0n∗i . Let n∗i be large

enough so that N can deterministically compute the acceptance probability of Mi(0
ni) using

space s(n∗i ). N(0n∗i ) should do the opposite of Mi(0
ni). This is ensured by placing 0n∗i within

the promise of N and having N(0n∗i ) output 1 with probability 1 if Pr[Mi(0
ni) = 1] < 1

2
,

and output 0 with probability 1 otherwise. Notice that regardless of the status of Mi(0
ni)

in terms of a promise problem (either 0ni is in ΠY , ΠN , or neither), N(0n∗i ) is different.

The second part of the construction copies down the complementary behavior to smaller

and smaller padded inputs. On input 0ni+j for 0 ≤ j < n∗i − ni, N simulates Mi(0
ni+j+1)
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while it uses at most s(ni + j +1) space, and we define N ’s promise to be the natural one on

each of these inputs – the input is within the promise (either ΠY or ΠN) when its probability

of acceptance is either at least 2/3 or at most 1/3. On inputs other than those of the form

0ni+j, N rejects and halts immediately (these inputs are not used in the diagonalization).

Suppose there is a machine Mi using at most s(n) space which computes the promise

problem we associate with N on all inputs in the interval [ni, n
∗
i ]. Because 0n∗i is in the

promise of N , this is also true for Mi. N(0n∗i−1) by construction simulates Mi(0
n∗i ), and an

input has been defined to be in the promise of N iff N has two-sided error on the input. So

0n∗i−1 is in the promise of N , and therefore must also be in the promise of Mi. If we continue

this argument through the entire interval, we conclude that each 0ni+j is contained within

the promise of both N and Mi for j = n∗i − ni, n
∗
i − ni − 1, ..., 0. By the assumption that

Mi computes the promise problem we associate with N , the fact that each input is in the

promise of Mi and N , and the construction of N to simulate Mi, we have the following set

of equalities

Mi(0
ni) = N(0ni) = Mi(0

ni+1) = N(0ni+1) = Mi(0
ni+2)

= ... = Mi(0
n∗i−1) = N(0n∗i−1) = Mi(0

n∗i ) = N(0n∗i ).

However, we have constructed N(0n∗i ) so that it explicitly differs from Mi(0
ni): if 0ni is

in the promise of Mi, then N flips the output; otherwise 0ni is not in the promise of Mi

even though 0n∗i is in the promise of N . In either case, N(0n∗i ) 6= Mi(0
ni) where 6= means

the promise problem is different on each. We have reached a contradiction, so there can

be no promise problem defined on Mi that corresponds to the natural promise problem of

N . Further, standard techniques guarantee that s′(n) space is sufficient for N to carry out

this construction against all randomized machines Mi for any s′(n) with s′(n) = ω(s(n+1)).

Namely, equip N with a mechanism to ensure it never uses more than s′(n) space, and use an

enumeration of randomized machines where each machine appears infinitely often to ensure

that for each machine M ′, at least once while working against M ′ the asymptotic behavior

of s′ and s has taken effect so that N successfully completes the construction against M ′.
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Generalization to Reasonable Semantic Models The above proof requires only a basic

set of properties and holds for a wide range of semantic models. One requirement is that safe

complementation can be achieved with space overhead σ for some computable function σ.

The computability of σ and the fact that s′ is a constructible bound that grows unboundedly

allow us to construct a partition of the input lengths in intervals [ni, n
∗
i ] with the following

properties: (1) the partition up to length n can be generated in space O(log n), and (2) if Mi

runs in space s′(ni− 1) at length ni (which is true for sufficiently large n if Mi runs in space

O(s(ni)) at length ni and s′(n) = ω(s(n + 1))), then Mi can be safely complemented within

space s′(n∗i ) at length ni. Note that s′(n) = ω(log n), so the partitioning can be computed

in space O(s′(n)). These properties suffice to carry through the above construction of a

diagonalizing machine N that runs in space O(s′(n)), completing the proof of Theorem 1.12.

A semantic model must also satisfy a few additional modest requirements for the above

argument to carry through. These details are deferred to Section 3.2.3 at the end of this

chapter.

By clocking the partitioning algorithm to run in time O(n) rather than space O(log n), the

above argument can be modified to yield the following time-bounded equivalent of Theorem

1.12.

Theorem 3.2 (folklore) Fix any reasonable semantic model of computation that has a

safe complementation with a computable overhead in time. Let t(n) and t′(n) be time bounds

with t(n) = Ω(n) and t′(n) time-constructible. If t′(n) = ω(t(n + 1) · log t(n + 1)) then there

is a promise problem computable within the model using time t′(n) that is not computable as

a promise problem within the model using time t(n).

3.2 Semantic Models with One Bit of Advice

In the last section, we saw that delayed diagonalization can be applied to semantic models

of computation by considering promise problems rather than languages. In this section, we

show how to adapt delayed diagonalization to languages computed by semantic models that
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use one bit of advice, proving the following results. Even with only one bit of advice, we

show how to diagonalize against smaller space machines that use many bits of advice.

First, Theorem 1.9 is the most general, applying to any reasonable semantic model of

computation. We define the notion in Section 3.2.3 after completing the construction and

analysis of the proofs.

Theorem 1.9 (follows from [MP07]) Fix any reasonable semantic model of compu-

tation that can be safely complemented with a linear-exponential overhead in space. Let s′(n)

be any function with s′(n) = ω(log n). There exists a language computable using s′(n) space

and one bit of advice that is not computable using O(log n) space and O(1) bits of advice.

For Theorem 1.10, we show a stronger result for models with more efficient safe comple-

mentations – the smaller resource machines can be given more advice.

Theorem 1.10 Fix any reasonable semantic model of computation that can be safely

complemented with a polynomial overhead in space. Let d be a rational upper bound on the

degree of the latter polynomial. Let s′(n) be any function with s′(n) = ω(log n). There exists

a language computable using s′(n) space and one bit of advice that is not computable using

O(log n) space and O(log1/d n) bits of advice.

Theorem 1.11 shows a different strengthening for models with more efficient complemen-

tations – the result holds for small as well as large space bounds. In fact, a tradeoff could

be proved that interpolates between Theorems 1.10 and 1.11 for the amount of advice bits

that can be given to the smaller resource machine and the largest space bound for which the

result remains tight.

Theorem 1.11 Fix any reasonable semantic model of computation that can be safely

complemented with a polynomial overhead in space. Let d be a rational upper bound on the

degree of the latter polynomial, let r be any positive constant, and let s′(n) be any space bound

that is ω(nr). There exists a language computable in space s′(n) with one bit of advice that

is not computable in space O(nr) with O(1) bits of advice.
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As with the previous section, the results are very general and apply to a wide class

of semantic models. The basic construction is the same for each, with only the analysis

differing. We first describe the construction that adapts delayed diagonalization to semantic

models with the use of advice (Section 3.2.1), analyze the construction for the particular

case of each theorem (Section 3.2.2), and finally distill the properties of a semantic model

that are needed for our constructions to hold (Section 3.2.3).

3.2.1 Delayed Diagonalization on Semantic Models with Advice

In this section we adapt delayed diagonalization to proving hierarchy theorems for the

languages computed by semantic models. We begin by considering semantic models that do

not use advice; advice arises naturally along the way as a method to overcome the difficulties

of proving hierarchy theorems for semantic models. The goal is to construct a diagonalizing

machine N that uses not much more than s(n) space, satisfies the promise underlying the

semantic model on all inputs, and differs from each machine Mi which behaves appropriately.

The latter is defined as follows.

Definition 3.3 (appropriate behavior of machines in a semantic model) Fix a

semantic model of computation and a space bound s(n). A machine Mi from the underlying

syntactic model with advice sequence β behaves appropriately if Mi/β satisfies the promise

of the model and uses at most s(n) space on all inputs.

We keep a few specific semantic models in mind during the development and analysis of

the construction – Arthur-Merlin games for Theorem 1.9, and unambiguous machines for the

stronger separations of Theorems 1.10 and 1.11. A reader unfamiliar with these semantic

models may instead keep in mind bounded-error randomized machines. In fact, the ensuing

construction and analysis apply to any semantic model of computation that satisfies some

modest requirements. Rather than listing these requirements ahead of time, we determine

the properties that are needed of a semantic model afterward, namely in Section 3.2.3.

The delayed diagonalization construction given at the beginning of this chapter fails for

non-syntactic models: it may be the case that Mi breaks the promise on inputs of the form
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0j+1x, and N would also break the promise by copying the behavior of Mi(0
j+1x) when given

input 0jx. In Section 3.1 we dealt with this problem by considering promise problems rather

than languages and defining any inputs on which N does not satisfy the promise underlying

the model as falling outside the promise problem. Now we are considering languages, and

N must satisfy the promise underlying the model on all inputs. Likewise, N only must

differ from machine Mi that satisfy the promise on all inputs. If Mi breaks the promise on

some input, then N does not need to consider Mi and may simply abstain from working

against Mi. We give N one bit of advice at each input length to indicate if performing the

simulations at that length would cause N to break the promise. If the advice bit αn is 1, then

N/α performs the simulation. If the advice bit is 0, N/α abstains by immediately rejecting.

As N is allowed one bit of advice, Mi should also be allowed at least one advice bit. With

Mi allowed one bit of advice, N now has two different machines at each input length that

it is concerned with – Mi/0 and Mi/1. N should perform a given simulation if at least one

of these behaves appropriately and copies N ’s behavior. This can be done by giving N two

advice bits – one each to indicate whether each of Mi/0 and Mi/1 behaves appropriately

and copies N ’s behavior on inputs of one larger length. In general, if Mi is allowed a(n) bits

of advice, N would require 2a(n+1) advice bits to specify whether Mi with each advice string

behaves appropriately and copies N ’s behavior on inputs of one larger length.

Consider the simulations of Mi at length n∗i which N is responsible for copying to smaller

padded inputs. Rather than giving N 2a(n∗i ) advice bits to indicate for which advice strings

Mi behaves appropriately, we instead wish to spread these advice bits over different input

lengths so that N uses only one bit of advice. That is, for each of Mi’s possible advice

strings b at length n∗i , we allocate a distinct slightly smaller input length from which N is

responsible for simulating Mi/b at length n∗i . For the input length responsible for advice

string b, N ’s advice bit is set to indicate if Mi/b behaves appropriately at length n∗i . If the

advice bit is 1, N/α performs the simulation of Mi/b at length n∗i . If the advice bit is 0, N

abstains by immediately rejecting. Now N/α satisfies the promise on all inputs, and for each
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0 1 1

0 1 0 1 0 1

1

n∗i

p

v nv

0

` n`

advice bit indicating whether
Mi/0 behaves appropriately
at length np

0 1

path induced by
advice sequence β

N(0n∗i −n`x`,1) = ¬Mi/1(x`,1)
N(0n∗i −n`x`,0) = ¬Mi/0(x`,0)

Figure 3.2 Illustration of N ’s execution for generic semantic models, shown for the case
where Mi receives 1 bit of advice. Solid lines indicate that on the smaller input, N simulates
Mi on padded inputs of the larger length, using the advice bit specified on the arrow. The
dashed line indicates that on padded inputs of length n∗i , N complements the behavior of
Mi on inputs corresponding to the leaves of the tree of input lengths.

advice string that causes Mi to appropriately copy N ’s behavior at length n∗i , N/α copies

that behavior to a slightly smaller input length.

As with delayed diagonalization on syntactic models, we repeat the same process to copy

the behavior at length n∗i to smaller and smaller inputs. This is best visualized by a tree

of input lengths with n∗i being the root node. The tree node corresponding to n∗i has one

child input length for each possible advice string at length n∗i as described above. Each

of these input lengths is also considered a node of the tree of input lengths with as many

children as different advice strings at that length. This is repeated until reaching a level of

leaf nodes. The tree of input lengths is illustrated in Figure 3.2. We now give more details

on the construction.

First consider an internal node corresponding to some input length np. This node must

have a child node for all possible advice strings at length np. Each of these child nodes

is responsible for simulating Mi on inputs of length np using a different advice string. Let

nv be a child node of node np that is responsible for simulating Mi with advice string b.
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The advice string b can be efficiently computed from the input length nv – we describe an

encoding scheme with this property in the next section. N ’s advice bit at length nv indicates

whether Mi/b behaves appropriately at length np. If the advice bit is 1, then on inputs x of

length nv, N simulates Mi(0
np−nvx)/b; otherwise, N abstains and rejects all inputs of length

nv.

Consider an input length n` that corresponds to a leaf node ` in the tree. It is the

responsibility of the root node of the tree to complement the behavior of Mi on inputs of

length n` for all possible advice strings for input length n`. The complementation is realized

using inputs x`,b of length n` for each possible advice string b at length n`. The inputs are

chosen in such a way that they are distinct for all leaf nodes ` and advice strings b and such

that they remain distinct when they are padded with zeros to length n∗i . In particular, we

set x`,b = 10n`−1−|b|b, and N(0n∗i−n`x`,b) complements Mi(x`,b)/b. Note that n∗i must be large

enough so that space s(n∗i ) suffices for N to safely complement the behavior of Mi on all leaf

nodes. Recall the definition of a safe complementation.

Definition 3.1 (safe complementation) Fix a semantic model of computation and

let N and M be two machines in the computable enumeration of the underlying syntactic

model. N on input y safely complements M on input x if N(y) satisfies the promise (even

if M(x) does not), and if M(x) satisfies the promise then N(y) 6= M(x).

As discussed at the beginning of this chapter, one way to achieve this is for N at length

n∗i to deterministically simulate Mi at the leaf nodes and flip the result. For Arthur-Merlin

games this can be accomplished with a linear-exponential overhead in space, for unambigu-

ous machines a quadratic overhead is sufficient [Sav70], and for bounded-error randomized

machines an overhead with exponent 3/2 is sufficient [SZ99].

On all input lengths in [ni, n
∗
i ] that are not used in the tree of input lengths, N acts

trivially by rejecting all inputs of that length.

We claim that N/α constructed in this way satisfies the promise on all inputs and differs

from Mi/β for all machines Mi and advice sequences β for which Mi/β behaves appropriately.

N/α satisfies the promise on all inputs by setting the advice bits appropriately on all nodes
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of the tree. Suppose there is an advice sequence β causing Mi to compute the same language

as N while satisfying the promise on all inputs and using s(n) space. The construction of

the tree guarantees that there is a chain of inputs present in the tree for this advice sequence

from the root node down to a leaf node. If we assume Mi/β computes the same language as

N on all these inputs, then the complementary behavior initiated at the root node is copied

down all the way to the leaf node, which is impossible. More precisely, let h be the height

of the tree and n∗i = ni,h > ni,h−1 > ni,h−2 > . . . > ni,0 = n` denote the path from the root

of the tree to the leaf ` induced by β. By construction, we have for b = βn`
that

¬Mi(x`,b)/b = N(0ni,h−n`x`,b)/α = Mi(0
ni,h−n`x`,b)/βni,h

=

N(0ni,h−1−n`x`,b)/α = Mi(0
ni,h−1−n`x`,b)/βni,h−1

= . . . =

N(0ni,1−n`x`,b)/α = Mi(0
ni,1−n`x`,b)/βni,1

= N(x`,b)/α = Mi(x`,b)/b,

which is a contradiction. We conclude that N/α succeeds in differing from each machine

Mi which satisfies the promise and uses at most s(n) space on all inputs. It remains to

show that N needs space not much more than s(n) and determine the amount of advice the

construction can handle.

3.2.2 Analysis

In this section, we give remaining details of the construction of the copying tree, ensuring

N/α uses small space and determining the amount of advice bits that can be given Mi,

proving Theorems 1.9, 1.10, and 1.11.

For clarity we focus on the case where s(n) = log n for now; we consider larger space

bounds at the end of this section. Let a(n) denote the amount of advice we allow Mi, and

let σ(n) be the smallest value such that log n space computations can be complemented

within the model using σ(n) space. To ensure that N/α requires not much more than log n

space, we must balance two competing requirements – that n∗i is large enough to be able to

efficiently complement the behavior of the leaf nodes, and that each node in the tree is close

enough to its parent node to be able to simulate it efficiently.
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Each node in the tree corresponds to some input length in the interval [ni, n
∗
i ], where n∗i

corresponds to the root of the tree. We separate the tree into consecutive levels. We call the

bottom-most level of leaf nodes “level 0”, its parent nodes “level 1”, and so on. Let h denote

the number of non-leaf levels in the tree, so the root node at input length n∗i is at level h.

To ensure the simulations take O(log n) space, we impose the restriction that a node nv’s

parent np can correspond to an input length that is only polynomially larger: N incurs only

a constant factor overhead in simulating Mi, and if Mi uses space at most log n and np ≤ nc
v

for some constant c, then the simulation requires O(log np) = O(log(nc
v)) = O(log nv) space.

We ensure the input length of a node is separated from its parent’s input length by at most

a polynomial amount as follows. For each j = 0, 1, ..., h− 1, we embed level j of the tree in

the interval [ncj

i , ncj+1

i − 1] for some constant c to be chosen later. Thus if a node has input

length nv, its parent has input length np < (nv)
c2 .

Because each internal node must have as many children as possible advice strings at

that length, each internal node in the tree would have a different degree. We simplify the

construction and analysis by rounding up the amount of advice given to Mi to ensure that

all nodes in the same level have the same degree. That is, all nodes in level j have degree

2a(ncj+1

i ).

For completeness, we give the encoding scheme that identifies which input lengths in the

tree correspond to a given node’s children. Consider an input length n that is an internal

node at level j in the tree, so n = ncj

i + ∆ for some ∆ < ncj+1

i − ncj

i . We must specify which

input lengths in level j−1 correspond to n’s children for each advice string of length a(ncj+1

i ).

We use the most obvious encoding scheme, filling in the children for level j nodes from left

to right within level j − 1. That is, n’s child corresponding to advice string b is at input

length ncj−1

i +2a(ncj+1

i ) ·∆+ b. This encoding scheme allows N to efficiently determine where

any given input length falls within the tree, so N can efficiently determine which padded

input and with which advice string it is to simulate Mi.

The above encoding scheme can only be realized if the interval [ncj

i , ncj+1

i − 1] contains

as many input lengths as there are nodes in level j of the tree, for each j = 0, 1, 2, ..., h− 1.
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The bottom-most level contains the largest number of nodes and has the smallest number

of input lengths to work with, so the tree can be embedded into [ni, n
∗
i ] exactly when the

bottom-most level fits within the interval [ni, n
c
i − 1]. Because we have rounded up the

degrees of the nodes, we get a simple expression for the number of leaf nodes in the tree:

2a(nch

i )
∏h

j=2 2a(ncj

i ). By taking logarithms, there are enough input lengths in level 0 for these

nodes exactly when

a(nch

i ) +
h∑

j=2

a(ncj

i ) ≤ log(nc
i − ni). (3.1)

Now consider the space usage of the construction. We have already guaranteed the

simulations represented by the tree can be performed using O(log n) space. We must also

ensure that the root node operates in O(log n∗i ) space. Because the root must complement

all leaf nodes, the root node runs in O(log n∗i ) space if

log n∗i = Ω(σ(nc
i)). (3.2)

If we can simultaneously satisfy both equation 3.1 and equation 3.2, we ensure the construc-

tion can be implemented correctly and in space s′(n) for any s′(n) = ω(log n). We now finish

the analysis separately for two cases.

1. For some semantic models, such as Arthur-Merlin games, the most efficient safe com-

plementation known within the model incurs a linear-exponential overhead in space.

We handle such models using Theorem 1.9.

2. For some semantic models, such as unambiguous machines and bounded-error ran-

domized machines, a safe complementation within the model is known with only a

polynomial overhead in space. We handle these models using Theorem 1.10.

3.2.2.1 Complementation with Linear-Exponential Overhead
(Theorem 1.9)

We first complete the analysis for the more general setting where there is a safe comple-

mentation within the model with a linear-exponential overhead in space, which is typically
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achieved by using a deterministic simulation of the model and flipping the result. We now

assume a semantic model where log n space computations can be complemented within the

model in space O(nd′) for some constant d′. In this case, equation 3.2 becomes

log n∗i = log nch

i = Ω(ncd′

i ). (3.3)

In other words, n∗i = 2Ω(ncd′
i ), and we set h = dlog(

ncd′
i

log ni
)/ log ce = Ω(log ni) to ensure equation

3.3. To fit the leaves of a tree that has depth Ω(log ni) within the interval [ni, n
c
i − 1], the

degree at each node can be at most some constant. Let a(n) = k for some constant k. Then

equation 3.1 becomes

k +
h∑

j=2

k = h · k ≤ log(nc
i − ni). (3.4)

As the right-hand side grows faster with c than the left-hand side, we can pick c sufficiently

large so that both equations 3.3 and 3.4 are satisfied. The construction works for any constant

k, and we have shown that N/α uses O(log n) space where the constant only depends on s

and the control characteristics of Mi and k.

We ensure that N/α has enough space to complete the construction by allocating the

intervals of input lengths so that for each machine Mi and constant k, infinitely many of the

intervals are allocated to N/α working against Mi with k bits of advice. We note that given

an input x of length n, the computation of deciding which interval of input lengths [ni, n
∗
i ]

that n lies within can be done space-efficiently. With s′(n) = ω(log n) space available, N/α

eventually has enough space to successfully complete the construction against Mi with k bits

of advice. For intervals of input lengths where N/α does not have enough space to complete

the construction, we set the advice bits to 0 over the entire interval, and N immediately

rejects ensuring N/α does not go over its space quota. We point out that this use of N ’s

advice bit obviates the need for s′(n) to be space-constructible.

We have proved Theorem 1.9 for the case of semantic models such as Arthur-Merlin

games. Section 3.2.3 contains a precise statement of the properties needed of a semantic

model for our proof of Theorem 1.9 to apply.
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3.2.2.2 Complementation with Polynomial Overhead
(Theorem 1.10)

We now complete the analysis for semantic models where there is a safe complementation

within the model with only a polynomial overhead in space. We assume now that Mi’s

behavior at length n while using space log n can be complemented within the model using

σ(n) = O(logd n) space. For example, d = 2 for unambiguous machines [Sav70] and d =

3/2 for bounded-error randomized machines [SZ99]. Thus equation 3.2 becomes log n∗i =

Ω(logd(nc
i)), or equivalently, n∗i = 2Ω(logd(nc

i )). Now consider the first term of equation 3.1.

Plugging in the above equality for n∗i tells us that we must at least satisfy a(2γ logd(nc
i )) <

log(nc
i) for some constant γ > 0 if we are to satisfy equation 3.1. This imposes an upper

bound on a(n) of O(log1/d n).

In fact, we can achieve a(n) = Θ(log1/d n) while still satisfying both equations 3.1 and

3.2, as follows. Let a(n) = k log1/d n for some integer k > 0. Substituting into equation 3.1

yields

k log1/d(nch

i ) + k
h∑

j=2

log1/d(ncj

i ) ≤ log(nc
i − ni). (3.5)

For technical reasons, we aim to satisfy equation 3.2 by ensuring

c3 log n∗i = c3 log(nch

i ) ≥ logd(nc
i), (3.6)

which we satisfy by setting h = d(log(cd−3 logd−1 ni)/ log ce.

Using the fact that h ≤ log(cd−3 logd−1(ni))
log c

+1, we bound the first term of the left-hand side

of equation 3.5.

k log1/d(nch

i ) = k(ch log ni)
1/d ≤ k(cd−2 logd ni)

1/d = kc(d−2)/d log ni.

Assuming we pick c large enough such that c1/d − 1 ≥ 1, we now bound the second term.

k
∑h

j=2 log1/d(ncj

i ) = k c2/d(c(h−1)/d−1)

c1/d−1
log1/d ni

≤ kc2/d(ch−1)1/d log1/d ni

≤ kc2/d(cd−3 logd−1 ni)
1/d log1/d ni

= kc(d−1)/d log ni.
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Adding up these two values satisfies equation 3.5 for large enough c.

We have shown that the space usage of N/α is O(log n) where the constant only depends

on s and the control characteristics of Mi and k. As with Theorem 1.9, we allocate the

intervals of input lengths so that for each machine Mi and constant k, N/α attempts the

construction against Mi with k advice bits. With s′(n) = ω(log n) space available, N/α

eventually has enough space to complete the construction against Mi with k advice bits,

completing the proof of Theorem 1.10. Among others, Theorem 1.10 applies to semantic

models such as unambiguous machines and bounded-error randomized machines. Section

3.2.3 contains a precise statement of the properties required of a model for our proof of

Theorem 1.10 to apply.

3.2.2.3 Larger Space Bounds (Theorem 1.11)

So far we have only considered the case with s(n) = log n, where we have shown separation

results that are tight with respect to space – that s′(n) space suffices to differ from s(n) space

machines for any s′(n) = ω(s(n)). Tightness with respect to space follows from satisfying:

(1) each node of the copying tree is close enough to its parent so the simulations incur only

a constant overhead in space, and (2) nodes are far enough apart so the height of the tree

required to allow the root node to complement leaf nodes does not result in more leaf nodes

than input lengths allocated in the bottom-most level of the copying tree. In the general

setting where safe complementation requires a linear-exponential overhead in space, these

cannot be simultaneously met for super-logarithmic space bounds – our construction still

works but gives a result that is not tight with respect to space for s(n) = ω(log n).

In the setting where safe complementation incurs only a polynomial overhead in space,

we have more wiggle room and can derive a tight separation for space bounds up to any

polynomial. In fact, an examination of the analysis for Theorem 1.10 shows the construction

remains tight with respect to space for s(n) any poly-logarithmic function. For larger space

bounds the construction as given is not tight, but we can make some modifications to handle

space bounds up to polynomial. The main idea is to place nodes of the copying tree closer
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to their parent nodes to satisfy (1); this can be achieved for space bounds up to polynomial

without breaking (2).

We now prove Theorem 1.11. Fix a semantic model where Mi’s behavior while it uses

s(n) = Ω(log n) space can be safely complemented within the model using space O(s(n)d).

Consider a space bound s(n) = nr for some constant r > 0. We would like to demonstrate

a language computable within the model using s′(n) space and one bit of advice that is not

computable using s(n) space and O(1) bits of advice, for any s′(n) = ω(s(n)). As alluded

to above, we accomplish this by modifying the generic construction so that each level of the

copying tree is embedded within a smaller interval of input lengths: we embed level j of

the copying tree within input lengths [cjni, c
j+1ni− 1] where c is a constant we may choose.

This ensures that for each nv, np < c2 · nv and performing the simulation of Mi on inputs of

length np uses space O(nr
p) = O((c2 · nv)

r) = O(c2rnr
v) = O(nr

v) = O(s(nv)). Let h be the

height of the copying tree. To ensure the root node has sufficient space to complement the

leaf nodes, it must be that

(chni)
r = Ω(((c · ni)

r)d),

which we achieve by setting h = dlog(nd−1
i )/ log ce. If Mi is allowed k advice bits the total

number of leaf nodes is 2h·k = n
k(d−1)/ log c
i , which must be smaller than c · ni − ni to ensure

the leaf nodes fit within the range of input lengths we have allocated for them. We can

choose c large enough to ensure this holds. As with Theorems 1.9 and 1.10, we allocate the

intervals of input lengths so that for each machine Mi and constant k, N/α attempts the

construction against Mi with k advice bits infinitely many times. With s′(n) = ω(nr) space

available, N/α eventually has enough space to complete the construction against Mi with k

advice bits, ensuring N/α differs from Mi/β if Mi/β satisfies the promise and uses space at

most s(n) = nr on all inputs. We have thus proved Theorem 1.11.

The main idea of the proof of Theorem 1.11 was to shrink the separation between each

node and its parent until a node can space-efficiently simulate its parent. This can be

achieved for any space bound that is polynomially bounded and sufficiently smooth (in the
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sense that it does not have long intervals of slow growth followed by drastic jumps) by

choosing the input lengths for the copying tree appropriately.

3.2.3 Generic Semantic Models

Consider the properties of the machine model used in the above analysis of Theorems

1.9, 1.10, and 1.11 and those required for the proof of Theorem 1.12 in Section 3.1. First, N

can simulate any other machine Mi with only a constant factor overhead in space. This is

needed to ensure that N needs only slightly more space than Mi. Second, N can efficiently

perform certain deterministic tasks – e.g., for an input of length n, N performs arithmetic

to determine which interval of inputs [ni, n
∗
i ] and which node within the copying tree n

corresponds to. As these requirements are quite modest, any “reasonable” semantic model

satisfies them. Here is a precise statement.

Definition 3.4 (reasonable semantic model) Fix a semantic model of computation

with (Mi)i=1,2,3,... the computable enumeration of the underlying syntactic model. The se-

mantic model is called reasonable if it satisfies the following conditions:

1. There exists a machine U in the underlying syntactic model such that for each i ≥ 1,

x ∈ {0, 1}∗, and s ≥ sMi
(x), U satisfies the promise on input (Mi, x, 0s) whenever Mi

satisfies the promise on input x, and if so, U(Mi, x, 0s) = Mi(x). U must run in space

O(s + log(|x|+ |Mi|)).

2. Let D be a deterministic transducer, i.e., a deterministic machine D that executes and

either outputs an answer a(x) or a query q(x) to some machine M . For each such D

and machine Mi, there must exist a machine Mi′ such that on each input x: if D(x)

outputs an answer a(x), then Mi′(x) = a(x) and satisfies the promise; and if D(x)

outputs a query q(x) on which Mi satisfies the promise, then Mi′(x) = Mi(q(x)) and

satisfies the promise. In addition, the space usage of Mi′(x) must be O(sD(x)) when

D(x) outputs an answer, and must be O(sD(x)+sMi
(q(x))) when D(x) outputs a query

q(x).
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If this holds, we say the model is efficiently closed under deterministic transducers.

The analysis of Theorems 1.9, 1.10, and 1.11 in Section 3.2.2 was broken up into two

cases depending on the efficiency with which safe complementation is possible. We formalize

the space overhead of a safe complementation in the model as follows.

Definition 3.5 (space overhead of safe complementation) Fix a reasonable se-

mantic model of computation with U the machine given by part (i) of Definition 3.4. Let σ

be a function. We say the model can be safely complemented with space overhead σ if there

is a machine S in the underlying enumeration of machines such that: S satisfies the promise

on every input, S(y) = ¬U(y) for every input y ∈ {0, 1}∗ on which U satisfies the promise,

and S runs within space σ(s + log(|x|+ |Mi|)) on input y = (Mi, x, 0s).

Theorem 1.9 applies to any reasonable semantic models that can be safely complemented

with σ(m) = 2O(s(m)). As mentioned in the introduction, this includes a wide class of

semantic models, and in particular includes models such as Arthur-Merlin games, for which

the simple translation argument of [KV87] does not apply.

Theorems 1.10 and 1.11 apply to any reasonable semantic model that has a more efficient

safe complementation, namely with σ(m) = O(md) for some constant d. Note that due to

the space-bounded derandomization of [SZ99], randomized two-sided, one-sided, and zero-

sided error machines can be safely complemented with space overhead σ(m) = O(m3/2).

Unambiguous machines can be safely complemented with space overhead σ(m) = O(m2) due

to Savitch’s Theorem [Sav70]. We point out that it is unlikely that Arthur-Merlin games can

similarly be safely complemented by a deterministic simulation with space overhead mO(1):

a deterministic simulation of Arthur-Merlin games with polynomial overhead in space would

imply that NC lies in DSPACE(logd n) for some constant d [FL93].

The proof in Section 3.1 of a hierarchy for the promise problems computed by semantic

models (Theorem 1.12) applies to an even broader range of semantic models, namely rea-

sonable semantic models that can be safely complemented with space overhead σ for any

computable σ and time overhead any computable function.
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We point out that we have not assumed any efficiency requirements for the computable

enumeration of machines (Mi)i=1,2,3,... in Definition 3.4. Each of the particular machine

models we have discussed has a very efficient enumeration – namely all binary strings –

because under any encoding of machines into binary strings we can map unused strings to

some default machine. However, being able to enumerate the machines efficiently is not a

requirement of our results; if the enumeration (Mi)i=1,2,3,... is space inefficient we can modify

the locations of the intervals of inputs [ni, n
∗
i ] such that enumerating up to machine i can be

done in log ni space.
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Chapter 4

Hierarchy Theorems for Randomized Models

In Chapter 3, we used techniques that were very general to prove hierarchy theorems

for the promise problems computed by generic semantic models of computation and for

languages computed by generic semantic models that use one bit of advice. In this chapter,

we strengthen the latter for the particular case of two-, one-, and zero-sided error randomized

machines using techniques tailored to these models. In particular, we prove the following

results, restated here for convenience.

First, Theorem 1.7 shows that we can construct a two-sided error machine that takes one

bit of advice and differs from two-sided error machines that take many bits of advice and

use slightly less space.

Theorem 1.7 Let s(n) be any space-constructible monotone function such that s(n) =

Ω(log n), and let s′(n) be any function that is ω(s(n + as(n))) for all constants a. There

exists a language computable by two-sided error randomized machines using s′(n) space and

one bit of advice that is not computable by two-sided error randomized machines using s(n)

space and min(s(n), n) bits of advice.

For typical space bounds, the statement of Theorem 1.7 can be simplified. In particular

for monotone space bounds we show the following.

Corollary 4.1 Let s(n) be any space-constructible monotone function such that s(n) =

Ω(log n) and s(n) = O(n), and let s′(n) be any function such that s′(n) = ω(s(n+1)). There

exists a language computable by two-sided error randomized machines using s′(n) space and
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one bit of advice that is not computable by two-sided error randomized machines using s(n)

space and min(s(n), n) bits of advice.

For typical space bounds s that are O(n), s(n + 1) = O(s(n)) so that Corollary 4.1 gives

a tight separation in space – any super-constant gap suffices.

We will also show similar results for one- and zero-sided error randomized machines.

The following two results show that a zero-sided error machine with one bit of advice can

diagonalize against one-sided error machines that use slightly less space and many bits of

advice.

Theorem 1.8 Let s(n) be any space-constructible monotone function such that s(n) =

Ω(log n), and let s′(n) be any function that is ω(s(n + as(n))) for all constants a. There

exists a language computable by zero-sided error randomized machines using s′(n) space and

one bit of advice that is not computable by one-sided error randomized machines using s(n)

space and min(s(n), n) bits of advice.

Corollary 4.2 Let s(n) be any space-constructible monotone function such that s(n) =

Ω(log n) and s(n) = O(n), and let s′(n) be any function that is ω(s(n + 1)). There exists a

language computable by zero-sided error randomized machines using s′(n) space and one bit

of advice that is not computable by one-sided error randomized machines using s(n) space

and min(s(n), n) bits of advice.

We first describe the high-level strategy used for these results in Section 4.1. Most

portions of the construction are the same for all the results, so we keep the exposition general.

In Section 4.2 we introduce the notion of a recovery procedure – the key new technical

ingredient of the proofs – and develop intuition for how these procedures arise naturally

within our arguments. In Section 4.3 we develop an appropriate recovery procedure for use

in the two-sided error setting of Theorem 1.7 and Corollary 4.1. In Section 4.4 we develop

a recovery procedure for use in the one- and zero-sided error setting of Theorem 1.8 and

Corollary 4.2. In Section 4.5 we give a complete and detailed description of the construction
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using the recovery procedures developed in Section 4.3 and Section 4.4. Finally, in Section

4.6 we complete the analysis of the theorems and corollaries.

4.1 Proof Outline

We aim to construct a randomized machine N and advice sequence α witnessing The-

orems 1.7 and 1.8 for some space bounds s(n) and s′(n). N/α should always satisfy the

promise, run in space s′(n), and differ from Mi/β for randomized machines Mi and advice

sequences β for which Mi/β behaves appropriately. We defined this notion earlier for the

case of generic semantic models (Definition 3.3). For convenience, we repeat the definition

here for the particular case of bounded-error randomized machines.

Definition 4.3 (appropriate behavior of bounded-error machines) In the con-

text of two-sided (respectively one- or zero-sided) error randomized machines and given an

underlying space bound s(n), a randomized machine Mi with advice sequence β behaves ap-

propriately if Mi/β satisfies the promise of two-sided (respectively one- or zero-sided) error

and uses at most s(n) space on all inputs.

As with delayed diagonalization, for each Mi we allocate an interval of input lengths

[ni, n
∗
i ] on which to diagonalize against Mi. That is, for each machine Mi and advice sequence

β such that Mi/β behaves appropriately, there is an n ∈ [ni, n
∗
i ] such that N/α and Mi/β

decide differently on at least one input of length n. The construction consists of three main

parts.

(1) Reduce the complement of the computation of Mi on inputs of length ni to instances

of a hard language L of length mi.

(2) Perform a delayed computation of L at length mi on padded inputs of length n∗i .

(3) Copy this behavior to smaller and smaller inputs down to input length mi using suitable

“recovery procedures” for the hard language.
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These ensure that if Mi/β behaves appropriately, either N/α differs from Mi/β on some

input of length larger than mi, or N/α computes L at length mi allowing N/α to differ from

Mi/b for all possible advice strings b at length ni.

Let us point out how this construction differs from the one given in Chapter 3 that applies

to any “reasonable” semantic model of computation. In that construction (1) and (2) from

above are replaced by a delayed complementation at length n∗i of Mi’s behavior on small

input lengths, and (3) is replaced by copying this behavior through a tree of input lengths

through simple simulations of Mi where the branching factor at each node of the copying

tree corresponds to the number of possible advice strings Mi might take at that input length.

The advice is used only to instruct N whether to perform a given simulation or not. That

construction is very generic and only requires very basic properties of the semantic model,

but the need to fit the copying tree within the input lengths [ni, n
∗
i ] places a limit on the

branching factor at each node of the tree and thus of the amount of advice that can be given

Mi. In contrast, the construction in this chapter takes advantage of specific properties of

two-, one-, and zero-sided error machines to develop recovery procedures for hard languages,

with the end result of being able to handle more advice.

An illustration of the completed construction of this chapter is given in Figure 4.1. The

reader is encouraged to refer to Figure 4.1 as we develop the construction in subsequent

sections.

4.2 The Need for Advice and Recovery Procedures

In this section, we begin by assuming a hard language L as in (1) above and develop

an intuition for why advice and recovery procedures are needed to achieve (3). Let us first

try to develop delayed diagonalization without advice to see where problems arise due to

working in a semantic model and how advice and recovery procedures can be used to fix

those.

On an input x of length ni, N reduces the complement of Mi(x) to an instance of L of

length mi. Because N must run in space not much more than s(n) and we do not know how
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... ...mi + 1
Input

Length ni mi

N

Mi y

y 0`y

0`y

n∗i = mi + `

L

mi + `
−1

0ni−|b|b

0ni−|b|b

ni + 1

y

Figure 4.1 Illustration of the construction for Theorems 1.7 and 1.8. The solid arrow from y
indicates that on input 0`y, N deterministically computes L(y) for each y of length mi. The
diagonal arrows indicate that for `′ ∈ [0, `−1], on input 0`′y with advice bit 1, N attempts to
compute L(y) by using the recovery procedure and making queries to Mi on padded inputs
of one larger length. The dashed line indicates that on input 0ni−|b|b with advice bit 1, N
complements Mi(0

ni−|b|b)/b by reducing to an instance y of L and simulating N(y).

to compute the hard languages we use with small space, N cannot directly compute L at

length mi. However, L can be computed at length mi within the space N is allowed to use on

much larger inputs. Let n∗i be large enough so that L at length mi can be deterministically

computed in space s(n∗i ). We let N at length n∗i perform a delayed computation of L at

length mi as follows: on inputs of the form 0`y where ` = n∗i −mi and |y| = mi, N uses the

above deterministic computation of L on input y to ensure that N(0`y) = L(y).

Since N performs a delayed computation of L, Mi must as well – otherwise N already

computes a language different than Mi. We would like to bring this delayed computation

down to smaller padded inputs. The first attempt at this is the following: on input 0`′y,

N simulates Mi(0
`′+1y), for all 0 ≤ `′ < `. If Mi behaves appropriately and performs the

initial delayed computation, then N(0`−1y) = Mi(0
`y) = L(y), meaning that N satisfies the

promise and performs the delayed computation of L at length mi at an input length one

smaller than before. However, Mi may not behave appropriately on inputs of the form 0`y;

in particular Mi may fail to satisfy the promise, in which case N would also fail to satisfy the

promise by performing the simulation. If Mi does not behave appropriately, N does not need
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to consider Mi and could simply abstain from the simulation. If Mi behaves appropriately

on inputs of the form 0`y, it still may fail to perform the delayed computation. In that case

N has already diagonalized against Mi at input length mi + ` and can therefore also abstain

from the simulation on inputs of the form 0`−1y.

N has insufficient resources to determine on its own if Mi behaves appropriately and

performs the initial delayed computation. Instead, we give N one bit of advice at input

length mi + ` − 1 indicating whether Mi behaves appropriately and performs the initial

delayed computation at length n∗i = mi + `. If the advice bit is 0, N acts trivially at

this length by always rejecting inputs. If the advice bit is 1, N performs the simulation so

N(0`−1y)/α = Mi(0
`y) = L(y).

If we give N one bit of advice, we should give Mi at least one advice bit as well. Otherwise,

the hierarchy result is not fair (and is trivial). Consider how allowing Mi advice affects the

construction. If there exists an advice string b such that Mi/b behaves appropriately and

Mi(0
`y)/b = L(y) for all y with |y| = mi, we set N ’s advice bit for input length mi + `− 1

to be 1, meaning N should copy down the delayed computation from length mi + ` to length

mi + ` − 1. Note, though, that N does not know for which advice b the machine Mi/b

appropriately performs the delayed computation at length mi + `. N has at its disposal a

list of machines, namely Mi with each possible advice string b, with the guarantee that at

least one Mi/b behaves appropriately and Mi(0
`y)/b = L(y) for all y with |y| = mi. With

this list of machines as its primary resource, N wishes to ensure that N(0`−1y)/α = L(y) for

all y with |y| = mi while satisfying the promise and using small space.

Aside from the padding involved, N can appropriately perform the above delayed com-

putation when given a procedure that takes as input a string y of length mi and list of

randomized machines, and then appropriately recovers L(y) as long as at least one of the

input machines behaves appropriately and computes L at length mi. We call the latter a

recovery procedure for L at length mi.

Definition 4.4 (recovery procedure) A two-sided error (respectively one- or zero-

sided error) recovery procedure for a language L at length m is a machine Rec which takes
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as input z = (y, P1, ..., Pq), where y is a string of length m and P1, ..., Pq are randomized

Turing machines, such that the following holds. If there exists d ∈ {1, 2, ..., q} such that

Pd(y
′) satisfies the promise of two-sided error (respectively one- or zero-sided error) and

Pd(y
′) = L(y′) on all inputs y′ of length m then Rec on input z satisfies the promise of

two-sided error (respectively one- or zero-sided error) and Rec(z) = L(y).

Typically, the recovery procedure Rec at length m runs the machines Pj on various inputs

of length m. The difficulty is that Rec does not know a priori which machine appropriately

computes L at length m, and Rec must appropriately compute L no matter the behavior of

the remaining machines that are given as input.

We point out that for Theorem 1.7, the recovery procedure may have two-sided error,

while for Theorem 1.8, the recovery procedure must have zero-sided error even though it is

only guaranteed a machine Pd that behaves appropriately with one-sided error. Recovery

procedures are the main technical ingredients needed for our results on bounded-error ran-

domized machines. We develop the recovery procedures in Sections 4.3 and 4.4 and complete

the construction in Section 4.5.

4.3 Two-sided Error Recovery Procedure – Computation Tableau
Language

In this section we define the hard language L and recovery procedure for L that are used

in Section 4.5 to complete the proof of Theorem 1.7. When working against machine Mi

over the interval of input lengths [ni, n
∗
i ], L must satisfy the following conditions. (1) If Mi

behaves appropriately on inputs of length ni, then the complement of its behavior can be

space-efficiently reduced to L at some length mi ∈ [ni, n
∗
i ]. (2) There exists a space-efficient

two-sided error recovery procedure for L at length mi.

Recall from Section 2.2 that given Mi, there is a deterministic Turing machine D such

that for each input x, D(x) = 1 if Prr[Mi(x; r) = 1] ≥ 1
2

and D(x) = 0 otherwise, D(x) uses

2as(|x|) time for some constant a that only depends on the control characteristics of Mi, and

D has a single bit in its configuration at time step t = 2O(s(|x|)) that determines acceptance
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or rejection. We use the computation tableau language for this deterministic machine D

(hereafter written COMPD) as the hard language L on the interval [ni, n
∗
i ].

Definition 4.5 (COMPD) Given a deterministic machine D we define the computation

tableau language for D as follows. COMPD = {〈x, t, j〉 | the jth bit in the machine’s config-

uration after the tth time step of executing D(x), is equal to 1}.

We now present a space-efficient recovery procedure for COMPD.

Lemma 4.6 Let s = Ω(log n) be space-constructible and D a deterministic time 2O(s(m))

Turing machine. Then COMPD has a two-sided error recovery procedure at length m which

uses space O(s(m) + log |z|+ maxj(sPj
(m))) on input z = (y, P1, ..., Pq), where y is a string

of length m, P1, ..., Pq are randomized Turing machines, and sPj
denotes the space usage of

machine Pj.

We prove Lemma 4.6 in the rest of this section. Let y = 〈x, t, j〉 be an instance of

COMPD with |y| = m that we wish to compute. Recall that we are guaranteed at least one

machine Pd in the list of machines that computes COMPD at length m with two-sided error.

A natural way to determine COMPD(y) is to consider each machine P in the list P1, ..., Pq

one at a time and design a test with the following properties.

(i) If Prr[P (y′; r) = COMPD(y′)] ≥ 2
3

for all y′ of length m, then the test declares success

with high probability (say with probability at least 8
9
).

(ii) If the test declares success with non-trivial probability (say greater than 1
9q

), then P

gives the correct answer of COMPM(y) with high probability (say greater than 9
16

).

We call a randomized machine P “good” for a given y′ if P (y′) is correct with probability

at least 9
16

and “bad” otherwise. Given a test with properties (i) and (ii), the recovery

procedure iterates through each machine in the list in turn. We select the first machine P

to pass testing, simulate P (y) some number of times and output the majority answer, where

the number of simulations of P (y) is large enough to reduce the upper bound on P ’s error
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probability from 7
16

to 1
9
. By Theorem 2.7, a large enough constant number of simulations

suffices. Before describing the tests that achieve (i) and (ii), we first verify that given such

tests we in fact compute COMPD(y) with probability at least 2
3
. For the procedure to error

on input y, at least one of the following bad events has to happen. (a) The machine Pd

fails the test. (b) A machine P that is bad for y passes the test. (c) A machine P that is

good for y is selected, but the majority vote of the simulations of P (y) gives the incorrect

answer. Error condition (a) occurs with probability at most 1
9

by (i). By (ii), each individual

machine P contributes at most probability 1
9q

to error condition (b), and a union bound

over all q machines shows that error condition (b) occurs with probability at most 1
9
. By

(ii) and using a large enough constant number of simulations of P (y) as described above, (c)

occurs with probability at most 1
9
. A union bound over all three error conditions shows that

given a testing procedure with properties (i) and (ii), we fail to compute COMPD(y) with

probability at most 1
9

+ 1
9

+ 1
9

= 1
3
.

The technical heart of the recovery procedure is the testing procedure to select a good

machine. This test is based on the local checkability of computation tableaux – the jth bit of

the configuration of D(x) in time step t > 0 is determined by a constant number of bits from

the configuration in time step t − 1, each of which can be determined within small space.

For each bit position (t, j) of the tableau with t > 0, this gives a local consistency check –

make sure that the value P claims for 〈x, t, j〉 is consistent with the values P claims for each

of the bits of the tableau that this bit depends on. We implement this intuition as follows.

1. We test that for all positions in the tableau on input x, P ’s acceptance probability

stays bounded away from 1
2
.

More specifically, for each possible t′ and j′, we simulate P (〈x, t′, j′〉) a number τ times

(to be determined below) and fail the test if the fraction of accepting computation

paths of P (〈x, t′, j′, 〉) lies in the range [3/8, 5/8].
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Input: y = 〈x, t, j〉 of length m; machines P1, P2, ..., Pq

Output: COMPD(y)
(1) foreach d = 1..q Try using Pd to compute COMPD(y)
(2) foreach t′ and j′ Bounded-error checks
(3) if #accept runs of τ simulations of Pd(〈x, t′, j′〉) lies in [3

8
, 5

8
] then goto (1)

Pd fails
(4) foreach j′ Check base case – start configuration
(5) A← majority of τ simulations of Pd(〈x, 0, j′〉)
(6) if A 6= j′th bit of start configuration
(7) then goto (1) Pd fails
(8) foreach t′ > 0 and j′ Local consistency checks
(9) bit j′ in time step t′ depends on bits j′1, j

′
2, ..., j

′
k in time step t′ − 1

(10) foreach c = 1, 2, ..., k
(11) Aj′c,t′−1 ← majority of τ simulations of Pd(〈x, t′ − 1, j′c〉)
(12) Aj′,t′ ← majority of τ simulations of Pd(〈x, t′, j′〉)
(13) if Aj′,t′ , Aj′1,t′−1, Aj′2,t′−1, ..., Aj′k,t′−1 violate transition function of D
(14) then goto (1) Pd fails
(15) Pd passed all tests
(16) return majority of O(1) simulations of Pd(〈x, t, j〉)
(17) return 0 No machines passed testing

Figure 4.2 Pseudo-code for the two-sided error recovery procedure for the computation
tableau language. The list of machines is guaranteed to contain at least one computing
COMPD at length m with two-sided error in space s(m). Lines 2, 4, and 8 loop over all t′

and j′ valid for D using 2O(s(m)) time and space, and indices t, j, t′, and j′ are padded so
that all instances of COMPD of interest are of length m. τ is set to a large enough function
that is O(s + log q) as described in the text.

2. We explicitly check the initial configuration.

Precisely, for each j′, we simulate P (〈x, 0, j′〉) τ times and fail the test if the majority

output is not consistent with the initial configuration of D on input x.

3. We run the consistency check for all positions in the tableau with t′ > 0.

That is, for each possible t′ > 0 and j′, we do the following. Let j′1, ..., j′k be the bits of

the configuration in time step t′−1 that bit j′ in time step t′ depends on. We simulate

each of P (〈x, t′, j′〉), P (〈x, t′ − 1, j′1〉), ..., P (〈x, t′ − 1, j′k〉) τ times and fail the test if
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the majority values of these simulations are not consistent with the transition function

of D.

We argue that this series of tests satisfies (i) and (ii) from above. We first consider (i), so we

assume a machine P that computes COMPD with probability at least 2
3

on all y′ of length

m. Then the Chernoff bound (Theorem 2.7) tells us that for τ independent executions of

P on a given input y′, the probability that at least 3
8

of the trials gives an incorrect answer

is exponentially small in τ . By taking a union bound over all 2O(s(m)) times that a value

of the form P (y′) is needed in all tests, we can use τ a large enough linear function in s to

ensure that the following occurs with probability at least 8
9
. P passes test 1, and tests 2 and

3 obtain the majority value for P (y′) each time this value is needed in these tests. As the

majority value of P (y′) is correct for each y′, P passes tests 2 and 3 in this case, and we

have proved (i).

Now consider (ii). Given any randomized machine P , we can associate a computation

tableau that P claims for the execution of D(x) with it. Namely, for each t′ and j′, if

Prr[P (〈x, t′, j′〉) = 1] ≥ 1
2

then P claims the j′th bit in D’s configuration after the t′th time

step is equal to 1. Intuitively, if P passes test 1 with non-trivial probability, it must have

error bounded away from half by some non-trivial amount; in this case with high probability

the majority values of P (y′) are obtained for each query of P (y′) in tests 2 and 3, allowing

these tests to correctly determine the correctness of the tableau claimed by P with high

probability.

To make this precise, suppose P outputs its majority value with probability 1
2

+ δ on

some tableau bit, for some δ. By Theorem 2.7, the fraction of τ trials on which P outputs its

majority value lies in the range [1
2
, 1

2
+ 2δ] with probability at least 1− 2eτδ2/4. For δ = 1

16
,

we see that P fails test 1 with all but exponentially small probability in τ . By taking τ a

large enough logarithmic function in q, if P passes test 1 with probability at least 1
9q

overall,

then for each tableau position P outputs its majority value with probability at least 1
2
+ 1

16
.

In this case, by taking τ a large enough function linear in s and logarithmic in q, a union

bound ensures that with probability at least 1− 1
9q

the testing procedure obtains the correct
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majority output of P on all queries to P in tests 2 and 3 and correctly determines if P ’s

majority outputs are correct on the tableau bits. Thus if P passes test 1 with probability at

least 1
9q

and tests 2 and 3 with probability at least 1
9q

, its majority values are correct on all

tableau bits and it has error at most 1
16

, so we have shown (ii).

Consider the space usage of the recovery procedure, given in pseudo-code in Figure 4.3.

The counter for line (1) uses O(log q) space. The counters for lines (2), (4), and (8) use

O(s(m)) space because D is a time 2O(s(m)) machine. The counters of lines (3), (5), (11),

and (12) use space O(s(m)+ log q) because τ = O(s(m)+ log q) and the simulations of these

lines use maxj(sPj
(m)) space. Lines (9) and (13) are space efficient because tableau bit

〈x, t′, j′〉 depends on constantly many bits from the previous row, which can be determined

and checked space-efficiently. Overall the space usage is O(s(m) + log q + maxj(sPj
(m))).

4.4 Zero-sided error Recovery Procedure – Configuration Reach-
ability

In this section we define the hard language L and recovery procedure for L that are used

in Section 4.5 to complete the proof of Theorem 1.8. When working against machine Mi

over the interval of input lengths [ni, n
∗
i ], L must satisfy the following. (1) If Mi behaves

appropriately on inputs of length ni, then the complement of its behavior can be space-

efficiently reduced to L at some length mi ∈ [ni, n
∗
i ]. (2) There exists a space-efficient

zero-sided error recovery procedure for L at length mi (even when the recovery procedure is

only guaranteed a one-sided error machine Pd that behaves appropriately).

To determine whether Pr[Mi(x) = 1] < 1
2

for Mi a one-sided error machine that uses

s(n) space, we can ask whether the unique accepting configuration can be reached within

2as(|x|) steps from the unique start configuration when Mi executes on input x, where a is a

constant that only depends on the control characteristics of Mi. We use the configuration

reachability language for Mi as the hard language L. As the recovery procedure works for

any randomized machine M , we describe the recovery procedure for CONFIGM , defined as

follows.
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Definition 4.7 (CONFIGM) Given a randomized machine M , we define the configuration

reachability language of M as follows. CONFIGM = {〈x, c1, c2, t〉 | on input x, if M is in

configuration c1, then configuration c2 is reachable within t time steps}.

We now present a space-efficient recovery procedure for CONFIGM .

Lemma 4.8 Let s = Ω(log n) be space-constructible and M a space O(s(m)) randomized

machine that always halts. Then CONFIGM has a zero-sided error recovery procedure at

length m, which works even when only guaranteed a machine Pd which appropriately computes

CONFIGM with one-sided error. The procedure uses space O(s(m)+ log |z|+maxj(sPj
(m)))

on input z = (y, P1, ..., Pq), where y is a string of length m, P1, ..., Pq are randomized Turing

machines, and sPj
denotes the space usage of Pj.

We prove Lemma 4.8 in the rest of this section. Let y = 〈x, c1, c2, t〉 be an instance of

CONFIGM with |y| = m that we wish to compute. As we need to compute CONFIGM with

zero-sided error, we can only output a value of “yes” or “no” if we are sure this is correct.

The outer loop of our recovery procedure is the following: cycle through each machine P

in the list of machines P1, ..., Pq, and execute a search procedure that attempts to use P

to verify whether configuration c2 is reachable from configuration c1 in t steps. The search

procedure may output “yes”, “no”, or “fail”, and should have the following properties:

(i) If P computes CONFIGM at length m with one-sided error, the search procedure comes

to a definite answer (“yes” or “no”) with probability at least 1/2.

(ii) Whenever the search procedure comes to a definite answer, it is always correct, no

matter P ’s behavior.

We cycle through all machines in the list, and if the search procedure ever outputs “yes” or

“no”, we halt and output that response. If the search procedure fails for all machines in the

list, we output “fail”. Given a search procedure with properties (i) and (ii), the correctness of

the recovery procedure follows from the fact that we are guaranteed that one of the machines

in the list of machines correctly computes CONFIGM at length m.
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Input: y = 〈x, c1, c2, t〉 of length m; machines P1, P2, ..., Pq

Output: CONFIGM(y)
(1) if c1 = c2 then Output “yes” and halt Trivial cases
(2) else if t = 0 then Output “no” and halt
(3) foreach d = 1..q Try using Pd to compute CONFIGM(y)
(4) k0 ← 1 Number of configurations w/in distance 0 of c1

(5) for ` = 1 to t Compute k` given k`−1

(6) k` ← 0
(7) foreach configuration c Is c w/in distance ` of c1?
(8) k′`−1 ← 0 Re-experience all configurations-
(9) foreach configuration c′ -within distance `− 1
(10) if V erify(〈x, c1, c

′, `− 1〉, Pd) = “yes”
(11) if M(x) transitions from c′ to c in ≤ 1 time step
(12) c is within distance ` of c1

(13) if c = c2 then return “yes”
(14) else k` ← k` + 1, and Try next c (line 7)
(15) else
(16) k′`−1 ← k′`−1 + 1
(17) if k′`−1 6= k`−1

(18) Failed to experience all configs w/in distance `− 1
(19) if d < q then Try next d (line 3) Pd fails
(20) else return “fail” All machines have failed
(21) return “no” kt computed correctly and c2 not found

Figure 4.3 Pseudo-code for the zero-sided error recovery procedure for the configuration
reachability language. The list of machines is guaranteed to contain at least one computing
CONFIGM at length m with one-sided error in space s(m). Configurations c1, c2, and c′

and time values t and `− 1 are padded so that all instances of CONFIGM of interest are of
length m. The code for Verify used on line 10 is given in Figure 4.4.

The technical heart of the recovery procedure is a search procedure with properties (i)

and (ii). Let P be a randomized machine under consideration, and y = 〈x, c1, c2, t〉 an input

of length m we wish to compute. Briefly, the main idea is to mimic the proof that NL=coNL

[Imm88, Sze88] to verify reachability and un-reachability, replacing nondeterministic guesses

with simulations of an error-reduced version of P . If P computes CONFIGM at length m

with one-sided error, we can reduce P ’s error to a point that we have correct answers to all

nondeterministic guesses with high probability, meaning property (i) is satisfied. Property

(ii) follows from the fact that the algorithm can discover when incorrect nondeterministic
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Verify
Input: y = 〈x, c0, c

′, t〉 with |y| = m; machine P
Output: “yes” if by querying P it can be verified that y is in CONFIGM , “fail”
otherwise
(1) if c0 = c′ then return “yes” Trivial cases
(2) else if t = 0 then return “fail”
(3) c← c0 Current configuration on path from c0 to c′

(4) for j = t− 1 down to 0 Try to move w/in distance j of c′

(5) foreach configuration c′′

(6) if M(x) transitions from c to c′′ in ≤ 1 time step
(7) if c′′ = c′ then return “yes” Have already reached c′

(8) else if P (〈x, c′′, c′, j〉) outputs 1 on any of O(s) trials
(9) c← c′′, try next j (line 4) Now c is one step closer
(10) return “fail” Unable to move one step closer to c′

(11) return “fail” After t steps, have not reached c′

Figure 4.4 Pseudo-code for the verification subroutine used in the zero-sided error recovery
procedure of Figure 4.4. If configuration c′ is within distance t of configuration c0 and
P appropriately computes CONFIGM at length m, then with high probability a path is
verified and “yes” is returned. “Yes” is only returned when a path of length at most t has
been verified. Configurations c0, c′, and c′′, as well as time values t and j are padded so that
all queries to CONFIGM of interest are of length m.

guesses have been made. For completeness, we explain how we make use of the nondetermin-

istic algorithm of [Imm88] and [Sze88] in the current setting. The search procedure works

as follows.

1. Let k0 be the number of configurations reachable from c1 within 0 steps, i.e., k0 = 1.

2. For each value ` = 1, 2, ..., t, compute the number k` of configurations reachable within

` steps of c1, using only the fact that we have remembered the value k`−1 that was

computed in the previous iteration.

3. While computing kt, experience all of the reachable configurations to see if c2 is among

them, for t = 2O(s(m)) the maximum amount of time that M can take on inputs of

length m.
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Consider the portion of the second step where we must compute k` given that we have

already computed k`−1. We accomplish this in lines 6-20 of Figure 4.4 by cycling through all

configurations c and for each one re-experiencing all configurations reachable from c1 within

`− 1 steps and verifying whether c can be reached in at most one step from at least one of

them. To re-experience configurations reachable within distance ` − 1, we try all possible

configurations and query P to verify a nondeterministic path to each. The verification of a

nondeterministic path is given in Figure 4.4. To check if c is reachable within one step of a

given configuration, we use the transition function of M . If we fail to re-experience all k`−1

configurations or if P gives information inconsistent with the transition function of M at

any point we consider the search for reachability/un-reachability failed with machine P .

We now describe why this procedure satisfies properties (i) and (ii) from above. First

consider (i), so we assume a randomized machine P that computes CONFIGM at length m

with one-sided error. By using a large enough number O(s) of trials each time we simulate P ,

the error reduction for one-sided error algorithms (Section 2.2.1) along with a union bound

over the total number of queries to P ensures that with probability at least 1/2 we get

correct answers each time we use line (8) of Figure 4.4. This implies that with probability

at least 1/2, V erify functions as intended each time it is called (meaning V erify(y′, P )

returns “yes” if y′ ∈ CONFIGM and “fail” otherwise). Therefore for each configuration

c and ` = 1, 2, ..., t, the recovery procedure does re-experience all configurations reachable

within `− 1 steps from c1 when determining whether c is reachable within ` steps, and the

consistency check of line (17) passes each time it is encountered while testing P . Thus with

probability at least 1/2 P comes to a definite answer, proving (i).

Now consider (ii), so we assume a definite answer either “yes” or “no” is reached while

testing some machine P , and therefore the consistency check of line (17) must have passed

each time it was encountered. This means that for each configuration c and ` = 1, 2, ..., t,

the recovery procedure did in fact re-experience all configurations reachable within at most

`−1 steps from c1 when determining if c is reachable within ` steps. For c = c2 and ` = t, we
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conclude that the recovery procedure determined correctly if c2 is reachable from c1 within

at most t steps, proving (ii).

Consider the space usage of the recovery procedure, given in pseudo-code in Figures 4.4

and 4.4. Many of the lines of these figures consist of dealing with the configurations of

M – checking whether two configurations are the same or adjacent, storing copies of the

configurations, and iterating over all configurations. These tasks use O(s(m)) space because

M is a space O(s(m)) machine. Line (2) of Figure 4.4 uses O(log q) space. Line (8) of Figure

4.4 uses maxj(sPj
(m)) + O(s(m)) space, with the first term from simulating a machine P

and the second term from constructing s and keeping a counter to simulate P O(s) times.

Overall the space usage is O(s(m) + log q + maxj(sPj
(m))).

4.5 The Final Construction

We now complete the construction – which we began developing in Section 4.2 and is

illustrated in Figure 4.1 – used to prove Theorems 1.7 and 1.8. For Theorem 1.7, we use

COMPD as the hard language L and make use of the two-sided error recovery procedure for

COMPD given in Section 4.3. For Theorem 1.8, we use CONFIGM as the hard language

L and make use of the zero-sided error recovery procedure for CONFIGM (that works even

when only guaranteed a machine Pd that behaves appropriately with one-sided error) given

in Section 4.4.

We allocate an interval of input lengths [ni, n
∗
i ] on which to diagonalize against Mi, which

is allowed a(n) = min(s(n), n) bits of advice at input length n. On an input x of length ni,

N reduces the complement of Mi(x) to an instance of L of length mi using some reduction

function f (described along with L in Sections 4.3 and 4.4). The languages L are paddable

so we can assume the reduction function f produces instances of L of the same length mi for

all x of length ni. n∗i is chosen large enough so that L at length mi can be deterministically

computed in space s(n∗i ). For the hard languages we use, n∗i = 2c·mi for a suitable absolute

constant c suffices. N at length n∗i performs the delayed computation: N(0`y) = L(y) where

|y| = mi and ` = n∗i −mi.
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Diagonalizing machine N
Input: (x, α|x|), let n denote |x|
(1) if αn = 0 then return 0
(2) i← 0, n0 ← 0, n∗0 ← 0
(3) while n > n∗i
(4) i← i + 1, ni ← n∗i−1 + 1,
(5) mi ← |f(Mi/b, y)| for |y| = ni and |b| = a(ni), n∗i ← 2c·mi

(6) switch
(7) case n = n∗i and x = 0n∗i−miy for some y
(8) deterministically compute and return L(y)
(9) case n ∈ [mi, n

∗
i − 1] and x = 0n−miy for some y

(10) return Rec(y, {Pb|b ∈ {0, 1}a(n+1)})
(11) case n = ni and x = 0n−a(n)b for some b
(12) y = f(Mi/b, x)
(13) return N(y)/α
(14) else
(15) return 0

Figure 4.5 Pseudo-code for the diagonalizing machine N that witnesses Theorems 1.7 and
1.8. See Section 4.5 for a description of N in words.

For input length n = mi + ` − 1, N ’s one bit of advice αn is set to indicate if there

exists an advice string causing Mi to appropriately perform the delayed computation of L

from input length mi to input length n + 1. If αn = 1, N/α uses the space-efficient recovery

procedure for L to perform the delayed computation of L on padded inputs of length n as

follows. On input 0n−miy, N removes the padding and executes the recovery procedure at

length mi on input z = 〈y, {Pb}〉, where b ranges over all possible advice strings for Mi at

length n + 1 and Pb(y
′) acts in the following way. Pb(y

′) simulates Mi(0
n+1−miy′)/b as long

as the latter uses at most s(n+1) space, outputting a result if one is reached and arbitrarily

rejecting otherwise. Note that if Mi/b appropriately performs the delayed computation of

L to length n + 1 then the space restriction has no effect and Pb falls within the model and

computes L at length mi using space O(s(n + 1)). The reason we break off the computation

of Mi(0
n+1−miy′)/b when it uses more than s(n + 1) space is to make sure the recovery

procedure runs in space O(s(n + 1)). We will get back to this in the analysis of Section 4.6.
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By the correctness of the recovery procedure, if αn = 1, then N/α performs the delayed

computation with bounded error on padded inputs of length n. If the advice bit is 0, N/α

acts trivially at input length n by rejecting immediately.

We repeat the same process on smaller and smaller padded inputs. We reach the con-

clusion that either (a) there is a largest input length n ∈ [mi + 1, n∗i ] where for no advice

string b, Mi/b appropriately performs the delayed computation of L at length n; or (b) N/α

correctly computes L on inputs of length mi. If (a) is the case, N/α performs the delayed

computation at length n whereas for each b either Mi/b does not behave appropriately at

length n or it does but does not perform the delayed computation at length n. In either

case, N/α has diagonalized against Mi/b for each possible b at length n. N ’s remaining

advice bits for input lengths [ni, n−1] are set to 0 to indicate that nothing more needs to be

done, and N/α immediately rejects inputs in this range. If (b) is the case N/α diagonalizes

against Mi/b for all advice strings b at length ni by acting as follows. On input xb = 0ni−|b|b,

N reduces the complement of the computation Mi(xb)/b to an instance y of L of length mi

and then simulates N(y)/α, so N(xb)/α = N(y)/α = L(y) = ¬Mi(xb)/b.

We have now completed the construction used for Theorems 1.7 and 1.8. Pseudo-code

for the diagonalizing machine N/α described in this section is given in Figure 4.5.

4.6 Analysis

We now explain how we come to the parameters given in the statements of Theorems 1.7

and 1.8 and Corollaries 4.1 and 4.2.

4.6.1 Theorems 1.7 and 1.8

We first consider the space usage of our constructions when the diagonalizing machine

N/α is working against space s(n) randomized machines. The base construction is given in

Figure 4.5 and the recovery procedures are given in Figures 4.3, 4.4, and 4.4. The recovery

procedure for each hard language (COMPD in the case of Theorem 1.7 and CONFIGM in

the case of Theorem 1.8) uses space O(s(m) + log q + maxj(sPj
(m))) when trying to solve
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instances of the hard language of length m. In line (10) of Figure 4.5, Pb(y
′) simulates

Mi(0
n+1−miy′)/b as long as the latter uses s(n + 1) space, and b ranges over all possible

advice strings that Mi could have at length n + 1. By choosing a(n) ≤ s(n) for each length

n, we thus ensure that the recovery procedure in line (10) uses O(s(mi)+s(n+1)+s(n+1))

space, which is O(s(n + 1)) because s is monotone and mi ≤ n + 1 for these n. We point

out that we need the space-constructibility of s to clock the space usage of the simulations

of Mi/b.

Using the facts that s(n) = Ω(log n) and the hard languages can be decided in O(n)

space, n∗i is chosen large enough so line (8) of Figure 4.5 uses at most s(n) space, which is

at most s(n + 1) by the monotonicity of s. Consider line (12). The reductions to the hard

languages are very space-efficient. For COMPD we can use a fixed deterministic machine

D that takes the particular machine Mi as an extra parameter; the reduction also employs

some padding involving the space bound s to ensure all instances map to the same input

length mi. As s is space-constructible, the padding can be achieved in O(s(ni)) space. The

reduction for CONFIGM can similarly be realized in O(s(ni)) space. For line (13) N calls

itself on y. Together with the space usage of line (12) and the monotonicity of s, N ’s space

usage at length ni is big-O of its space usage at length mi.

The remaining tasks of N , such as computing the interval [ni, n
∗
i ] that a given input

length n lies within, can be achieved with O(s(n + 1)) space. We point out that storing the

value of n∗i in line (5) may take more space. However, all that is needed here is determining

whether n is larger than n∗i , and this can be done with O(log n) space without storing n∗i .

We have shown that N ’s space usage is O(s(n + 1)) for input lengths n ∈ [mi, n
∗
i ]. For

input length ni, N ’s space usage is big-O of its space usage at length mi, namely O(s(mi+1)).

For the case of Theorem 1.7, we reduce to COMPD, and the size mi of the instance of COMPD

we reduce to is ni + O(s(ni)). For the case of Theorem 1.8, we reduce to CONFIGM , and

mi is also of size ni + O(s(ni)). In both cases, the space usage of N on inputs of length ni is

O(s(ni +O(s(ni)))). By the monotonicity of s, the space usage of N on all input lengths n is

O(s(n + O(s(n)))). We point out that we chose COMPD and CONFIGM as hard languages
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over other natural candidates (such as the circuit value problem for Theorem 1.7 and st-

connectivity for Theorem 1.8) because COMPD and CONFIGM reduce the blowup in input

size incurred by the reductions while still allowing for space-efficient recovery procedures.

The constants in both big-O terms of O(s(ni + O(s(ni)))) – N ’s space usage at input

length ni – come from a variety of sources throughout the construction including reducing

to the hard languages as well as simulating and clocking the space usage of Mi/b. It can

be verified that for each of these the constant factor incurred only depends on s and the

control characteristics of Mi. In particular, the constant factor is the same for all infinitely

many appearances of machines equivalent to Mi that appear in the computable enumeration

of randomized Turing machines. If s′(n) = ω(s(n + as(n))) for all constants a, N operating

in space s′(n) eventually encounters Mi on an interval [ni, n
∗
i ] where N has enough space to

successfully diagonalize against Mi. If N does not yet have enough space, its advice bits are

set to 0 on the entire interval. Note that this use of advice obviates the need for s′(n) to be

space constructible.

Now consider the amount of advice a(n) that the smaller space machines can be given

at length n. As discussed above, a(n) is chosen to be at most s(n) to ensure the recovery

procedure operating at length n uses at most s(n + 1) space, for n ∈ [mi, n
∗
i − 1]. Also, to

complement Mi for each advice string it can receive at length ni, we need at least one input

at length ni for each of these advice strings. Thus, the amount of advice that can be allowed

is min(s(n), n).

4.6.2 Corollaries 4.1 and 4.2

We now describe modifications to the construction that yield Corollaries 4.1 and 4.2.

Recall from above that when the diagonalizing machine N works against machine Mi over

the interval of input lengths [ni, n
∗
i ], the space usage of N for n ∈ [mi, n

∗
i ] is O(s(n + 1)),

which is already efficient enough for the corollaries.

For input length ni, N ’s space usage is O(s(mi + 1)) for mi = ni + O(s(ni)) where the

constants in both big-O terms depend only on s and the control characteristics of Mi. Since
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we now have a monotone space bound s(n) = O(n) we can assume that mi = a ·ni and that

N ’s space usage at input length ni is at most a′ ·s(mi) for constants a and a′ depending only

on s and the control characteristics of Mi.

If the space bound s(n) satisfies s(a·n) = O(s(n)) for all constants a then the construction

as given in Section 4.5 already suffices to prove the corollaries. If s is a space bound where

s(a·n) can be much larger than s(n), the basic idea is to examine a number of candidate input

lengths n′i until finding one where s(a · n′i) is not much larger than s(n′i). Specifically, if ni

is the first potential input length for working against machine Mi, we consider input lengths

n′i of the form n′i = akni for k = 0, 1, 2, ..., and select the first one where s(an′i) ≤ ds(n′i) for

some fixed constant d. Such an n′i must exist with d = a3 for some k ≤ log ni

log a
for sufficiently

large ni; otherwise we would have that s(n2
i ) > n3

i s(ni), which contradicts the fact that

s(n) = O(n).

To prove Corollaries 4.1 and 4.2, we modify the construction as follows. When working

against machine Mi, let a be a constant depending only on s and the control characteristics

of Mi so that the behavior of Mi at length n reduces to an instance of the hard language of

length a · n. The diagonalizing machine N (1) allocates an interval of input lengths [ni, n
∗
i ]

with n∗i = 2c·a·n2
i for the absolute constant c mentioned in Section 4.5, (2) chooses the first

input length n′i ∈ [ni, n
2
i ] such that s(an′i) ≤ a3s(n′i), and (3) carries out the construction as

described in Section 4.5 with [n′i, n
∗
i ] the interval of input lengths. We have guaranteed that

the space usage of N on input length n′i is now O(s(n′i)) where the constant in the big-O

depends only on s and the control characteristics of Mi. The only extra space usage incurred

is determining the appropriate n′i ∈ [ni, n
′2
i ], which can be done in space O(s(n)) for all input

lengths n ∈ [ni, n
∗
i ].

4.6.3 Additional Remarks

We note that results corresponding to Theorem 1.7 and Corollary 4.1 also hold for space-

bounded quantum machines: COMPD can be used as the hard language (a space s(n) quan-

tum machine can be simulated deterministically using 2O(s(n)) time), and the space-efficient
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recovery procedure for COMPD follows through for quantum machines. A key component of

the latter is error reduction – requiring taking the majority of 2O(s(n)) simulations of a space

O(s(n)) machine while using O(s(n)) space – which can be done on space-bounded quantum

machines.

Finally, recall that Theorem 1.8 and Corollary 4.2 give separations between zero- and one-

sided error machines. These trivially imply separation results for zero-sided error machines

(i.e., where N/α is a zero-sided error machine differing from space s zero-sided error machines

Mi/β) with the same parameters. Conversely, we point out that in our setting a separation

result for zero-sided error machines immediately implies a separation between zero- and one-

sided error machines, although with a slight loss in parameters. Indeed, suppose that for

appropriate choices of s′ and s there is a zero-sided error machine N using space s′(n) and

one bit of advice that computes a language different than any zero-sided error machine using

s(n) space and min(s(n), n) bits of advice, but that all languages decided by zero-sided error

machines using s′(n) space and one bit of advice can be decided by one-sided error machines

using s(n) space and a(n) bits of advice, for some function a(n). In particular, both the

language decided by N/α and its complement can be decided by one-sided error machines

using s(n) space and a(n) bits of advice. Consider the following algorithm for computing the

same language as that of N/α: (1) execute the one-sided error algorithm for deciding N/α

which uses s(n) space and a(n) bits of advice, and output “yes” if this algorithm outputs

“yes”, (2) execute the one-sided error algorithm for deciding the complement of N/α which

uses s(n) space and a(n) bits of advice, and output “no” if this algorithm outputs “yes”,

(3) otherwise output “fail”. Given the correct advice strings for the algorithms in (1) and

(2), this is a zero-sided error algorithm for deciding N/α; it uses s(n) space and 2a(n) bits

of advice. This contradicts the assumed hardness of N/α against zero-sided error machines

provided 2a(n) ≤ min(s(n), n), and we conclude that there is a language computable by

zero-sided error algorithms using s′(n) space and one bit of advice that is not computable by

one-sided error algorithms using s(n) space and 1
2
min(s(n), n) bits of advice. Note that the

notion of advice we use – a zero-sided error algorithm is only required to maintain zero-sided
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error when given the correct advice string – is critical for this argument to hold. Also note

that the maximum amount of advice that can be handled with this argument is a factor of

two smaller than that given by Theorem 1.8.
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Chapter 5

Typically-Correct Derandomization

In this chapter we introduce a new approach to typically-correct derandomization based

on seed-extending pseudorandom generators. We develop the approach in Section 5.1, ap-

ply the approach to achieve conditional derandomizations in Section 5.2 and unconditional

results in Section 5.3, and finally compare our approach to an earlier approach of Shaltiel in

Section 5.4.

5.1 Typically-Correct Derandomization and the PRG Approach

In this section we state and prove the key lemma showing that seed-extending pseudo-

random generators yield typically-correct derandomization, and introduce and analyze the

seed-extending pseudorandom generator construction used for most of our results. We begin

by discussing the notation and concepts used throughout this chapter.

5.1.1 Notation and Concepts

We view a randomized algorithm as defined by a deterministic machine M(x, r) where x

denotes the input and r the string of “coin tosses”. We typically restrict our attention to one

input length n, in which case M becomes a function M : {0, 1}n × {0, 1}m → {0, 1} where

m represents the number of random bits that M uses on inputs of length n. We say that

M : {0, 1}n × {0, 1}m → {0, 1} computes a function L : {0, 1}n → {0, 1} with error ρ if for

every x ∈ {0, 1}n, PrR←Um [M(x, R) 6= L(x]] ≤ ρ, where Um denotes the uniform distribution

over {0, 1}m and R← Um denotes that R is a random variable with distribution Um. We say
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that the randomized machine M computes a language L with error ρ(·), if for every input

length n, the function M computes the function L with error ρ(n).

Given a randomized machine M for L, our goal is to construct a deterministic machine

D of complexity comparable to M that is typically correct for L. By the latter we mean

that D and L agree on most inputs of any given length, or equivalently, that the relative

Hamming distance between D and L at any given length is small.

Definition 5.1 (typically-correct behavior) Let L : {0, 1}n → {0, 1} be a function.

We say that a function D : {0, 1}n → {0, 1} is within distance δ of L if PrX←Un [D(X) 6=

L(X)] ≤ δ. We say that a machine D computes a language L to within δ(·) if for every

input length n, the function D is within distance δ(n) of the function L. For two classes of

languages C1 and C2, we say that C1 is within δ(·) of C2 if for every language L1 ∈ C1 there

is a language L2 ∈ C2 that is within δ(·) of L1.

In general, a function G : {0, 1}n → {0, 1}` is ε-pseudorandom for a test T : {0, 1}` →

{0, 1} if |PrR←U`
[T (R) = 1] − PrS←Un [T (G(S)) = 1]| ≤ ε. In this chapter we are dealing

with tests T (x, r) that receive two inputs, namely x of length n and r of length m, and with

corresponding pseudorandom functions G of the form G(x) = (x, E(x)), where x is of length

n and E(x) of length m. We call such functions “seed-extending”. 1

Definition 5.2 (seed-extending function) A function G : {0, 1}n → {0, 1}n+m is

seed-extending if it is of the form G(x) = (x, E(x)) for some function E : {0, 1}n → {0, 1}m.

We refer to the function E as the extending part of G.

Note that a seed-extending function G with extending part E is ε-pseudorandom for a

test T : {0, 1}n × {0, 1}m → {0, 1} if

| Pr
X←Un,R←Um

[T (X, R) = 1]− Pr
X←Un

[T (X, E(X)) = 1]| ≤ ε. (5.1)

1Borrowing from the similar notion of “strong extractors” in the extractor literature, such pseudorandom
generators have been termed “strong” in earlier papers. In coding-theoretic terms, they could also be called
“systematic”. However, we find the term “seed-extending” more informative.
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A seed-extending ε(·)-pseudorandom generator for a family of tests T is a deterministic

algorithm G such that for every input length n, G is a seed-extending ε(n)-pseudorandom

function for the tests in T corresponding to input length n.

5.1.2 The Seed-Extending Pseudorandom Generator Approach

Recall that a seed-extending pseudorandom generator G is a pseudorandom generator

that outputs its seed, i.e., G(x) = (x, E(x)) for some function E. Our key observation is

that good seed-extending pseudorandom generators G for certain simple tests based on the

machine M yield good typically-correct derandomizations of the form D(x) = M(x, E(x)).

The following lemma states the quantitative relationship.

Lemma 5.3 (Main Lemma) Let M : {0, 1}n × {0, 1}m → {0, 1} and L : {0, 1}n → {0, 1}

be functions such that

Pr
X←Un,R←Um

[M(X, R) 6= L(X)] ≤ ρ. (5.2)

Let G : {0, 1}n → {0, 1}n+m be a seed-extending function with extending part E, and let

D(x) = M(G(x)) = M(x, E(x)).

1. If G is ε-pseudorandom for tests of the form T (x, r) = M(x, r)⊕L(x), then D is within

distance ρ + ε of L.

2. If G is ε-pseudorandom for tests of the form Tr′(x, r) = M(x, r) ⊕ M(x, r′) where

r′ ∈ {0, 1}m is an arbitrary string, then D is within distance 3ρ + ε of L.

Note that if M computes L with error ρ then condition (5.2) of the lemma is met. The

two parts of the lemma differ in the complexity of the tests and in the error bound. The

complexity of the tests plays a critical role for the existence of pseudorandom generators.

In the first item the tests use the language L as an oracle, which may result in too high

a complexity. In the second item we reduce the complexity of the tests at the cost of

introducing non-uniformity and increasing the error bound. The increase in the error bound

is often not an issue as we can easily reduce ρ by slightly amplifying the success probability

of the original machine M before applying the lemma.
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Proof of Lemma 5.3. For the first item, notice that a test of the form T (x, r) = M(x, r) ⊕

L(x) passes iff M(x, r) 6= L(x). If G is ε-pseudorandom for T then |PrX←Un [M(X, E(X)) 6=

L(X)] − PrX←Un,R←Um [M(X, R) 6= L(X)]| ≤ ε. By assumption the latter probability is at

most ρ, so PrX←Un [M(X, E(X)) 6= L(X)] ≤ ρ + ε.

For the second item, pick a string r′ that minimizes PrX←Un [M(X, r′) 6= L(X)]. An

averaging argument shows that the latter probability is at most ρ. By the pseudorandomness

of G, we have

| Pr
X←Un

[M(X, E(X)) 6= M(X, r′)]− Pr
X←Un,R←Um

[M(X, R) 6= M(X, r′)]| ≤ ε. (5.3)

As PrX←Un,R←Um [M(X, R) 6= L(X)] ≤ ρ and PrX←Un [M(X, r′) 6= L(X)] ≤ ρ, the second

term of (5.3) is at most 2ρ, so PrX←Un [M(X, E(X)) 6= M(X, r′)] ≤ 2ρ + ε. Using again

that PrX←Un [M(X, r′) 6= L(X)] ≤ ρ, we conclude that PrX←Un [M(X, E(X)) 6= L(X)] ≤

3ρ + ε.

5.1.3 Hardness-Based Constructions of Seed-Extending Genera-
tors

Some of the constructions of pseudorandom generators in the literature are seed-extending

or can be easily modified to become seed-extending. The generators that we consider are

hardness-based, i.e., they are procedures G with access to an oracle for a language H such

that the function GH they compute is pseudorandom for a given class of tests as long as the

language H is hard for a related class of algorithms.

Nisan and Wigderson [NW94] described a hardness-based pseudorandom generator con-

struction that can be applied in a wide variety of algorithmic settings. We use a seed-

extending variant of the Nisan-Wigderson construction for all of our results in Sections 5.2

and 5.3. We state the properties that we need for the algorithmic setting of circuits in the

following lemma. For completeness, in Section 5.1.4 we review the Nisan-Wigderson con-

struction and in particular verify that it can be made seed-extending in the way stated next

and analyze the behavior of the generator for algorithmic settings other than circuits.
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Lemma 5.4 (seed-extending NW-generator for circuits [NW94]) Let n and m be

positive integers and H : {0, 1}b
√

n/2c → {0, 1} a function. There is a seed-extending function

NWH;n,m : {0, 1}n → {0, 1}n+m with the following properties.

1. If H is (1
2
− ε

m
)-hard at input length b

√
n/2c for circuits of size s+m ·2O(log m/ log n) and

depth d + 1 then NWH;n,m is ε-pseudorandom for tests T : {0, 1}n × {0, 1}m → {0, 1}

computable by circuits of size s and depth d.

2. For each 1 ≤ j ≤ m, the jth bit in the extending portion of NWH;n,m(x) is equal to

H(yj) for some yj of length b
√

n/2c; there is a Turing machine that outputs yj on

input (x, n,m, j) and that runs in O(log(m + n)) space as long as m(·) is constructible

in that amount of space.

Some of our typically-correct derandomization results are unconditional because lan-

guages of the required hardness to use for H have been proven to exist. Others are condi-

tioned on reasonable but unproven hypotheses regarding the existence of languages H that

are hard on average. For the conditional results, we can assume a mildly hard function and

use the XOR Lemma (Lemma 2.9) to amplify the hardness to the level required in Lemma

5.4.

We point out that the construction in Lemma 5.4 is almost optimal in the following sense.

The existence of a seed-extending ε-pseudorandom generator for circuits of size s implies the

existence of a language H that is (1
2
−ε)-hard at length n for circuits of size s−O(1), namely

for H the function that outputs the first bit in the extending portion of G.

Remark Our applications do not benefit from seed-extending pseudorandom generator

constructions that recover in a blackbox fashion and are based on worst-case rather than

average-case hardness. By definition, whenever such a pseudorandom generator G = GH

based on H : {0, 1}` → {0, 1} fails a test (5.1), there exists a small oracle circuit C, say

of size s, such that CT = H. This property implies that GH has to query H in at least

(1
2
− ε)2`/s positions, as can be argued directly and also follows from [Vio05]. The latter



96

condition rules out the combination of mild hardness levels (say s = nO(1) and ` = nΩ(1))

and a polynomial running time for G, which we need for our applications.

5.1.4 Analysis of the Nisan-Wigderson Construction

Our typically-correct derandomization results use the Nisan-Wigderson generator con-

struction [NW94]. Lemma 5.4 states that given a sufficiently hard function, the construction

gives a seed-extending pseudorandom generator. In this section we review this well-known

construction to verify that the original analysis carries through when the generator outputs

its seed. A reader familiar with the Nisan-Wigderson construction may wish to skip this

section and refer back to it as needed.

Definition of NW-Generator When taking a seed of length n and outputting m bits,

the generator makes use of the following combinatorial object.

Definition 5.5 (combinatorial design) A (k, `) design of size m over [n] is a sequence

S1, S2, . . . , Sm of subsets of [n] such that (a) |Si∩Sj| ≤ k for 1 ≤ i < j ≤ m, and (b) |Si| = `

for 1 ≤ i ≤ m.

The following construction suffices for our results. It has been (re)derived and used in

several contexts, including in [NW94]. We provide a proof for completeness.

Lemma 5.6 For any positive integers n, k, `, m, and n such that ` ≤
√

n/2 and k ≥ log m
log `

there is a (k, `) design of size m over [n]. Further, there is a Turing machine that on input

(k, `, m, n, i) outputs the ith set and uses O(log(m + n)) space.

Proof. For q a positive integer, let GF(2q) denote the finite field of size 2q. The main idea is

to view the elements of [n] as points in GF(2q) × GF(2q), let the sets Si correspond to the

graphs of polynomials of degree at most k over GF(2q), and use the fact that two distinct

such polynomials can intersect in at most k points.

Now we provide the details. Let q be the integer such that
√

n/2 < 2q ≤
√

n. We identify

the elements of GF(2q) with the bit strings of length q. Since under the given conditions
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m ≤ 2(k+1)q, we can view i ∈ [m] as defining a sequence of k + 1 strings of length q (by

padding with 0’s as needed), and thus as a sequence of k + 1 elements over GF(2q). We

interpret this sequence as the successive coefficients of a polynomial pi of degree at most k

over GF(2q). We take the first ` points y1, ..., y` in GF(2q), say in lexicographic order, and

define Si as

Si = {(y1, pi(y1)), ..., (y`, pi(y`))}.

Note that GF(2q) contains at least ` elements as ` ≤
√

n/2 < 2q, and that |Si| = `. The

intersection size |Si ∩ Sj| equals the number of y’s on which pi and pj agree. For distinct i

and j, that number is upper bounded by the maximum degree k.

Finally, consider the complexity of generating the set Si. We must (a) perform arith-

metic of O(log(m + n)) bit numbers to determine q, keep counters, etc., (b) determine an

irreducible polynomial of degree q over GF(2), and (c) using the irreducible polynomial per-

form arithmetic over GF(2q). (b) can be performed in O(q) = O(log n) space by exhaustive

search, and both (a) and (b) can be performed in O(log(m + n)) space as well.

Given such a design, we define the NW-generator as follows based on a presumed hard

Boolean function H. Our definition differs from the original one [NW94] only in that the

generator additionally outputs its seed.

Definition 5.7 (seed-extending NW generator [NW94]) Let n and m be integers,

and S1, S2, . . . , Sm the (k, `)-design of size m over [n] with ` = b
√

n/2c and k = d log m
log `
e pro-

vided by Lemma 5.6. Given a function H : {0, 1}` → {0, 1} the Nisan-Wigderson generator

NWH;n,m : {0, 1}n → {0, 1}n+m is defined as

NWH;n,m(x) = (x, H(x|S1), ..., H(x|Sm)),

where x|Si
denotes the substring of x of length ` formed by taking the bits of x indexed by Si.

The NW-construction has the property that if the function H is hard on average for a

certain class of algorithms, then NWH;n,m is pseudorandom for related tests. Lemma 5.4

formalizes this property in the case of circuits. We include a proof sketch for reasons of
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completeness, where we focus on verifying that the argument given in [NW94] goes through

with our modification of the generator. The proof sketch also gives us an opportunity to

point out how the argument translates to other types of algorithms we consider; we provide

these observations following the proof sketch.

Proof sketch of Lemma 5.4. The argument goes by contradiction: we assume a test T com-

putable by a circuit of size s and depth d that ε-distinguishes the output of NWH;n,m from

uniform in the sense that

| Pr
X←Un,R←Um

[T (X, R) = 1]− Pr
X←Un

[T (NWH;n,m(X)) = 1]| ≥ ε.

We use T to construct a circuit that is not much larger and that computes H well on average,

contradicting the assumed hardness of H. There are two parts to the argument, namely the

construction of a predictor T̃ , and the construction of a circuit that uses T̃ to compute H

well on average.

Construction of a predictor A circuit T̃ is an ε′-predictor for NWH;n,m if there is an

index j such that when given the first j − 1 bits of a sample from NWH;n,m, T̃ predicts

the jth bit with success at least 1
2

+ ε′. The transformation from an ε-distinguisher to an

ε′-predictor with ε′ = ε
m

is a standard step in hardness-based pseudorandom generators. The

key observation for our purposes is that the first n bits of NWH;n,m are uniform at random

and so cannot be predicted with any advantage. Thus the bit j has to fall within the

extending part of NWH;n,m, which means that the original analysis carries through without

any change in the parameters. Let us go through the analysis in some detail.

We consider the behavior of T on hybrid distributions Di that output their first n + i

bits according to NWH;n,m and output their remaining m− i bits uniformly, for i = 0, ...,m.

Notice that D0 ≡ Un+m and Dm ≡ NWH;n,m so that we have by assumption |PrZ←D0 [T (Z) =
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1]− PrZ←Dm [T (Z) = 1]| ≥ ε. Using this fact we have that

ε ≤ | Pr
Z←D0

[T (Z) = 1]− Pr
Z←Dm

[T (Z) = 1]|

= |
m∑

i=1

Pr
Z←Di

[T (Z) = 1]− Pr
Z←Di−1

[T (Z) = 1]|

≤
m∑

i=1

| Pr
Z←Di

[T (Z) = 1]− Pr
Z←Di−1

[T (Z) = 1]|,

so there must exist an index i for which |PrZ←Di
[T (Z) = 1] − PrZ←Di−1

[T (Z) = 1]| ≥ ε
m

.

From this point, an averaging argument shows that there is a way to fix the last m− i + 1

bits so that either T or ¬T with these bits fixed indeed predicts the (n+ i)th bit of NWH;n,m

with success 1
2

+ ε
m

when given the first n + i− 1 bits. We let T̃ be this circuit, so we have

that

Pr
X←Un

[T̃ (X, H(X|S1), ..., H(X|Si−1
)) = H(X|Si

)] ≥ 1

2
+

ε

m
.

Using T̃ to compute H In this part of the argument, we use T̃ to construct a circuit not

much larger than the circuit for T that computes H well on average. An averaging argument

shows that there is a way to fix the bits in X that are outside of Si to preserve the prediction

probability of T̃ . Let Ỹ denote a string of length n that has these positions of X fixed to

these values and with X|Si
= Y . Then we have that

Pr
Y←U`

[T̃ (Ỹ , H(Ỹ |S1), ..., H(Ỹ |Si−1
)) = H(Y )] ≥ 1

2
+

ε

m
. (5.4)

Consider H(Ỹ |Sj
) for some 1 ≤ j ≤ i − 1. Notice that Ỹ has all bits fixed except those

indexed by Si, so for each 1 ≤ j ≤ i− 1, the function H(Ỹ |Sj
) is a function that depends on

only |Sj ∩ Si| many bits – which by construction is most k = O(log m/ log n). We plug in

either a DNF or CNF into T̃ for each of these functions, and we are left with a circuit that

computes H on inputs of length ` = b
√

n/2c with success at least 1
2

+ ε
m

.

Parameters Consider the size and depth of the circuit that we have created. T̃ has the

same size and depth as T , and to this we have added at most m circuits for the functions
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H(Ỹ |Sj
), each of which is a CNF or DNF of size 2O(k) = 2O(log m/ log n). Choosing either a

CNF or DNF for each to ensure the depth increases only by one, this yields the parameters

stated in Item 1 of Lemma 5.4. The efficiency of constructing the generator, Item 2, follows

by the efficiency of the designs of Lemma 5.6.

Remark The argument in the proof of Lemma 5.4 can be adapted for (non-uniform) models

of computation other than circuits. We point out the modifications and observations about

the above proof we need for the models we consider.

• Relativized circuits.

The above argument carries through when both the circuits underlying the hardness

hypothesis and the circuits underlying the tests can have gates that compute some

fixed oracle O. Such oracle gates contribute their number of inputs to the size of the

circuit. In particular, if H has the stated hardness for circuits that have oracle gates for

an oracle O, then NWH;n,m is ε-pseudorandom for tests T with the stated parameters

that have access to O oracle gates.

• Circuits with a limited number of special gates.

If the tests T of Item 1 of Lemma 5.4 are allowed a certain number of special gates

(e.g., gates for arbitrary symmetric functions), then NWH;n,m is ε-pseudorandom for

T provided H has the stated hardness for circuits that have access to the same exact

number and type of special gates as the tests T . This follows from the argument above

because the circuit that approximates H consists of a single copy of the test circuit T

or its negation, with some of its input bits fixed and others computed by small regular

circuits without special gates.

• Branching programs.

The correctness argument carries over as such for branching programs instead of cir-

cuits. The size parameter in Item 1 becomes slightly different. Each of the functions

H(Ỹ |Sj
) can be computed by a branching program of size 2O(k). Incorporating those
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into the branching program for T̃ means replacing some edges of the branching pro-

gram for T̃ with a branching program of size 2O(k), resulting in an overall blowup in

size of 2O(k) for k = O(log m/ log n). Thus, if H is (1
2
− ε

m
)-hard at input length b

√
n/2c

for branching programs of size s · 2O(log m/ log n) then NWH;n,m is ε-pseudorandom for

tests T : {0, 1}n × {0, 1}m → {0, 1} computable by branching programs of size s.

• Communication protocols.

In the proof of Theorem 5.11 in Section 5.3.3 we use a hardness-based pseudorandom

generator GH;n,`,m that can be seen as a degenerate form of the Nisan-Wigderson

construction with the sets Si pairwise disjoint. The above proof carries through for

this generator as well. Namely, let T be a randomized communication protocol taking

k-tuples of n bit inputs and using m bits of randomness and q bits of communication

that ε-distinguishes the output of the generator. Then the approximation to H given

in (5.4) is within 1
2

+ ε
m

of H on k-tuples of `-bit strings. The approximation can be

computed by running the protocol T or its negation with certain input bits fixed and

others set to the outcome of H(Ỹ |Sj
) for some j < i. As the Sj are chosen disjointly

for the generator GH;n,`,m, H(Ỹ |Sj
) is a function with all input bits fixed and therefore

does not require any additional communication between the players. Altogether, the

approximation given in (5.4) can be computed by a non-uniform protocol that uses q

bits of communication.

We conclude that if H is (1
2
− ε

m
)-hard for non-uniform protocols operating on k-tuples

of `-bit inputs that use q bits of communication then GH;n,`,m is ε-pseudorandom for

non-uniform randomized communication protocols that operate on k-tuples of n-bit

inputs, use m random bits, and q bits of communication.
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5.2 Conditional Results

In this section we obtain a number of typically-correct derandomization results that are

conditioned on unproven but reasonable hardness hypotheses. These results are summarized

in Figure 5.1.

5.2.1 Bounded-Error Polynomial Time

The first setting we consider is that of BPP. We use a modest hardness assumption to

show that any language in BPP has a polynomial-time deterministic algorithm that errs on

a polynomially small fraction of the inputs. The result is restated here for convenience.

Theorem 1.1 (typically-correct derandomization of BPP) Let L be a language

that is computed by a randomized bounded-error polynomial-time machine M . For any pos-

itive constant c, there is a positive constant d (depending on c and the running time of M)

such that the following holds. If there is a language H in P that is 1
nc -hard for circuits of

size nd, then there is a deterministic polynomial-time machine D that computes L to within

1
nc .

Before proving Theorem 1.1, let us compare it to previous conditional derandomization

results for BPP. We first consider everywhere-correct results. Plugging our assumption into

the hardness versus randomness tradeoffs of [NW94] gives the incomparable result that BPP

is in deterministic subexponential time, i.e., in time 2nε
for every positive constant ε. We

remark that to obtain this result one can relax the assumption and allow the language H to

be in deterministic linear-exponential time, i.e., E=DTIME(2O(n)).

We next compare Theorem 1.1 to previous conditional results on typically-correct de-

randomization of BPP [GW02, Sha09]. The assumption that we use is weaker than the

assumptions that are used by previous work. More specifically, [GW02] needs H to be 1
nc -

hard for circuits of size nd with a SAT oracle, and [Sha09] requires that H be (1
2
− 1

2nΩ(1) )-hard

for circuits of size nd.
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Theorem Setting Hardness Assumption Conclusion

Thm 1.1 BPP=BP.P P 1
nc -hard for SIZE(nd) BPP within 1

nc of P

Thm 5.8 BP.⊕P ⊕P 1
nc -hard for SIZE⊕SAT(nd) BP.⊕P within 1

nc of ⊕P

Thm 5.9 AM=BP.NP NP ∩ coNP 1
nc -hard for SIZESAT(nd) AM within 1

nc of NP

Thm 5.10 BP.L L 1
nc -hard for BP-SIZE(nd) BP.L within 1

nc of L

Figure 5.1 Our conditional typically-correct derandomization results.

Thus, the approaches of [GW02] and [Sha09] do not yield any typically-correct deran-

domization when starting from the modest assumption that we use. Under their respective

stronger assumptions, the other approaches do yield typically-correct algorithms that are

closer to L. We remark that we can match the distance in [Sha09] if we are allowed to

assume the same hardness hypothesis.

Proof of Theorem 1.1. Let M be a polynomial-time randomized bounded-error machine com-

puting a language L, and let c > 0 be a constant. We obtain the typically-correct determin-

istic machine D by using Item 2 of Lemma 5.3 with the Nisan-Wigderson construction as

the generator. More specifically, we set

D(x) = M ′(NWH′;n,nb(x))

where M ′ is an error-reduced version of M that uses nb random bits for a constant b depending

on the running time of M and where H ′ is the result of applying a certain amount of hardness

amplification to H. We now analyze how to set the parameters of the various ingredients

and establish the stated properties.

1. Error Reduction.

To keep the error term 3ρ from invoking Item 2 of Lemma 5.3 less than 1
2nc , we let

M ′ take the majority vote of O(log n) independent trials of M so that M ′ has error at

most 1
6nc .

2. Nisan-Wigderson construction.

Setting ρ = 1
6nc in Item 2 of Lemma 5.3, D computes L to within distance 1

nc if
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NWH′;n,nb is 1
2nc -pseudorandom against tests Tr′ of the form Tr′(x, r) = M ′(x, r) ⊕

M ′(x, r′) for r′ an arbitrary string. Using the standard reduction from Turing machines

with advice to circuits, the tests Tr′ are circuits of size O(n2b) for some constant b

depending on the running time of M . By Lemma 5.4, NWH′;n,nb is 1
2nc -pseudorandom

against the tests Tr′ if H ′ is (1
2
− 1

2nc+b )-hard for circuits of size O(n2b) on inputs of

length b
√

n/2c. Thus a sufficient hardness condition for H ′ is to be (1
2
− 1

na )-hard for

circuits of size na on inputs of length n, for a = 2 max(c + b, 2b) + 1.

3. XOR Lemma.

Let H : {0, 1}n → {0, 1} be 1
nc -hard for circuits of size nd and define H ′ : {0, 1}k·n →

{0, 1} by H ′(x1, ..., xk) = H(x1)⊕H(x1)⊕ ...⊕H(xk). By the XOR Lemma (Lemma

2.9), H ′ is (1
2
− 1

na )-hard for circuits of size na if we can choose k and γ such that (i)

(1− 1
nc )

k +γ ≤ 1
(nk)a and (ii) nd · ( γ2

log(nc/γ)
) ≥ (nk)a. To satisfy (i), we choose γ = 1

2(nk)a

and set k = nc+1 to ensure that for sufficiently large n, (1 − 1
nc )

k ≤ e−k/nc
= e−n ≤

1
2(nk)a . With these choices, (ii) simplifies to nd ≥ 8n3(c+2)a log(2nc+(c+2)a) which can be

satisfied by choosing d = 3(c + 2)a + 1.

This establishes the correctness of D, i.e., D computes L to within 1
nc provided H is 1

nc -hard

for circuits of size nd. Now consider the complexity of D. By Item 2 of Lemma 5.4, NWH′;n,nb

is computable in time polynomial in n provided H ′ is, which in turn is computable in time

polynomial in n provided H is.

5.2.2 Extensions to Other Algorithmic Settings

[KM02] observed that the Nisan-Wigderson generator can be used to give hardness versus

randomness tradeoff results in a number of different algorithmic settings. This approach also

works within our typically-correct derandomization framework. In this section we discuss

the last three applications listed in Figure 5.1.
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5.2.2.1 BP.⊕P Algorithms

Our conditional results for BP.⊕P algorithms and Arthur-Merlin protocols rely on the

fact that all the ingredients in the proof of Theorem 1.1 relativize: error reduction using

majority voting, the Nisan-Wigderson construction relativizes (see the remark after the proof

of Lemma 5.4), the XOR Lemma, and our main lemma. Thus, we have the following as a

corollary to the proof of Theorem 1.1.

Theorem 5.8 (relativized version of Theorem 1.1) Let O be any language, and let

L be a language that is computed by a randomized bounded-error polynomial-time machine

M that has oracle access to O. For any positive constant c, there is a positive constant

d (depending on c and the running time of M) such that the following holds. If H is a

language that is 1
nc -hard for circuits of size nd that have access to O oracle gates, then there

is a polynomial-time machine D that uses oracle access to both H and O that computes L to

within 1
nc .

Theorem 5.8 immediately yields a typically-correct derandomization result for the class

BP.⊕P, a class that is of interest as a key step in the result that any language within

the polynomial hierarchy can be solved with an oracle for counting [Tod91]. Recall that a

language L in BP.⊕P is defined by a deterministic procedure M that on input (x, R, z) with

|x| = n runs in time nk for some constant k and such that

(i) for every x ∈ L, PrR←U
nk

[|{z ∈ {0, 1}nk
s.t. M(x, R, z) = 1}| ≡ 1 (mod 2)] ≥ 2

3
, and

(ii) for every x /∈ L, PrR←U
nk

[|{z ∈ {0, 1}nk
s.t. M(x, R, z) = 1}| ≡ 1 (mod 2)] ≤ 1

3
.

⊕SAT is a natural ⊕P-complete language consisting of Boolean formulae that have an odd

number of satisfying assignments. Applying Theorem 5.8 with the oracle O set to ⊕SAT,

requiring the hard function H to lie within ⊕P, and using the facts that BP.⊕P= BPP⊕SAT

and P⊕SAT = ⊕P, we obtain the typically-correct derandomization result for BP.⊕P algo-

rithms listed in Figure 5.1.
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5.2.2.2 Arthur-Merlin Protocols

The complexity class AM consists of Arthur-Merlin protocols that have a randomized

polynomial-time verifier, as defined in Section 2.4. As discussed there, AM can be viewed

as BP.NP, and if we remove the randomness we would be left with an NP predicate. Thus,

derandomizing AM means obtaining simulations of AM on nondeterministic machines. Using

the fact that AM = BP.NP ⊆ BPPNP, an immediate application of Theorem 5.8 with the

oracle O set to SAT yields a conditional typically-correct derandomization of AM into PSAT

under the assumption of a language H ∈ NP that is mildly hard on average for polynomial-

size circuits that have access to SAT oracle gates. By looking more closely at the proof of

Theorem 5.8 and strengthening the assumption on the complexity of the hard function H,

namely to NP ∩ coNP, we obtain conditional typically-correct derandomization of AM into

NP.

Theorem 5.9 (typically-correct derandomization of AM) Let L be a language

computable by a polynomial-time Arthur-Merlin protocol. For every constant c > 0 there is a

constant d such that if NP∩ coNP contains a language H that is 1
nc -hard for circuits of size

nd that have access to SAT oracle gates, then there is a nondeterministic polynomial-time

machine D that computes L to within 1
nc .

Proof. We follow the proofs of Theorems 1.1 and 5.8. We define D as the language of all

inputs x for which ∃z ∈ {0, 1}nb
V ′(NWH′;n,nb(x)), where V ′ is an error-reduced version of the

verification predicate V that uses nb random bits for a constant b depending on the running

time of V and where H ′ is the result of applying some amount of hardness amplification to

the assumed hard function H. We need to verify both the correctness and the complexity

of D. Correctness follows by Theorem 5.8 and the fact that AM ⊆ BPPSAT, as discussed

above.

As for the complexity of D, we first point out that error-reduction can be performed

within AM using parallel repetition, so that an AM protocol with verification procedure V ′
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and reduced error can be given. Now,

D(x) = 1⇔ ∃z ∈ {0, 1}nb

V ′(x, H ′(y1), ..., H
′(ynb), z), (5.5)

where each y1, ..., ynb is some efficiently computable substring of x of length b
√

n/2c. By

Item 2 of Lemma 5.4 and the fact that H ∈ NP ∩ coNP, V ′(x, H ′(y1), ..., H
′(ynb), z) defines

a predicate on (x, z) that is decidable in PNP∩coNP = NP∩ coNP, which turns the right-hand

side of (5.5) into an NP-predicate on x. Thus, D is in NP.

Remark In the context of everywhere-correct derandomization it is known that hardness

for nondeterministic circuits (rather than circuits with access to a satisfiability oracle) is suf-

ficient to derandomize Arthur-Merlin protocols [MV05, SU05]. In fact, [SU06] shows that the

assumption that EXP contains a language that cannot be computed by small nondeterminis-

tic circuits implies that EXP contains a language that cannot be computed by small circuits

that make non-adaptive calls to a satisfiability oracle. In the context of typically-correct de-

randomization we need hard languages that can be computed in PNP or NP ∩ coNP and we

do not know whether we can replace hardness for circuits with oracle access to satisfiability

by hardness for nondeterministic circuits.

5.2.2.3 Space-Bounded Setting

We obtain the final result listed in Figure 5.1 by observing that the proof of Theorem 1.1

follows through in the setting of derandomizing BP.L algorithms – randomized algorithms

that run in logarithmic space and are allowed two-way access to their random bits [Nis93].2

Theorem 5.10 (typically-correct derandomization of BP.L) Let L be a language

that is computed by a randomized bounded-error log-space machine M that has two-way access

to its random bits. For any positive constant c, there is a positive constant d (depending

on c and the space usage of M) such that the following holds. If there is a language H

2 Recall that BP.L algorithms are potentially much more powerful than randomized space-bounded al-
gorithms that are given one-way access to their randomness – referred to as BPL algorithms. While it is
known that BPL is contained in DSPACE(log1.5 n) [SZ99], all that is known for BP.L is that BP.L ⊆ BPP
⊆ PSPACE.



108

computable in logarithmic space that is 1
nc -hard for branching programs of size nd, then there

is a deterministic log-space machine D that computes L to within 1
nc .

Proof. We follow the same outline as the proof of Theorem 1.1. That is, we define D by

D(x) = M ′(NWH′;n,nb(x)) where M ′ is an error-reduced version of M that uses nb random

bits for a constant b depending on the running time of M and where H ′ is the result of

applying the XOR lemma to H. We need to verify the correctness and the complexity of D.

Correctness follows as in the proof of Theorem 1.1 with two modifications. First, we make

use of the remark after the proof of Lemma 5.4 to apply the Nisan-Wigderson construction

to branching programs. Second, we use a version of the XOR lemma for branching pro-

grams, which reads the same as Lemma 2.9 except that we replace “circuits” by “branching

programs”, and set δ′ = 1
2
− (1− δ)k − γ and s′ = Ω( γ4

log2(1/(δγ))
) · s.

As for the complexity of D, we first observe that NWH′;n,nb is computable in logarithmic

space by Item 2 of Lemma 5.4 and the assumption that H is computable in logarithmic

space. As M ′ is also computable in logarithmic space and D is the composition of M ′ and

NWH′;n,nb , D is computable in logarithmic space.

5.3 Unconditional Results

In this section we obtain unconditional typically-correct derandomization results in a

number of algorithmic settings.

5.3.1 Constant-Depth Circuits

Nisan [Nis91] used the NW-construction together with the fact that the parity function is

(1
2
− 1

2nΩ(1) )-hard for constant-depth circuits [H̊as87] to obtain everywhere-correct derandom-

ization of uniform randomized constant-depth circuits (BP.AC0) by uniform quasipolynomial-

size constant-depth circuits. The transformation works for various notions of uniformity,

including log-space and polynomial-time uniformity.

[Sha09] obtained a more efficient derandomization of uniform BP.AC0 in the typically-

correct setting, replacing “quasipolynomial-size” by “polynomial-size”. The approach of
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[Sha09] relies on certain extractors that have exponentially small error. We elaborate on

the extractor-based approach of [Sha09] in Section 5.4 and point out that it can only han-

dle randomized algorithms that use a sublinear number of random bits. In order to handle

algorithms that use a polynomial number of random bits, [Sha09] first uses Nisan’s gener-

ator to reduce the randomness of a uniform BP.AC0 circuit to sublinear and then uses the

exponentially strong lower bounds for constant-depth circuits computing parity once more

to construct the extractor that is needed.

By using a single application of Nisan’s generator along with Lemma 5.3, our approach

gives a simpler proof of the typically-correct derandomization results for uniform BP.AC0 of

[Sha09]. As before, the result holds for either log-space or polynomial-time uniformity and

shows that for any constant c, uniform BP.AC0 is within distance 1
nc of uniform AC0, the

class of uniform polynomial-size constant-depth circuits. The error can be further reduced

by allowing the deterministic algorithm parity gates: uniform BP.AC0 is within distance

1

2nΩ(1) of uniform AC0[⊕].

5.3.2 Constant-Depth Circuits with Few Symmetric Gates

In contrast to the approach of [Sha09], our techniques also yield results in settings where

the best-known lower bounds only yield moderate hardness on average. One such model

is that of constant-depth circuits that are allowed a small number of arbitrary symmetric

gates, i.e., gates that compute functions which only depend on the Hamming weight of

the input, such as parity and majority. In this setting Viola [Vio06] constructed a simple

function computable by uniform constant-depth circuits that have access to parity gates that

is (1
2
− 1

s
)-hard for circuits of size s that use log s symmetric gates, for a function s = nΩ(log n).

As the approach of [Sha09] requires a hard function with exponentially strong hardness to

build a seedless extractor with exponentially small error, that approach cannot make use of

this hardness result to achieve derandomization of randomized circuits with few symmetric

gates. Our approach can exploit these weaker hardness results and gives the following for

both log-space and polynomial-time uniformity.
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Theorem 1.2 (typically-correct derandomization of AC0 with few symmetric

gates) Let L be a language and M a uniform randomized circuit of constant depth and

polynomial size that uses o(log2 n) symmetric gates such that M computes L with error at

most ρ. Then there is a uniform deterministic circuit D of constant depth and polynomial

size that uses exactly the same symmetric gates as M in addition to a polynomial number of

parity gates such that D computes L to within 3ρ + 1
nΩ(log n) .

We point out that the error term 3ρ can be removed using standard error reduction

provided M uses even fewer symmetric gates. For example, suppose M computes a language

L using o(log n) symmetric gates and let M ′ be the randomized algorithm that takes the

majority vote of O(log n) independent trials of M to reduce ρ to 1
4nc for some constant c.

Then M ′ uses o(log2 n) symmetric gates and by Theorem 1.2 there is a uniform deterministic

polynomial-size constant-depth circuit that uses o(log2 n) symmetric gates in addition to a

polynomial number of parity gates and computes L to within 1
nc .

Proof of Theorem 1.2. Let M be a uniform circuit of depth d and size nb that uses o(log2 n)

symmetric gates and computes a language L with error at most ρ on every input, for some

constants d and b. We obtain the typically-correct deterministic algorithm D by using Item

2 of Lemma 5.3 with the Nisan-Wigderson construction as the generator, i.e., we set

D(x) = M(NWH;n,nb(x))

for some H. We first explain how to set the parameters and choose the hard language H so

as to verify the correctness of D – that D computes L to within distance 3ρ + 1
nΩ(log n) .

1. Nisan-Wigderson construction.

By Item 2 of Lemma 5.3 D computes L to within distance 3ρ + ε if NWH;n,nb is ε-

pseudorandom against tests Tr′ of the form Tr′(x, r) = M(x, r) ⊕M(x, r′), which are

circuits of size O(nb) and depth d + 1 that use o(log2 n) symmetric gates. In a remark

following the proof of Lemma 5.4, we point out that the NW generator is secure with

the same parameters given in Item 1 of Lemma 5.4 for circuits T that have access to
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a certain number of symmetric gates if the hard function H is hard with the same

parameters stated in the lemma with respect to circuits that have access to the exact

same symmetric gates. In particular, NWH;n,nb is ε-pseudorandom against the tests Tr′

if H is (1
2
− ε

nb )-hard on inputs of length b
√

n/2c for circuits of size O(nb) and depth

d + 2 that use o(log2 n) symmetric gates.

2. Hard language H.

[Vio06] exhibits a function H that is computable by log-space uniform linear-size

constant-depth circuits that have access to parity gates such that H is (1
2
− 1

s
)-hard on

inputs of length n for circuits of size s and depth d+2 that use at most log s symmetric

gates, for s = nα log n where α is a constant depending on d. Then H has the required

hardness provided ε
nb ≥ 1

b
√

n/2cα log(b
√

n/2c) . We can choose ε of the form 1
nΩ(log n) to satisfy

this inequality.

This guarantees the correctness of D. Now consider the complexity of D. By Item 2 of

Lemma 5.4 and the complexity of computing H stated above, NWH;n,nb is computable by

a log-space uniform constant-depth polynomial-size circuit that has access to parity gates.

Thus D is computable by a circuit as described in the statement of Theorem 1.2 and main-

tains the uniformity of M (either log-space or polynomial-time).

5.3.3 Multi-Party Communication Complexity

Let us first recall the multi-party communication model. We use the number on the

forehead model [BNS92], where the input consists of k strings x1, ..., xk each of length n such

that the jth player sees each string except xj. For a randomized protocol all players also have

read-only access to a publicly shared random string r. The players communicate by taking

turns writing messages on a shared blackboard until one of the players stops the protocol and

outputs an answer. A randomized protocol M using m bits of public randomness computes

a language L with error ρ if for every (x1, ..., xk) ∈ L, PrR←Um [M(x1, ..., xk; r) 6= L(x)] ≤ ρ.

A protocol is polynomial-time uniform if whenever a player sends a message, that message
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can be computed in polynomial time as a function of the player’s view. We similarly define

the notion of log-space uniformity.

[Sha09] proves a typically-correct derandomization result for uniform two-party commu-

nication protocols. The proof of [Sha09] is tailored to the two-party case and does not extend

to the general case of k-party communication. Using our approach we can handle k > 2. We

show that every uniform randomized k-party communication protocol has a corresponding

uniform deterministic k-party communication protocol that is typically correct and has a

communication cost that is larger by a factor roughly equal to the amount of randomness

of the original randomized protocol. The following statement holds for both log-space and

poly-time uniformity.

Theorem 5.11 (typically-correct derandomization of communication proto-

cols) Let L be a language over k-tuples of n-bit strings and let M be a uniform randomized

communication protocol that computes L with error at most ρ using k players, q bits of

communication, and m bits of public randomness, with k, q, m, and log(1/ε) functions

computable within the uniformity bounds. There is a positive constant α such that for

q′ = α · 4k · m · (q + log(m/ε)) there is a uniform deterministic communication protocol

D using k players and q′ bits of communication that computes L to within 3ρ + ε if q′ ≤ n.

For k = 2, Theorem 5.11 yields a weaker result than that of [Sha09] – which gives

a deterministic protocol with communication complexity O(q + m) rather than O(q · m +

m log m) – although we can also obtain the stronger result of [Sha09] using the pseudorandom

generator approach, as explained in Section 5.4.

We point out that the error term 3ρ can be removed by using error reduction. For

example, by using randomness-efficient error reduction [CW89, IZ89], for any constant c the

randomized protocol M can be replaced with a protocol M ′ that has error at most 1
nc using

m + O(log n) random bits and O(q · log n) bits of communication.
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Proof of Theorem 5.11. Let M be a uniform randomized communication protocol that com-

putes a language L with error at most ρ on every input and uses k players, q bits of com-

munication and m bits of public randomness. We obtain the typically-correct deterministic

protocol D by using Item 2 of Lemma 5.3 with the following seed-extending hardness-based

pseudorandom generator GH;n,`,m. The generator simply partitions its inputs into ` disjoint

blocks and applies a hard function H on each block in order to generate the m pseudorandom

bits. More precisely, for any ` ≤ bn/mc we define GH;n,`,m as

GH;n,`,m(x1, . . . , xk) = (x1, . . . , xk; H(x1|S1 , . . . , xk|S1), . . . , H(x1|Sm , . . . , xk|Sm)),

where S1, ..., Sm are disjoint subsets of [n] each of size ` and x|Si
is the substring of x of length

` formed by taking the bits of x indexed by Si. We point out that GH;n,`,m is only well-defined

when ` ·m ≤ n. G has the property that if H is (1
2
− ε

m
)-hard for non-uniform communication

protocols operating on k-tuples of `-bit inputs that use q bits of communication, then G is

ε-pseudorandom against non-uniform randomized communication protocols that operate on

k-tuples of n-bit inputs, use m bits of randomness, and use q bits of communication. This

pseudorandomness guarantee can be argued directly; it also follows from the remark after

the proof of Lemma 5.4, where we observe that G can be seen as a degenerate case of the

Nisan-Wigderson construction.

We next set the parameters and the language H so as to ensure that the function

D(x1, ..., xk) = M(GH;n,`,m(x1, ..., xk))

is within 3ρ + ε from L (as long as q′ ≤ n).

1. Pseudorandom generator GH;n,`,m.

By Lemma 5.3, D computes L to within 3ρ + ε if GH;n,`,m is a seed-extending ε-

pseudorandom generator secure against tests Tr′ of the form Tr′(x, r) = M(x1, ..., xk; r)⊕

M(x1, ..., xk; r
′), which are communication protocols that use at most 2q bits of com-

munication.
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2. Hard language H.

By the pseudorandomness property stated above, GH;n,`,m is ε-pseudorandom for tests

Tr′ if H is (1
2
− ε

m
)-hard on k-tuples of `-bit inputs for protocols that use 2q bits of

communication. [BNS92] demonstrate a function, the generalized inner product, which

for some positive constant β and any ε′ > 0 is (1
2
− ε′)-hard for non-uniform k-party

communication protocols on k-tuples of `-bit inputs that use at most β ·( `
4k − log(1/ε′))

bits of communication. Letting H be this function, H has the hardness needed if

2q ≤ β · ( `
4k − log(m/ε)). We choose ` = d4k · (2q

β
+ log(m/ε))e so that if ` ·m ≤ n then

GH;n,`,m is well-defined and H has the required hardness.

We conclude that for ` = d4k ·(2q
β

+log(m/ε)), if `·m ≤ n then GH;n,`,m is an ε-pseudorandom

generator against the tests Tr′ and thus D computes L to within 3ρ + ε.

We next exhibit a protocol of the prescribed form to evaluate the function

D(x1, . . . , xk) = M(x1, . . . , xk; H(x1|S1 , . . . , xk|S1), . . . , H(x1|Sm , . . . , xk|Sm)).

Phase 0: All players calculate the value ` given above and terminate the protocol if

` ·m > n.

Phase 1: Player 1 writes x2|S1 , ..., x2|Sm on the public blackboard.

Phase 2: Player 2 evaluates each of H(x1|S1 , ..., xk|S1), ..., H(x1|Sm , ..., xk|Sm) and writes

the results on the public blackboard.

Phase 3: All players execute the protocol for M on input (x1, ..., xk; r) using the bits

written on the blackboard from Phase 2 as the random bits r.

Phase 1 requires ` · m bits of communication and guarantees that player 2 has all inputs

needed to evaluate H in Phase 2, Phase 2 requires m bits of communication, and Phase 3

requires q bits of communication. Altogether we can evaluate D using ` ·m + m + q bits of

communication. Taking α a sufficiently large constant such that q′ = α·4k·m·(q+log(m/ε)) ≥

` ·m + m + q, the protocol requires at most q′ bits of communication. Noting that q′ > ` ·m

we also have that GH;n,`,m is well-defined and D computes L to within 3ρ + ε if q′ ≤ n.
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We finally remark on the uniformity of the construction. Each player must determine

the block size `, execute the protocol M , and player 2 must compute H. The latter can

be performed in logarithmic space for H the generalized inner product problem, and the

remainder can be done within the uniformity bounds of M assuming each of the quantities

k, q, m, and log(1/ε) are constructible within the uniformity bounds.

5.4 Comparison with the Extractor-Based Approach

We have seen several settings in which seed-extending pseudorandom generators allow

us to prove typically-correct derandomization results that do not follow from an earlier

extractor-based approach of [Sha09]. We now show that the approach of [Sha09] is essentially

equivalent to having seed-extending pseudorandom generators with exponentially small error.

This reaffirms our claim that our approach is more general since we additionally obtain

meaningful results from pseudorandom generators with larger error. The comparison also

leads to the question how much randomness both approaches can handle.

Overview of the Extractor-Based Approach We start with a high-level overview of the

approach of [Sha09] that uses a notion of extractors for recognizable distributions, which we

now explain. For any function f : {0, 1}n → {0, 1}, [Sha09] defines the distribution recognized

by f as Un|f = 1, i.e., the uniform distribution over f−1(1) = {x ∈ {0, 1}n | f(x) = 1}. A

function E : {0, 1}n → {0, 1}m is a (k, ε)-extractor for distributions recognizable by some

collection of functions f : {0, 1}n → {0, 1}, if for every such function f with |f−1(1)| ≥ 2k,

the distribution E(Un|f = 1) has statistical distance at most ε from the uniform distribution

on m bit strings, i.e., ∑
r∈{0,1}m

| 1

2m
− Pr

X←Un

[E(X) = r|f(X) = 1]| ≤ ε.

[Sha09] shows the following general approach towards typically-correct derandomization.

Let M : {0, 1}n×{0, 1}m → {0, 1} be a randomized algorithm that computes some language
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L with error ρ at length n. Let ∆ = 100m and let E : {0, 1}n → {0, 1}m be an (n−∆, 2−∆)-

extractor for distributions recognizable by functions of the form fr1,r2(x) = M(x, r1) ⊕

M(x, r2) where r1, r2 ∈ {0, 1}m are arbitrary strings. Then D(x) = M(x, E(x)) is within

3ρ + 2−10m of L at length n.

Comparison The above approach requires extractors with error that is exponentially small

in m, and breaks down completely when the error is larger. We now observe that an ex-

tractor with exponentially small error yields a seed-extending pseudorandom generator with

exponentially small error.

Theorem 5.12 Let T : {0, 1}n × {0, 1}m → {0, 1} be a function. Let ∆ = m + log(1/ε)

and let E : {0, 1}n → {0, 1}m be an (n − ∆, 2−∆)-extractor for distributions recognizable

by functions of the form fr(x) = T (x, r) where r ∈ {0, 1}m is an arbitrary string. Then,

G(x) = (x, E(x)) is ε-pseudorandom for T .

As a consequence the extractors used in [Sha09] can be viewed as seed-extending pseu-

dorandom generators with exponentially small error. More precisely, given a randomized

algorithm M : {0, 1}n × {0, 1}m → {0, 1} the extractor-based approach sets ∆ = 100m

and requires an (n − ∆, 2−∆)-extractor for distributions that are recognizable by functions

of the form fr1,r2(x) = M(x, r1) ⊕ M(x, r2). The pseudorandom generator approach of

this chapter requires a seed-extending generator G(x) = (x, E(x)) that fools tests of the

form Tr2(x, r1) = M(x, r1) ⊕M(x, r2) = fr1,r2(x). By Theorem 5.12, an extractor E that

can be used to obtain typically-correct derandomization following the extractor-based ap-

proach gives rise to a seed-extending ε-pseudorandom generator G(x) = (x, E(x)) with

ε = 2m−∆ = 2−99m < 2−10m which can be used to obtain typically-correct derandomiza-

tion following the approach of this chapter.

We remark that in some algorithmic settings, e.g., 2-party communication protocols,

[Sha09] obtains typically-correct derandomizations that are more efficient than the ones that

follow from applying our methodology directly based on the NW-construction and known
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hardness results. Nevertheless, by Theorem 5.12 the extractors used in [Sha09] define seed-

extending pseudorandom generators that yield typically-correct derandomizations matching

the efficiency of the extractor-based approach.

We now prove Theorem 5.12. The analysis below uses the same approach as the analysis

of [Sha09] showing that extractors yield typically-correct derandomization.

Proof of Theorem 5.12. Consider a probability space with two independent random variables

X ← Un and R← Um. By conditioning on R we have that

|Pr[T (X, R) = 1]− Pr[T (X, E(X)) = 1]|

= |
∑

r∈{0,1}m
Pr[T (X, r) = 1 ∧R = r]− Pr[T (X, r) = 1 ∧ E(X) = r]|

= |
∑

r∈{0,1}m
Pr[T (X, r) = 1] · (Pr[R = r |T (X, r) = 1]− Pr[E(X) = r |T (X, r) = 1])

≤
∑

r∈{0,1}m
Pr[T (X, r) = 1] · |Pr[R = r |T (X, r) = 1]− Pr[E(X) = r |T (X, r) = 1]|.(5.6)

We next argue that the contribution of each individual r ∈ {0, 1}m to the right-hand side

of (5.6) is at most 2−∆. This yields an upper bound of 2m2−∆ = ε on the left-hand side of

(5.6), which by definition means that G(x) = (x, E(x)) is ε-pseudorandom for T .

We consider two cases. If Pr[T (X, r) = 1] < 2−∆ then the contribution of r to the right-

hand side of (5.6) is less than 2−∆ because of the first factor. Otherwise, the set f−1
r (1) has

size at least 2n−∆ and by the given extractor property of E, | 1
2m − Pr[E(X) = r | fr(X) =

1]| ≤ 2−∆. Since Pr[R = r |T (X, r) = 1] − Pr[E(X) = r |T (X, r) = 1] = 1
2m − Pr[E(X) =

r | fr(X) = 1], the second factor on the right-hand side of (5.6) is at most 2−∆, and so is the

entire term corresponding to r.

Conversely, we observe that seed-extending pseudorandom generators with error that is

exponentially small in m yield extractors for recognizable distributions.

Theorem 5.13 Let f : {0, 1}n → {0, 1} be a function and let E : {0, 1}n → {0, 1}m

be a function such that G(x) = (x, E(x)) is ε-pseudorandom for tests T (x, r) of the form
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Tz(x, r) = f(x)∧ (r = z) where z ∈ {0, 1}m is an arbitrary string. If ε ≤ 2−(m+2∆) then E is

an (n−∆, 2−∆)-extractor for the distribution recognized by f .

Proof of Theorem 5.13. Consider the test Tz(x, r) = f(x) ∧ (r = z) for any z ∈ {0, 1}m. By

the given pseudorandomness property we have that for X ← Un and R← Um,

|Pr[Tz(X, R) = 1]− Pr[Tz(X, E(X)) = 1]|

= |Pr[f(X) = 1] · Pr[R = z]− Pr[f(X) = 1] · Pr[E(X) = z | f(X) = 1]|

= Pr[f(X) = 1] · |Pr[R = z]− Pr[E(X) = z | f(X) = 1]| ≤ ε.

Letting P denote the distribution recognized by f and setting k = log(|f−1(1)|), we can

rewrite the above inequality as 2k−n · |2−m − Pr[E(P ) = z]| ≤ ε, which implies that∑
z∈{0,1}m

|2−m − Pr[E(P ) = z]| ≤ 2mε/2k−n. (5.7)

We want to show that the right-hand side of (5.7) is at most 2−∆ for k ≥ n−∆. This is the

case since ε ≤ 2−(m+2∆).

Together, Theorems 5.12 and 5.13 essentially say that in many algorithmic settings,

(n− cm, 2−cm)-extractors for a sufficiently large constant c > 1 give seed-extending pseudo-

random generators with error ε = 2−c′m for a constant c′ > 1 and vice versa. As a consequence

the approach of [Sha09] is essentially equivalent to the special case of seed-extending pseu-

dorandom generators with error that is exponentially small. This means that the results we

obtain using seed-extending pseudorandom generators with larger than exponentially small

error, such as the conditional result of Theorem 1.1 and the unconditional result of Theorem

1.2, do not follow from the [Sha09] approach.

Handling algorithms that toss a super-linear number of coins Another advantage

of the approach of this chapter is that we can directly handle randomized algorithms that

toss a super-linear number of coins. This is because we can use stretching seed-extending

pseudorandom generators, in which the length of the extending part E(x) is super-linear.
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In contrast an extractor E(x) cannot have an output length that is super-linear as it is

impossible to extract more random bits than are present in the input distribution. Indeed,

this is why [Sha09] handles randomized algorithms that toss a super-linear number of coins

by first applying a pseudorandom generator to reduce the number of coins to sub-linear and

only then running an extractor.

In some algorithmic settings both the approach of this chapter and [Sha09] can only han-

dle sub-linear randomness. For example, consider the setting of communication protocols

from Section 5.3.3. We cannot hope for unconditional stretching seed-extending pseudoran-

dom generators that fool tests M(x1, . . . , xk; r) defined by randomized k-party communica-

tion protocols. This is because in such a protocol we only place limitations on communication

complexity and allow the computation of an arbitrary function of r for free. Therefore, such

a protocol can implement any statistical test at no cost and distinguish a uniformly chosen

string r from one that is generated deterministically from fewer random bits. Even if we

restrict our attention to polynomial-time uniform protocols, we are still allowing each party

in the protocol to apply an arbitrary polynomial-time computable function to the public

random coin sequence r. Thus, the existence of a pseudorandom generator for such proto-

cols presumes the existence of pseudorandom generators for polynomial time, which we do

not know to exist unconditionally.

More generally, what differentiates randomized communication protocols from say ran-

domized algorithms corresponding to BP.AC0 is the way that they are charged for performing

computations on the random coin sequence r. Communication protocols can compute any

function of r for free, whereas algorithms for BP.AC0 are restricted to functions in AC0. It

remains open whether one can obtain typically-correct derandomizations of communication

protocols that toss a super-linear number of coins.3

3[New91] shows that every randomized k-party communication protocol can be simulated by another
randomized k-party protocol which tosses only O(log n) coins. However, the transformation does not preserve
uniformity.
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Chapter 6

Typically-Correct Derandomization and Circuit Lower

Bounds

In Chapter 5 we developed an approach to typically-correct derandomization based on

seed-extending pseudorandom generators. In this chapter we consider what will be needed

to prove typically-correct derandomization of BPP. In Section 6.1 we show that typically-

correct derandomization of BPP with very small error rates implies either super-polynomial

Boolean circuit lower bounds for NEXP or super-polynomial arithmetic lower bounds for

the permanent. This is a generalization of a result of [KI04]; we also develop a new proof

for the everywhere-correct setting that scales better with different parameters of the result.

In Section 6.2 we show that any typically-correct derandomization of BPP even with very

large error rates will require non-algebrizing, non-relativizing proof techniques.

6.1 Circuit Lower Bounds

It is well-known that the existence of pseudorandom generators for polynomial-size cir-

cuits (which yields everywhere-correct derandomization of BPP) implies that EXP does not

have polynomial-size circuits; this is the easy direction of the hardness versus randomness

tradeoffs. Impagliazzo et al. [IKW02] showed that everywhere-correct derandomization of

promise-BPP into NSUBEXP implies that NEXP does not have polynomial-size circuits.

Building on [IKW02], Kabanets and Impagliazzo [KI04] showed that everywhere-correct de-

randomization of BPP into NSUBEXP implies that NEXP does not have Boolean circuits of

polynomial size or that the permanent over Z does not have arithmetic circuits of polynomial
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size. We present a simpler proof of the latter result and show how to extend it to the setting

of typically-correct derandomization. In addition, our proof scales better than the one in

[KI04], yields the same lower bound for a smaller class, and does not rely on the result from

[IKW02] that NEXP having polynomial-size circuits implies that NEXP coincides with EXP.

6.1.1 Results

In the following, ACZ denotes the language of all arithmetic circuits that compute the

zero polynomial over Z. Perm denotes the permanent of matrices over Z, and 0-1-Perm its

restriction to matrices with all entries in {0, 1}. SIZE(s(n)) denotes Boolean circuits of size

s(n), and ASIZE(a(n)) denotes arithmetic circuits of size a(n). See Section 2.6 for further

details on the definitions for circuit size.

Everywhere-Correct Derandomization Our approach yields the following parame-

terized version of the main result of [KI04], namely circuit lower bounds that follow

from everywhere-correct derandomization of the specific BPP-language ACZ. We use

(N ∩ coN)TIME(·) as a shorthand for NTIME(·)∩ coNTIME(·).

Theorem 6.1 Let γ(n) denote the maximum circuit complexity of Boolean functions on

n inputs. There exists a constant c > 0 such that the following holds for any functions

a(·), s(·), and t(·) such that a(·) and s(·) are constructible, a(·) and t(·) are monotone, and

n ≤ s(n) < γ(n).

If ACZ ∈ NTIME(t(n)) then

(i) (N ∩ coN)TIME (t((s(n))c · a((s(n))c))) 6⊆ SIZE(s(n)), or

(ii) Perm 6∈ ASIZE(a(n)).

In particular, we obtain the following instantiation for the exponential time bounds con-

sidered for part (i) in [KI04].
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Corollary 6.2 Let a(·), s(·), and t(·) be functions such that a(·) and s(·) are constructible,

a(·) and t(·) are monotone, and s(n) ≥ n. The following holds as long as for every constant

c and sufficiently large n,

t ((s(n))c · a((s(n)c))) ≤ 2n. (6.1)

If ACZ ∈ NTIME(t(n)) then

(i) (N ∩ coN)TIME(2n) 6⊆ SIZE(s(n)), or

(ii) Perm 6∈ ASIZE(a(n)).

Let us compare Theorem 6.1 and Corollary 6.2 to the corresponding results in [KI04].

First, we point out that part (i) states a lower bound for (N ∩ coN)TIME(·) rather than for

NTIME(·), where we use (N ∩ coN)TIME(·) as a shorthand for NTIME(·)∩ coNTIME(·).

Theorem 6.1 and Corollary 6.2 give such a lower bound for the entire range of the parameters;

[KI04] only manages to do so in the case where all the parameters are polynomially bounded.

More importantly, due to the use of the implication that EXP having polynomial-size circuits

implies that EXP coincides with MA [BFNW93], the arguments in [KI04] can only give lower

bounds for time bounds on the left-hand side of (i) that are exponential. This is true even

when all of a(n), s(n), and t(n) are polynomial, in which case our Theorem 6.1 only needs the

time bound in the left-hand side of (i) to be superpolynomial. Finally, due to its dependence

on the result from [IKW02] that NEXP having polynomial-size circuits implies that NEXP

coincides with EXP, the proof in [KI04] only works when s(n) is polynomially bounded; our

proof gives nontrivial results for s(n) ranging between linear and linear-exponential.1

Typically-Correct Derandomization We initiate the study of whether typically-correct

derandomization of BPP implies circuit lower bounds. We show that it does in the case of

typically-correct derandomizations that run in NSUBEXP and are of the quality considered

by Goldreich and Wigderson [GW02].

1Scott Aaronson and we independently came up with an earlier argument that does not rely on [IKW02]
but does use [BFNW93]. The result does not scale as well as Theorem 6.1 and can only handle time bounds
on the left-hand side of (i) that are exponential. See [AM10] for more details.
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Theorem 1.3 If for every positive constant ε there exists a nondeterministic Turing

machine which runs in time 2nε
and correctly decides ACZ on all but at most 2nε

of the

inputs of length n for almost every n, then

(i) NEXP does not have Boolean circuits of polynomial size, or

(ii) Perm does not have arithmetic circuits of polynomial size.

Note that Theorem 1.3 strengthens the main result of [KI04], which establishes the the-

orem in the special case where the nondeterministic machines decide ACZ correctly on all

inputs. We can parameterize Theorem 1.3 in the same way as Theorem 6.1. However, we

only obtain nontrivial results for polynomially bounded a(n) and s(n), in which case t(n)

can be subexponential. For that reason, we only state the latter special case. The error rate

considered in Theorem 1.3 is the largest one for which our argument gives nontrivial lower

bounds.

We first prove Theorem 1.3 and then analyze how the argument parameterizes to Theorem

6.1 and Corollary 6.2 in the case of zero error rate. We end with some extensions and

variations of both theorems.

6.1.2 Proof for the Typically-Correct Setting

The proof of Theorem 1.3 has two main ingredients. The first ingredient is an uncon-

ditional circuit lower bound for P0-1-Perm[1], the class of languages that can be decided in

polynomial time with one query to an oracle for 0-1-Perm.

Claim 6.3 For every constant d, P0-1-Perm[1] 6⊆ SIZE(nd).

The second ingredient gives a conditional simulation of that class in nondeterministic

subexponential time with subpolynomial advice.

Claim 6.4 If the hypothesis of Theorem 1.3 holds and Perm has arithmetic circuits of

polynomial size, then

P0-1-Perm[1] ⊆ ∩ε>0NTIME(2nε

)/nε.
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By combining both claims we obtain that if the hypothesis of Theorem 1.3 holds and

Perm has arithmetic circuits of polynomial size, then for every constant d, NTIME(2n)/n 6⊆

SIZE(nd). The latter implies that for every constant d, NTIME(2n) 6⊆ SIZE(nd). Otherwise,

any language in NTIME(2n)/n can be decided on inputs of length n by a circuit of size (2n)d,

namely a circuit simulating an NTIME(2m)-computation on an input of length m = n + n

with its second input hardwired to an advice string of length n. Since NEXP contains

a language that is hard for NTIME(2n) under linear-time reductions, the statement that

NTIME(2n) 6⊆ SIZE(nd) for every constant d implies that NEXP does not have circuits of

polynomial size. This finishes the proof of Theorem 1.3 modulo the proofs of both claims.

Proof of Claim 6.3. The claim follows because the polynomial-time hierarchy PH does not

have circuits of fixed polynomial size [Kan82], PH is contained in P#P[1] [Tod91], and

0-1-Perm is complete for #P under reductions that make a single query [Zan91].

In the rest of the proof we establish Claim 6.4.

Proof of Claim 6.4. It is enough to consider P0-1-Perm[1]-computations that run in time n.

Consider such a computation, and let M denote the query it makes to its 0-1-Perm-oracle on

a given input of length n. The dimension m of M cannot exceed
√

n as the computation does

not have enough time to generate larger square matrices. By the paddability of 0-1-Perm,

we can assume without loss of generality that M has dimension m =
√

n independent of the

input of length n, and maintain a running time of O(n).

It suffices to design, for every ε > 0, a nondeterministic machine Nε running in time 2nε

and an advice sequence a(·, ε) where a(n, ε) has length at most nε such that the following

holds: On input an m-by-m 0-1-matrix M , Nε with advice a(n, ε) outputs Perm(M) on every

accepting computation path, and has at least one such computation path. Our machine Nε

acts as follows.

1. Guess a polynomial-sized candidate arithmetic circuit C for Perm on matrices of di-

mension m.
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2. Verify the correctness of C. Halt and reject if the test fails.

3. Use the circuit C to determine the permanent of M in deterministic polynomial time.

The circuit in step 1 exists by virtue of the hypothesis that Perm has polynomial-size arith-

metic circuits. Say the circuit C we guess is of size s ≤ mb and purportedly computes the

permanent of m-by-m matrices over Z. The constant b is chosen large enough so that such a

circuit exists. The crux of the procedure is the second step, which is a nondeterministic test

that has an accepting computation path on input C iff C does what it is purported to do.

Once that test is passed, we evaluate C modulo m!+ 1 on the given 0-1-matrix M . Evaluat-

ing C this way ensures that the intermediate results remain small so the computations can

be done in polynomial time; since the permanent of M is a non-negative integer no larger

than m!, the outcome of the computation gives the correct value of the permanent of M .

The test in the second step is based on the following well-known translation to ACZ

exploiting the downward self-reducibility of the permanent. For completeness we include a

proof.

Lemma 6.5 There exists a polynomial-time algorithm that takes an arithmetic circuit C and

an integer m, and produces an arithmetic circuit C̃ such that C computes the permanent of

m-by-m matrices over Z iff C̃ ∈ ACZ.

Proof. We use the following notation. Let M be an m-by-m matrix M , 0 ≤ k ≤ m, and

1 ≤ i, j ≤ k. We denote by M (k) the matrix obtained by taking the m-by-m identity matrix

and replacing the top left k-by-k submatrix by the corresponding submatrix of M . By M
(k−1)
−i,−j

we denote the same for k − 1 but starting from the matrix M with the i-th row and j-th

column deleted.

We have that C correctly computes the permanent of m-by-m matrices over Z iff for each

1 ≤ k ≤ m, the polynomial

C̃k = C(X(k))−
k∑

j=1

C(X
(k−1)
−k,−j) · xkj
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is identically zero, as well as the polynomial C̃0 = C(X(0)) − 1, where X denotes an m-

by-m matrix of variables (xij)
m
i,j=1. By introducing one more variable x0, those conditions

can be expressed equivalently as whether the following polynomial is identically zero: C̃ =∑m
k=0 C̃k · xk

0. The straightforward implementation of C̃ given C yields an arithmetic circuit

that consists of O(m2) copies of C and some simple additional circuitry. That arithmetic

circuit is in ACZ iff C correctly computes the permanent on m-by-m matrices over Z.

We use Lemma 6.5 to transform the circuit C into the circuit C̃, and show how to test

that C̃ is in ACZ. We will exploit the fact that ACZ is in coNP and that it is highly

paddable to transform the almost-correct nondeterministic subexponential-time tests given

by the hypothesis of Theorem 1.3 into perfect nondeterministic subexponential-time tests

for ACZ with small advice. Let N ′ε denote the nondeterministic Turing machine from the

hypothesis of Theorem 1.3 corresponding to ε. We will use N ′ε′ for some ε′ related to ε.

Note that the false positives C̃ of N ′ε′ can be detected nondeterministically by guessing

an accepting computation path of N ′ε′ on input C̃, guessing an input x and a modulus µ,

evaluating C̃ on input x modulo µ, and verifying that the result is nonzero. Since the modulus

µ never needs to be larger than 2s̃, where s̃ denotes the size of the circuit C̃, the overhead of

the test beyond running N ′ε′ is only polynomial. Now, suppose that we are given the exact

number fp(s̃, ε′) of false positives of N ′ε′ at length s̃. Then the following nondeterministic

test for membership to ACZ is sound for instances C̃ of length s̃, i.e., if the test accepts C̃

then C̃ is in ACZ for sure.

(a) Guess a list of fp(s̃, ε′) distinct instances of length s̃ and nondeterministically test that

they are all false positives of N ′ε′ . If there is a test that fails, halt and reject.

(b) Accept iff C̃ is not on that list.

Note that this test runs in time fp(s̃, ε′) · 2s̃ε′ · poly(s̃), which is 2O(s̃ε′ ). Note also that we

can make sure that the size s of C as well as the size s̃ of C̃ only depend on m in an easily

computable way, say s̃ = mc for some constant c. This follows from the paddability of circuit
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descriptions as mentioned in Section 2.6. As a result, the information fp(s̃, ε′) really takes

on the form of an advice.

The above test is sound but not necessarily complete – it may still have false negatives.

In order to remedy that problem, we exploit a further paddability property of circuit de-

scriptions, namely that we can obtain many different circuits equivalent to a given circuit by

adding a little bit of circuitry that isn’t used in the evaluation of the output gate. Consider

the equivalents of C̃ ∈ ACZ of length ` that we can obtain using this type of padding. If

the number of distinct pads exceeds the total number of errors N ′ε′ makes at length `, we

can nondeterministically guess a pad that is accepted by N ′ε′ and therefore also by the above

test when provided with fp(`, ε′) as advice.

How large does ` need to be for this approach to work? There exists a positive constant

α such that the number of padded versions of C̃ of length ` = s̃ + ∆ is at least 2α∆. We

need 2α∆ > 2`ε
. The latter condition is satisfied for every 0 < ε < 1 and sufficiently large s̃

when we set ∆ = s̃, i.e., ` = 2s̃.

The resulting nondeterministic test for C̃ runs in time

2O(`ε′ ) = 2O(s̃ε′ ) = 2O(mcε′ ), (6.2)

and works correctly when provided fp(`, ε′) as advice. The bit length of the advice is bounded

by the logarithm of (6.2). Plugging in this test as the second step in the three-step approach

mentioned at the beginning of the proof, we obtain a machine Nε with the properties we

need for any constant ε with ε > cε′ by setting a(n, ε) = fp(2mc, ε′).

6.1.3 Proofs for the Everywhere-Correct Setting

We establish Theorem 6.1 by analyzing how the proof of Theorem 1.3 parameterizes in

the case of zero error rate.

Proof of Theorem 6.1. The two ingredients in the proof of Theorem 1.3 translate as follows

given the parameters of Theorem 6.1.
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Claim 6.6 There exists a constant c such that for every time constructible function s(·)

satisfying n ≤ s(n) < γ(n), DTIME0-1-Perm[1]((s(n)c)) 6⊆ SIZE(s(n)).

Claim 6.7 There exists a constant d such that the following holds for any functions a(·)

and t(·) with a(·) constructible and t(·) monotone. If ACZ ∈ NTIME(t(n)) and Perm ∈

ASIZE(a(n)), then

DTIME0-1-Perm[1](n) ⊆ NTIME(t(n · logd n · a(
√

n))).

Given those two claims, we obtain the following by padding Claim 6.7 to length (s(n))c,

exploiting the closure under complementation of deterministic computations, and combining

it with Claim 6.6: If ACZ ∈ NTIME(t(n)) and Perm ∈ ASIZE(a(n)), then

(N ∩ coN)TIME
(
t((s(n))c · logd((s(n))c) · a((s(n))c/2))

)
6⊆ SIZE(s(n)).

Theorem 6.1 follows by simplifying the last expression using the monotonicity of a(·) and

t(·) and the fact that s(n) ≥ n. All that remains are the proofs of the claims.

Proof of Claim 6.6. The argument of [Kan82] gives that Σ4TIME(s(n) loga(s(n))) 6⊆

SIZE(s(n)) for some constant a. [Tod91] shows that there exists a constant b and a prob-

lem A ∈ #P such that for any constructible function t(·) with t(n) ≥ n, Σ4TIME(t(n)) ⊆

DTIMEA[1]((t(n))b). The claim follows by combining the above as before with the complete-

ness of 0-1-Perm for #P under reductions that make a single query [Zan91]

Proof of Claim 6.7. We follow the proof of Claim 6.4 and set m =
√

n.

The crux is the 3-step construction of a nondeterministic machine N that takes an m-

by-m 0-1-matrix M and outputs Perm(M) on every accepting computation path, and has

at least one such computation path. In the first step N guess an arithmetic circuit of size

a(m). By the constructibility of a(·), this step takes time O(a(m)). In the second step, we

run the nondeterministic algorithm for ACZ from the hypothesis on the circuit C̃ given by

Lemma 6.5. A careful reading of the proof of the lemma reveals that this step takes time
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t(m2 · logd m · a(m)) for some constant d. The third step takes time O(m2 · logd m · a(m)).

As we can assume without loss of generality that t(n) ≥ n and since t(·) is monotone,

the three steps combined take time O(t(m2 · logd m · a(m))). The total running time of

the nondeterministic simulation of the given DTIME0-1-Perm[1](n)-computation is of the same

order.

This finishes the proof of Theorem 6.1.

The proof of Corollary 6.2 immediately follows from Theorem 6.1.

Proof of Corollary 6.2. Note that condition (6.1) gives an upper bound of 2n on the time

bound on the left-hand side of (ii) in the statement of Theorem 6.1. Also, we can assume

without loss of generality that t(n) ≥ n for almost all n; otherwise, the hypothesis of Corol-

lary 6.2 fails as a nondeterministic machine deciding ACZ needs to be able to look at its

entire input. Thus, condition (6.1) implies that s(n) is upper bounded by 2n/c, which is less

than γ(n) for c > 1 and n sufficiently large. Corollary 6.2 then follows from Theorem 6.1

verbatim.

We already discussed how Theorem 6.1 and Corollary 6.2 compare to the corresponding

results in [KI04]. In order to compare our argument with the one from [KI04], let us see how

both obtain a contradiction from the hypotheses that ACZ is in NP, NEXP has polynomial-

size circuits, and Perm has polynomial-size arithmetic circuits. Both proofs use the first and

the third hypothesis to collapse P#P into NP. [KI04] then uses the result from [IKW02] that

NEXP having polynomial-size circuits implies that NEXP coincides with EXP, and the result

from [BFNW93] that EXP having polynomial-size circuits implies that EXP coincides with

MA, to conclude that NEXP is in P#P. This in turn collapses NEXP all the way down to

NP, which contradicts the time hierarchy for nondeterministic machines. Our proof does not

attempt to collapse NEXP into NP. Instead we use the fact that NEXP having polynomial-

size circuits implies that NP has circuits of size nc for some fixed constant c. Since we know

unconditionally that P#P does not have the latter property, we obtain a contradiction as we

already derived that P#P is in NP.
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6.1.4 Extensions

We observe a few variations of Theorems 6.1 and 1.3. First, the theorems also hold when

we simultaneously replace ACZ by AFZ (the restriction of ACZ to arithmetic formulas), and

“arithmetic circuits” by “arithmetic formulas”.

Second, we can play with the underlying i.o. and a.e. quantifiers. In fact, we can

strengthen both theorems by either relaxing the hypothesis to hold only i.o. rather than

a.e. or by improving one of the lower bound conclusions (i) or (ii) to hold a.e. rather than

i.o. This follows because on the one hand the lower bounds in Claims 6.3 and 6.6 hold a.e.

rather than just i.o. as stated. On the other hand, if one of the hypotheses of Claims 6.4 and

6.7 holds only i.o., the concluding simulation can be made to work i.o. when provided with

a pointer to a nearby input length where the hypotheses hold. The latter can be handled

with a logarithmic amount of advice, which the rest of the argument can handle.

As an example, in the case of Theorem 1.3 it suffices for the nondeterministic machines

Nε to correctly decide ACZ on all but at most 2nε
of the inputs of length n for infinitely many

n. Related to the latter variation, we point out that by [IW01] EXP differs from BPP iff

all of BPP has deterministic typically-correct derandomizations that run in subexponential

time and err on no more than a polynomial fraction of the inputs of length n for infinitely

many n. Thus, extending this i.o.-version of Theorem 1.3 to the setting with polynomial

error rates would show that EXP 6=BPP implies circuit lower bounds.

6.2 Relativization and Algebrization

In Section 6.1, we showed that typically-correct derandomizations of BPP with the pa-

rameters considered by Goldreich and Wigderson [GW02] imply circuit lower bounds (The-

orem 1.3). In particular, this implies that any proof of such typically-correct derandomiza-

tion must contain ingredients that prove circuit lower bounds. Although we do not know if

typically-correct derandomizations of BPP with the weaker parameters of say Theorem 1.1
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imply circuit lower bounds, we do show in this section that such derandomizations would

require non-relativizing, and indeed non-algebrizing ingredients.

Algebrization Let us recap the notion of algebrization [AW09], which generalizes the

concept of relativization. A complexity class inclusion C1 ⊆ C2 is said to algebrize if for every

oracle A and every low-degree extension Ã of A, CA
1 ⊆ CÃ

2 . A complexity class separation

C1 * C2 is said to algebrize if for every oracle A and low-degree extension Ã of A, CÃ
1 * CA

2 .

An inclusion or separation is said to relativize if the above holds with Ã replaced by A.

Notice that any statement which relativizes also algebrizes. The converse does not hold.

As an example, the inclusion PSPACE ⊆ IP [Sha92] does not relativize but does algebrize. In

fact, [AW09] observe that all known non-relativizing proofs that are based on arithmetization

algebrize. At the same time [AW09] argues that several open questions in complexity theory

require non-algebrizing techniques to be settled.

Typically-Correct Derandomization and Algebrization We show that the same is

true of the question whether typically-correct derandomizations of BPP exist. On the

one hand, a negative answer cannot algebrize, even for zero error. This is because rul-

ing out typically-correct derandomization of BPP in particular implies BPP * P, but for

any PSPACE-complete language A and its multi-linear extension Ã, BPPÃ ⊆ PSPACEÃ ⊆

PA. On the other hand, we show that a positive answer cannot algebrize either, even for very

large error rates and even if we only want simulations in nondeterministic subexponential

time.

Theorem 6.8 There exists an oracle B and a multi-quadratic extension B̃ of B such that

there is a language in BPTIMEB(O(n)) that is (1
2
− 1

2n/3 )-hard for NTIMEB̃(2n).

Proof. The construction can be broken up into two main parts.

1. Construct B and a multi-quadratic extension B̃ of B such that any language com-

putable in NTIMEB̃(2n) can be computed in BPTIMEB(c · n) for some constant c.

The proof follows very closely the construction due to [Wil85] of an oracle B such that
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NTIMEB(2n) ⊆ SIZEB(c ·n). [AW09] show that the proof of [Wil85] can be carried out

in the more general algebrization setting, showing that there exists an oracle B and a

multi-quadratic extension B̃ of B such that NTIMEB̃(2n) ⊆ SIZEB(c ·n). In fact, both

in the original result of [Wil85] and the generalization in [AW09], the non-uniformity

can be replaced by randomness. That is, we can replace SIZE by BPTIME, which is

what we need to complete the first part of the proof.

2. Given B and B̃ construct a hard language L. We derive the hard language L us-

ing a relativizing hierarchy theorem of [GW00] for deterministic machines, which

shows that for any constant c there is a language L ∈ DTIMEB(2O(n)) that is (1
2
−

1
2n/3 )-hard for DTIMEB(2c·n). By the first part NTIMEB̃(2n) ⊆ BPTIMEB(c · n) ⊆

DTIMEB(2c·n), so the language L has the required hardness. Moreover, L is com-

putable in DTIMEB(2O(n)) ⊆ NTIMEB̃(2O(n)) ⊆ BPTIME(O(n)), where the latter

inclusion follows from NTIMEB̃(2n) ⊆ BPTIMEB(O(n)) by padding.

We point out that weaker hierarchy theorems for deterministic time could have been used

in place of the one from [GW00] in order to conclude that a positive answer cannot algebrize.

We stated the result using the [GW00] hierarchy theorem because it holds for almost every

input length and achieves hardness very close to 1
2
.
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Chapter 7

Derandomizing Monotone Computations

In this chapter we prove our results concerning the derandomization of monotone com-

putations and the relation with derandomizing general computations. In Section 7.1 we

introduce the key concept (monotone slice function) and its properties used in the main

results of this chapter. In Section 7.2 we show that functions that are average-case hard for

monotone circuits are hard with somewhat weaker parameters for general circuits. In Section

7.3 we show that pseudorandom generators that are secure against monotone circuits are

secure with somewhat weaker parameters against general circuits. In Section 7.4 we show

that derandomizing randomized monotone computations into P would derandomize all of

BPP into P.

7.1 Monotone Slice Functions

In this section we introduce the key concept used in many of the proofs in this chapter

– slice functions – and discuss the properties we will need. We also define terminology and

notation used throughout the chapter.

First, recall that a monotone Boolean function is defined by the property that flipping

any input bit from 0 to 1 can only change the output value from 0 to 1. Equivalently, a

monotone function can be computed by a monotone circuit – a Boolean circuit consisting

only of AND and OR gates, i.e., with no NOT gates. An anti-monotone function is the

negation or complement of a monotone function; anti-monotone functions share many of

the key combinatorial properties of monotone functions. For a binary string x, we use the
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notation x to denote the string resulting from negating each bit of x. Anti-monotone circuits

can equivalently be viewed as either negations of monotone circuits or monotone circuits that

are given x as input rather than x. When we speak of anti-monotone circuits we refer to the

former by default.

Slices of the Boolean Cube We use the terminology “k-th slice” of the Boolean n-cube

to refer to the set of n-bit strings that have Hamming weight exactly k. We use the notation

|x| to refer to the Hamming weight of a string x, so |x| is equal to the number of ones

in x. The “middle slice” refers to the bn/2c-th slice. The k-th slice contains
(

n
k

)
strings.

The middle slice contains
(

n
bn/2c

)
strings, which can be shown to be Θ( 1√

n
2n) by Stirling’s

formula.

Slice Functions A monotone slice function for the k-th slice is a monotone function that

can take arbitrary values for inputs on the k-th slice, evaluates to 1 above the k-th slice,

and evaluates to 0 below the k-th slice. An anti-monotone slice function for the k-th slice

takes arbitrary values for inputs on the k-th slice, evaluates to 0 above the k-th slice, and

evaluates to 1 below the k-th slice. When applies to both monotone and anti-monotone slice

functions, we say simply “slice function”.

Two key properties of slice functions play a prominent role in the proofs of this chapter.

(i) The monotone and general circuit complexity of slice functions are polynomially re-

lated.

(ii) The truth table of any Boolean function f on n bits can be embedded within the middle

slice of another function f ′ on m > n bits, for an appropriate choice of m = n+O(log n).

We first prove these properties and then discuss how they are used to prove some of our

results.

Monotone Complexity of Slice Functions Here we discuss property (i) from above,

that the monotone and general circuit complexity of slice functions is polynomially related.
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Berkowitz [Ber82] was the first to observe this, as follows. Let f be a monotone slice function

for the k-th slice. Note that for x with Hamming weight exactly k, ¬xi = 1 if and only if

x\xi has weight at least k and ¬xi = 0 if and only if x\xi has weight less than k. Then given

a circuit for computing f , we first push all negations to the inputs (this at most doubles the

size of the circuit) and then replace any instance of ¬xi by a threshold circuit over n−1 bits.

As thresholds can be computed by O(n log n) size monotone circuits [AKS83], the resulting

monotone circuit is of size 2s + O(n2 log n).

The construction can also be used to produce an anti-monotone circuit that agrees with

f on the k-th slice – produce a monotone circuit computing the monotone slice function

that is the complement of f on the k-th slice and then negate this circuit. Similarly, if f is

an anti-monotone slice function, the process can be used to produce either a monotone or

anti-monotone circuit agreeing with f on the k-th slice.

[Val86] gives a slightly more efficient construction that computes the threshold circuits

for each xi simultaneously with O(n log2 n) many gates, which implies that if f has general

circuits with s gates then f has monotone circuits with 2s + O(n log2 n) gates. Further, the

construction is poly-time uniform: there is a poly-time machine that on input (1n, k, C),

where C is a general circuit with s gates computing f at length n, outputs a monotone

circuit with 2s + O(n log2 n) gates that computes f at length n.

Theorem 7.1 ([Val86]) Let f be any slice function and let C be a circuit with at most

s gates for computing f . There is a monotone circuit Cmon and an anti-monotone circuit

Canti−mon such that both agree with f on the slice in question, compute slice functions, are

of size 2s + O(n log2 n), and are uniformly constructable given C.

Embedding Functions Within Slices Here we discuss property (ii) from above, that

any function f on n bits can be embedded within a slice of a function f ′ on m > n bits

with m not too much larger than n. First, we describe a very easy method and then present

a method with better parameters. One method is to let f ′ take m = 2n bits as input and

embed the truth table of f within the middle slice of f ′ as follows. For each n-bit string x, set
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f ′(x, x) = f(x). For each 2n-bit string x′ not of the form (x, x), set f ′(x′) = 1 if |x′| ≥ n and

set f ′(x′) = 0 otherwise. f ′ is a monotone slice function, so its monotone circuit complexity

is polynomially related to its general circuit complexity by Theorem 7.1. However, only a

very small fraction of the middle slice of f ′ is used in the embedding, namely 2n

(2n
n )

= Θ(
√

n
2n ).

For our application in Theorem 1.6, we need an embedding that uses a larger fraction of

the input space of f ′. If we let f ′ take m-bit inputs, then it is possible to embed the truth

table of f into the middle slice of f ′ provided
(

m
bm/2c

)
≥ 2n. Because the binomial coefficient(

m
bm/2c

)
grows by less than a factor of 2 for each increment of m, m can also be chosen so

that
(

m
bm/2c

)
≤ 2 · 2n, so the embedding occupies a constant fraction of the slice.

Such an embedding follows by associating an n-bit number x with a version of its “k-

binomial representation” for an appropriate k, which we now develop. Given any non-

negative integers a and k ≤ a, the identity(
a

k

)
=

(
a− 1

k

)
+

(
a− 2

k − 1

)
+ ... +

(
a− (k − 1)

2

)
+

(
a− k

1

)
+ 1

can be verified by considering the
(

a
k

)
strings of length a with Hamming weight k. Exactly(

a−1
k

)
of these strings begin with a 0, the first term in the identity. The remaining strings

begin with a 1 followed by a string of length a − 1 with Hamming weight k − 1. Of these,(
a−2
k−1

)
begin with a 0, the second term in the identity. The remaining strings begin with 11

followed by a string of length a−2 with Hamming weight k−2. We can continue in this way

until we are left with the number of strings beginning with 1k−10 that have Hamming weight

k – the second to last term in the identity – and finally the number of strings beginning with

1k that have Hamming weight k – the last term in the identity.

We use the identity to prove the following claim. To embed f within the k-th slice of

the m-cube of a function f ′, we apply Claim 7.2 and associate x with the m-bit string x′

that has ones precisely in positions ak + 1, ak−1 + 1, ... a1 + 1. We set set f ′ to be the

slice function that has f ′(x′) = f(x). After proving the claim, we summarize the relevant

properties of this embedding in Lemma 7.3.
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Claim 7.2 For any integer 0 ≤ x <
(

m
k

)
, x has a unique representation as

x =

(
ak

k

)
+

(
ak−1

k − 1

)
+ ... +

(
a1

1

)
where m > ak > ak−1 > ... > a1 ≥ 0 and with the definition that

(
ai

i

)
= 0 if ai ≤ i.

Proof. We prove Claim 7.2 by induction, as follows. If x <
(

m−1
k

)
then also ak < m − 1,

and we can use induction to obtain the representation. If x ≥
(

m−1
k

)
, the identity tells us

that ak = m − 1 because otherwise the terms could not sum to x. Thus x =
(

m−1
k

)
+ y

for y = x −
(

m−1
k

)
. Because x <

(
m
k

)
, y <

(
m
k

)
−

(
m−1

k

)
=

(
m−1
k−1

)
, and we complete the

representation for x by using induction on y with m′ = m − 1 and k′ = k − 1. When we

reach k = 1, we have by assumption that x <
(

m
1

)
= m, and ak is chosen to be precisely x.

The cases for n = 1 and k = 0 can be easily verified.

Consider the efficiency of computing this representation and its inverse. Given x, we take

the largest ak such that
(

ak

k

)
≤ x and recurse. The determination of x given the representation

consists of arithmetic. Each of these processes can be carried out in polynomial time.

Lemma 7.3 For any positive integers n, m, k with m > n, m > k such that
(

m
k

)
≥ 2n there

is a one-to-one mapping φ from {0, 1}n into the set of m-bit strings with Hamming weight

exactly k; the mapping is computable and invertible in poly(m) time.

For any function f , we define a function f ′ with f ′(x′) = 1 for all x′ with |x′| > k,

f ′(x′) = f(x) for x′ with |x′| = k and x′ = φ(x), and f ′(x) = 0 for all other x′. Then f ′ is a

slice function for the k-th slice, and for any s, f has circuits of size s + poly(m) if and only

if f ′ has circuits of s + poly(m).

This is true in particular for the smallest m such that setting k = bm/2c and
(

m
k

)
≥ 2n ≥(

m
k

)
.

7.1.1 Proof Overviews

Here we give a quick overview how the properties (i) and (ii) stated above are used to

prove some of our main results.
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Theorem 1.4 states that a general circuit C that approximates a function f can be

converted into a monotone approximating circuit Cmon with some loss in parameters. The

basic idea is to find a slice k on which C computes f well and let Cmon be a monotone circuit

that computes the monotone slice function that agrees with C on the k-th slice. Property

(i) shows that the size of the monotone circuit Cmon is not much larger than C.

Theorem 1.5 states that a circuit C that distinguishes some distribution (e.g., the output

of a pseudorandom generator) from uniform can be made monotone with some loss in param-

eters. The main idea is similar to that of Theorem 1.4 but for the setting of a distinguisher

rather than computing a function, and again property (i) is key.

Theorem 1.6 states that for any BPP language L there is a language Lmon computed by

a uniform polynomial-time monotone bounded-error randomized circuit such that L poly-

time many-one reduces to Lmon. The main idea is to use property (ii) to convert the BPP

machine into a monotone circuit and then use property (i) to show the resulting monotone

computation has polynomial-size monotone circuits.

7.2 Average-Case Hardness

In this section we prove our results concerning average-case hardness. The main results of

this section show the following. (1) Functions that are hard on average for monotone circuits

are hard on average for general circuits with somewhat weaker parameters. (2) There exist

monotone functions with average-case hardness approaching a barrier implied by results from

learning theory.

Reduction to Monotone Circuits Our main result of this section, Theorem 1.4, shows

that if we can prove average-case hard functions for monotone circuits with strong enough

parameters then we would have average-case hard functions for general circuits with some

loss in parameters. We prove this by showing that a circuit which approximates a given

function can be made monotone without too much loss in accuracy.
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Theorem 1.4 Let f be any function. If there is a general circuit C with s gates that

computes f to within 1
2
− ε, then there is either a monotone or anti-monotone circuit with

2s+O(n log2 n) gates that computes f to within 1
2
− ε′ for ε′ = max( ε

n+1
, c√

n log(1/ε)
) for c > 0

an absolute constant.

Proof. The main idea is that there must be some slice on which C computes f well and

contains a large fraction of all inputs. Once this is proven, we show that either the monotone

or anti-monotone circuit that agrees with C on the slice in question must compute f on at

least 1
2
+ ε′ fraction of inputs. The choice between the monotone or anti-monotone circuit is

made to ensure the circuit computes f with probability at least 1
2

on inputs outside of the

slice of interest.

We begin by considering for each slice i, the value Ai that the i-th slice contributes to

the advantage C has in computing f ,

Ai =
∑

x s.t. |x|=i

1C(x)=f(x) − 1C(x) 6=f(x).

We have by assumption that
n∑

i=0

Ai ≥ 2n(2ε).

By an averaging argument, there exists an index i such that Ai ≥ 2n 2ε
n+1

. Theorem 7.1

gives us both a monotone circuit Cmon and an anti-monotone circuit Canti−mon of size 2s +

O(n log2 n) that agree with C on the i-th slice. Cmon and Canti−mon thus have advantage at

least 2n 2ε
n+1

in computing f on the i-th slice. Because Cmon and Canti−mon are complements

outside of the i-th slice, exactly one of them agrees with f on at least 1
2

of all inputs outside

of the i-th slice. Altogether, we have that either Cmon or Canti−mon has total advantage at

least 2n 2ε
n+1

in computing f ; equivalently at least one of the circuits computes f to within

1
2
− ε

n+1
.

The alternate value for ε′ comes by only considering Θ(
√

n log(n/ε)) slices around the

middle which together contain 1− ε
2

fraction of all strings. The Chernoff Bound of Theorem

2.7 tells us that if we pick an n-bit string at random, the probability that the Hamming weight
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deviates from bn
2
c by at least j is at most ε

2
if we set j such that 2e−(n/2−(j+1))2/(2n) ≤ ε

2
, so

j = Θ(
√

n log(1/ε)). Thus we remove from consideration at most ε
2
2n strings by restricting

to the Θ(
√

n log(1/ε)) many slices closest to the middle, and therefore C must compute f

correctly on at least 2n(1
2

+ ε
2
) of these. We can now carry out an argument similar to the

above – where instead of n + 1 many slices we consider Θ(
√

n log(1/ε)) many and have a

circuit that is correct on at least 2n(1
2

+ ε
2
) of the strings rather than 2n(1

2
+ ε) – to obtain

the alternate value of ε′.

Tightness of Theorem 1.4 We observe that Theorem 1.4 is within a constant factor of

being tight for large ε, as follows. It is well-known that no monotone function can compute

the parity function to within more than 1
2
−O( 1√

n
), stated in Lemma 7.4. On the other hand,

parity is easily computable by a small general circuit. Applying Theorem 1.4 to this circuit,

with ε = 1
2
, gives a monotone circuit computing parity to within 1

2
− c√

n
for some constant c,

within a constant factor of the best possible. For completeness we provide a proof of Lemma

7.4.

Lemma 7.4 The parity function is δ = 1
2
− c√

n
hard for both monotone and anti-monotone

circuits of any size, for c an absolute constant.

Proof. Let f be a monotone Boolean function. The idea of the proof is to progressively

modify f so that it outputs 0 on strings with Hamming weight at most bn/2c − 1 and

outputs 1 on strings with Hamming weight at least dn/2e+ 1 without decreasing agreement

with parity in the process. The result is a function f that has error exactly 1
2

on strings

outside of the middle one or two slices (middle one for even n, middle two for odd n). The

middle one or two slices occupy a fraction Θ( 1√
n
) of the inputs, so even if f were correct on

all of these the total agreement with parity is 1
2

+ O( 1√
n
). An iterative application of Claim

7.5 and a similar claim for levels above dn/2e + 1 accomplishes the goal of setting f to 0

“on the bottom half” and to 1 “on the top half” of the n-cube. All that remains is to prove

Claim 7.5.
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Claim 7.5 Let 0 ≤ j < bn/2c− 1, and let f be a monotone Boolean function on n bits that

is 0 on all x with |x| < j. There is a monotone function f ′ that is 0 on all x with |x| ≤ j,

agrees with f for all x with |x| > j + 1, agrees with f for all x with |x| = j + 1 if j is even,

and is no farther from parity than f .

First suppose j is even. Then set f ′ to agree with f on all x with |x| 6= j and set f ′(x) = 0

for all x with |x| = j. This brings f ′ closer to parity, and f ′ is monotone if f is.

Suppose j is odd. Claim 7.6 shows that by setting all bits in slices j and j + 1 to 0, we

cannot go farther away from parity. This satisfies Claim 7.5, so all that remains is to prove

Claim 7.6.

Claim 7.6 Let 0 ≤ j < bn/2c − 1, and let f be a monotone Boolean function on n bits.

f takes the value 1 on at least as many inputs with Hamming weight j + 1 as inputs with

Hamming weight j.

Claim 7.6 states that when looking at the “bottom half” of a monotone function, the

number of 1’s on each slice is non-decreasing. Claim 7.6 can be proved as a corollary to various

results in combinatorics. We will the fact that the Boolean n-cube can be partitioned into

disjoint symmetric chains. To state this result, we view an n-bit Boolean string as the set S

of the positions in the string equal to 1. Then S ⊆ [n] and if |x| = k then |S| = k. A “chain”

in the Boolean cube is a sequence S1, S2, ..., S` such that for each 1 ≤ i < `, Si ⊂ Si+1. In

other words, the input xSi+1
associated with Si+1 is obtained from the input xSi

associated

with Si by flipping one or more 0’s to 1’s. A chain is symmetric if |S1| + |S`| = n, which

implies that |Si+1| = |Si|+ 1 for each i.

The proof that the Boolean n-cube can be partitioned into symmetric chains is by in-

duction. To go from n bits to n + 1 bits, replace each chain S1, S2, ..., S` from the symmet-

ric chain decomposition of the n-cube with the two chains S1, S2, ..., S`, S` ∪ {n + 1} and

S1 ∪ {n + 1}, S2 ∪ {n + 1}, ..., S`−1 ∪ {n + 1}, where the second chain is only added if ` ≥ 2.

Now let us see how to use this result to prove Claim 7.6. Because j < bn/2c − 1, there

are at least as many strings on the (j + 1)-st slice as the j-th slice. The symmetric chain
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decomposition of the n-cube gives a matching between the elements of the j-th slice and a

subset of size
(

n
j

)
of elements of the (j+1)-st slice. For each element xS in the j-th slice, there

is a corresponding element xS′ in the (j + 1)-st slice with S ⊂ S ′ so that by monotonicity of

f , if f(xS) = 1 then f(xS′) = 1 as well. Claim 7.6 follows because the symmetric chains are

disjoint, meaning each input on the j-th slice taking the value 1 is matched with a different

input on the (j + 1)-st slice taking the the value 1.

7.2.1 Monotone Hard Functions

As discussed in Section 1.3, results from learning theory tell us that no monotone function

can be more than (1
2
−Ω( log n√

n
))-hard for linear-size general circuits or O(n log n) size monotone

circuits. The known circuit lower bounds proofs for monotone circuits give hardness that is

little better than worst-case hardness (they give hardness 2nα−n for some constant 0 < α < 1).

A natural question then is how close in hardness a monotone function can come to the

1
2
− Ω( log n√

n
) barrier. In this sub-section, we show that there do exist monotone functions

whose hardness approaches this barrier.

[Weg84] observed that there exist monotone languages that are worst-case hard for

general circuits with Θ(2n/n3/2) gates; this follows from the fact that for small enough

s = O(2n/n3/2) the number of monotone slice functions for the middle slice is larger than

the number of circuits with s gates. [ACR97] used more refined probabilistic techniques to

prove a result which implies the existence of a mildly average-case hard monotone function.

They prove an asymptotic characterization of how inapproximable a function can be on any

subset of its inputs; in particular there exist functions that are hard to approximate on their

middle slice. Thus there exist monotone slice functions which are hard to approximate on

the middle slice; the particular parameters are stated in Lemma 7.7.

Lemma 7.7 (follows from [ACR97]) There exist constants c1, c2 > 0 and a balanced

monotone function f such that for sufficiently large n, no circuit with at most s = c12n

n3/2 gates

computes f to within 1− δ(n) at length n for δ(n) = c2√
n
.
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[BT96] have shown that for any monotone function f and any δ(n) > 0, there is a

Boolean circuit with 2O((1/δ(n))·
√

n log(
√

n·δ(n))) gates that computes f to within δ(n). Thus the

hard function of Lemma 7.7 has hardness within a constant factor of the best possible for

circuits with s = 2Θ(n) gates.

The results proved in [ACR97] are more general and the techniques more involved than

needed for Lemma 7.7. For completeness, we provide a simple proof of Lemma 7.7.

Proof. We show that there exists a monotone slice function for the middle slice which has the

stated hardness. This can be shown directly using a probabilistic argument by comparing

the number of monotone slice functions for the middle slice with the number of functions

within a certain distance on the middle slice of size s circuits.

Alternatively, we can take a general n-bit function h with high average-case hardness and

create a monotone function f on m bits by letting it be a monotone slice function resulting

from embedding the truth table of h within the m-cube. Let h be a function that is 1
4
-hard

for circuits of size c2n

n
for a positive constant c. Such an h can be proved by a probabilistic

argument [Pip76]. We let f be defined by choosing the smallest m such that
(

m
bm/2c

)
≥ 2n

and using the embedding of Lemma 7.3 of h into the middle slice of f . Because
(

m
bm/2c

)
grows by at most a factor of two with m and is Θ( 2m

√
m

), we have that the embedding uses

at least 1/2 of the middle slice and m ≤ n + log n for sufficiently large n. We can ensure f

is balanced by setting bits appropriately in the middle slice and neighboring slices that are

not used in the embedding. Given a circuit of size s that computes f on at least a fraction

3
4

of the strings used in the embedding of h, we would get a circuit of size s + poly(n) that

computes h to within 1
4
. For a suitable constant c1 depending on c, we get a contradiction

to the hardness of h if s ≤ c12m

m3/2 as follows. We can upper-bound s by

O(
2m

m3/2
) ≤ O(

2n
√

m

m3/2
) ≤ O(

2n

n
)

where the constant in the final big-O decreases towards 0 as c1 decreases towards 0. The

first inequality follows because m was chosen so that
(

m
bm/2c

)
– which is Θ( 2m

√
m

) – is ≤ 2 · 2n.

Then the circuit for computing h to within 1
4

has size O(2n

n
) + poly(n) = O(2n

n
) where the
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constant in the big-O decreases with c1, and we get a contradiction to the hardness of h

when this is less than c. Finally, the hardness δ for f as a function of m is at least a fraction

1
4

of the strings used in the embedding, which is Ω( 1√
m

) because the embedding uses at least

1/2 of the middle slice.

Given a mildly hard function, the XOR lemma can often be used to produce a function

that is more inapproximable, but applying the XOR lemma to the hard function of Lemma

7.7 would produce a function with amplified hardness that is no longer monotone. We

can instead use a hardness amplification procedure that preserves monotonicity. O’Donnell

[O’D04] developed a hardness amplification procedure tailored for use in the NP setting that

has the property we need – given a mildly hard monotone function, the procedure produces

a function with increased hardness that remains monotone. We have stated this result as

Theorem 2.10. By applying Theorem 2.10 to the hard function of Lemma 7.7, we obtain the

following.

Theorem 7.8 For every constant η > 0 there exists a constant c(η) > 0 and a monotone

function f such that for sufficiently large n, f at length n is δ = 1
2
− 1

n1/2−η hard for circuits

with s = 2nc(η)
gates.

Note that the hardness 1
2
− 1

n1/2−η comes close to the barrier of 1
2
−Ω( log n√

n
) discussed earlier.

We also point out that the hard function of Theorem 7.8 is computable in EΣp
2 , exponential

time with an oracle to the second level of the polynomial hierarchy, using the same techniques

of [Kan82] that show EΣp
2 contains a language with maximal circuit complexity (as observed

for example in [MVW99]).

7.3 Pseudorandom Generators

In the last section we showed that any function that is average-case hard for monotone

circuits is average-case hard for general circuits with somewhat weaker parameters. These

results are motivated by the possibility of using an average-case hard function to build a

pseudorandom generator suitable for derandomizing randomized monotone circuits. In this
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section, we show that any method for constructing a pseudorandom generator secure against

randomized monotone circuits also must give a pseudorandom generator secure against gen-

eral circuits with somewhat weaker parameters.

Reduction to Monotone Adversaries The following theorem states that a circuit that

distinguishes a distribution from uniform can be converted into a monotone distinguisher

with somewhat weaker parameters. Stated in the contrapositive, if G is an ε′-pseudorandom

generator against size s monotone circuits, then G is an ε-pseudorandom generator against

general circuits of size s
2
−O(n log2 n).

We point out that a slightly weaker version of Theorem 1.5 was independently discovered

by Karakostas [Kar09], namely with ε′ = ε
2(n+1)

.

Theorem 1.5 Let C be a circuit of size s that ε-distinguishes some distribution D from

uniform. Then there is a monotone circuit C ′ of size 2s + O(n log2 n) that ε′-distinguishes

D from uniform for ε′ = max( ε
2(n+1)

, c√
n log(1/ε)

) for c > 0 an absolute constant.

Proof. The proof is essentially identical to that of Theorem 1.4 except in the setting of

distinguishers rather than computing a Boolean function. The main idea is to find a slice i

on which C ε′-distinguishes and let C ′ compute the monotone slice function agreeing with

C on that slice. A simple calculation then shows that either C ′ or the threshold function

outputting 1 iff |x| > i distinguishes with probability ε′ over all inputs.

Let C be an ε-distinguisher of size s for D. By definition, either PrX←Un [C(X) = 1] −

PrY←D[C(Y ) = 1] ≥ ε or PrY←D[C(Y ) = 1] − PrX←Un [C(X) = 1] ≥ ε. Without loss of

generality, we assume the former. By breaking these probabilities into disjoint events, we

have that

n∑
i=0

( Pr
X←Un

[C(X) = 1 and |X| = i]− Pr
Y←D

[C(Y ) = 1 and |Y | = i]) ≥ ε.

By an averaging argument, there exists an index i such that PrX←Un [C(X) = 1 and |X| =

i]−PrY←D[C(Y ) = 1 and |Y | = i] ≥ ε
n+1

. By Theorem 7.1, there is a monotone circuit Cmon



146

that agrees with C on the i-th slice and uses at most 2s + O(n log2 n) gates. The overall

distinguishing probability of Cmon can be expressed as

(PrX←Un [Cmon = 1 and |X| = i]− PrY←D[Cmon = 1 and |Y | = i])

+(PrX←Un [Cmon = 1 and |X| > i]− PrY←D[Cmon = 1 and |Y | > i])

+(PrX←Un [Cmon = 1 and |X| < i]− PrY←D[Cmon = 1 and |Y | < i]).

The last term is 0 because Cmon outputs 0 on strings of weight less than i. The middle term

is PrX←Un [|X| > i] − PrY←D[|Y | > i] because Cmon outputs 1 on strings of weight greater

than i. If the absolute value of this term is greater than ε
2(n+1)

, then the threshold function

that outputs 1 iff |X| > i – computable by O(n log n) size monotone circuits [AKS83] – is

an ε
2(n+1)

-distinguisher. Otherwise, the distinguishing probability of Cmon is at least

( Pr
X←Un

[Cmon(X) = 1 and |X| = i]− Pr
Y←D

[Cmon(Y ) = 1 and |Y | = i])− ε

2(n + 1)
≥ ε

2(n + 1)
.

The alternate value for ε′ comes by only considering Θ(
√

n log(n/ε)) layers around the

middle, which together contain a fraction 1 − ε
2

of all strings. These layers collectively

distinguish with ε
2

advantage, so one of them must distinguish with Ω( ε√
log(n/ε)

) advantage.

The analysis for this case is the same as for this case of Theorem 1.4.

Remark: In the setting of general circuits, it is known that the existence of explicit pseu-

dorandom generators is equivalent to the existence of explicit functions that are hard on

average. A natural question is whether this remains true in the setting of monotone circuits;

if so then Theorem 1.5 for the case of pseudorandom distributions would follow as a corollary

to Theorem 1.4. A simple argument shows that the language L defined as the set of strings

output by a pseudorandom generator secure against certain adversaries must be worst-case

hard for those same adversaries. The argument carries through for monotone circuits, but

worst-case hardness is not enough to apply Theorem 1.4. For general circuits and pseudoran-

dom generators computable in exponential time in the seed length, [NW94] observe that L

must be average-case hard by appealing to the known worst-case to average-case reductions

for languages computable in exponential time. These reductions do not seem to preserve
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monotonicity so do not prove a connection between pseudorandom generators secure against

monotone circuits and average-case hard functions for monotone circuits.

Tightness of Theorem 1.5 One question is whether the parameters in Theorem 1.5

can be tightened further. We have mentioned in Lemma 7.4 that the parity function is

1
2
− Ω( 1√

n
) hard for monotone circuits. A standard argument shows that a hard function

yields a pseudorandom generator with 1 bit stretch by outputting the seed along with the

value of the hard function on the seed. In the following theorem, we show that this argument

carries through for monotone circuits with the parity function, denoted ⊕, as the hard

function. Theorem 7.9 shows that Theorem 1.5 is tight to within a constant factor: G⊕ is

easily distinguishable with ε = 1
2

by a small general circuit, and applying Theorem 1.5 to

this circuit produces a monotone circuit that γ√
n
-distinguishes G⊕ from uniform for some

constant γ – a monotone distinguisher within a constant factor of optimal.

Theorem 7.9 Define a generator G⊕ as follows: G⊕(x) = (x,⊕(x)). Then G⊕ : {0, 1}n →

{0, 1}n+1 is a ε = c
n1/2 pseudorandom generator secure against monotone and anti-monotone

circuits of any size, for c an absolute constant.

Proof. We follow the standard proof from the general setting and keep track of monotonicity

to verify the final circuit is monotone or anti-monotone. We assume a monotone or anti-

monotone circuit C that ε-distinguishes the output of G⊕ from uniform. We would like to

use C to compute parity on some n-bit string x. If C were a perfect distinguisher then for

any x, C(x,⊕(x)) = 1 and C(x,⊕(x)) = 0. C is not a perfect distinguisher, but we treat it

as if it were and analyze the probability that we are correct. Namely, we choose a random

bit b and query the value C(x, b). If C(x, b) = 1 we assume ⊕(x) = b; if C(x, b) = 0 we

assume ⊕(x) = b. A random bit b is equal to ⊕(x) with probability 1
2

and is equal to ⊕x

with probability 1
2
, so the probability we output the correct value for ⊕(x) is

1

2
(Pr[C(x,⊕(x)) = 1] + Pr[C(x,⊕(x)) = 0]). (7.1)
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We use the fact that C is an ε-distinguisher to lower bound (7.1). We have that

| Pr
X∈Un

[C(X,⊕(X)) = 1]− Pr
X∈Un,β∈U1

[C(X, β) = 1]| ≥ ε.

By expressing the second term as a sum depending on whether β is ⊕(X) or ⊕(X), we have

1
2
|PrX∈Un [C(X,⊕(X)) = 1]− PrX∈Un [C(X,⊕(X)) = 1]| ≥ ε, and therefore

1
2
|PrX∈Un [C(X,⊕(x)) = 1] + PrX∈Un [C(X,⊕(X)) = 0]− 1| ≥ ε.

If the sign on the absolute value is positive, we have that (7.1) is at least 1
2

+ ε. Otherwise

we have that (7.1) is at most 1
2
− ε; in that case the negation of our strategy is correct with

probability at least 1
2

+ ε.

Let us verify that this strategy produces a monotone or anti-monotone circuit. First,

there is a value for b that preserves the probability of success, and we can fix this value into

the circuit. If b is fixed to 1, then our strategy outputs C(x, 1); if b is set to 0, our strategy

outputs C(x, 0). Due to the sign on the absolute value, we may need to place an additional

negation at the top of the final circuit. We have that if C is an ε-distinguisher for G⊕ then

one of C(x, 1), C(x, 1), C(x, 0), C(x, 0) computes parity to within 1
2
− ε. If C is monotone

or anti-monotone, then so are each of these circuits, and for ε ≥ c 1√
n

for the constant c of

Lemma 7.4 we have a contradiction.

Remark: A standard modification to the construction is to apply the hard function – parity

– on disjoint subsets of the seed to produce more output bits. If we define G⊕k (x1, ..., xk) =

(x1,⊕(x1), x2,⊕(x2), ..., xk,⊕(xk)), with |xi| = bn/kc for all i, then the proof can be modified

to show that G⊕k : {0, 1}n → {0, 1}n+k is a ε = Θ( 1
(bn/kc)1/2 )-pseudorandom generator secure

against monotone circuits of any size.

7.4 Derandomization

In the last two sections, we showed that average-case hard functions for monotone cir-

cuits are also average-case hard for general circuits with somewhat weaker parameters, and

pseudorandom generators secure against monotone circuits are also secure against general
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circuits with somewhat weaker parameters. Constructing pseudorandom generators is one

particular method to obtain derandomization of randomized monotone circuits, and average-

case hard functions are one ingredient that can be used to build pseudorandom generators.

In this section, we show that any method of derandomizing monotone randomized circuits

can also be used to derandomize general non-monotone circuits.

Monotone Randomized Computations One natural definition for the class of mono-

tone randomized computations is the set of BPP languages that are also monotone. But it

is easy to give a reduction from any BPP language L to this class by simply embedding the

truth table of f within the middle slice of a monotone function using Lemma 7.3.

We instead consider another natural definition of monotone randomized computations,

namely the set of languages that can be solved by uniform bounded-error monotone random-

ized circuits. The uniformity requirement is that on input 1n, the circuit can be output in

poly(n) time. The resulting circuit should be monotone in both the input and random bits

and should have bounded error on every input. In Theorem 1.6, we show an efficient reduc-

tion from any BPP language L to languages solvable by this weaker model of randomized

monotone computations. Thus if these computations can be solved in P, then all of BPP is

in P.

We point out that there exist monotone languages in BPP that are not computable by

uniform bounded-error monotone randomized circuits. This follows from two facts. First,

randomness can be removed from bounded-error monotone randomized by reducing the error

to be less than 2−n (which only uses majority and thus preserves monotonicity) and then

fixing a random string that is correct for all inputs; thus bounded-error randomized monotone

circuits can be simulated efficiently by non-uniform deterministic monotone circuits. Second,

[Raz] and [Tar87] demonstrate monotone languages in P, and thus also BPP, that require

non-uniform monotone circuits of super-polynomial size (exponential size for the result of

[Tar87]).
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Theorem 1.6 Let L be any language computable by polynomial-time bounded-error ran-

domized machines. There is a language Lmon computable by uniform monotone bounded-

error polynomial-size randomized circuits such that L poly-time mapping reduces to Lmon.

In particular, if Lmon ∈ P then L ∈ P.

Proof. Let M be a bounded-error randomized machine running in time nk computing a

BPP language L, for some constant k. The basic idea is to take the function computed by

the deterministic machine underlying M and embed this within a monotone slice function.

Viewing this monotone slice function as a randomized monotone circuit, we must ensure the

following.

(i) The circuit has bounded error on all inputs.

(ii) L many-one reduces to the language computed by the circuit.

Let f : {0, 1}n × {0, 1}nk → {0, 1} be the function computed by M given an n-bit input x

and random string r of length nk. To produce a randomized monotone circuit, we separately

embed both the input and the random string into the middle slice of larger Boolean cubes.

To embed the input we can use the simple embedding associating x with the 2n-bit string

(x, x). We must take more care with the embedding of the random bits because the circuit

must have error bounded away from one half on each input. We achieve this by using the

embedding of Lemma 7.3 so that the strings involved in the embedding occupy a constant

fraction of the middle slice and thus a 1/ poly fraction of all random strings.

Now we carry out the above outline. Let m be the smallest even integer such that(
m
bm/2c

)
≥ 2nk

. Because
(

m
bm/2c

)
grows by less than a factor of two for each increment of m,

we also have that
(

m
bm/2c

)
≤ 4 · 2nk

. We define a randomized monotone circuit in terms of

the function fmon that it computes. The function takes an input x′ of 2n bits and a random

string r′ of m bits and behaves as follows.

1. Slice function of x′

If |x′| > n, set fmon(x′, r′) = 1. If |x′| < n, set fmon(x′, r′) = 0.
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2. Slice function of r′ for x′ on middle slice

If |x′| = n and |r′| > m/2, set fmon(x′, r′) = 1.

If |x′| = n and |r′| < m/2, set fmon(x′, r′) = 0.

3. Embed f within middle slice of fmon

If x′ = (x, x) for some x of length n and |r′| = m/2, do the following. If r′ is among

the 2nk
strings matched with {0, 1}nk

by the embedding of Lemma 7.3, let r be the

associated value and set fmon(x′, r′) = f(x, r). For r′ that do not have a match within

{0, 1}nk
(because r′ is not among the 2nk

“smallest” strings in the middle slice of the

m-cube), set fmon(x′, r′) to 0 on half of these and 1 on half.

4. Other x′ on the middle slice

If |x′| = n, x′ is not of the form (x, x), and |r′| = m/2, set fmon(x′, r′) = 0.

For x′ of the form (x, x), this construction ensures Prr′ [fmon(x′, r′) = 1] = 1
2
· (1− ρ) + ρ ·

Prr[f(x, r) = 1], where ρ is the fraction of strings used by the embedding of nk-bit random

strings into the middle slice of the m-cube. As stated above, m was chosen so that ρ = Θ( 1√
m

)

and m = n + O(log n). Thus the majority value of fmon(x′, ·) agrees with the majority value

of f(x, ·), and the error is bounded away from one half by 1/ poly.

For x′ with |x′| = n that is not of the form (x, x), the last step ensures error bounded

away from one half as well – for such x′, Prr′ [fmon(x′, r′) = 0] ≥ 1
2
+ 1

poly
. For x′ with |x′| 6= n,

fmon(x′, ·) is either the constant 0 or constant 1 by the first step.

Let us see that fmon can be computed by a uniform polynomial-size circuit. Let C be a

uniform polynomial-size circuit for fmon; we wish to remove the negations from this circuit

without increasing the size too much. As in the proof of Theorem 7.1, we first push the

negations to the inputs, at most doubling the circuit size. Because fmon is a monotone slice

function of x′, as noted in the proof of Theorem 7.1, we can replace the negations of those

variables by a monotone circuit of size O(n log2 n). For x′ on the non-trivial slice of fmon,

fmon is a monotone slice function of r′, so we can replace the negations of those variables by a
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monotone circuit of size O(m log2 m). We conclude that fmon has a uniform polynomial-size

circuit.

To satisfy (i) and (ii), it only remains to lower the error from 1
2
− 1/ poly to 1

3
. We can

reduce the error to 1
3

by using standard error reduction consisting of taking multiple trials and

majority voting. This can be implemented by a uniform monotone circuit of polynomial size

[AKS83]. The result is a uniform polynomial-size monotone circuit Cmon that has bounded

error on every input and such that M(x) = Cmon((x, x)), completing the proof.
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random generators for logspace, and time-space trade-offs. Journal of Computer
and System Sciences, 45(2):204–232, 1992.

[BS91] Ravi B. Boppana and Michael Sipser. Handbook of Theoretical Computer Sci-
ence (Vol. A): Algorithms and Complexity, chapter The Complexity of Finite
Functions, pages 757–804. MIT Press, 1991.

[BT96] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone
functions. Journal of the ACM, 43(4):747–770, 1996.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar
reachability is in unambiguous log-space. ACM Transactions on Computation
Theory, 1(1), 2009.

[Con93] Anne Condon. The complexity of space bounded interactive proof systems.
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